Rev 14 | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | pj | 1 | /* |
2 | * Project: S.Ha.R.K. |
||
3 | * |
||
4 | * Coordinators: |
||
5 | * Giorgio Buttazzo <giorgio@sssup.it> |
||
6 | * Paolo Gai <pj@gandalf.sssup.it> |
||
7 | * |
||
8 | * Authors : |
||
9 | * Paolo Gai <pj@gandalf.sssup.it> |
||
10 | * Massimiliano Giorgi <massy@gandalf.sssup.it> |
||
11 | * Luca Abeni <luca@gandalf.sssup.it> |
||
12 | * (see the web pages for full authors list) |
||
13 | * |
||
14 | * ReTiS Lab (Scuola Superiore S.Anna - Pisa - Italy) |
||
15 | * |
||
16 | * http://www.sssup.it |
||
17 | * http://retis.sssup.it |
||
18 | * http://shark.sssup.it |
||
19 | */ |
||
20 | |||
21 | /** |
||
22 | ------------ |
||
29 | pj | 23 | CVS : $Id: edf.c,v 1.3 2002-11-11 08:32:06 pj Exp $ |
2 | pj | 24 | |
25 | File: $File$ |
||
29 | pj | 26 | Revision: $Revision: 1.3 $ |
27 | Last update: $Date: 2002-11-11 08:32:06 $ |
||
2 | pj | 28 | ------------ |
29 | |||
30 | This file contains the scheduling module EDF (Earliest Deadline First) |
||
31 | |||
32 | Read edf.h for further details. |
||
33 | |||
34 | **/ |
||
35 | |||
36 | /* |
||
37 | * Copyright (C) 2000 Paolo Gai |
||
38 | * |
||
39 | * This program is free software; you can redistribute it and/or modify |
||
40 | * it under the terms of the GNU General Public License as published by |
||
41 | * the Free Software Foundation; either version 2 of the License, or |
||
42 | * (at your option) any later version. |
||
43 | * |
||
44 | * This program is distributed in the hope that it will be useful, |
||
45 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
||
46 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||
47 | * GNU General Public License for more details. |
||
48 | * |
||
49 | * You should have received a copy of the GNU General Public License |
||
50 | * along with this program; if not, write to the Free Software |
||
51 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
||
52 | * |
||
53 | */ |
||
54 | |||
55 | |||
56 | #include <modules/edf.h> |
||
57 | #include <ll/stdio.h> |
||
58 | #include <ll/string.h> |
||
59 | #include <kernel/model.h> |
||
60 | #include <kernel/descr.h> |
||
61 | #include <kernel/var.h> |
||
62 | #include <kernel/func.h> |
||
63 | #include <kernel/trace.h> |
||
64 | |||
65 | //#define edf_printf kern_printf |
||
66 | #define edf_printf printk |
||
67 | |||
68 | /*+ Status used in the level +*/ |
||
69 | #define EDF_READY MODULE_STATUS_BASE /*+ - Ready status +*/ |
||
70 | #define EDF_WCET_VIOLATED MODULE_STATUS_BASE+2 /*+ when wcet is finished +*/ |
||
71 | #define EDF_WAIT MODULE_STATUS_BASE+3 /*+ to wait the deadline +*/ |
||
72 | #define EDF_IDLE MODULE_STATUS_BASE+4 /*+ to wait the deadline +*/ |
||
73 | #define EDF_ZOMBIE MODULE_STATUS_BASE+5 /*+ to wait the free time +*/ |
||
74 | |||
75 | /*+ flags +*/ |
||
76 | #define EDF_FLAG_SPORADIC 1 |
||
77 | #define EDF_FLAG_NORAISEEXC 2 |
||
78 | |||
79 | /*+ the level redefinition for the Earliest Deadline First level +*/ |
||
80 | typedef struct { |
||
81 | level_des l; /*+ the standard level descriptor +*/ |
||
82 | |||
83 | TIME period[MAX_PROC]; /*+ The task periods; the deadlines are |
||
84 | stored in the priority field +*/ |
||
85 | int deadline_timer[MAX_PROC]; |
||
