Rev 14 | Rev 38 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | pj | 1 | /* |
2 | * Project: S.Ha.R.K. |
||
3 | * |
||
4 | * Coordinators: |
||
5 | * Giorgio Buttazzo <giorgio@sssup.it> |
||
6 | * Paolo Gai <pj@gandalf.sssup.it> |
||
7 | * |
||
8 | * Authors : |
||
9 | * Paolo Gai <pj@gandalf.sssup.it> |
||
10 | * Massimiliano Giorgi <massy@gandalf.sssup.it> |
||
11 | * Luca Abeni <luca@gandalf.sssup.it> |
||
12 | * (see the web pages for full authors list) |
||
13 | * |
||
14 | * ReTiS Lab (Scuola Superiore S.Anna - Pisa - Italy) |
||
15 | * |
||
16 | * http://www.sssup.it |
||
17 | * http://retis.sssup.it |
||
18 | * http://shark.sssup.it |
||
19 | */ |
||
20 | |||
21 | /** |
||
22 | ------------ |
||
29 | pj | 23 | CVS : $Id: rm.c,v 1.3 2002-11-11 08:32:06 pj Exp $ |
2 | pj | 24 | |
25 | File: $File$ |
||
29 | pj | 26 | Revision: $Revision: 1.3 $ |
27 | Last update: $Date: 2002-11-11 08:32:06 $ |
||
2 | pj | 28 | ------------ |
29 | |||
30 | This file contains the scheduling module RM (Rate Monotonic) |
||
31 | |||
32 | Read rm.h for further details. |
||
33 | |||
34 | This file is equal to EDF.c except for: |
||
35 | |||
36 | . EDF changed to RM :-) |
||
37 | . q_timespec_insert changed to q_insert |
||
38 | . proc_table[p].priority is also modified when we modify lev->period[p] |
||
39 | |||
40 | |||
41 | **/ |
||
42 | |||
43 | /* |
||
44 | * Copyright (C) 2000 Paolo Gai |
||
45 | * |
||
46 | * This program is free software; you can redistribute it and/or modify |
||
47 | * it under the terms of the GNU General Public License as published by |
||
48 | * the Free Software Foundation; either version 2 of the License, or |
||
49 | * (at your option) any later version. |
||
50 | * |
||
51 | * This program is distributed in the hope that it will be useful, |
||
52 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
||
53 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||
54 | * GNU General Public License for more details. |
||
55 | * |
||
56 | * You should have received a copy of the GNU General Public License |
||
57 | * along with this program; if not, write to the Free Software |
||
58 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
||
59 | * |
||
60 | */ |
||
61 | |||
62 | |||
63 | #include <modules/rm.h> |
||
64 | #include <ll/stdio.h> |
||
65 | #include <ll/string.h> |
||
66 | #include <kernel/model.h> |
||
67 | #include <kernel/descr.h> |
||
68 | #include <kernel/var.h> |
||
69 | #include <kernel/func.h> |
||
70 | #include <kernel/trace.h> |
||
71 | |||
72 | /*+ Status used in the level +*/ |
||
73 | #define RM_READY MODULE_STATUS_BASE /*+ - Ready status +*/ |
||
74 | #define RM_WCET_VIOLATED MODULE_STATUS_BASE+2 /*+ when wcet is finished +*/ |
||
75 | #define RM_WAIT MODULE_STATUS_BASE+3 /*+ to wait the deadline +*/ |
||
76 | #define RM_IDLE MODULE_STATUS_BASE+4 /*+ to wait the deadline +*/ |
||
77 | #define RM_ZOMBIE MODULE_STATUS_BASE+5 /*+ to wait the free time +*/ |
||
78 | |||
79 | /*+ flags +*/ |
||
80 | #define RM_FLAG_SPORADIC 1 |
||
81 | #define RM_FLAG_NORAISEEXC 2 |
||
82 | |||
83 | /*+ the level redefinition for the Rate Monotonic +*/ |
||
84 | typedef struct { |
||
