Rev 502 | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | pj | 1 | /* |
2 | * Project: S.Ha.R.K. |
||
3 | * |
||
4 | * Coordinators: |
||
5 | * Giorgio Buttazzo <giorgio@sssup.it> |
||
6 | * Paolo Gai <pj@gandalf.sssup.it> |
||
7 | * |
||
8 | * Authors : |
||
9 | * Paolo Gai <pj@gandalf.sssup.it> |
||
10 | * Massimiliano Giorgi <massy@gandalf.sssup.it> |
||
11 | * Luca Abeni <luca@gandalf.sssup.it> |
||
12 | * (see the web pages for full authors list) |
||
13 | * |
||
14 | * ReTiS Lab (Scuola Superiore S.Anna - Pisa - Italy) |
||
15 | * |
||
16 | * http://www.sssup.it |
||
17 | * http://retis.sssup.it |
||
18 | * http://shark.sssup.it |
||
19 | */ |
||
20 | |||
21 | /** |
||
22 | ------------ |
||
657 | anton | 23 | CVS : $Id: rm.c,v 1.9 2004-05-17 15:03:52 anton Exp $ |
2 | pj | 24 | |
25 | File: $File$ |
||
657 | anton | 26 | Revision: $Revision: 1.9 $ |
27 | Last update: $Date: 2004-05-17 15:03:52 $ |
||
2 | pj | 28 | ------------ |
29 | |||
657 | anton | 30 | This file contains the scheduling module RM (rate/deadline monotonic) |
2 | pj | 31 | |
32 | Read rm.h for further details. |
||
33 | |||
34 | **/ |
||
35 | |||
36 | /* |
||
38 | pj | 37 | * Copyright (C) 2000,2002 Paolo Gai |
2 | pj | 38 | * |
39 | * This program is free software; you can redistribute it and/or modify |
||
40 | * it under the terms of the GNU General Public License as published by |
||
41 | * the Free Software Foundation; either version 2 of the License, or |
||
42 | * (at your option) any later version. |
||
43 | * |
||
44 | * This program is distributed in the hope that it will be useful, |
||
45 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
||
46 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||
47 | * GNU General Public License for more details. |
||
48 | * |
||
49 | * You should have received a copy of the GNU General Public License |
||
50 | * along with this program; if not, write to the Free Software |
||
51 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
||
52 | * |
||
53 | */ |
||
54 | |||
55 | |||
56 | #include <modules/rm.h> |
||
57 | #include <ll/stdio.h> |
||
58 | #include <ll/string.h> |
||
59 | #include <kernel/model.h> |
||
60 | #include <kernel/descr.h> |
||
61 | #include <kernel/var.h> |
||
62 | #include <kernel/func.h> |
||
353 | giacomo | 63 | #include <tracer.h> |
64 | |||
657 | anton | 65 | //#define RM_DEBUG |
66 | #define rm_printf kern_printf |
||
2 | pj | 67 | |
657 | anton | 68 | #ifdef RM_DEBUG |
69 | /* some debug print functions */ |
||
70 | char *pnow() { |
||
71 | static char buf[40]; |
||
72 | struct timespec t; |
||
73 | sys_gettime(&t); |
||
74 | sprintf(buf, "%ld.%06ld", t.tv_sec, t.tv_nsec/1000); |
||
75 | return buf; |
||
76 | } |
||
77 | char *ptime1(struct timespec *t) { |
||
78 | static char buf[40]; |
||
79 | sprintf(buf, "%ld.%06ld", t->tv_sec, t->tv_nsec/1000); |
||
80 | return buf; |
||
81 | } |
||
82 | char *ptime2(struct timespec *t) { |
||
83 | static char buf[40]; |
||
84 | sprintf(buf, "%ld.%06ld", t->tv_sec, t->tv_nsec/1000); |
||
85 | return buf; |
||
86 | } |
||
87 | #endif |
||
2 | pj | 88 | |
657 | anton | 89 | /* statuses used in the level */ |
90 | #define RM_READY MODULE_STATUS_BASE /* ready */ |