86 | /*+ The task deadline timers +*/ |
||
87 | |||
88 | int flag[MAX_PROC]; |
||
89 | /*+ used to manage the JOB_TASK_MODEL and the |
||
90 | periodicity +*/ |
||
91 | |||
29 | pj | 92 | IQUEUE ready; /*+ the ready queue +*/ |
2 | pj | 93 | |
94 | int flags; /*+ the init flags... +*/ |
||
95 | |||
96 | bandwidth_t U; /*+ the used bandwidth +*/ |
||
97 | |||
98 | } EDF_level_des; |
||
99 | |||
100 | |||
101 | static char *EDF_status_to_a(WORD status) |
||
102 | { |
||
103 | if (status < MODULE_STATUS_BASE) |
||
104 | return status_to_a(status); |
||
105 | |||
106 | switch (status) { |
||
107 | case EDF_READY : return "EDF_Ready"; |
||
108 | case EDF_WCET_VIOLATED: return "EDF_Wcet_Violated"; |
||
109 | case EDF_WAIT : return "EDF_Sporadic_Wait"; |
||
110 | case EDF_IDLE : return "EDF_Idle"; |
||
111 | case EDF_ZOMBIE : return "EDF_Zombie"; |
||
112 | default : return "EDF_Unknown"; |
||
113 | } |
||
114 | } |
||
115 | |||
116 | static void EDF_timer_deadline(void *par) |
||
117 | { |
||
118 | PID p = (PID) par; |
||
119 | EDF_level_des *lev; |
||
29 | pj | 120 | struct timespec *temp; |
2 | pj | 121 | |
122 | edf_printf("$"); |
||
123 | |||
124 | lev = (EDF_level_des *)level_table[proc_table[p].task_level]; |
||
125 | |||
126 | switch (proc_table[p].status) { |
||
127 | case EDF_ZOMBIE: |
||
128 | /* we finally put the task in the ready queue */ |
||
129 | proc_table[p].status = FREE; |
||
29 | pj | 130 | iq_insertfirst(p,&freedesc); |
2 | pj | 131 | /* and free the allocated bandwidth */ |
132 | lev->U -= (MAX_BANDWIDTH/lev->period[p]) * proc_table[p].wcet; |
||
133 | break; |
||
134 | |||
135 | case EDF_IDLE: |
||
136 | /* tracer stuff */ |
||
137 | trc_logevent(TRC_INTACTIVATION,&p); |
||
138 | /* similar to EDF_task_activate */ |
||
29 | pj | 139 | temp = iq_query_timespec(p,&lev->ready); |
2 | pj | 140 | TIMESPEC_ASSIGN(&proc_table[p].request_time, |
29 | pj | 141 | temp); |
142 | ADDUSEC2TIMESPEC(lev->period[p], temp); |
||
2 | pj | 143 | proc_table[p].status = EDF_READY; |
29 | pj | 144 | iq_timespec_insert(p,&lev->ready); |
145 | lev->deadline_timer[p] = kern_event_post(temp, |
||
2 | pj | 146 | EDF_timer_deadline, |
147 | (void *)p); |
||
29 | pj | 148 | edf_printf("(dline p%d ev%d %d.%d)",(int)p,(int)lev->deadline_timer[p],(int)temp->tv_sec,(int)temp->tv_nsec/1000); |
2 | pj | 149 | //printk("(d%d idle priority set to %d)",p,proc_table[p].priority ); |
150 | event_need_reschedule(); |
||
151 | printk("el%d|",p); |
||
152 | break; |
||
153 | |||
154 | case EDF_WAIT: |
||
155 | /* Without this, the task cannot be reactivated!!! */ |
||
156 | proc_table[p].status = SLEEP; |
||
157 | break; |
||
158 | |||
159 | default: |
||
160 | /* else, a deadline miss occurred!!! */ |
||
161 | edf_printf("\nstatus %d\n", (int)proc_table[p].status); |
||
162 | edf_printf("timer_deadline:AAARRRGGGHHH!!!"); |
||
163 | kern_raise(XDEADLINE_MISS,p); |
||
164 | } |
||
165 | } |
||
166 | |||
167 | static void EDF_timer_guest_deadline(void *par) |
||
168 | { |
||
169 | PID p = (PID) par; |
||
170 | |||
171 | edf_printf("AAARRRGGGHHH!!!"); |
||
172 | kern_raise(XDEADLINE_MISS,p); |
||
173 | } |
||
174 | |||
175 | static int EDF_level_accept_task_model(LEVEL l, TASK_MODEL *m) |
||
176 | { |
||
177 | if (m->pclass == HARD_PCLASS || m->pclass == (HARD_PCLASS | l)) { |