85 | level_des l; /*+ the standard level descriptor +*/ |
||
86 | |||
87 | TIME period[MAX_PROC]; /*+ The task periods; the deadlines are |
||
88 | stored in the priority field +*/ |
||
89 | int deadline_timer[MAX_PROC]; |
||
90 | /*+ The task deadline timers +*/ |
||
91 | |||
92 | int flag[MAX_PROC]; |
||
93 | /*+ used to manage the JOB_TASK_MODEL and the |
||
94 | periodicity +*/ |
||
95 | |||
29 | pj | 96 | IQUEUE ready; /*+ the ready queue +*/ |
2 | pj | 97 | |
98 | int flags; /*+ the init flags... +*/ |
||
99 | |||
100 | bandwidth_t U; /*+ the used bandwidth +*/ |
||
101 | |||
102 | } RM_level_des; |
||
103 | |||
104 | |||
105 | static char *RM_status_to_a(WORD status) |
||
106 | { |
||
107 | if (status < MODULE_STATUS_BASE) |
||
108 | return status_to_a(status); |
||
109 | |||
110 | switch (status) { |
||
111 | case RM_READY : return "RM_Ready"; |
||
112 | case RM_WCET_VIOLATED: return "RM_Wcet_Violated"; |
||
113 | case RM_WAIT : return "RM_Sporadic_Wait"; |
||
114 | case RM_IDLE : return "RM_Idle"; |
||
115 | case RM_ZOMBIE : return "RM_Zombie"; |
||
116 | default : return "RM_Unknown"; |
||
117 | } |
||
118 | } |
||
119 | |||
120 | static void RM_timer_deadline(void *par) |
||
121 | { |
||
122 | PID p = (PID) par; |
||
123 | RM_level_des *lev; |
||
29 | pj | 124 | struct timespec *temp; |
2 | pj | 125 | |
126 | lev = (RM_level_des *)level_table[proc_table[p].task_level]; |
||
127 | |||
128 | switch (proc_table[p].status) { |
||
129 | case RM_ZOMBIE: |
||
130 | /* we finally put the task in the ready queue */ |
||
131 | proc_table[p].status = FREE; |
||
29 | pj | 132 | iq_insertfirst(p,&freedesc); |
2 | pj | 133 | /* and free the allocated bandwidth */ |
134 | lev->U -= (MAX_BANDWIDTH/lev->period[p]) * proc_table[p].wcet; |
||
135 | break; |
||
136 | |||
137 | case RM_IDLE: |
||
138 | /* tracer stuff */ |
||
139 | trc_logevent(TRC_INTACTIVATION,&p); |
||
140 | /* similar to RM_task_activate */ |
||
29 | pj | 141 | temp = iq_query_timespec(p, &lev->ready); |
142 | TIMESPEC_ASSIGN(&proc_table[p].request_time, temp); |
||
143 | ADDUSEC2TIMESPEC(lev->period[p], temp); |
||
2 | pj | 144 | proc_table[p].status = RM_READY; |
29 | pj | 145 | iq_priority_insert(p,&lev->ready); |
146 | lev->deadline_timer[p] = kern_event_post(temp, |
||
2 | pj | 147 | RM_timer_deadline, |
148 | (void *)p); |
||
149 | //printk("(d%d idle priority set to %d)",p,proc_table[p].priority ); |
||
150 | event_need_reschedule(); |
||
151 | printk("el%d|",p); |
||
152 | break; |
||
153 | |||
154 | case RM_WAIT: |
||
155 | /* Without this, the task cannot be reactivated!!! */ |
||
156 | proc_table[p].status = SLEEP; |
||
157 | break; |
||
158 | |||
159 | default: |
||
160 | /* else, a deadline miss occurred!!! */ |
||
161 | kern_printf("timer_deadline:AAARRRGGGHHH!!!"); |
||
162 | kern_raise(XDEADLINE_MISS,p); |
||
163 | } |
||
164 | } |
||
165 | |||
166 | static void RM_timer_guest_deadline(void *par) |
||
167 | { |
||
168 | PID p = (PID) par; |
||
169 | |||
170 | kern_printf("AAARRRGGGHHH!!!"); |
||
171 | kern_raise(XDEADLINE_MISS,p); |
||
172 | } |
||
173 | |||
174 | static int RM_level_accept_task_model(LEVEL l, TASK_MODEL *m) |
||
175 | { |
||
