Rev 1020 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | pj | 1 | /* |
2 | * Project: S.Ha.R.K. |
||
3 | * |
||
4 | * Coordinators: |
||
5 | * Giorgio Buttazzo <giorgio@sssup.it> |
||
6 | * Paolo Gai <pj@gandalf.sssup.it> |
||
7 | * |
||
8 | * Authors : |
||
9 | * Paolo Gai <pj@gandalf.sssup.it> |
||
10 | * (see the web pages for full authors list) |
||
11 | * |
||
12 | * ReTiS Lab (Scuola Superiore S.Anna - Pisa - Italy) |
||
13 | * |
||
14 | * http://www.sssup.it |
||
15 | * http://retis.sssup.it |
||
16 | * http://shark.sssup.it |
||
17 | */ |
||
18 | |||
19 | /** |
||
20 | ------------ |
||
1077 | fabio | 21 | CVS : $Id: signal.c,v 1.16 2007-05-04 10:53:30 fabio Exp $ |
2 | pj | 22 | |
23 | File: $File$ |
||
1077 | fabio | 24 | Revision: $Revision: 1.16 $ |
25 | Last update: $Date: 2007-05-04 10:53:30 $ |
||
2 | pj | 26 | ------------ |
27 | |||
28 | This file contains: |
||
29 | |||
30 | Signal Handling |
||
31 | |||
32 | - Data structures |
||
33 | - sigset_t handling functions |
||
34 | |||
35 | **/ |
||
36 | |||
37 | /* |
||
38 | * Copyright (C) 2000 Paolo Gai |
||
39 | * |
||
40 | * This program is free software; you can redistribute it and/or modify |
||
41 | * it under the terms of the GNU General Public License as published by |
||
42 | * the Free Software Foundation; either version 2 of the License, or |
||
43 | * (at your option) any later version. |
||
44 | * |
||
45 | * This program is distributed in the hope that it will be useful, |
||
46 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
||
47 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||
48 | * GNU General Public License for more details. |
||
49 | * |
||
50 | * You should have received a copy of the GNU General Public License |
||
51 | * along with this program; if not, write to the Free Software |
||
52 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
||
53 | * |
||
54 | */ |
||
55 | |||
56 | /* |
||
57 | * some functions are inspired on the implementation of OsKit.. |
||
58 | * |
||
59 | * Copyright (c) 1997, 1998, 1999 University of Utah and the Flux Group. |
||
60 | * All rights reserved. |
||
61 | * |
||
62 | * [...] The OSKit is free software, also known |
||
63 | * as "open source;" you can redistribute it and/or modify it under the terms |
||
64 | * of the GNU General Public License (GPL), version 2, as published by the Free |
||
65 | * Software Foundation (FSF). To explore alternate licensing terms, contact |
||
66 | * the University of Utah at csl-dist@cs.utah.edu or +1-801-585-3271. |
||
67 | * |
||
68 | * The OSKit is distributed in the hope that it will be useful, but WITHOUT ANY |
||
69 | * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
||
70 | * FOR A PARTICULAR PURPOSE. See the GPL for more details. You should have |
||
71 | * received a copy of the GPL along with the OSKit; see the file COPYING. If |
||
72 | * not, write to the FSF, 59 Temple Place #330, Boston, MA 02111-1307, USA. |
||
73 | */ |
||
74 | |||
75 | |||
76 | |||
77 | #include <ll/ll.h> |
||
78 | #include <ll/stdlib.h> |
||
79 | #include <ll/stdio.h> |
||
80 | #include <ll/i386/pic.h> |
||
81 | #include <signal.h> |
||
82 | #include <errno.h> |
||
83 | #include <kernel/descr.h> |
||
84 | #include <kernel/var.h> |
||
85 | #include <kernel/func.h> |
||
86 | |||
353 | giacomo | 87 | #include <tracer.h> |
88 | |||
2 | pj | 89 | /* look at nanoslp.c */ |
90 | int nanosleep_interrupted_by_signal(PID i); |
||
91 | |||
92 | |||
93 | /*---------------------------------------------------------------------*/ |
||
94 | /* Data structures */ |
||
95 | /*---------------------------------------------------------------------*/ |
||
96 | |||
97 | /*+ A flag, see kern_raise +*/ |
||
98 | static int active_exc = 0; |
||
99 | |||
100 | /*+ The signal table... +*/ |
||
101 | static struct sigaction sigactions[SIG_MAX]; |
||
102 | |||
103 | /*+ There is a global (or "process") set of pending signals. |
||
104 | kill() and sigqueue() affect the process pending set. |
||
105 | +*/ |
||
106 | static sigset_t procsigpending; |
||
107 | |||
108 | /* |
||
109 | * A queue of all threads waiting in sigwait. |
||
496 | giacomo | 110 | * It is not static because it is used into the task_kill...� */ |
29 | pj | 111 | static IQUEUE sigwaiters; |
2 | pj | 112 | |
113 | |||
114 | /*+ An array of queues of pending signals posted with sigqueue(). +*/ |
||
115 | static SIGQ sigqueued[SIG_MAX]; |
||
116 | |||
117 | /*+ We avoid malloc in interrupt handlers by preallocating the queue |
||
118 | entries for sig_queued above. |
||
119 | it is used also in kernel/time.c +*/ |
||
120 | SIGQ sigqueue_free; |
||
121 | |||
122 | /*+ this is the signal queue... +*/ |
||
123 | sig_queue_entry sig_queue[SIGQUEUE_MAX]; |
||
124 | |||
125 | /*+ alarm stuffs +*/ |
||
126 | static struct timespec alarm_time; |
||
127 | static int alarm_timer; |
||
128 | |||
129 | |||
130 | /* returns the first non-zero bit... */ |
||
131 | static int ffs(int value) |
||
132 | { |
||
133 | int x; |
||
134 | |||
135 | for (x=0; value; x++, value = value>>1) |
||
136 | if (value & 1) |
||
137 | return x; |
||
138 | return 0; |
||
139 | } |
||
140 | |||
141 | /*---------------------------------------------------------------------*/ |
||
142 | /* interruptable function registration... */ |
||
143 | /*---------------------------------------------------------------------*/ |
||
144 | |||
145 | |||
146 | /*+ this structure contains the functions to be called to test if a |
||
147 | task is blocked on a cancellation point +*/ |
||
148 | static struct { |
||
149 | int (*test)(PID p, void *arg); |
||
150 | void *arg; |
||
151 | } interruptable_table[MAX_SIGINTPOINTS]; |
||
152 | |||
153 | static int interruptable_points = 0; |
||
154 | |||
155 | |||
156 | /*+ This function register a cancellation point into the system. |
||
157 | Be careful!!! no check are performed... +*/ |
||
158 | void register_interruptable_point(int (*func)(PID p, void *arg), void *arg) |
||
159 | { |
||
160 | interruptable_table[interruptable_points].test = func; |
||
161 | interruptable_table[interruptable_points].arg = arg; |