||
178 | HARD_TASK_MODEL *h = (HARD_TASK_MODEL *)m; |
||
179 | |||
180 | if (h->wcet && h->mit) |
||
181 | return 0; |
||
182 | } |
||
183 | |||
184 | return -1; |
||
185 | } |
||
186 | |||
187 | static int EDF_level_accept_guest_model(LEVEL l, TASK_MODEL *m) |
||
188 | { |
||
189 | if (m->pclass == JOB_PCLASS || m->pclass == (JOB_PCLASS | l)) |
||
190 | return 0; |
||
191 | else |
||
192 | return -1; |
||
193 | } |
||
194 | |||
195 | |||
196 | static char *onoff(int i) |
||
197 | { |
||
198 | if (i) |
||
199 | return "On "; |
||
200 | else |
||
201 | return "Off"; |
||
202 | } |
||
203 | |||
204 | static void EDF_level_status(LEVEL l) |
||
205 | { |
||
206 | EDF_level_des *lev = (EDF_level_des *)(level_table[l]); |
||
29 | pj | 207 | PID p = iq_query_first(&lev->ready); |
2 | pj | 208 | |
209 | kern_printf("Wcet Check : %s\n", |
||
210 | onoff(lev->flags & EDF_ENABLE_WCET_CHECK)); |
||
211 | kern_printf("On-line guarantee : %s\n", |
||
212 | onoff(lev->flags & EDF_ENABLE_GUARANTEE)); |
||
213 | kern_printf("Used Bandwidth : %u/%u\n", |
||
214 | lev->U, MAX_BANDWIDTH); |
||
215 | |||
216 | while (p != NIL) { |
||
217 | if ((proc_table[p].pclass) == JOB_PCLASS) |
||
218 | kern_printf("Pid: %2d (GUEST)\n", p); |
||
219 | else |
||
220 | kern_printf("Pid: %2d Name: %10s %s: %9ld Dline: %9ld.%6ld Stat: %s\n", |
||
221 | p, |
||
222 | proc_table[p].name, |
||
223 | lev->flag[p] & EDF_FLAG_SPORADIC ? "MinITime" : "Period ", |
||
224 | lev->period[p], |
||
29 | pj | 225 | iq_query_timespec(p, &lev->ready)->tv_sec, |
226 | iq_query_timespec(p, &lev->ready)->tv_nsec/1000, |
||
2 | pj | 227 | EDF_status_to_a(proc_table[p].status)); |
29 | pj | 228 | p = iq_query_next(p, &lev->ready); |
2 | pj | 229 | } |
230 | |||
231 | for (p=0; p<MAX_PROC; p++) |
||
232 | if (proc_table[p].task_level == l && proc_table[p].status != EDF_READY |
||
233 | && proc_table[p].status != FREE ) |
||
234 | kern_printf("Pid: %2d Name: %10s %s: %9ld Dline: %9ld.%6ld Stat: %s\n", |
||
235 | p, |
||
236 | proc_table[p].name, |
||
237 | lev->flag[p] & EDF_FLAG_SPORADIC ? "MinITime" : "Period ", |
||
238 | lev->period[p], |
||
29 | pj | 239 | iq_query_timespec(p, &lev->ready)->tv_sec, |
240 | iq_query_timespec(p, &lev->ready)->tv_nsec/1000, |
||
2 | pj | 241 | EDF_status_to_a(proc_table[p].status)); |
242 | } |
||
243 | |||
244 | /* The scheduler only gets the first task in the queue */ |
||
245 | static PID EDF_level_scheduler(LEVEL l) |
||
246 | { |
||
247 | EDF_level_des *lev = (EDF_level_des *)(level_table[l]); |
||
248 | |||
249 | /* { // print 4 dbg the ready queue |
||
250 | PID p= lev->ready; |
||
251 | kern_printf("(s"); |
||
252 | while (p != NIL) { |
||
253 | kern_printf("%d ",p); |
||
254 | p = proc_table[p].next; |
||
255 | } |
||
256 | kern_printf(") "); |
||
257 | } |
||
258 | */ |
||
29 | pj | 259 | return iq_query_first(&lev->ready); |
2 | pj | 260 | } |
261 | |||
262 | /* The on-line guarantee is enabled only if the appropriate flag is set... */ |
||
263 | static int EDF_level_guarantee(LEVEL l, bandwidth_t *freebandwidth) |
||
264 | { |
||
265 | EDF_level_des *lev = (EDF_level_des *)(level_table[l]); |
||
266 | |||
267 | if (lev->flags & EDF_FAILED_GUARANTEE) { |
||
268 | *freebandwidth = 0; |
||
269 | return 0; |