176 | if (m->pclass == HARD_PCLASS || m->pclass == (HARD_PCLASS | l)) { |
||
177 | HARD_TASK_MODEL *h = (HARD_TASK_MODEL *)m; |
||
178 | |||
179 | if (h->wcet && h->mit) |
||
180 | return 0; |
||
181 | } |
||
182 | |||
183 | return -1; |
||
184 | } |
||
185 | |||
186 | static int RM_level_accept_guest_model(LEVEL l, TASK_MODEL *m) |
||
187 | { |
||
188 | if (m->pclass == JOB_PCLASS || m->pclass == (JOB_PCLASS | l)) |
||
189 | return 0; |
||
190 | else |
||
191 | return -1; |
||
192 | } |
||
193 | |||
194 | |||
195 | static char *onoff(int i) |
||
196 | { |
||
197 | if (i) |
||
198 | return "On "; |
||
199 | else |
||
200 | return "Off"; |
||
201 | } |
||
202 | |||
203 | static void RM_level_status(LEVEL l) |
||
204 | { |
||
205 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
29 | pj | 206 | PID p = iq_query_first(&lev->ready); |
2 | pj | 207 | |
208 | kern_printf("Wcet Check : %s\n", |
||
209 | onoff(lev->flags & RM_ENABLE_WCET_CHECK)); |
||
210 | kern_printf("On-line guarantee : %s\n", |
||
211 | onoff(lev->flags & RM_ENABLE_GUARANTEE)); |
||
212 | kern_printf("Used Bandwidth : %u/%u\n", |
||
213 | lev->U, MAX_BANDWIDTH); |
||
214 | |||
215 | while (p != NIL) { |
||
216 | if ((proc_table[p].pclass) == JOB_PCLASS) |
||
217 | kern_printf("Pid: %2d (GUEST)\n", p); |
||
218 | else |
||
219 | kern_printf("Pid: %2d Name: %10s %s: %9ld Dline: %9ld.%6ld Stat: %s\n", |
||
220 | p, |
||
221 | proc_table[p].name, |
||
222 | lev->flag[p] & RM_FLAG_SPORADIC ? "MinITime" : "Period ", |
||
223 | lev->period[p], |
||
29 | pj | 224 | iq_query_timespec(p, &lev->ready)->tv_sec, |
225 | iq_query_timespec(p, &lev->ready)->tv_nsec/1000, |
||
2 | pj | 226 | RM_status_to_a(proc_table[p].status)); |
29 | pj | 227 | p = iq_query_next(p, &lev->ready); |
2 | pj | 228 | } |
229 | |||
230 | for (p=0; p<MAX_PROC; p++) |
||
231 | if (proc_table[p].task_level == l && proc_table[p].status != RM_READY |
||
232 | && proc_table[p].status != FREE ) |
||
233 | kern_printf("Pid: %2d Name: %10s %s: %9ld Dline: %9ld.%6ld Stat: %s\n", |
||
234 | p, |
||
235 | proc_table[p].name, |
||
236 | lev->flag[p] & RM_FLAG_SPORADIC ? "MinITime" : "Period ", |
||
237 | lev->period[p], |
||
29 | pj | 238 | iq_query_timespec(p, &lev->ready)->tv_sec, |
239 | iq_query_timespec(p, &lev->ready)->tv_nsec/1000, |
||
2 | pj | 240 | RM_status_to_a(proc_table[p].status)); |
241 | } |
||
242 | |||
243 | /* The scheduler only gets the first task in the queue */ |
||
244 | static PID RM_level_scheduler(LEVEL l) |
||
245 | { |
||
246 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
247 | |||
248 | /* { // print 4 dbg the ready queue |
||
249 | PID p= lev->ready; |
||
250 | kern_printf("(s"); |
||
251 | while (p != NIL) { |
||
252 | kern_printf("%d ",p); |
||
253 | p = proc_table[p].next; |
||
254 | } |
||
255 | kern_printf(") "); |
||
256 | } |
||
257 | */ |
||
29 | pj | 258 | return iq_query_first(&lev->ready); |
2 | pj | 259 | } |
260 | |||
261 | /* The on-line guarantee is enabled only if the appropriate flag is set... */ |
||
262 | static int RM_level_guarantee(LEVEL l, bandwidth_t *freebandwidth) |
||
263 | { |
||
264 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
265 | |||