||
162 | interruptable_points++; |
||
163 | } |
||
164 | |||
165 | static void test_interruptable_points(PID i) |
||
166 | { |
||
167 | int j; |
||
168 | |||
169 | /* check if the task is blocked on a cancellation point */ |
||
170 | for (j=0; j<interruptable_points; j++) |
||
171 | if (interruptable_table[j].test(i,interruptable_table[j].arg)) |
||
172 | break; |
||
173 | } |
||
174 | |||
175 | |||
176 | /*---------------------------------------------------------------------*/ |
||
177 | /* sigset_t handling functions */ |
||
178 | /*---------------------------------------------------------------------*/ |
||
179 | |||
180 | /* These functions will become soon macros... */ |
||
181 | int sigemptyset(sigset_t *set) |
||
182 | { |
||
183 | *set = 0; |
||
184 | |||
185 | return 0; |
||
186 | } |
||
187 | |||
188 | int sigfillset(sigset_t *set) |
||
189 | { |
||
190 | *set=0xFFFFFFFFUL; |
||
191 | |||
192 | return 0; |
||
193 | } |
||
194 | |||
195 | int sigaddset(sigset_t *set, int signo) |
||
196 | { |
||
197 | if (signo < 0 || signo >= SIG_MAX) |
||
198 | { |
||
199 | errno = EINVAL; |
||
200 | return -1; |
||
201 | } |
||
202 | |||
203 | *set |= 1 << signo; |
||
204 | return 0; |
||
205 | } |
||
206 | |||
207 | |||
208 | int sigdelset(sigset_t *set, int signo) |
||
209 | { |
||
210 | if (signo < 0 || signo >= SIG_MAX) |
||
211 | { |
||
212 | errno = EINVAL; |
||
213 | return -1; |
||
214 | } |
||
215 | |||
216 | *set &= ~(1 << signo); |
||
217 | return 0; |
||
218 | } |
||
219 | |||
220 | int sigismember(const sigset_t *set, int signo) |
||
221 | { |
||
222 | if (signo < 0 || signo >= SIG_MAX) |
||
223 | { |
||
224 | errno = EINVAL; |
||
225 | return -1; |
||
226 | } |
||
227 | |||
228 | return *set & (1 << signo ); |
||
229 | } |
||
230 | |||
231 | |||
232 | /*---------------------------------------------------------------------*/ |
||
233 | /* Finally, the public functions */ |
||
234 | /*---------------------------------------------------------------------*/ |
||
235 | |||
236 | /* |
||
237 | * Prototypes. |
||
238 | */ |
||
239 | void really_deliver_signal(int sig, siginfo_t *code); |
||
240 | void kern_deliver_async_signal(int sig); |
||
241 | void kern_deliver_process_signal(int sig); |
||
242 | |||
243 | int task_sigmask(int how, const sigset_t *set, sigset_t *oset) |
||
244 | { |
||
245 | proc_des *task; /* current executing task... */ |
||
246 | int err = 0; |
||
318 | giacomo | 247 | SYS_FLAGS f; |
2 | pj | 248 | |
318 | giacomo | 249 | f = kern_fsave(); |
2 | pj | 250 | |
251 | task = &proc_table[exec_shadow]; |
||
252 | |||
253 | if (oset) |
||
254 | *oset = task->sigmask; |
||
255 | |||
256 | if (set) { |
||
257 | switch (how) { |
||
258 | case SIG_BLOCK: |
||
259 | task->sigmask |= *set; |
||
260 | break; |
||
261 | case SIG_UNBLOCK: |
||
262 | task->sigmask &= ~*set; |
||
263 | break; |
||
264 | case SIG_SETMASK: |
||
265 | task->sigmask = *set; |
||
266 | break; |
||
267 | default: |
||
268 | err = EINVAL; |
||
269 | } |
||
270 | } |
||
271 | |||
272 | /* |
||
273 | * Look for process pending signals that are unblocked, and deliver. |
||
274 | */ |
||
275 | while (procsigpending & ~task->sigmask) { |
||
276 | int sig = ffs(procsigpending & ~task->sigmask); |
||
277 | kern_deliver_process_signal(sig); |
||
278 | } |
||
279 | |||
280 | /* |
||
281 | * Look for task pending signals that are unblocked, and deliver. |
||
282 | */ |
||
283 | while (task->sigpending & ~task->sigmask) { |
||
284 | int sig = ffs(task->sigpending & ~task->sigmask); |
||
285 | kern_deliver_async_signal(sig); |
||
286 | } |
||
287 | |||
318 | giacomo | 288 | kern_frestore(f); |
2 | pj | 289 | return err; |
290 | } |
||
291 | |||
292 | /* |
||
293 | * This can be called out of an interrupt handler, say from an alarm |
||
294 | * expiration. |
||
295 | */ |
||
296 | int |
||
297 | task_signal(PID p, int signo) |
||
298 | { |
||
299 | // int enabled; |
||
318 | giacomo | 300 | SYS_FLAGS f; |
301 | |||
2 | pj | 302 | /* Error check? Sure! */ |
303 | if (!signo) |
||
304 | return 0; |
||
305 | |||
306 | if (signo < 0 || signo >= SIG_MAX) |
||
307 | return EINVAL; |
||
308 | |||
309 | if (proc_table[p].status == FREE) |
||
310 | return EINVAL; |
||
311 | |||
318 | giacomo | 312 | f = kern_fsave(); |
2 | pj | 313 | |
314 | /* |
||
315 | * Look at the process sigactions. If the "process" is ignoring |
||
316 | * the signal, then the signal is not placed in the pending list. |
||
317 | */ |
||
318 | if (!(sigactions[signo].sa_flags & SA_SIGINFO) && |
||
319 | sigactions[signo].sa_handler == SIG_IGN) { |
||
318 | giacomo | 320 | kern_frestore(f); |
2 | pj | 321 | return 0; |
322 | } |
||
323 | |||
324 | /* |
||
325 | * Add the signal to list of pending signals for the target task. |
||
326 | */ |
||
327 | sigaddset(&proc_table[p].sigpending, signo); |
||
328 | |||
329 | /* check for an interruptable function!!! */ |
||
330 | test_interruptable_points(p); |
||
331 | |||
332 | if (proc_table[p].status == WAIT_SIGSUSPEND) { |
||
333 | LEVEL l; |
||
334 | |||
335 | /* Reactivate the task... */ |
||
29 | pj | 336 | iq_extract(p, &sigwaiters); |
2 | pj | 337 | |
338 | l = proc_table[p].task_level; |
||
38 | pj | 339 | level_table[l]->public_unblock(l,p); |
2 | pj | 340 | |
341 | } |
||
342 | |||
343 | |||
344 | /* |
||
345 | * If not in an interrupt, use this opportunity to deliver |
||
346 | * pending unblocked signals to the current thread. |
||
347 | */ |
||
348 | if (!ll_ActiveInt()) { |
||
349 | kern_deliver_pending_signals(); |
||
350 | } |
||
351 | |||
318 | giacomo | 352 | kern_frestore(f); |
2 | pj | 353 | return 0; |
354 | } |
||
355 | |||
356 | /* |
||
357 | * sigaction |
||
358 | */ |
||
359 | int |
||
360 | sigaction(int sig, const struct sigaction *act, struct sigaction *oact) |
||
361 | { |
||
362 | int sos; /* used to empty the sigqueue... */ |
||
363 | SYS_FLAGS f; |
||
364 | |||
365 | |||
366 | if (sig < 0 || sig >= SIG_MAX) |
||
367 | return errno = EINVAL, -1; |
||
368 | |||
369 | f = kern_fsave(); |
||
370 | |||
371 | if (oact) |
||
372 | *oact = sigactions[sig]; |