||
270 | } |
||
271 | else |
||
272 | if (*freebandwidth >= lev->U) { |
||
273 | *freebandwidth -= lev->U; |
||
274 | return 1; |
||
275 | } |
||
276 | else |
||
277 | return 0; |
||
278 | |||
279 | } |
||
280 | |||
281 | static int EDF_task_create(LEVEL l, PID p, TASK_MODEL *m) |
||
282 | { |
||
283 | EDF_level_des *lev = (EDF_level_des *)(level_table[l]); |
||
284 | |||
285 | /* if the EDF_task_create is called, then the pclass must be a |
||
286 | valid pclass. */ |
||
287 | |||
288 | HARD_TASK_MODEL *h = (HARD_TASK_MODEL *)m; |
||
289 | |||
290 | lev->period[p] = h->mit; |
||
291 | |||
292 | if (h->periodicity == APERIODIC) |
||
293 | lev->flag[p] = EDF_FLAG_SPORADIC; |
||
294 | else |
||
295 | lev->flag[p] = 0; |
||
296 | lev->deadline_timer[p] = -1; |
||
297 | |||
298 | /* Enable wcet check */ |
||
299 | if (lev->flags & EDF_ENABLE_WCET_CHECK) { |
||
300 | proc_table[p].avail_time = h->wcet; |
||
301 | proc_table[p].wcet = h->wcet; |
||
302 | proc_table[p].control |= CONTROL_CAP; |
||
303 | } |
||
304 | |||
305 | /* update the bandwidth... */ |
||
306 | if (lev->flags & EDF_ENABLE_GUARANTEE) { |
||
307 | bandwidth_t b; |
||
308 | b = (MAX_BANDWIDTH / h->mit) * h->wcet; |
||
309 | |||
310 | /* really update lev->U, checking an overflow... */ |
||
311 | if (MAX_BANDWIDTH - lev->U > b) |
||
312 | lev->U += b; |
||
313 | else |
||
314 | /* The task can NOT be guaranteed (U>MAX_BANDWIDTH)... |
||
315 | in this case, we don't raise an exception... in fact, after the |
||
316 | EDF_task_create the task_create will call level_guarantee that return |
||
317 | -1... return -1 in EDF_task_create isn't correct, because: |
||
318 | . generally, the guarantee must be done when also the resources |
||
319 | are registered |
||
320 | . returning -1 will cause the task_create to return with an errno |
||
321 | ETASK_CREATE instead of ENO_GUARANTEE!!! |
||
322 | |||
323 | Why I use the flag??? because if the lev->U overflows, if i.e. I set |
||
324 | it to MAX_BANDWIDTH, I lose the correct allocated bandwidth... |
||
325 | */ |
||
326 | lev->flags |= EDF_FAILED_GUARANTEE; |
||
327 | } |
||
328 | |||
329 | return 0; /* OK, also if the task cannot be guaranteed... */ |
||
330 | } |
||
331 | |||
332 | static void EDF_task_detach(LEVEL l, PID p) |
||
333 | { |
||
334 | /* the EDF level doesn't introduce any dinamic allocated new field. |
||
335 | we have only to reset the NO_GUARANTEE FIELD and decrement the allocated |
||
336 | bandwidth */ |
||
337 | |||
338 | EDF_level_des *lev = (EDF_level_des *)(level_table[l]); |
||
339 | |||
340 | if (lev->flags & EDF_FAILED_GUARANTEE) |
||
341 | lev->flags &= ~EDF_FAILED_GUARANTEE; |
||
342 | else |
||
343 | lev->U -= (MAX_BANDWIDTH / lev->period[p]) * proc_table[p].wcet; |
||
344 | } |
||
345 | |||
346 | static int EDF_task_eligible(LEVEL l, PID p) |
||
347 | { |
||
348 | return 0; /* if the task p is chosen, it is always eligible */ |
||
349 | } |
||
350 | |||
351 | static void EDF_task_dispatch(LEVEL l, PID p, int nostop) |
||
352 | { |
||
353 | EDF_level_des *lev = (EDF_level_des *)(level_table[l]); |
||
354 | |||
355 | edf_printf("(disp p%d %d.%d)",(int)p,(int)schedule_time.tv_sec,(int)schedule_time.tv_nsec/1000); |
||
356 | |||
357 | /* the task state is set EXE by the scheduler() |