266 | if (lev->flags & RM_FAILED_GUARANTEE) { |
||
267 | *freebandwidth = 0; |
||
268 | return 0; |
||
269 | } |
||
270 | else |
||
271 | if (*freebandwidth >= lev->U) { |
||
272 | *freebandwidth -= lev->U; |
||
273 | return 1; |
||
274 | } |
||
275 | else |
||
276 | return 0; |
||
277 | |||
278 | } |
||
279 | |||
280 | static int RM_task_create(LEVEL l, PID p, TASK_MODEL *m) |
||
281 | { |
||
282 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
283 | |||
284 | /* if the RM_task_create is called, then the pclass must be a |
||
285 | valid pclass. */ |
||
286 | |||
287 | HARD_TASK_MODEL *h = (HARD_TASK_MODEL *)m; |
||
288 | |||
29 | pj | 289 | *iq_query_priority(p, &lev->ready) = lev->period[p] = h->mit; |
2 | pj | 290 | |
291 | if (h->periodicity == APERIODIC) |
||
292 | lev->flag[p] = RM_FLAG_SPORADIC; |
||
293 | else |
||
294 | lev->flag[p] = 0; |
||
295 | lev->deadline_timer[p] = -1; |
||
296 | |||
297 | /* Enable wcet check */ |
||
298 | if (lev->flags & RM_ENABLE_WCET_CHECK) { |
||
299 | proc_table[p].avail_time = h->wcet; |
||
300 | proc_table[p].wcet = h->wcet; |
||
301 | proc_table[p].control |= CONTROL_CAP; |
||
302 | } |
||
303 | |||
304 | /* update the bandwidth... */ |
||
305 | if (lev->flags & RM_ENABLE_GUARANTEE) { |
||
306 | bandwidth_t b; |
||
307 | b = (MAX_BANDWIDTH / h->mit) * h->wcet; |
||
308 | |||
309 | /* really update lev->U, checking an overflow... */ |
||
310 | if (MAX_BANDWIDTH - lev->U > b) |
||
311 | lev->U += b; |
||
312 | else |
||
313 | /* The task can NOT be guaranteed (U>MAX_BANDWIDTH)... |
||
314 | in this case, we don't raise an exception... in fact, after the |
||
315 | RM_task_create the task_create will call level_guarantee that return |
||
316 | -1... return -1 in RM_task_create isn't correct, because: |
||
317 | . generally, the guarantee must be done when also the resources |
||
318 | are registered |
||
319 | . returning -1 will cause the task_create to return with an errno |
||
320 | ETASK_CREATE instead of ENO_GUARANTEE!!! |
||
321 | |||
322 | Why I use the flag??? because if the lev->U overflows, if i.e. I set |
||
323 | it to MAX_BANDWIDTH, I lose the correct allocated bandwidth... |
||
324 | */ |
||
325 | lev->flags |= RM_FAILED_GUARANTEE; |
||
326 | } |
||
327 | |||
328 | return 0; /* OK, also if the task cannot be guaranteed... */ |
||
329 | } |
||
330 | |||
331 | static void RM_task_detach(LEVEL l, PID p) |
||
332 | { |
||
333 | /* the RM level doesn't introduce any dinamic allocated new field. |
||
334 | we have only to reset the NO_GUARANTEE FIELD and decrement the allocated |
||
335 | bandwidth */ |
||
336 | |||
337 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
338 | |||
339 | if (lev->flags & RM_FAILED_GUARANTEE) |
||
340 | lev->flags &= ~RM_FAILED_GUARANTEE; |
||
341 | else |
||
342 | lev->U -= (MAX_BANDWIDTH / lev->period[p]) * proc_table[p].wcet; |
||
343 | } |
||
344 | |||
345 | static int RM_task_eligible(LEVEL l, PID p) |
||
346 | { |
||
347 | return 0; /* if the task p is chosen, it is always eligible */ |
||
348 | } |
||
349 | |||
350 | static void RM_task_dispatch(LEVEL l, PID p, int nostop) |
||
351 | { |
||