||
373 | if (act) |
||
374 | sigactions[sig] = *act; |
||
375 | |||
376 | /* |
||
377 | * If the action for this signal is being set to SIG_IGN or SIG_DFL, |
||
378 | * and that signal is process pending, then clear it. |
||
379 | */ |
||
380 | if (act && !(act->sa_flags & SA_SIGINFO) && |
||
381 | (act->sa_handler == SIG_IGN || act->sa_handler == SIG_DFL)) { |
||
382 | sos = sigqueued[sig]; |
||
383 | while (sos != -1) { |
||
384 | /* Remove the first entry and put it to the free |
||
385 | queue */ |
||
386 | sos = sig_queue[sigqueued[sig]].next; |
||
387 | |||
388 | if (sig_queue[sigqueued[sig]].flags & USED_FOR_TIMER) |
||
389 | sig_queue[sigqueued[sig]].flags &= ~SIGNAL_POSTED; |
||
390 | else { |
||
391 | sig_queue[sigqueued[sig]].next = sigqueue_free; |
||
392 | sigqueue_free = sigqueued[sig]; |
||
393 | } |
||
394 | } |
||
395 | sigqueued[sig] = -1; |
||
396 | sigdelset(&procsigpending, sig); |
||
397 | } |
||
398 | |||
399 | kern_frestore(f); |
||
400 | return 0; |
||
401 | } |
||
402 | |||
403 | /* |
||
404 | * sigprocmask. this is just task_sigmask |
||
405 | */ |
||
406 | int |
||
407 | sigprocmask(int how, const sigset_t *set, sigset_t *oset) |
||
408 | { |
||
409 | return task_sigmask(how, set, oset); |
||
410 | } |
||
411 | |||
412 | /* |
||
413 | * raise. this is just task_signal on itself. |
||
414 | */ |
||
415 | int |
||
416 | raise(int sig) |
||
417 | { |
||
418 | return task_signal(exec_shadow, sig); |
||
419 | } |
||
420 | |||
421 | /* |
||
422 | * kill. What does it mean to kill() in a multithreaded program? The POSIX |
||
423 | * spec says that a signal sent to a "process" shall be delivered to only |
||
424 | * one task. If no task has that signal unblocked, then the first |
||
425 | * task to unblock the signal is the lucky winner. Well, that means we |
||
426 | * need to have a global procsigpending to record process pending signals. |
||
427 | */ |
||
428 | int |
||
429 | kill(pid_t pid, int signo) |
||
430 | { |
||
431 | PID task; |
||
432 | PID i; |
||
433 | SYS_FLAGS f; |
||
434 | struct sigaction act; |
||
435 | |||
436 | /* Error check? Sure! */ |
||
437 | if (!signo) |
||
438 | return 0; |
||
439 | |||
440 | if (signo < 0 || signo >= SIG_MAX) |
||
441 | return EINVAL; |
||
442 | |||
443 | |||
444 | f = kern_fsave(); |
||
445 | |||
446 | act = sigactions[signo]; |
||
447 | |||
448 | if (!(act.sa_flags & SA_SIGINFO) && act.sa_handler == SIG_IGN) { |
||
449 | kern_frestore(f); |
||
450 | return 0; |
||
451 | } |
||
452 | |||
453 | /* |
||
454 | * Kill does not queue. If the signal is already pending, this |
||
455 | * one is tossed. |
||
456 | */ |
||
457 | if (sigismember(&procsigpending, signo)) { |
||
458 | kern_frestore(f); |
||
459 | return 0; |
||
460 | } |
||
461 | |||
462 | /* |
||
463 | * Make the signal process pending. |
||
464 | */ |
||
465 | sigaddset(&procsigpending, signo); |
||
466 | |||
467 | /* |
||
468 | * Look through the threads in sigwait to see if any of them |
||
469 | * is waiting for the signal. This is done as a separate pass |
||
470 | * since the value of the pthread sigmask is ignored (threads |
||
471 | * in sigwait will have blocked the signals being waited for). |
||
472 | */ |
||
473 | |||
29 | pj | 474 | for (task = iq_query_first(&sigwaiters); |
2 | pj | 475 | task != NIL; |
29 | pj | 476 | task = iq_query_next(task, &sigwaiters)) { |
2 | pj | 477 | if (sigismember(&proc_table[task].sigwaiting, signo)) { |
478 | LEVEL l; |
||
479 | |||
480 | if (proc_table[task].status == WAIT_SIGSUSPEND) |
||
481 | sigaddset(&proc_table[task].sigpending, signo); |
||
482 | |||
483 | /* Reactivate the task... */ |
||
29 | pj | 484 | iq_extract(task, &sigwaiters); |
2 | pj | 485 | l = proc_table[task].task_level; |
38 | pj | 486 | level_table[l]->public_unblock(l,task); |
2 | pj | 487 | |
488 | if (proc_table[task].delay_timer != -1) { |
||
38 | pj | 489 | kern_event_delete(proc_table[task].delay_timer); |
2 | pj | 490 | proc_table[task].delay_timer = -1; |
491 | } |
||
492 | |||
493 | kern_frestore(f); |
||
494 | return 0; |
||
495 | } |
||
496 | } |
||
497 | |||
498 | /* |
||
499 | * No threads in sigwait. Too bad. Must find another thread to |
||
500 | * deliver it to. |
||
501 | */ |
||
502 | for (i = 1; i < MAX_PROC; i++) { |
||
503 | if (proc_table[i].status != FREE) { |
||
504 | if (! sigismember(&proc_table[i].sigmask, signo)) { |
||
505 | /* Add the signal to list of pending |
||
506 | signals for the target task. */ |
||
507 | sigaddset(&proc_table[i].sigpending, signo); |
||
508 | |||
509 | /* check for an interruptable function!!! */ |
||
510 | test_interruptable_points(i); |
||
511 | break; |
||
512 | } |
||
513 | } |
||
514 | } |
||
515 | |||
516 | /* |
||
517 | * If not in an interrupt, use this opportunity to deliver |
||
518 | * pending unblocked signals to the current thread. |
||
519 | */ |
||
520 | if (! ll_ActiveInt()) { |
||
521 | kern_deliver_pending_signals(); |
||
522 | } |
||
523 | |||
524 | kern_frestore(f); |
||
525 | return 0; |
||
526 | } |
||
527 | |||
528 | /* |
||
529 | * sigqueue internal: accept also the SI_XXX value |
||
530 | */ |
||
531 | int |
||
532 | sigqueue_internal(pid_t pid, int signo, const union sigval value, int si_code) |
||
533 | { |
||
534 | PID task; |
||
535 | SYS_FLAGS f; |
||
536 | int i; |
||
537 | |||
538 | int thingie; /* an element of the signal queue */ |
||
539 | int sos; /* used when inserting thinghie in |
||
540 | the signal queue */ |
||
541 | struct sigaction act; |
||
542 | |||
543 | /* Error check? Sure! */ |
||
544 | if (!signo) |
||
545 | return 0; |
||
546 | |||
547 | if (signo < 0 || signo >= SIG_MAX) |
||
548 | return EINVAL; |
||
549 | |||
550 | |||
551 | f = kern_fsave(); |
||
552 | /* |
||
553 | * Look at the process sigactions. If the "process" is ignoring |
||
554 | * the signal, then the signal is not placed in the pending list. |
||
555 | */ |
||
556 | act = sigactions[signo]; |
||
557 | |||
558 | if (!(act.sa_flags & SA_SIGINFO) && act.sa_handler == SIG_IGN) { |
||
559 | kern_frestore(f); |
||
560 | return 0; |
||
561 | } |
||
562 | |||
563 | |||