||
91 | #define RM_IDLE MODULE_STATUS_BASE+1 /* idle, waiting for offset/eop */ |
||
92 | #define RM_WAIT MODULE_STATUS_BASE+2 /* to sleep, waiting for eop */ |
||
93 | #define RM_ZOMBIE MODULE_STATUS_BASE+3 /* zombie, waiting for eop */ |
||
2 | pj | 94 | |
657 | anton | 95 | /* task flags */ |
96 | #define RM_FLAG_SPORADIC 1 /* the task is sporadic */ |
||
97 | #define RM_FLAG_SPOR_LATE 2 /* sporadic task with period overrun */ |
||
2 | pj | 98 | |
99 | |||
657 | anton | 100 | /* the level redefinition for the Earliest Deadline First level */ |
101 | typedef struct { |
||
102 | level_des l; /* standard level descriptor */ |
||
103 | IQUEUE ready; /* the ready queue */ |
||
104 | int flags; /* level flags */ |
||
105 | bandwidth_t U; /* used bandwidth */ |
||
2 | pj | 106 | |
657 | anton | 107 | int taskflags[MAX_PROC]; /* task flags */ |
108 | TIME period[MAX_PROC]; /* task period */ |
||
109 | TIME rdeadline[MAX_PROC]; /* task relative deadlines */ |
||
110 | TIME offset[MAX_PROC]; /* task release offsets */ |
||
111 | struct timespec release[MAX_PROC]; /* release time of the task */ |
||
112 | int dl_timer[MAX_PROC]; /* deadline overrun timer */ |
||
113 | int eop_timer[MAX_PROC]; /* end of period timer */ |
||
114 | int dl_miss[MAX_PROC]; /* deadline miss counter */ |
||
115 | int wcet_miss[MAX_PROC]; /* WCET miss counter */ |
||
116 | int nact[MAX_PROC]; /* number of pending periodic jobs */ |
||
117 | int nskip[MAX_PROC]; /* number of skipped sporadic jobs */ |
||
118 | } RM_level_des; |
||
2 | pj | 119 | |
120 | |||
657 | anton | 121 | static void RM_timer_endperiod(void *par); |
2 | pj | 122 | |
123 | |||
657 | anton | 124 | /* This function is called when a task misses its deadline */ |
125 | |||
2 | pj | 126 | static void RM_timer_deadline(void *par) |
127 | { |
||
128 | PID p = (PID) par; |
||
129 | RM_level_des *lev; |
||
657 | anton | 130 | lev = (RM_level_des *)level_table[proc_table[p].task_level]; |
131 | |||
132 | TRACER_LOGEVENT(FTrace_EVT_task_deadline_miss,(unsigned short int)proc_table[p].context,0); |
||
2 | pj | 133 | |
657 | anton | 134 | if (lev->flags & RM_ENABLE_DL_EXCEPTION) { |
135 | kern_raise(XDEADLINE_MISS,p); |
||
136 | } else { |
||
137 | lev->dl_miss[p]++; |
||
138 | } |
||
139 | } |
||
140 | |||
141 | |||
142 | /* Release (or queue) task, post deadline and endperiod timers. |
||
143 | The release time is stored in lev->release[p]. */ |
||
144 | |||
145 | static void RM_intern_release(PID p, RM_level_des *lev) |
||
146 | { |
||
147 | struct timespec temp; |
||
148 | |||
149 | /* post deadline timer */ |
||
150 | if (lev->flags & RM_ENABLE_DL_CHECK) { |
||
151 | temp = lev->release[p]; |
||
152 | ADDUSEC2TIMESPEC(lev->rdeadline[p], &temp); |
||
153 | lev->dl_timer[p] = kern_event_post(&temp,RM_timer_deadline,(void *)p); |
||
154 | } |
||
155 | |||
156 | /* release or queue next job */ |
||
157 | if (proc_table[p].status == RM_IDLE) { |
||
158 | /* assign deadline, insert task in the ready queue */ |
||
159 | proc_table[p].status = RM_READY; |
||
160 | *iq_query_priority(p,&lev->ready) = lev->rdeadline[p]; |
||
161 | iq_priority_insert(p,&lev->ready); |
||
162 | #ifdef RM_DEBUG |
||