||
358 | we extract the task from the ready queue |
||
359 | NB: we can't assume that p is the first task in the queue!!! */ |
||
29 | pj | 360 | iq_extract(p, &lev->ready); |
2 | pj | 361 | } |
362 | |||
363 | static void EDF_task_epilogue(LEVEL l, PID p) |
||
364 | { |
||
365 | EDF_level_des *lev = (EDF_level_des *)(level_table[l]); |
||
366 | |||
367 | edf_printf("(epil p%d %d.%d)",p,(int)schedule_time.tv_sec,(int)schedule_time.tv_nsec/1000); |
||
368 | |||
369 | /* check if the wcet is finished... */ |
||
370 | if ((lev->flags & EDF_ENABLE_WCET_CHECK) && proc_table[p].avail_time <= 0) { |
||
371 | /* if it is, raise a XWCET_VIOLATION exception */ |
||
372 | kern_raise(XWCET_VIOLATION,p); |
||
373 | proc_table[p].status = EDF_WCET_VIOLATED; |
||
374 | } |
||
375 | else { |
||
376 | /* the task has been preempted. it returns into the ready queue... */ |
||
29 | pj | 377 | iq_timespec_insert(p,&lev->ready); |
2 | pj | 378 | proc_table[p].status = EDF_READY; |
379 | } |
||
380 | } |
||
381 | |||
382 | static void EDF_task_activate(LEVEL l, PID p) |
||
383 | { |
||
384 | EDF_level_des *lev = (EDF_level_des *)(level_table[l]); |
||
29 | pj | 385 | struct timespec *temp; |
2 | pj | 386 | |
387 | if (proc_table[p].status == EDF_WAIT) { |
||
388 | kern_raise(XACTIVATION,p); |
||
389 | return; |
||
390 | } |
||
391 | |||
392 | /* Test if we are trying to activate a non sleeping task */ |
||
393 | /* Ignore this; the task is already active */ |
||
394 | if (proc_table[p].status != SLEEP && |
||
395 | proc_table[p].status != EDF_WCET_VIOLATED) |
||
396 | return; |
||
397 | |||
398 | |||
399 | /* see also EDF_timer_deadline */ |
||
400 | ll_gettime(TIME_EXACT, &proc_table[p].request_time); |
||
401 | |||
29 | pj | 402 | temp = iq_query_timespec(p, &lev->ready); |
403 | TIMESPEC_ASSIGN(temp, &proc_table[p].request_time); |
||
404 | ADDUSEC2TIMESPEC(lev->period[p], temp); |
||
2 | pj | 405 | |
406 | /* Insert task in the correct position */ |
||
407 | proc_table[p].status = EDF_READY; |
||
29 | pj | 408 | iq_timespec_insert(p,&lev->ready); |
2 | pj | 409 | |
410 | /* Set the deadline timer */ |
||
29 | pj | 411 | lev->deadline_timer[p] = kern_event_post(temp, |
2 | pj | 412 | EDF_timer_deadline, |
413 | (void *)p); |
||
29 | pj | 414 | edf_printf("(dline p%d ev%d %d.%d)",p,(int)lev->deadline_timer[p],(int)temp->tv_sec,(int)temp->tv_nsec/1000); |
2 | pj | 415 | } |
416 | |||
417 | static void EDF_task_insert(LEVEL l, PID p) |
||
418 | { |
||
419 | EDF_level_des *lev = (EDF_level_des *)(level_table[l]); |
||
420 | |||
421 | /* Similar to EDF_task_activate, but we don't check in what state |
||
422 | the task is and we don't set the request_time*/ |
||
423 | |||
424 | /* Insert task in the coEDFect position */ |
||
425 | proc_table[p].status = EDF_READY; |
||
29 | pj | 426 | iq_timespec_insert(p,&lev->ready); |
2 | pj | 427 | } |
428 | |||
429 | static void EDF_task_extract(LEVEL l, PID p) |
||
430 | { |
||
431 | /* Extract the running task from the level |
||
432 | . we have already extract it from the ready queue at the dispatch time. |
||
433 | . the capacity event have to be removed by the generic kernel |
||
434 | . the wcet don't need modification... |
||
435 | . the state of the task is set by the calling function |