352 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
353 | |||
354 | // kern_printf("(disp %d)",p); |
||
355 | |||
356 | /* the task state is set EXE by the scheduler() |
||
357 | we extract the task from the ready queue |
||
358 | NB: we can't assume that p is the first task in the queue!!! */ |
||
29 | pj | 359 | iq_extract(p, &lev->ready); |
2 | pj | 360 | } |
361 | |||
362 | static void RM_task_epilogue(LEVEL l, PID p) |
||
363 | { |
||
364 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
365 | |||
366 | // kern_printf("(epil %d)",p); |
||
367 | |||
368 | /* check if the wcet is finished... */ |
||
369 | if ((lev->flags & RM_ENABLE_WCET_CHECK) && proc_table[p].avail_time <= 0) { |
||
370 | /* if it is, raise a XWCET_VIOLATION exception */ |
||
371 | kern_raise(XWCET_VIOLATION,p); |
||
372 | proc_table[p].status = RM_WCET_VIOLATED; |
||
373 | } |
||
374 | else { |
||
375 | /* the task has been preempted. it returns into the ready queue... */ |
||
29 | pj | 376 | iq_priority_insert(p,&lev->ready); |
2 | pj | 377 | proc_table[p].status = RM_READY; |
378 | } |
||
379 | } |
||
380 | |||
381 | static void RM_task_activate(LEVEL l, PID p) |
||
382 | { |
||
383 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
29 | pj | 384 | struct timespec *temp; |
2 | pj | 385 | |
386 | if (proc_table[p].status == RM_WAIT) { |
||
387 | kern_raise(XACTIVATION,p); |
||
388 | return; |
||
389 | } |
||
390 | |||
391 | /* Test if we are trying to activate a non sleeping task */ |
||
392 | /* Ignore this; the task is already active */ |
||
393 | if (proc_table[p].status != SLEEP && |
||
394 | proc_table[p].status != RM_WCET_VIOLATED) |
||
395 | return; |
||
396 | |||
397 | |||
398 | /* see also RM_timer_deadline */ |
||
399 | ll_gettime(TIME_EXACT, &proc_table[p].request_time); |
||
400 | |||
29 | pj | 401 | temp = iq_query_timespec(p, &lev->ready); |
402 | TIMESPEC_ASSIGN(temp, &proc_table[p].request_time); |
||
403 | ADDUSEC2TIMESPEC(lev->period[p], temp); |
||
2 | pj | 404 | |
405 | /* Insert task in the correct position */ |
||
406 | proc_table[p].status = RM_READY; |
||
29 | pj | 407 | iq_priority_insert(p,&lev->ready); |
2 | pj | 408 | |
409 | /* Set the deadline timer */ |
||
29 | pj | 410 | lev->deadline_timer[p] = kern_event_post(temp, |
2 | pj | 411 | RM_timer_deadline, |
412 | (void *)p); |
||
413 | } |
||
414 | |||
415 | static void RM_task_insert(LEVEL l, PID p) |
||
416 | { |
||
417 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
418 | |||
419 | /* Similar to RM_task_activate, but we don't check in what state |
||
420 | the task is and we don't set the request_time*/ |
||
421 | |||
422 | /* Insert task in the correct position */ |
||
423 | proc_table[p].status = RM_READY; |
||
29 | pj | 424 | iq_priority_insert(p,&lev->ready); |
2 | pj | 425 | } |
426 | |||
427 | static void RM_task_extract(LEVEL l, PID p) |
||
428 | { |
||
429 | /* Extract the running task from the level |
||
430 | . we have already extract it from the ready queue at the dispatch time. |
||
431 | . the capacity event have to be removed by the generic kernel |
||
432 | . the wcet don't need modification... |
||
433 | . the state of the task is set by the calling function |