163 | rm_printf("At %s: releasing %s\n", pnow(), proc_table[p].name); |
||
164 | #endif |
||
165 | /* reschedule */ |
||
166 | event_need_reschedule(); |
||
167 | } else { |
||
168 | /* queue */ |
||
169 | lev->nact[p]++; |
||
170 | } |
||
171 | |||
172 | /* increase release time */ |
||
173 | ADDUSEC2TIMESPEC(lev->period[p],&lev->release[p]); |
||
174 | /* post end of period timer */ |
||
175 | kern_event_post(&lev->release[p],RM_timer_endperiod,(void *)p); |
||
176 | |||
177 | TRACER_LOGEVENT(FTrace_EVT_task_timer,(unsigned short int)proc_table[p].context,(unsigned int)proc_table[p].task_level); |
||
178 | } |
||
179 | |||
180 | |||
181 | /* First release */ |
||
182 | |||
183 | static void RM_timer_offset(void *par) |
||
184 | { |
||
185 | PID p = (PID) par; |
||
186 | RM_level_des *lev; |
||
2 | pj | 187 | lev = (RM_level_des *)level_table[proc_table[p].task_level]; |
188 | |||
657 | anton | 189 | RM_intern_release(p, lev); |
190 | } |
||
2 | pj | 191 | |
192 | |||
657 | anton | 193 | /* This function is called at the end of the period */ |
2 | pj | 194 | |
657 | anton | 195 | static void RM_timer_endperiod(void *par) |
196 | { |
||
197 | PID p = (PID) par; |
||
198 | RM_level_des *lev; |
||
199 | lev = (RM_level_des *)level_table[proc_table[p].task_level]; |
||
200 | |||
201 | if (proc_table[p].status == RM_ZOMBIE) { |
||
202 | /* put the task in the FREE state */ |
||
203 | proc_table[p].status = FREE; |
||
204 | iq_insertfirst(p,&freedesc); |
||
205 | /* free the allocated bandwidth */ |
||
206 | lev->U -= (MAX_BANDWIDTH/lev->rdeadline[p]) * proc_table[p].wcet; |
||
207 | return; |
||
2 | pj | 208 | } |
657 | anton | 209 | |
210 | if (!(lev->taskflags[p] & RM_FLAG_SPORADIC)) { |
||
211 | /* if the task is periodic, rerelease it (now or later) */ |
||
212 | RM_intern_release(p, lev); |
||
213 | } else { |
||
214 | /* else check if the task is waiting for end of period */ |
||
215 | if (proc_table[p].status == RM_WAIT) { |
||
216 | proc_table[p].status = SLEEP; |
||
217 | } else { |
||
218 | /* the task is still busy. mark it as late */ |
||
219 | lev->taskflags[p] |= RM_FLAG_SPOR_LATE; |
||
220 | } |
||
221 | } |
||
2 | pj | 222 | } |
223 | |||
657 | anton | 224 | |
225 | /* This function is called when a guest task misses its deadline */ |
||
226 | |||
2 | pj | 227 | static void RM_timer_guest_deadline(void *par) |
228 | { |
||
229 | PID p = (PID) par; |
||
657 | anton | 230 | TRACER_LOGEVENT(FTrace_EVT_task_deadline_miss,(unsigned short int)proc_table[p].context,0); |
2 | pj | 231 | kern_raise(XDEADLINE_MISS,p); |
232 | } |
||
233 | |||
234 | /* The scheduler only gets the first task in the queue */ |
||
38 | pj | 235 | static PID RM_public_scheduler(LEVEL l) |
2 | pj | 236 | { |
237 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
29 | pj | 238 | return iq_query_first(&lev->ready); |
2 | pj | 239 | } |
240 | |||
241 | /* The on-line guarantee is enabled only if the appropriate flag is set... */ |
||
38 | pj | 242 | static int RM_public_guarantee(LEVEL l, bandwidth_t *freebandwidth) |
2 | pj | 243 | { |
244 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
245 | |||
159 | pj | 246 | if (*freebandwidth >= lev->U) { |
247 | *freebandwidth -= lev->U; |
||
248 | return 1; |