||
436 | . the deadline must remain... |
||
437 | |||
438 | So, we do nothing!!! |
||
439 | */ |
||
440 | } |
||
441 | |||
442 | static void EDF_task_endcycle(LEVEL l, PID p) |
||
443 | { |
||
444 | EDF_level_des *lev = (EDF_level_des *)(level_table[l]); |
||
445 | |||
446 | edf_printf("(ecyc p%d %d.%d)",p,(int)schedule_time.tv_sec,(int)schedule_time.tv_nsec/1000); |
||
447 | |||
448 | /* the task has terminated his job before it consume the wcet. All OK! */ |
||
449 | if (lev->flag[p] & EDF_FLAG_SPORADIC) |
||
450 | proc_table[p].status = EDF_WAIT; |
||
451 | else /* pclass = sporadic_pclass */ |
||
452 | proc_table[p].status = EDF_IDLE; |
||
453 | |||
454 | /* we reset the capacity counters... */ |
||
455 | if (lev->flags & EDF_ENABLE_WCET_CHECK) |
||
456 | proc_table[p].avail_time = proc_table[p].wcet; |
||
457 | |||
458 | /* when the deadline timer fire, it recognize the situation and set |
||
459 | correctly all the stuffs (like reactivation, request_time, etc... ) */ |
||
460 | } |
||
461 | |||
462 | static void EDF_task_end(LEVEL l, PID p) |
||
463 | { |
||
464 | // EDF_level_des *lev = (EDF_level_des *)(level_table[l]); |
||
465 | |||
466 | proc_table[p].status = EDF_ZOMBIE; |
||
467 | |||
468 | /* When the deadline timer fire, it put the task descriptor in |
||
469 | the free queue, and free the allocated bandwidth... */ |
||
470 | } |
||
471 | |||
472 | static void EDF_task_sleep(LEVEL l, PID p) |
||
473 | { |
||
474 | EDF_level_des *lev = (EDF_level_des *)(level_table[l]); |
||
475 | |||
476 | /* the task has terminated his job before it consume the wcet. All OK! */ |
||
477 | proc_table[p].status = EDF_WAIT; |
||
478 | |||
479 | /* we reset the capacity counters... */ |
||
480 | if (lev->flags & EDF_ENABLE_WCET_CHECK) |
||
481 | proc_table[p].avail_time = proc_table[p].wcet; |
||
482 | |||
483 | /* when the deadline timer fire, it recognize the situation and set |
||
484 | correctly the task state to sleep... */ |
||
485 | } |
||
486 | |||
487 | |||
488 | /* Guest Functions |
||
489 | These functions manages a JOB_TASK_MODEL, that is used to put |
||
490 | a guest task in the EDF ready queue. */ |
||
491 | |||
492 | static int EDF_guest_create(LEVEL l, PID p, TASK_MODEL *m) |
||
493 | { |
||
494 | EDF_level_des *lev = (EDF_level_des *)(level_table[l]); |
||
495 | JOB_TASK_MODEL *job = (JOB_TASK_MODEL *)m; |
||
496 | |||
497 | /* if the EDF_guest_create is called, then the pclass must be a |
||
498 | valid pclass. */ |
||
499 | |||
29 | pj | 500 | *iq_query_timespec(p, &lev->ready) = job->deadline; |
2 | pj | 501 | |
502 | lev->deadline_timer[p] = -1; |
||
503 | |||
504 | if (job->noraiseexc) |
||
505 | lev->flag[p] = EDF_FLAG_NORAISEEXC; |
||
506 | else |
||
507 | lev->flag[p] = 0; |
||
508 | |||
509 | lev->period[p] = job->period; |
||
510 | |||
511 | /* there is no bandwidth guarantee at this level, it is performed |
||
512 | by the level that inserts guest tasks... */ |
||
513 | |||
514 | return 0; /* OK, also if the task cannot be guaranteed... */ |
||
515 | } |
||
516 | |||
517 | static void EDF_guest_detach(LEVEL l, PID p) |
||
518 | { |
||
519 | /* the EDF level doesn't introduce any dinamic allocated new field. |
||
520 | No guarantee is performed on guest tasks... so we don't have to reset |