||
434 | . the deadline must remain... |
||
435 | |||
436 | So, we do nothing!!! |
||
437 | */ |
||
438 | } |
||
439 | |||
440 | static void RM_task_endcycle(LEVEL l, PID p) |
||
441 | { |
||
442 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
443 | |||
444 | /* the task has terminated his job before it consume the wcet. All OK! */ |
||
445 | if (lev->flag[p] & RM_FLAG_SPORADIC) |
||
446 | proc_table[p].status = RM_WAIT; |
||
447 | else /* pclass = sporadic_pclass */ |
||
448 | proc_table[p].status = RM_IDLE; |
||
449 | |||
450 | /* we reset the capacity counters... */ |
||
451 | if (lev->flags & RM_ENABLE_WCET_CHECK) |
||
452 | proc_table[p].avail_time = proc_table[p].wcet; |
||
453 | |||
454 | /* when the deadline timer fire, it recognize the situation and set |
||
455 | correctly all the stuffs (like reactivation, request_time, etc... ) */ |
||
456 | } |
||
457 | |||
458 | static void RM_task_end(LEVEL l, PID p) |
||
459 | { |
||
460 | // RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
461 | |||
462 | proc_table[p].status = RM_ZOMBIE; |
||
463 | |||
464 | /* When the deadline timer fire, it put the task descriptor in |
||
465 | the free queue, and free the allocated bandwidth... */ |
||
466 | } |
||
467 | |||
468 | static void RM_task_sleep(LEVEL l, PID p) |
||
469 | { |
||
470 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
471 | |||
472 | /* the task has terminated his job before it consume the wcet. All OK! */ |
||
473 | proc_table[p].status = RM_WAIT; |
||
474 | |||
475 | /* we reset the capacity counters... */ |
||
476 | if (lev->flags & RM_ENABLE_WCET_CHECK) |
||
477 | proc_table[p].avail_time = proc_table[p].wcet; |
||
478 | |||
479 | /* when the deadline timer fire, it recognize the situation and set |
||
480 | correctly the task state to sleep... */ |
||
481 | } |
||
482 | |||
483 | |||
484 | /* Guest Functions |
||
485 | These functions manages a JOB_TASK_MODEL, that is used to put |
||
486 | a guest task in the RM ready queue. */ |
||
487 | |||
488 | static int RM_guest_create(LEVEL l, PID p, TASK_MODEL *m) |
||
489 | { |
||
490 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
491 | JOB_TASK_MODEL *job = (JOB_TASK_MODEL *)m; |
||
492 | |||
493 | /* if the RM_guest_create is called, then the pclass must be a |
||
494 | valid pclass. */ |
||
495 | |||
29 | pj | 496 | |
497 | *iq_query_timespec(p,&lev->ready) = job->deadline; |
||
2 | pj | 498 | |
499 | lev->deadline_timer[p] = -1; |
||
500 | |||
501 | if (job->noraiseexc) |
||
502 | lev->flag[p] = RM_FLAG_NORAISEEXC; |
||
503 | else |
||
504 | lev->flag[p] = 0; |
||
505 | |||
29 | pj | 506 | *iq_query_priority(p, &lev->ready) = lev->period[p] = job->period; |
2 | pj | 507 | |
508 | /* there is no bandwidth guarantee at this level, it is performed |
||
509 | by the level that inserts guest tasks... */ |
||
510 | |||
511 | return 0; /* OK, also if the task cannot be guaranteed... */ |
||
512 | } |
||
513 | |||
514 | static void RM_guest_detach(LEVEL l, PID p) |
||
515 | { |
||
516 | /* the RM level doesn't introduce any dinamic allocated new field. |
||
517 | No guarantee is performed on guest tasks... so we don't have to reset |