||
2 | pj | 249 | } |
250 | else |
||
159 | pj | 251 | return 0; |
2 | pj | 252 | } |
253 | |||
38 | pj | 254 | static int RM_public_create(LEVEL l, PID p, TASK_MODEL *m) |
2 | pj | 255 | { |
256 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
38 | pj | 257 | HARD_TASK_MODEL *h; |
2 | pj | 258 | |
38 | pj | 259 | if (m->pclass != HARD_PCLASS) return -1; |
260 | if (m->level != 0 && m->level != l) return -1; |
||
261 | h = (HARD_TASK_MODEL *)m; |
||
262 | if (!h->wcet || !h->mit) return -1; |
||
657 | anton | 263 | if (h->drel > h->mit) return -1; /* only D <= T supported */ |
159 | pj | 264 | |
657 | anton | 265 | if (!h->drel) { |
266 | lev->rdeadline[p] = h->mit; |
||
267 | } else { |
||
268 | lev->rdeadline[p] = h->drel; |
||
269 | } |
||
270 | |||
271 | /* check the free bandwidth... */ |
||
159 | pj | 272 | if (lev->flags & RM_ENABLE_GUARANTEE) { |
273 | bandwidth_t b; |
||
657 | anton | 274 | b = (MAX_BANDWIDTH / lev->rdeadline[p]) * h->wcet; |
159 | pj | 275 | |
276 | /* really update lev->U, checking an overflow... */ |
||
657 | anton | 277 | if (MAX_BANDWIDTH - lev->U > b) { |
159 | pj | 278 | lev->U += b; |
657 | anton | 279 | } else { |
159 | pj | 280 | return -1; |
657 | anton | 281 | } |
159 | pj | 282 | } |
283 | |||
657 | anton | 284 | if (lev->flags & RM_ENABLE_WCET_EXCEPTION) { |
285 | lev->flags |= RM_ENABLE_WCET_CHECK; |
||
286 | } |
||
287 | if (lev->flags & RM_ENABLE_DL_EXCEPTION) { |
||
288 | lev->flags |= RM_ENABLE_DL_CHECK; |
||
289 | } |
||
2 | pj | 290 | |
657 | anton | 291 | lev->period[p] = h->mit; |
292 | if (lev->rdeadline[p] == lev->period[p]) { |
||
293 | /* Ensure that D <= T-eps to make dl_timer trigger before rel_timer */ |
||
294 | lev->rdeadline[p] = lev->period[p] - 1; |
||
295 | } |
||
296 | |||
297 | lev->taskflags[p] = 0; |
||
2 | pj | 298 | |
299 | if (h->periodicity == APERIODIC) |
||
657 | anton | 300 | lev->taskflags[p] |= RM_FLAG_SPORADIC; |
301 | |||
302 | lev->dl_timer[p] = -1; |
||
303 | lev->eop_timer[p] = -1; |
||
2 | pj | 304 | |
305 | /* Enable wcet check */ |
||
306 | if (lev->flags & RM_ENABLE_WCET_CHECK) { |
||
307 | proc_table[p].avail_time = h->wcet; |
||
308 | proc_table[p].wcet = h->wcet; |
||
657 | anton | 309 | proc_table[p].control |= CONTROL_CAP; /* turn on measurement */ |
2 | pj | 310 | } |
311 | |||
657 | anton | 312 | lev->offset[p] = h->offset; |
313 | |||
314 | NULL_TIMESPEC(&lev->release[p]); |
||
315 | |||
2 | pj | 316 | return 0; /* OK, also if the task cannot be guaranteed... */ |
317 | } |
||
318 | |||
38 | pj | 319 | static void RM_public_detach(LEVEL l, PID p) |
2 | pj | 320 | { |
321 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
322 | |||
159 | pj | 323 | if (lev->flags & RM_ENABLE_GUARANTEE) { |
657 | anton | 324 | lev->U -= (MAX_BANDWIDTH / lev->rdeadline[p]) * proc_table[p].wcet; |
159 | pj | 325 | } |
2 | pj | 326 | } |
327 | |||
38 | pj | 328 | static void RM_public_dispatch(LEVEL l, PID p, int nostop) |
2 | pj | 329 | { |
330 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
29 | pj | 331 | iq_extract(p, &lev->ready); |
2 | pj | 332 | } |
333 | |||
38 | pj | 334 | static void RM_public_epilogue(LEVEL l, PID p) |
2 | pj | 335 | { |