564 | /* |
||
565 | * If the flags does not include SA_SIGINFO, and there is already |
||
566 | * a signal pending, this new one is dropped. |
||
567 | */ |
||
568 | if ((! (act.sa_flags & SA_SIGINFO)) && |
||
569 | sigismember(&procsigpending, signo)) { |
||
570 | kern_frestore(f); |
||
571 | return 0; |
||
572 | } |
||
573 | |||
574 | /* |
||
575 | * Gotta have space for the new signal. |
||
576 | */ |
||
577 | if (sigqueue_free == -1) { |
||
578 | kern_frestore(f); |
||
579 | return EAGAIN; |
||
580 | } |
||
581 | |||
582 | /* |
||
583 | * Create a queue entry. |
||
584 | */ |
||
585 | thingie = sigqueue_free; |
||
586 | sigqueue_free = sig_queue[sigqueue_free].next; |
||
587 | |||
588 | sig_queue[thingie].info.si_signo = signo; |
||
589 | sig_queue[thingie].info.si_code = si_code; |
||
590 | sig_queue[thingie].info.si_value = value; |
||
591 | sig_queue[thingie].info.si_task = exec_shadow; |
||
592 | sig_queue[thingie].next = -1; |
||
593 | |||
594 | /* |
||
595 | * Queue the signal on the process. |
||
596 | */ |
||
597 | |||
598 | /* we insert the signal at the queue's tail */ |
||
599 | if (sigqueued[signo] == -1) |
||
600 | sigqueued[signo] = thingie; |
||
601 | else { |
||
602 | sos = sigqueued[signo]; |
||
603 | while (sig_queue[sos].next != -1) sos = sig_queue[sos].next; |
||
604 | sig_queue[sos].next = thingie; |
||
605 | } |
||
606 | sigaddset(&procsigpending, signo); |
||
607 | |||
608 | /* |
||
609 | * Look through the threads in sigwait to see if any of them |
||
610 | * is waiting for the signal. This is done as a separate pass |
||
611 | * since the value of the pthread sigmask is ignored (threads |
||
612 | * in sigwait will have blocked the signals being waited for). |
||
613 | * If we find one, wakeup that thread. Note that POSIX says that |
||
614 | * if multiple threads are sigwaiting for the same signal number, |
||
615 | * exactly one thread is woken up. The problem is how to maintain |
||
616 | * the FIFO order, and how to prevent lost signals in the case that |
||
617 | * a thread calls sigwait before the woken thread runs and gets it. |
||
618 | */ |
||
29 | pj | 619 | for (task = iq_query_first(&sigwaiters); |
2 | pj | 620 | task != NIL; |
29 | pj | 621 | task = iq_query_next(task, &sigwaiters)) { |
2 | pj | 622 | if (sigismember(&proc_table[task].sigwaiting, signo)) { |
623 | LEVEL l; |
||
624 | |||
625 | if (proc_table[task].status == WAIT_SIGSUSPEND) |
||
626 | sigaddset(&proc_table[task].sigpending, signo); |
||
627 | |||
628 | /* Reactivate the task... */ |
||
29 | pj | 629 | iq_extract(task, &sigwaiters); |
2 | pj | 630 | |
631 | l = proc_table[task].task_level; |
||
38 | pj | 632 | level_table[l]->public_unblock(l,task); |
2 | pj | 633 | |
634 | if (proc_table[task].delay_timer != -1) { |
||
38 | pj | 635 | kern_event_delete(proc_table[task].delay_timer); |
2 | pj | 636 | proc_table[task].delay_timer = -1; |
637 | } |
||
638 | |||
639 | kern_frestore(f); |
||
640 | return 0; |
||
641 | |||
642 | } |
||
643 | } |
||
644 | |||
645 | /* |
||
646 | * Need to find a thread to deliver the signal to. Look for the |
||
647 | * first thread that is not blocking the signal, and send it the |
||
648 | * signal. It is my opinion that any program that is using sigwait, |
||
649 | * and has not blocked signals in all of its threads, is bogus. The |
||
650 | * same is true if the program is not using sigwait, and has the |
||
651 | * signal unblocked in more than one thread. |
||
652 | * Why? You might wake up a thread, but not have an actual queue |
||
653 | * entry left by the time it runs again and looks, since another |
||
654 | * thread could call sigwait and get that queue entry, or if there |
||
655 | * are multiple threads that can take the signal, one thread could |
||
656 | * get all the entries. This could result in an interrupted thread, |
||
657 | * but with no signal to deliver. Well, not much to do about it. |
||
658 | * Lets just queue the signal for the process, and let the chips |
||
659 | * fall where they may. |
||
660 | */ |
||
661 | for (i = 1; i < MAX_PROC; i++) { |
||
662 | if (proc_table[i].status != FREE) { |
||
663 | if (! sigismember(&proc_table[i].sigmask, signo)) { |
||
664 | /* Add the signal to list of pending |
||
665 | signals for the target task. */ |
||
666 | sigaddset(&proc_table[i].sigpending, signo); |
||
667 | |||
668 | /* check for an interruptable function!!! */ |
||
669 | test_interruptable_points(i); |
||
670 | |||
671 | break; |
||
672 | } |
||
673 | } |
||
674 | } |
||
675 | |||
676 | /* |
||
677 | * If not in an interrupt, use this opportunity to deliver |
||
678 | * pending unblocked signals to the current thread. |
||
679 | * (NB: a discussion on the flag active_exc is near the function |
||
680 | * kern_raise() ) |
||
681 | */ |
||
682 | if (! ll_ActiveInt() && active_exc == 0) { |
||
683 | kern_deliver_pending_signals(); |
||
684 | } |
||
685 | |||
686 | kern_frestore(f); |
||
687 | return 0; |
||
688 | } |
||
689 | |||
690 | static void sigwait_timer(void *arg) |
||
691 | { |
||
692 | PID p = (PID)arg; |
||
693 | LEVEL l; |
||
694 | |||
695 | /* reset the event timer */ |
||
696 | proc_table[p].delay_timer = -1; |
||
697 | |||
698 | /* set the timeout flag */ |
||
699 | proc_table[p].control |= SIGTIMEOUT_EXPIRED; |
||
700 | |||
701 | /* insert the task into the ready queue and extract it from the waiters */ |
||
29 | pj | 702 | iq_extract(p, &sigwaiters); |
2 | pj | 703 | |
704 | l = proc_table[p].task_level; |
||
38 | pj | 705 | level_table[l]->public_unblock(l,p); |
2 | pj | 706 | |
707 | event_need_reschedule(); |
||
708 | } |
||
709 | |||
710 | /* |
||
711 | * Sigwait. Sigwait overrides the state of the pthread sigmask and the global |
||
712 | * sigactions. The caller *must* block the set of signals in "set", before |
||
713 | * calling sigwait, otherwise the behaviour is undefined (which means that |
||
714 | * the caller will take an async signal anyway, and sigwait will return EINTR. |
||
715 | */ |
||
716 | int |
||
717 | kern_sigwait_internal(const sigset_t *set, |
||
718 | siginfo_t *info, const struct timespec *timeout) |