||
521 | the NO_GUARANTEE FIELD */ |
||
522 | } |
||
523 | |||
524 | static void EDF_guest_dispatch(LEVEL l, PID p, int nostop) |
||
525 | { |
||
526 | EDF_level_des *lev = (EDF_level_des *)(level_table[l]); |
||
527 | |||
528 | /* the task state is set to EXE by the scheduler() |
||
529 | we extract the task from the ready queue |
||
530 | NB: we can't assume that p is the first task in the queue!!! */ |
||
29 | pj | 531 | iq_extract(p, &lev->ready); |
2 | pj | 532 | } |
533 | |||
534 | static void EDF_guest_epilogue(LEVEL l, PID p) |
||
535 | { |
||
536 | EDF_level_des *lev = (EDF_level_des *)(level_table[l]); |
||
537 | |||
538 | /* the task has been preempted. it returns into the ready queue... */ |
||
29 | pj | 539 | iq_timespec_insert(p,&lev->ready); |
2 | pj | 540 | proc_table[p].status = EDF_READY; |
541 | } |
||
542 | |||
543 | static void EDF_guest_activate(LEVEL l, PID p) |
||
544 | { |
||
545 | EDF_level_des *lev = (EDF_level_des *)(level_table[l]); |
||
546 | |||
547 | /* Insert task in the correct position */ |
||
29 | pj | 548 | iq_timespec_insert(p,&lev->ready); |
2 | pj | 549 | proc_table[p].status = EDF_READY; |
550 | |||
551 | /* Set the deadline timer */ |
||
552 | if (!(lev->flag[p] & EDF_FLAG_NORAISEEXC)) |
||
29 | pj | 553 | lev->deadline_timer[p] = kern_event_post(iq_query_timespec(p, &lev->ready), |
2 | pj | 554 | EDF_timer_guest_deadline, |
555 | (void *)p); |
||
556 | |||
557 | } |
||
558 | |||
559 | static void EDF_guest_insert(LEVEL l, PID p) |
||
560 | { |
||
561 | EDF_level_des *lev = (EDF_level_des *)(level_table[l]); |
||
562 | |||
563 | /* Insert task in the correct position */ |
||
29 | pj | 564 | iq_timespec_insert(p,&lev->ready); |
2 | pj | 565 | proc_table[p].status = EDF_READY; |
566 | } |
||
567 | |||
568 | static void EDF_guest_extract(LEVEL l, PID p) |
||
569 | { |
||
570 | /* Extract the running task from the level |
||
571 | . we have already extract it from the ready queue at the dispatch time. |
||
572 | . the state of the task is set by the calling function |
||
573 | . the deadline must remain... |
||
574 | |||
575 | So, we do nothing!!! |
||
576 | */ |
||
577 | } |
||
578 | |||
579 | static void EDF_guest_endcycle(LEVEL l, PID p) |
||
14 | pj | 580 | { kern_raise(XINVALID_GUEST,exec_shadow); } |
2 | pj | 581 | |
582 | static void EDF_guest_end(LEVEL l, PID p) |
||
583 | { |
||
584 | EDF_level_des *lev = (EDF_level_des *)(level_table[l]); |
||
585 | |||
586 | //kern_printf("EDF_guest_end: dline timer %d\n",lev->deadline_timer[p]); |
||
587 | if (proc_table[p].status == EDF_READY) |
||
588 | { |
||
29 | pj | 589 | iq_extract(p, &lev->ready); |
2 | pj | 590 | //kern_printf("(g_end rdy extr)"); |
591 | } |
||
592 | |||
593 | /* we remove the deadline timer, because the slice is finished */ |
||
594 | if (lev->deadline_timer[p] != NIL) { |
||
595 | // kern_printf("EDF_guest_end: dline timer %d\n",lev->deadline_timer[p]); |
||
596 | event_delete(lev->deadline_timer[p]); |
||
597 | lev->deadline_timer[p] = NIL; |
||
598 | } |
||
599 | |||
600 | } |
||
601 | |||
602 | static void EDF_guest_sleep(LEVEL l, PID p) |
||
14 | pj | 603 | { kern_raise(XINVALID_GUEST,exec_shadow); } |
2 | pj | 604 | |
605 | |||
606 | |||
607 | /* Registration functions */ |
||
608 | |||