336 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
337 | |||
338 | /* check if the wcet is finished... */ |
||
657 | anton | 339 | if (lev->flags & RM_ENABLE_WCET_CHECK) { |
340 | if (proc_table[p].avail_time <= 0) { |
||
341 | TRACER_LOGEVENT(FTrace_EVT_task_wcet_violation,(unsigned short int)proc_table[p].context,0); |
||
342 | if (lev->flags & RM_ENABLE_WCET_EXCEPTION) { |
||
343 | kern_raise(XWCET_VIOLATION,p); |
||
344 | } else { |
||
345 | proc_table[p].control &= ~CONTROL_CAP; |
||
346 | lev->wcet_miss[p]++; |
||
347 | } |
||
348 | } |
||
2 | pj | 349 | } |
657 | anton | 350 | |
351 | /* the task returns to the ready queue */ |
||
352 | iq_priority_insert(p,&lev->ready); |
||
353 | proc_table[p].status = RM_READY; |
||
354 | |||
2 | pj | 355 | } |
356 | |||
657 | anton | 357 | static void RM_public_activate(LEVEL l, PID p, struct timespec *t) |
2 | pj | 358 | { |
657 | anton | 359 | struct timespec clocktime; |
2 | pj | 360 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
361 | |||
657 | anton | 362 | kern_gettime(&clocktime); |
363 | |||
364 | /* check if we are not in the SLEEP state */ |
||
365 | if (proc_table[p].status != SLEEP) { |
||
366 | if (lev->flags & RM_ENABLE_ACT_EXCEPTION) { |
||
367 | /* too frequent or wrongful activation: raise exception */ |
||
368 | kern_raise(XACTIVATION,p); |
||
369 | } else { |
||
370 | /* skip the sporadic job, but increase a counter */ |
||
371 | #ifdef RM_DEBUG |
||
372 | rm_printf("At %s: activation of %s skipped\n", pnow(), proc_table[p].name); |
||
373 | #endif |
||
374 | lev->nskip[p]++; |
||
375 | } |
||
2 | pj | 376 | return; |
377 | } |
||
657 | anton | 378 | |
379 | /* set the release time to the activation time + offset */ |
||
380 | lev->release[p] = *t; |
||
381 | ADDUSEC2TIMESPEC(lev->offset[p], &lev->release[p]); |
||
2 | pj | 382 | |
657 | anton | 383 | /* Check if release > clocktime. If so, release it later, |
384 | otherwise release it now. */ |
||
2 | pj | 385 | |
657 | anton | 386 | proc_table[p].status = RM_IDLE; |
2 | pj | 387 | |
657 | anton | 388 | if (TIMESPEC_A_GT_B(&lev->release[p], &clocktime)) { |
389 | /* release later */ |
||
390 | kern_event_post(&lev->release[p],RM_timer_offset,(void *)p); |
||
391 | } else { |
||
392 | /* release now */ |
||
393 | RM_intern_release(p, lev); |
||
394 | } |
||
2 | pj | 395 | } |
396 | |||
38 | pj | 397 | static void RM_public_unblock(LEVEL l, PID p) |
2 | pj | 398 | { |
399 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
400 | |||
401 | /* Insert task in the correct position */ |
||
402 | proc_table[p].status = RM_READY; |
||
29 | pj | 403 | iq_priority_insert(p,&lev->ready); |
2 | pj | 404 | } |
405 | |||
38 | pj | 406 | static void RM_public_block(LEVEL l, PID p) |
2 | pj | 407 | { |
408 | /* Extract the running task from the level |
||
409 | . we have already extract it from the ready queue at the dispatch time. |
||
410 | . the capacity event have to be removed by the generic kernel |
||
411 | . the wcet don't need modification... |
||
412 | . the state of the task is set by the calling function |
||
413 | . the deadline must remain... |
||
414 | |||
415 | So, we do nothing!!! |
||
416 | */ |
||
417 | } |
||
418 | |||