||
518 | the NO_GUARANTEE FIELD */ |
||
519 | } |
||
520 | |||
521 | static void RM_guest_dispatch(LEVEL l, PID p, int nostop) |
||
522 | { |
||
523 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
524 | |||
525 | /* the task state is set to EXE by the scheduler() |
||
526 | we extract the task from the ready queue |
||
527 | NB: we can't assume that p is the first task in the queue!!! */ |
||
29 | pj | 528 | iq_extract(p, &lev->ready); |
2 | pj | 529 | } |
530 | |||
531 | static void RM_guest_epilogue(LEVEL l, PID p) |
||
532 | { |
||
533 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
534 | |||
535 | /* the task has been preempted. it returns into the ready queue... */ |
||
29 | pj | 536 | iq_priority_insert(p,&lev->ready); |
2 | pj | 537 | proc_table[p].status = RM_READY; |
538 | } |
||
539 | |||
540 | static void RM_guest_activate(LEVEL l, PID p) |
||
541 | { |
||
542 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
543 | |||
544 | /* Insert task in the correct position */ |
||
29 | pj | 545 | iq_priority_insert(p,&lev->ready); |
2 | pj | 546 | proc_table[p].status = RM_READY; |
547 | |||
548 | /* Set the deadline timer */ |
||
549 | if (!(lev->flag[p] & RM_FLAG_NORAISEEXC)) |
||
29 | pj | 550 | lev->deadline_timer[p] = kern_event_post(iq_query_timespec(p, &lev->ready), |
2 | pj | 551 | RM_timer_guest_deadline, |
552 | (void *)p); |
||
553 | } |
||
554 | |||
555 | static void RM_guest_insert(LEVEL l, PID p) |
||
556 | { |
||
557 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
558 | |||
559 | /* Insert task in the correct position */ |
||
29 | pj | 560 | iq_priority_insert(p,&lev->ready); |
2 | pj | 561 | proc_table[p].status = RM_READY; |
562 | } |
||
563 | |||
564 | static void RM_guest_extract(LEVEL l, PID p) |
||
565 | { |
||
566 | /* Extract the running task from the level |
||
567 | . we have already extract it from the ready queue at the dispatch time. |
||
568 | . the state of the task is set by the calling function |
||
569 | . the deadline must remain... |
||
570 | |||
571 | So, we do nothing!!! |
||
572 | */ |
||
573 | } |
||
574 | |||
575 | static void RM_guest_endcycle(LEVEL l, PID p) |
||
14 | pj | 576 | { kern_raise(XINVALID_GUEST,exec_shadow); } |
2 | pj | 577 | |
578 | static void RM_guest_end(LEVEL l, PID p) |
||
579 | { |
||
580 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
581 | |||
582 | //kern_printf("RM_guest_end: dline timer %d\n",lev->deadline_timer[p]); |
||
583 | if (proc_table[p].status == RM_READY) |
||
584 | { |
||
29 | pj | 585 | iq_extract(p, &lev->ready); |
2 | pj | 586 | //kern_printf("(g_end rdy extr)"); |
587 | } |
||
588 | |||
589 | /* we remove the deadline timer, because the slice is finished */ |
||
590 | if (lev->deadline_timer[p] != NIL) { |
||
591 | // kern_printf("RM_guest_end: dline timer %d\n",lev->deadline_timer[p]); |
||
592 | event_delete(lev->deadline_timer[p]); |
||
593 | lev->deadline_timer[p] = NIL; |
||
594 | } |
||
595 | |||
596 | } |
||
597 | |||
598 | static void RM_guest_sleep(LEVEL l, PID p) |
||
14 | pj | 599 | { kern_raise(XINVALID_GUEST,exec_shadow); } |
2 | pj | 600 | |
601 | |||
602 | |||
603 | |||
604 | /* Registration functions */ |