||
719 | { |
||
720 | proc_des *pthread = &proc_table[exec_shadow]; |
||
721 | int thissig; |
||
722 | |||
723 | LEVEL l; |
||
318 | giacomo | 724 | SYS_FLAGS f; |
2 | pj | 725 | |
726 | task_testcancel(); |
||
727 | |||
728 | /* siglock and pthread siglock are taken from an interrupt handler */ |
||
318 | giacomo | 729 | f = kern_fsave(); |
2 | pj | 730 | |
731 | /* |
||
732 | * First check for process pending signals. Must take and hold |
||
733 | * the global siglock to prevent races with kill() and sigqueue(). |
||
734 | */ |
||
735 | if (procsigpending & *set) { |
||
736 | int sos; |
||
737 | |||
738 | thissig = ffs(procsigpending & *set); |
||
739 | |||
740 | /* |
||
741 | * Sent with kill(). Using sigwait and kill is Bogus! |
||
742 | */ |
||
743 | if (sigqueued[thissig] == -1) { |
||
744 | info->si_signo = thissig; |
||
745 | info->si_code = SI_USER; |
||
746 | info->si_value.sival_int = 0; |
||
747 | |||
748 | sigdelset(&pthread->sigpending, thissig); |
||
749 | sigdelset(&procsigpending, thissig); |
||
318 | giacomo | 750 | kern_frestore(f); |
2 | pj | 751 | return 0; |
752 | } |
||
753 | |||
754 | /* |
||
755 | * Grab the first queue entry. |
||
756 | */ |
||
757 | sos = sigqueued[thissig]; |
||
29 | pj | 758 | sigqueued[thissig] = sig_queue[sos].next; |
2 | pj | 759 | |
760 | /* |
||
761 | * If that was the last one, reset the process procsigpending. |
||
762 | */ |
||
763 | if (sigqueued[thissig] == -1) |
||
764 | sigdelset(&procsigpending, thissig); |
||
765 | sigdelset(&pthread->sigpending, thissig); |
||
766 | |||
767 | /* |
||
768 | * Copy the information and free the queue entry. |
||
769 | */ |
||
770 | info->si_signo = sig_queue[sos].info.si_signo; |
||
771 | info->si_code = sig_queue[sos].info.si_code; |
||
772 | info->si_value.sival_int = sig_queue[sos].info.si_value.sival_int; |
||
773 | |||
774 | if (sig_queue[sos].flags & USED_FOR_TIMER) |
||
775 | sig_queue[sos].flags &= ~SIGNAL_POSTED; |
||
776 | else { |
||
777 | sig_queue[sos].next = sigqueue_free; |
||
778 | sigqueue_free = sos; |
||
779 | } |
||
318 | giacomo | 780 | kern_frestore(f); |
2 | pj | 781 | return 0; |
782 | } |
||
783 | |||
784 | /* |
||
785 | * Now check for pthread pending signals. |
||
786 | */ |
||
787 | if (pthread->sigpending & *set) { |
||
788 | thissig = ffs(pthread->sigpending & *set); |
||
789 | info->si_signo = thissig; |
||
790 | info->si_code = SI_USER; |
||
791 | info->si_value.sival_int = 0; |
||
792 | sigdelset(&pthread->sigpending, thissig); |
||
318 | giacomo | 793 | kern_frestore(f); |
2 | pj | 794 | return 0; |
795 | } |
||
796 | |||
797 | /* |
||
798 | * For timed wait, if nothing is available and the timeout value |
||
799 | * is zero, its an error. |
||
800 | */ |
||
801 | if (timeout && timeout->tv_sec == 0 && timeout->tv_nsec == 0) { |
||
318 | giacomo | 802 | kern_frestore(f); |
2 | pj | 803 | return EAGAIN; |
804 | } |
||
805 | |||
806 | /* |
||
807 | * Grab the wait lock and set the sigwaiting mask. Once that is done, |
||
808 | * release the thread siglock; Another thread can try and wake this |
||
809 | * thread up as a result of seeing it in sigwait, but the actual |
||
810 | * wakeup will be delayed until the waitlock is released in the switch |
||
811 | * code. |
||
812 | */ |
||
813 | pthread->sigwaiting = *set; |
||
814 | |||
815 | /* now, we really block the task... */ |
||
816 | proc_table[exec_shadow].context = kern_context_save(); |
||
817 | |||
38 | pj | 818 | kern_epilogue_macro(); |
819 | |||
2 | pj | 820 | l = proc_table[exec_shadow].task_level; |
38 | pj | 821 | level_table[l]->public_block(l,exec_shadow); |
2 | pj | 822 | |
823 | /* |
||
824 | * Add this thread to the list of threads in sigwait. Once that is |
||
825 | * done, it is safe to release the global siglock, which will allow |
||
826 | * another thread to scan the sigwaiters list. As above, it might |
||
827 | * find a thread in sigwait, but it will not be able to wake it up |
||
828 | * until the waitlock is released in the switch code. |
||
829 | */ |
||
29 | pj | 830 | iq_insertfirst(exec_shadow, &sigwaiters); |
2 | pj | 831 | proc_table[exec_shadow].status = WAIT_SIG; |
832 | |||
833 | if (timeout) { |
||
834 | /* we can use the delaytimer because if we are here we are not in a |
||
835 | task_delay */ |
||
836 | struct timespec t, abstime; |
||
38 | pj | 837 | kern_gettime(&t); |
2 | pj | 838 | ADDTIMESPEC(&t, timeout, &abstime); |
839 | |||
840 | proc_table[exec_shadow].delay_timer = |
||
841 | kern_event_post(&abstime,sigwait_timer,(void *)exec_shadow); |
||
842 | } |
||
843 | |||
844 | /* and finally we reschedule */ |
||
845 | exec = exec_shadow = -1; |
||
846 | scheduler(); |
||
847 | ll_context_to(proc_table[exec_shadow].context); |
||
848 | |||
849 | task_testcancel(); |
||
850 | |||
851 | pthread->sigwaiting = 0; |
||
852 | |||
853 | /* |
||
854 | * Look for timeout. |
||
855 | */ |
||
856 | if (proc_table[exec_shadow].control & SIGTIMEOUT_EXPIRED) { |
||
318 | giacomo | 857 | kern_frestore(f); |
2 | pj | 858 | return EAGAIN; |
859 | } |
||
860 | |||
861 | /* |
||
862 | * Look for a wakeup to deliver a queued signal. This would come |
||
863 | * either from kill() or from sigqueue(). |
||
864 | */ |
||
865 | if (procsigpending & *set) { |
||
866 | int sos; |
||
867 | |||
868 | thissig = ffs(procsigpending & *set); |
||
869 | |||
870 | /* |
||
871 | * Sent with kill(). Using sigwait and kill is Bogus! |
||
872 | */ |
||
873 | if (sigqueued[thissig] == -1) { |
||
874 | info->si_signo = thissig; |
||
875 | info->si_code = SI_USER; |
||
876 | info->si_value.sival_int = 0; |
||
877 | |||
878 | sigdelset(&procsigpending, thissig); |
||
318 | giacomo | 879 | kern_frestore(f); |
2 | pj | 880 | return 0; |
881 | } |
||
882 | |||
883 | /* |
||
884 | * Grab the first queue entry. |
||
885 | */ |
||
29 | pj | 886 | sos = sigqueued[thissig]; |
887 | sigqueued[thissig] = sig_queue[sos].next; |
||
2 | pj | 888 | |
889 | /* |
||
890 | * If that was the last one, reset the process procsigpending. |
||
891 | */ |
||
892 | if (sigqueued[thissig] == -1) |
||