38 | pj | 419 | static int RM_public_message(LEVEL l, PID p, void *m) |
2 | pj | 420 | { |
421 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
422 | |||
657 | anton | 423 | switch((long)(m)) { |
424 | /* task_endcycle() */ |
||
425 | case 0: |
||
426 | /* if there are no pending jobs */ |
||
427 | if (lev->nact[p] == 0) { |
||
428 | /* remove deadline timer, if any */ |
||
429 | if (lev->dl_timer[p] != -1) { |
||
430 | kern_event_delete(lev->dl_timer[p]); |
||
431 | lev->dl_timer[p] = -1; |
||
432 | } |
||
433 | if (lev->taskflags[p] & RM_FLAG_SPORADIC) { |
||
434 | /* sporadic task */ |
||
435 | if (!(lev->taskflags[p] & RM_FLAG_SPOR_LATE)) { |
||
436 | proc_table[p].status = RM_WAIT; |
||
437 | } else { |
||
438 | /* it's late, move it directly to SLEEP */ |
||
439 | proc_table[p].status = SLEEP; |
||
440 | lev->taskflags[p] &= ~RM_FLAG_SPOR_LATE; |
||
441 | } |
||
442 | } else { |
||
443 | /* periodic task */ |
||
444 | proc_table[p].status = RM_IDLE; |
||
445 | } |
||
446 | } else { |
||
447 | /* we are late / there are pending jobs */ |
||
448 | lev->nact[p]--; |
||
449 | *iq_query_priority(p,&lev->ready) = lev->rdeadline[p]; |
||
450 | iq_priority_insert(p,&lev->ready); |
||
451 | #ifdef RM_DEBUG |
||
452 | rm_printf("(Late) At %s: releasing %s\n", |
||
453 | pnow(), proc_table[p].name); |
||
454 | #endif |
||
455 | } |
||
456 | break; |
||
457 | |||
458 | /* task_sleep() */ |
||
459 | case 1: |
||
460 | /* remove deadline timer, if any */ |
||
461 | if (lev->dl_timer[p] != -1) { |
||
462 | kern_event_delete(lev->dl_timer[p]); |
||
463 | lev->dl_timer[p] = -1; |
||
464 | } |
||
465 | if (lev->taskflags[p] & RM_FLAG_SPORADIC) { |
||
466 | /* sporadic task */ |
||
467 | if (!(lev->taskflags[p] & RM_FLAG_SPOR_LATE)) { |
||
468 | proc_table[p].status = RM_WAIT; |
||
469 | } else { |
||
470 | /* it's late, move it directly to SLEEP */ |
||
471 | proc_table[p].status = SLEEP; |
||
472 | lev->taskflags[p] &= ~RM_FLAG_SPOR_LATE; |
||
473 | } |
||
474 | } else { |
||
475 | /* periodic task */ |
||
476 | if (!(lev->nact[p] > 0)) { |
||
477 | /* we are on time. go to the RM_WAIT state */ |
||
478 | proc_table[p].status = RM_WAIT; |
||
479 | } else { |
||
480 | /* we are late. delete pending activations and go to SLEEP */ |
||
481 | lev->nact[p] = 0; |
||
482 | proc_table[p].status = SLEEP; |
||
483 | /* remove end of period timer */ |
||
484 | if (lev->eop_timer[p] != -1) { |
||
485 | kern_event_delete(lev->eop_timer[p]); |
||
486 | lev->eop_timer[p] = -1; |
||
487 | } |
||
488 | } |
||
489 | } |
||
490 | break; |
||
491 | } |
||
2 | pj | 492 | |
657 | anton | 493 | if (lev->flags & RM_ENABLE_WCET_CHECK) { |
494 | proc_table[p].control |= CONTROL_CAP; |
||
495 | } |
||
496 | proc_table[p].avail_time = proc_table[p].wcet; |
||
38 | pj | 497 | jet_update_endcycle(); /* Update the Jet data... */ |
657 | anton | 498 | TRACER_LOGEVENT(FTrace_EVT_task_end_cycle,(unsigned short int)proc_table[p].context,(unsigned int)l); |
38 | pj | 499 | |
500 | return 0; |
||
657 | anton | 501 | |
2 | pj | 502 | } |
503 | |||
38 | pj | 504 | static void RM_public_end(LEVEL l, PID p) |
2 | pj | 505 | { |
657 | anton | 506 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
2 | pj | 507 | |