609 | /*+ Registration function: |
||
610 | int flags the init flags ... see edf.h +*/ |
||
611 | void EDF_register_level(int flags) |
||
612 | { |
||
613 | LEVEL l; /* the level that we register */ |
||
614 | EDF_level_des *lev; /* for readableness only */ |
||
615 | PID i; /* a counter */ |
||
616 | |||
617 | printk("EDF_register_level\n"); |
||
618 | |||
619 | /* request an entry in the level_table */ |
||
620 | l = level_alloc_descriptor(); |
||
621 | |||
622 | printk(" alloco descrittore %d %d\n",l,(int)sizeof(EDF_level_des)); |
||
623 | |||
624 | /* alloc the space needed for the EDF_level_des */ |
||
625 | lev = (EDF_level_des *)kern_alloc(sizeof(EDF_level_des)); |
||
626 | |||
627 | printk(" lev=%d\n",(int)lev); |
||
628 | |||
629 | /* update the level_table with the new entry */ |
||
630 | level_table[l] = (level_des *)lev; |
||
631 | |||
632 | /* fill the standard descriptor */ |
||
633 | strncpy(lev->l.level_name, EDF_LEVELNAME, MAX_LEVELNAME); |
||
634 | lev->l.level_code = EDF_LEVEL_CODE; |
||
635 | lev->l.level_version = EDF_LEVEL_VERSION; |
||
636 | |||
637 | lev->l.level_accept_task_model = EDF_level_accept_task_model; |
||
638 | lev->l.level_accept_guest_model = EDF_level_accept_guest_model; |
||
639 | lev->l.level_status = EDF_level_status; |
||
640 | lev->l.level_scheduler = EDF_level_scheduler; |
||
641 | |||
642 | if (flags & EDF_ENABLE_GUARANTEE) |
||
643 | lev->l.level_guarantee = EDF_level_guarantee; |
||
644 | else |
||
645 | lev->l.level_guarantee = NULL; |
||
646 | |||
647 | lev->l.task_create = EDF_task_create; |
||
648 | lev->l.task_detach = EDF_task_detach; |
||
649 | lev->l.task_eligible = EDF_task_eligible; |
||
650 | lev->l.task_dispatch = EDF_task_dispatch; |
||
651 | lev->l.task_epilogue = EDF_task_epilogue; |
||
652 | lev->l.task_activate = EDF_task_activate; |
||
653 | lev->l.task_insert = EDF_task_insert; |
||
654 | lev->l.task_extract = EDF_task_extract; |
||
655 | lev->l.task_endcycle = EDF_task_endcycle; |
||
656 | lev->l.task_end = EDF_task_end; |
||
657 | lev->l.task_sleep = EDF_task_sleep; |
||
658 | |||
659 | lev->l.guest_create = EDF_guest_create; |
||
660 | lev->l.guest_detach = EDF_guest_detach; |
||
661 | lev->l.guest_dispatch = EDF_guest_dispatch; |
||
662 | lev->l.guest_epilogue = EDF_guest_epilogue; |
||
663 | lev->l.guest_activate = EDF_guest_activate; |
||
664 | lev->l.guest_insert = EDF_guest_insert; |
||
665 | lev->l.guest_extract = EDF_guest_extract; |
||
666 | lev->l.guest_endcycle = EDF_guest_endcycle; |
||
667 | lev->l.guest_end = EDF_guest_end; |
||
668 | lev->l.guest_sleep = EDF_guest_sleep; |
||
669 | |||
670 | /* fill the EDF descriptor part */ |
||
671 | for(i=0; i<MAX_PROC; i++) { |
||
672 | lev->period[i] = 0; |
||
673 | lev->deadline_timer[i] = -1; |
||
674 | lev->flag[i] = 0; |
||
675 | } |
||
676 | |||
29 | pj | 677 | iq_init(&lev->ready, &freedesc, 0); |
2 | pj | 678 | lev->flags = flags & 0x07; |
679 | lev->U = 0; |
||
680 | } |
||
681 | |||
682 | bandwidth_t EDF_usedbandwidth(LEVEL l) |
||
683 | { |
||
684 | EDF_level_des *lev = (EDF_level_des *)(level_table[l]); |
||
685 | if (lev->l.level_code == EDF_LEVEL_CODE && |
||
686 | lev->l.level_version == EDF_LEVEL_VERSION) |
||
687 | return lev->U; |
||
688 | else |
||
689 | return 0; |
||
690 | } |
||
691 |