893 | sigdelset(&procsigpending, thissig); |
||
894 | |||
895 | /* |
||
896 | * Copy the information and free the queue entry. |
||
897 | */ |
||
898 | info->si_signo = sig_queue[sos].info.si_signo; |
||
899 | info->si_code = sig_queue[sos].info.si_code; |
||
900 | info->si_value.sival_int = sig_queue[sos].info.si_value.sival_int; |
||
901 | |||
902 | if (sig_queue[sos].flags & USED_FOR_TIMER) |
||
903 | sig_queue[sos].flags &= ~SIGNAL_POSTED; |
||
904 | else { |
||
905 | sig_queue[sos].next = sigqueue_free; |
||
906 | sigqueue_free = sos; |
||
907 | } |
||
908 | |||
318 | giacomo | 909 | kern_frestore(f); |
2 | pj | 910 | return 0; |
911 | } |
||
912 | |||
913 | /* |
||
914 | * Well, at the moment I am going to assume that if this thread |
||
915 | * wakes up, and there is no signal pending in the waitset, the |
||
916 | * thread wait was interrupted for some other reason. Return EINTR. |
||
917 | */ |
||
918 | if (! (pthread->sigpending & *set)) { |
||
318 | giacomo | 919 | kern_frestore(f); |
2 | pj | 920 | return EINTR; |
921 | } |
||
922 | |||
923 | /* |
||
924 | * Otherwise, get the first signal and return it. |
||
925 | */ |
||
926 | thissig = ffs(pthread->sigpending & *set); |
||
927 | info->si_signo = thissig; |
||
928 | info->si_code = SI_USER; |
||
929 | info->si_value.sival_int = 0; |
||
930 | sigdelset(&pthread->sigpending, thissig); |
||
318 | giacomo | 931 | kern_frestore(f); |
2 | pj | 932 | return 0; |
933 | } |
||
934 | |||
935 | /* |
||
936 | * Sigwait. |
||
937 | */ |
||
938 | int |
||
939 | sigwait(const sigset_t *set, int *sig) |
||
940 | { |
||
941 | siginfo_t info; |
||
942 | int rc; |
||
943 | |||
944 | memset(&info, 0, sizeof(info)); |
||
945 | |||
946 | rc = kern_sigwait_internal(set, &info, 0); |
||
947 | |||
948 | if (rc) |
||
949 | return rc; |
||
950 | |||
951 | *sig = info.si_signo; |
||
952 | return 0; |
||
953 | } |
||
954 | |||
955 | /* |
||
956 | * Sigwaitinfo. |
||
957 | */ |
||
958 | int |
||
959 | sigwaitinfo(const sigset_t *set, siginfo_t *info) |
||
960 | { |
||
961 | return kern_sigwait_internal(set, info, 0); |
||
962 | } |
||
963 | |||
964 | /* |
||
965 | * Sigtimedwait. |
||
966 | */ |
||
967 | int |
||
968 | sigtimedwait(const sigset_t *set, |
||
969 | siginfo_t *info, const struct timespec *timeout) |
||
970 | { |
||
971 | if (! timeout) |
||
972 | return EINVAL; |
||
973 | |||
974 | return kern_sigwait_internal(set, info, timeout); |
||
975 | } |
||
976 | |||
977 | /* |
||
978 | * Signal |
||
979 | */ |
||
980 | void (*signal(int signum, void (*handler)(int)))(int) |
||
981 | { |
||
982 | struct sigaction act, oact; |
||
983 | int olderrno; |
||
984 | void (*retvalue)(int); |
||
985 | |||
986 | act.sa_handler = handler; |
||
987 | sigemptyset(&act.sa_mask); |
||
988 | act.sa_flags = 0; |
||
989 | |||
990 | olderrno = errno; |
||
991 | if (sigaction(signum, &act, &oact)) |
||
992 | retvalue = SIG_ERR; |
||
993 | else |
||
994 | if (oact.sa_flags & SA_SIGINFO) |
||
995 | retvalue = SIG_ERR; |
||
996 | else |
||
997 | retvalue = oact.sa_handler; |
||
998 | |||
999 | errno = olderrno; |
||
1000 | |||
1001 | return retvalue; |
||
1002 | |||
1003 | } |
||
1004 | |||
1005 | |||
1006 | /* |
||
1007 | * sigpending |
||
1008 | */ |
||
1009 | int sigpending(sigset_t *set) |
||
1010 | { |
||
1011 | *set = procsigpending | proc_table[exec_shadow].sigpending; |
||
1012 | return 0; |
||
1013 | } |
||
1014 | |||
1015 | |||
1016 | /* |
||
1017 | * sigsuspend |
||
1018 | */ |
||
1019 | int sigsuspend(const sigset_t *set) |
||
1020 | { |
||
1021 | proc_des *pthread = &proc_table[exec_shadow]; |
||
318 | giacomo | 1022 | SYS_FLAGS f; |
2 | pj | 1023 | LEVEL l; |
1024 | |||
1025 | task_testcancel(); |
||
1026 | |||
318 | giacomo | 1027 | f = kern_fsave(); |
2 | pj | 1028 | |
1029 | /* |
||
1030 | * Now check for pthread pending signals. |
||
1031 | */ |
||
1032 | if (pthread->sigpending & *set) { |
||
1033 | kern_deliver_pending_signals(); |
||
318 | giacomo | 1034 | kern_frestore(f); |
2 | pj | 1035 | return 0; |
1036 | } |
||
1037 | |||
1038 | /* |
||
1039 | * Grab the wait lock and set the sigwaiting mask. Once that is done, |
||
1040 | * release the thread siglock; Another thread can try and wake this |
||
1041 | * thread up as a result of seeing it in sigwait, but the actual |
||
1042 | * wakeup will be delayed until the waitlock is released in the switch |
||
1043 | * code. |
||
1044 | */ |
||
1045 | pthread->sigwaiting = *set; |
||
1046 | |||
1047 | /* now, we really block the task... */ |
||
1048 | proc_table[exec_shadow].context = kern_context_save(); |
||
1049 | |||
38 | pj | 1050 | kern_epilogue_macro(); |
2 | pj | 1051 | l = proc_table[exec_shadow].task_level; |
38 | pj | 1052 | level_table[l]->public_block(l,exec_shadow); |
2 | pj | 1053 | |
29 | pj | 1054 | iq_insertfirst(exec_shadow, &sigwaiters); |
2 | pj | 1055 | proc_table[exec_shadow].status = WAIT_SIGSUSPEND; |
1056 | |||
1057 | /* and finally we reschedule */ |
||
1058 | exec = exec_shadow = -1; |
||
1059 | scheduler(); |
||
1060 | ll_context_to(proc_table[exec_shadow].context); |
||
1061 | |||
1062 | task_testcancel(); |
||
1063 | |||
1064 | /* |
||
1065 | * Well, at the moment I am going to assume that if this thread |
||
1066 | * wakes up, and there is no signal pending in the waitset, the |
||
1067 | * thread wait was interrupted for some other reason. Return EINTR. |
||
1068 | */ |
||
1069 | if (! (pthread->sigpending & *set)) { |
||
318 | giacomo | 1070 | kern_frestore(f); |
2 | pj | 1071 | return EINTR; |
1072 | } |
||
1073 | |||
1074 | /* |
||
1075 | * Otherwise, deliver the signals. |
||
1076 | */ |
||
1077 | kern_deliver_pending_signals(); |
||
318 | giacomo | 1078 | kern_frestore(f); |
2 | pj | 1079 | return 0; |
1080 | } |
||
1081 | |||
1082 | |||
1083 | void timer_alarmfire(void *arg) |
||
1084 | { |
||
1085 | alarm_timer = -1; |
||
1086 | |||
1087 | kill(0, SIGALRM); |
||
1088 | |||
1089 | event_need_reschedule(); |
||
1090 | } |
||
1091 | |||
1092 | /* |
||
1093 | * alarm |
||
1094 | */ |
||
1095 | unsigned int alarm(unsigned int seconds) |
||
1096 | { |
||