657 | anton | 508 | if (!(lev->taskflags[p] & RM_FLAG_SPOR_LATE)) { |
509 | /* remove the deadline timer (if any) */ |
||
510 | if (lev->dl_timer[p] != -1) { |
||
511 | kern_event_delete(lev->dl_timer[p]); |
||
512 | lev->dl_timer[p] = -1; |
||
513 | } |
||
514 | proc_table[p].status = RM_ZOMBIE; |
||
515 | } else { |
||
516 | /* no endperiod timer will be fired, free the task now! */ |
||
517 | proc_table[p].status = FREE; |
||
518 | iq_insertfirst(p,&freedesc); |
||
519 | /* free the allocated bandwidth */ |
||
520 | lev->U -= (MAX_BANDWIDTH/lev->rdeadline[p]) * proc_table[p].wcet; |
||
521 | } |
||
2 | pj | 522 | } |
523 | |||
38 | pj | 524 | static void RM_private_insert(LEVEL l, PID p, TASK_MODEL *m) |
2 | pj | 525 | { |
526 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
38 | pj | 527 | JOB_TASK_MODEL *job; |
2 | pj | 528 | |
38 | pj | 529 | if (m->pclass != JOB_PCLASS || (m->level != 0 && m->level != l) ) { |
530 | kern_raise(XINVALID_TASK, p); |
||
531 | return; |
||
532 | } |
||
2 | pj | 533 | |
38 | pj | 534 | job = (JOB_TASK_MODEL *)m; |
2 | pj | 535 | |
657 | anton | 536 | /* Insert task in the correct position */ |
537 | *iq_query_timespec(p, &lev->ready) = job->deadline; |
||
538 | /* THIS IS QUESTIONABLE!! rel deadline? */ |
||
38 | pj | 539 | *iq_query_priority(p, &lev->ready) = lev->period[p] = job->period; |
2 | pj | 540 | |
38 | pj | 541 | iq_priority_insert(p,&lev->ready); |
542 | proc_table[p].status = RM_READY; |
||
657 | anton | 543 | |
544 | lev->dl_timer[p] = -1; |
||
38 | pj | 545 | |
657 | anton | 546 | lev->period[p] = job->period; |
547 | |||
548 | if (!job->noraiseexc) { |
||
549 | lev->dl_timer[p] = kern_event_post(iq_query_timespec(p, &lev->ready), |
||
550 | RM_timer_guest_deadline,(void *)p); |
||
38 | pj | 551 | } |
2 | pj | 552 | } |
553 | |||
38 | pj | 554 | static void RM_private_dispatch(LEVEL l, PID p, int nostop) |
2 | pj | 555 | { |
556 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
557 | |||
558 | /* the task state is set to EXE by the scheduler() |
||
559 | we extract the task from the ready queue |
||
560 | NB: we can't assume that p is the first task in the queue!!! */ |
||
29 | pj | 561 | iq_extract(p, &lev->ready); |
2 | pj | 562 | } |
563 | |||
38 | pj | 564 | static void RM_private_epilogue(LEVEL l, PID p) |
2 | pj | 565 | { |
566 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
567 | |||
568 | /* the task has been preempted. it returns into the ready queue... */ |
||
29 | pj | 569 | iq_priority_insert(p,&lev->ready); |
2 | pj | 570 | proc_table[p].status = RM_READY; |
571 | } |
||
572 | |||
38 | pj | 573 | static void RM_private_extract(LEVEL l, PID p) |
2 | pj | 574 | { |
575 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
576 | |||
577 | if (proc_table[p].status == RM_READY) |
||
29 | pj | 578 | iq_extract(p, &lev->ready); |
2 | pj | 579 | |
580 | /* we remove the deadline timer, because the slice is finished */ |
||
657 | anton | 581 | if (lev->dl_timer[p] != -1) { |
582 | kern_event_delete(lev->dl_timer[p]); |
||
583 | lev->dl_timer[p] = -1; |
||
2 | pj | 584 | } |
585 | |||
586 | } |
||
587 | |||
588 | |||
657 | anton | 589 | |
590 | /* Registration function: |
||