||
605 | |||
606 | /*+ Registration function: |
||
607 | int flags the init flags ... see rm.h +*/ |
||
608 | void RM_register_level(int flags) |
||
609 | { |
||
610 | LEVEL l; /* the level that we register */ |
||
611 | RM_level_des *lev; /* for readableness only */ |
||
612 | PID i; /* a counter */ |
||
613 | |||
614 | printk("RM_register_level\n"); |
||
615 | |||
616 | /* request an entry in the level_table */ |
||
617 | l = level_alloc_descriptor(); |
||
618 | |||
619 | /* alloc the space needed for the RM_level_des */ |
||
620 | lev = (RM_level_des *)kern_alloc(sizeof(RM_level_des)); |
||
621 | |||
622 | printk(" lev=%d\n",(int)lev); |
||
623 | |||
624 | /* update the level_table with the new entry */ |
||
625 | level_table[l] = (level_des *)lev; |
||
626 | |||
627 | /* fill the standard descriptor */ |
||
628 | strncpy(lev->l.level_name, RM_LEVELNAME, MAX_LEVELNAME); |
||
629 | lev->l.level_code = RM_LEVEL_CODE; |
||
630 | lev->l.level_version = RM_LEVEL_VERSION; |
||
631 | |||
632 | lev->l.level_accept_task_model = RM_level_accept_task_model; |
||
633 | lev->l.level_accept_guest_model = RM_level_accept_guest_model; |
||
634 | lev->l.level_status = RM_level_status; |
||
635 | lev->l.level_scheduler = RM_level_scheduler; |
||
636 | |||
637 | if (flags & RM_ENABLE_GUARANTEE) |
||
638 | lev->l.level_guarantee = RM_level_guarantee; |
||
639 | else |
||
640 | lev->l.level_guarantee = NULL; |
||
641 | |||
642 | lev->l.task_create = RM_task_create; |
||
643 | lev->l.task_detach = RM_task_detach; |
||
644 | lev->l.task_eligible = RM_task_eligible; |
||
645 | lev->l.task_dispatch = RM_task_dispatch; |
||
646 | lev->l.task_epilogue = RM_task_epilogue; |
||
647 | lev->l.task_activate = RM_task_activate; |
||
648 | lev->l.task_insert = RM_task_insert; |
||
649 | lev->l.task_extract = RM_task_extract; |
||
650 | lev->l.task_endcycle = RM_task_endcycle; |
||
651 | lev->l.task_end = RM_task_end; |
||
652 | lev->l.task_sleep = RM_task_sleep; |
||
653 | |||
654 | lev->l.guest_create = RM_guest_create; |
||
655 | lev->l.guest_detach = RM_guest_detach; |
||
656 | lev->l.guest_dispatch = RM_guest_dispatch; |
||
657 | lev->l.guest_epilogue = RM_guest_epilogue; |
||
658 | lev->l.guest_activate = RM_guest_activate; |
||
659 | lev->l.guest_insert = RM_guest_insert; |
||
660 | lev->l.guest_extract = RM_guest_extract; |
||
661 | lev->l.guest_endcycle = RM_guest_endcycle; |
||
662 | lev->l.guest_end = RM_guest_end; |
||
663 | lev->l.guest_sleep = RM_guest_sleep; |
||
664 | |||
665 | /* fill the RM descriptor part */ |
||
666 | for(i=0; i<MAX_PROC; i++) { |
||
667 | lev->period[i] = 0; |
||
668 | lev->deadline_timer[i] = -1; |
||
669 | lev->flag[i] = 0; |
||
670 | } |
||
671 | |||
29 | pj | 672 | iq_init(&lev->ready, &freedesc, 0); |
2 | pj | 673 | lev->flags = flags & 0x07; |
674 | lev->U = 0; |
||
675 | } |
||
676 | |||
677 | bandwidth_t RM_usedbandwidth(LEVEL l) |
||
678 | { |
||
679 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
680 | if (lev->l.level_code == RM_LEVEL_CODE && |
||
681 | lev->l.level_version == RM_LEVEL_VERSION) |
||
682 | return lev->U; |
||
683 | else |
||
684 | return 0; |
||
685 | } |
||
686 |