1097 | struct timespec returnvalue, temp; |
||
318 | giacomo | 1098 | SYS_FLAGS f; |
2 | pj | 1099 | |
318 | giacomo | 1100 | f = kern_fsave(); |
2 | pj | 1101 | |
38 | pj | 1102 | kern_gettime(&temp); |
2 | pj | 1103 | |
1104 | if (alarm_timer == -1) |
||
1105 | returnvalue.tv_sec = 0; |
||
1106 | else { |
||
1107 | SUBTIMESPEC(&alarm_time, &temp, &returnvalue); |
||
1108 | |||
38 | pj | 1109 | kern_event_delete(alarm_timer); |
2 | pj | 1110 | } |
1111 | |||
1112 | if (seconds) { |
||
1113 | temp.tv_sec += seconds; |
||
1114 | TIMESPEC_ASSIGN(&alarm_time, &temp); |
||
1115 | alarm_timer = kern_event_post(&temp, timer_alarmfire, NULL); |
||
1116 | } |
||
1117 | else |
||
1118 | alarm_timer = -1; |
||
1119 | |||
318 | giacomo | 1120 | kern_frestore(f); |
2 | pj | 1121 | |
1122 | return returnvalue.tv_sec; |
||
1123 | } |
||
1124 | |||
1125 | int pause(void) |
||
1126 | { |
||
1127 | sigset_t set; |
||
1128 | |||
1129 | sigfillset(&set); |
||
1130 | return sigsuspend(&set); |
||
1131 | } |
||
1132 | |||
1133 | /* |
||
1134 | * Internal stuff. |
||
1135 | */ |
||
1136 | |||
1137 | /* |
||
1138 | * Deliver an asynchronous signal. This must be called with interrupts |
||
1139 | * blocked and the pthread siglock held. |
||
1140 | */ |
||
1141 | void |
||
1142 | kern_deliver_async_signal(int sig) |
||
1143 | { |
||
1144 | siginfo_t siginfo; |
||
1145 | |||
1146 | siginfo.si_signo = sig; |
||
1147 | siginfo.si_code = SI_USER; |
||
1148 | siginfo.si_value.sival_int = 0; |
||
1149 | siginfo.si_task = exec_shadow; |
||
1150 | |||
1151 | really_deliver_signal(sig, &siginfo); |
||
1152 | } |
||
1153 | |||
1154 | /* |
||
1155 | * Deliver a process signals. This must be called with interrupts |
||
1156 | * blocked and the siglock and pthread siglock held. |
||
1157 | */ |
||
1158 | void |
||
1159 | kern_deliver_process_signal(int sig) |
||
1160 | { |
||
1161 | siginfo_t siginfo; |
||
1162 | int thingie; |
||
1163 | |||
1164 | /* |
||
1165 | * Sent with kill(). Using sigwait and kill is Bogus! |
||
1166 | */ |
||
1167 | if (sigqueued[sig] == -1) { |
||
1168 | siginfo.si_signo = sig; |
||
1169 | siginfo.si_code = SI_USER; |
||
1170 | siginfo.si_value.sival_int = 0; |
||
1171 | siginfo.si_task = exec_shadow; |
||
1172 | |||
1173 | sigdelset(&procsigpending, sig); |
||
1174 | goto deliver; |
||
1175 | } |
||
1176 | |||
1177 | /* |
||
1178 | * Grab the first queue entry. |
||
1179 | */ |
||
1180 | thingie = sigqueued[sig]; |
||
1181 | sigqueued[sig] = sig_queue[sigqueued[sig]].next; |
||
1182 | |||
1183 | /* |
||
1184 | * If that was the last one, reset the process sigpending. |
||
1185 | */ |
||
1186 | if (sigqueued[sig] == -1) |
||
1187 | sigdelset(&procsigpending, sig); |
||
1188 | |||
1189 | /* |
||
1190 | * Copy the information and free the queue entry. |
||
1191 | */ |
||
1192 | siginfo.si_signo = sig_queue[thingie].info.si_signo; |
||
1193 | siginfo.si_code = sig_queue[thingie].info.si_code; |
||
1194 | siginfo.si_value.sival_int = sig_queue[thingie].info.si_value.sival_int; |
||
1195 | siginfo.si_task = sig_queue[thingie].info.si_task; |
||
1196 | |||
1197 | if (sig_queue[thingie].flags & USED_FOR_TIMER) |
||
1198 | sig_queue[thingie].flags &= ~SIGNAL_POSTED; |
||
1199 | else { |
||
1200 | sig_queue[thingie].next = sigqueue_free; |
||
1201 | sigqueue_free = thingie; |
||
1202 | } |
||
1203 | |||
1204 | deliver: |
||
1205 | really_deliver_signal(sig, &siginfo); |
||
1206 | |||
1207 | } |
||
1208 | |||
1209 | /* |
||
1210 | * Deliver any pending signals. Called out of the context switch code |
||
1211 | * when a task switches in, and there are pending signals. |
||
1212 | * |
||
1213 | * Interrupts are blocked... |
||
1214 | */ |
||
1215 | void |
||
1216 | kern_deliver_pending_signals(void) |
||
1217 | { |
||
1218 | proc_des *task; /* current executing task... */ |
||
1219 | |||
1220 | task = &proc_table[exec_shadow]; |
||
1221 | |||
1222 | /* we have to check if the task was descheduled while serving |
||
1223 | signals... if so, it is useless the call to this function... |
||
1224 | because the task is already in it!!! (NB: the task can be |
||
1225 | descheduled because the signal handlers are executed with |
||
1226 | interrupts enabled...) */ |
||
1227 | if (task->control & TASK_DOING_SIGNALS) |
||
1228 | return; |
||
1229 | |||
1230 | task->control |= TASK_DOING_SIGNALS; |
||
1231 | |||
1232 | /* |
||
1233 | * Look for process pending signals that are unblocked, and deliver. |
||
1234 | */ |
||
1235 | while (procsigpending & ~task->sigmask) { |
||
1236 | /* NB: the while test should be indipendent from any local |
||
1237 | variable... because when we process signals there can be |
||
1238 | some context_change before we return from the |
||
1239 | kern_deliver-signals... |
||
1240 | */ |
||
1241 | int sig = ffs(procsigpending & ~task->sigmask); |
||
1242 | |||
1243 | /* Call with siglock and thread siglock locked */ |
||
1244 | kern_deliver_process_signal(sig); |
||
1245 | } |
||
1246 | |||
1247 | /* |
||
1248 | * Now deliver any pthread pending signals that are left. |
||
1249 | * NB: the pthread pending signals are NOT sent via sigqueue!!! |
||
1250 | */ |
||
1251 | while (task->sigpending & ~task->sigmask) { |
||
1252 | int sig = ffs(task->sigpending & ~task->sigmask); |
||
1253 | |||
1254 | /* Call at splhigh and thread locked */ |
||
1255 | kern_deliver_async_signal(sig); |
||
1256 | } |
||
1257 | task->control &= ~TASK_DOING_SIGNALS; |
||
1258 | } |
||
1259 | |||
1260 | /* |
||
1261 | * Actually deliver the signal to the task. At this point the signal |
||
1262 | * is going to be delivered, so it no longer matters if it is blocked. |
||
1263 | */ |
||
1264 | void |
||
1265 | really_deliver_signal(int sig, siginfo_t *info) |
||
1266 | { |
||
1267 | proc_des *task; /* current executing task... */ |
||
1268 | |||
1269 | sigset_t sigmask, oldmask; |
||
1270 | struct sigaction act; |
||
1271 | SYS_FLAGS f; |
||
1272 | |||
1273 | f = kern_fsave(); |
||
1274 | |||
1275 | task = &proc_table[exec_shadow]; |
||
1276 | |||
1277 | act = sigactions[sig]; |
||
1278 | |||