591 | int flags the init flags ... see rm.h */ |
||
38 | pj | 592 | LEVEL RM_register_level(int flags) |
2 | pj | 593 | { |
594 | LEVEL l; /* the level that we register */ |
||
595 | RM_level_des *lev; /* for readableness only */ |
||
596 | PID i; /* a counter */ |
||
597 | |||
598 | printk("RM_register_level\n"); |
||
599 | |||
600 | /* request an entry in the level_table */ |
||
38 | pj | 601 | l = level_alloc_descriptor(sizeof(RM_level_des)); |
2 | pj | 602 | |
38 | pj | 603 | lev = (RM_level_des *)level_table[l]; |
2 | pj | 604 | |
605 | /* fill the standard descriptor */ |
||
38 | pj | 606 | lev->l.private_insert = RM_private_insert; |
607 | lev->l.private_extract = RM_private_extract; |
||
608 | lev->l.private_dispatch = RM_private_dispatch; |
||
609 | lev->l.private_epilogue = RM_private_epilogue; |
||
2 | pj | 610 | |
38 | pj | 611 | lev->l.public_scheduler = RM_public_scheduler; |
2 | pj | 612 | if (flags & RM_ENABLE_GUARANTEE) |
38 | pj | 613 | lev->l.public_guarantee = RM_public_guarantee; |
2 | pj | 614 | else |
38 | pj | 615 | lev->l.public_guarantee = NULL; |
2 | pj | 616 | |
38 | pj | 617 | lev->l.public_create = RM_public_create; |
618 | lev->l.public_detach = RM_public_detach; |
||
619 | lev->l.public_end = RM_public_end; |
||
620 | lev->l.public_dispatch = RM_public_dispatch; |
||
621 | lev->l.public_epilogue = RM_public_epilogue; |
||
622 | lev->l.public_activate = RM_public_activate; |
||
623 | lev->l.public_unblock = RM_public_unblock; |
||
624 | lev->l.public_block = RM_public_block; |
||
625 | lev->l.public_message = RM_public_message; |
||
2 | pj | 626 | |
627 | /* fill the RM descriptor part */ |
||
628 | for(i=0; i<MAX_PROC; i++) { |
||
657 | anton | 629 | lev->period[i] = 0; |
630 | lev->dl_timer[i] = -1; |
||
631 | lev->taskflags[i] = 0; |
||
632 | lev->dl_miss[i] = 0; |
||
633 | lev->wcet_miss[i] = 0; |
||
634 | lev->nact[i] = 0; |
||
635 | lev->nskip[i] = 0; |
||
2 | pj | 636 | } |
637 | |||
29 | pj | 638 | iq_init(&lev->ready, &freedesc, 0); |
159 | pj | 639 | lev->flags = flags; |
2 | pj | 640 | lev->U = 0; |
38 | pj | 641 | |
642 | return l; |
||
2 | pj | 643 | } |
644 | |||
645 | bandwidth_t RM_usedbandwidth(LEVEL l) |
||
646 | { |
||
647 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
38 | pj | 648 | |
649 | return lev->U; |
||
2 | pj | 650 | } |
651 | |||
657 | anton | 652 | int RM_get_nact(PID p) |
653 | { |
||
654 | LEVEL l = proc_table[p].task_level; |
||
655 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
656 | |||
657 | return lev->nact[p]; |
||
658 | } |
||
659 | |||
660 | int RM_get_dl_miss(PID p) |
||
661 | { |
||
662 | LEVEL l = proc_table[p].task_level; |
||
663 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
664 | |||
665 | return lev->dl_miss[p]; |
||
666 | } |
||
667 | |||
668 | int RM_get_wcet_miss(PID p) |
||
669 | { |
||
670 | LEVEL l = proc_table[p].task_level; |
||
671 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
672 | |||
673 | return lev->wcet_miss[p]; |
||
674 | } |
||
675 | |||
676 | int RM_get_nskip(PID p) |
||
677 | { |
||
678 | LEVEL l = proc_table[p].task_level; |
||
679 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
680 | |||
681 | return lev->nskip[p]; |
||
682 | } |
||
683 |