1279 | //kern_printf("Ci sono!!!flags=%d hand=%d sigaction=%d mask=%d",act.sa_flags, |
||
1280 | // (int)act.sa_handler, (int)act.sa_sigaction, (int)act.sa_mask); |
||
1281 | |||
1282 | /* |
||
1283 | * Ignored? |
||
1284 | */ |
||
1285 | if (!(act.sa_flags & SA_SIGINFO) && (act.sa_handler == SIG_IGN || |
||
228 | giacomo | 1286 | act.sa_handler == SIG_ERR) ) { |
753 | giacomo | 1287 | sigdelset(&task->sigpending, sig); |
228 | giacomo | 1288 | kern_frestore(f); |
2 | pj | 1289 | return; |
228 | giacomo | 1290 | } |
2 | pj | 1291 | |
1292 | if (!(act.sa_flags & SA_SIGINFO) && act.sa_handler == SIG_DFL) { |
||
1293 | /* Default action for all signals is termination */ |
||
1005 | mauro | 1294 | //kern_printf("\nSignal number %d...\n",sig); |
2 | pj | 1295 | if (act.sa_flags & SA_SIGINFO) |
1005 | mauro | 1296 | //kern_printf("with value : %d\n",info->si_value.sival_int); |
920 | pj | 1297 | exit(ASIG_DEFAULT_ACTION); |
2 | pj | 1298 | } |
1299 | |||
1300 | /* |
||
1301 | * Set the signal mask for calling the handler. |
||
1302 | */ |
||
1303 | oldmask = sigmask = task->sigmask; |
||
1304 | sigaddset(&sigmask, sig); |
||
1305 | sigmask |= act.sa_mask; |
||
1306 | sigdelset(&task->sigpending, sig); |
||
1307 | task->sigmask = sigmask; |
||
1308 | |||
320 | giacomo | 1309 | kern_sti(); |
2 | pj | 1310 | /* |
1311 | * and call the handler ... |
||
1312 | */ |
||
1313 | if (act.sa_flags & SA_SIGINFO) |
||
1314 | act.sa_sigaction(sig, info, NULL); |
||
1315 | else |
||
1316 | ((void (*)(int, int, void *))act.sa_handler) |
||
1317 | (sig, info->si_value.sival_int, NULL); |
||
1318 | |||
1319 | /* NB: when we pass the kern_cli(), there can be the case that |
||
1320 | an irq (and/or a timer...) fired... and do a context change. |
||
1321 | so, we return here after an indefinite time... */ |
||
320 | giacomo | 1322 | kern_cli(); |
1323 | task->sigmask = oldmask; |
||
2 | pj | 1324 | |
1325 | kern_frestore(f); |
||
1326 | } |
||
1327 | |||
1328 | |||
1329 | /*---------------------------------------------------------------------*/ |
||
1330 | /* S.HA.R.K. exceptions handling */ |
||
1331 | /*---------------------------------------------------------------------*/ |
||
1332 | |||
1333 | void kern_raise(int n, PID p) |
||
1334 | { |
||
1335 | union sigval v; |
||
318 | giacomo | 1336 | SYS_FLAGS f; |
2 | pj | 1337 | PID sos; /* temp. PID */ |
1338 | |||
1339 | v.sival_int = n; |
||
1005 | mauro | 1340 | //kern_printf("RAISE"); |
2 | pj | 1341 | |
1342 | /* sigqueue set the p field to exec_shadow... so whe change it for a |
||
1343 | little... because sigqueue fill descriptor with exec_shadow... */ |
||
318 | giacomo | 1344 | f = kern_fsave(); |
2 | pj | 1345 | sos = exec_shadow; |
1346 | exec_shadow = p; |
||
1347 | |||
1348 | active_exc = 1; // see (*) |
||
1349 | sigqueue(0, SIGHEXC, v); |
||
1350 | active_exc = 0; |
||
1351 | |||
1352 | exec_shadow = sos; |
||
318 | giacomo | 1353 | kern_frestore(f); |
2 | pj | 1354 | |
1355 | /* (*) |
||
1356 | when we are in an exception, we don't have to call the |
||
1357 | really_deliver signal. |
||
920 | pj | 1358 | For example, when the capacity of a task is exausted, an OSLib event is |
1359 | called. this event simply call scheduler, that call the public_epilogue. |
||
2 | pj | 1360 | |
920 | pj | 1361 | the public_epilogue checks the capacity and raise an exception, BUT |
2 | pj | 1362 | we don't have to deliver this exception immediately. |
1363 | |||
1364 | Why? because the task pointed by exec_shadow was extracted from the |
||
1365 | ready queue (as sigqueue do normally...) and the exception does not have |
||
1366 | to be delivered to that task. It must be delivered |
||
1367 | only after we exit from the kern_raise (because the signal handler |
||
1368 | in SIGHEXC may be long and another timer interrupt can fire...), to |
||
1369 | another task... |
||
1370 | */ |
||
1371 | |||
1372 | } |
||
1373 | |||
1374 | |||
1375 | /*---------------------------------------------------------------------*/ |
||
1376 | /* S.Ha.R.K. interrupts handling */ |
||
1377 | /*---------------------------------------------------------------------*/ |
||
1378 | |||
1379 | /*----------------------------------------------------------------------*/ |
||
1380 | /* Interrupt table management. The following function install the fast */ |
||
1381 | /* handler and the sporadic task linked to the interrupt no. */ |
||
1382 | /* If the fast parameter is NULL, no handler is called. */ |
||
1383 | /* If the pi parameter is NIL no task is installed */ |
||
1384 | /*----------------------------------------------------------------------*/ |
||
1385 | |||
1386 | /* Interrupt handling table */ |
||
1387 | static struct int_des { |
||
496 | giacomo | 1388 | void (*fast)(int n); |
1005 | mauro | 1389 | void (*intdrv)(int n); |
496 | giacomo | 1390 | PID proc_index; |
1391 | BYTE isUsed; |
||
1392 | BYTE irqLock; |
||
2 | pj | 1393 | } int_table[16]; |
1394 | |||
1395 | /* Warning the interrupt can cause a preemption! */ |
||
1396 | /* The fast handler is a standard piece of code which runs with */ |
||
1397 | /* interrupts enabled to allow interrupt nesting */ |
||
1398 | |||
1018 | mauro | 1399 | extern int add_interrupt_job(int no); |
1077 | fabio | 1400 | extern int invalidate_pending_jobs(int no); |
1018 | mauro | 1401 | |
2 | pj | 1402 | void irq_fasthandler(void *n) |
1403 | { |
||
496 | giacomo | 1404 | int no = *(int *)n; |
1405 | PID p; |
||
2 | pj | 1406 | |
1020 | mauro | 1407 | //kern_printf("(irq_fasthandler: no %d)",no); |
496 | giacomo | 1408 | /* tracer stuff */ |
502 | giacomo | 1409 | TRACER_LOGEVENT(FTrace_EVT_interrupt_start,(unsigned short int)no,0); |
2 | pj | 1410 | |
496 | giacomo | 1411 | if (int_table[no].fast != NULL) { |
1412 | if (int_table[no].irqLock == FALSE) |
||
1413 | kern_sti(); |
||
1414 | (int_table[no].fast)(no); |
||
1415 | if (int_table[no].irqLock == FALSE) |
||
1416 | kern_cli(); |
||
1417 | } |
||
2 | pj | 1418 | |
1005 | mauro | 1419 | if (int_table[no].intdrv != NULL) { |
1018 | mauro | 1420 | add_interrupt_job(no); |
1005 | mauro | 1421 | } |
1422 | |||
502 | giacomo | 1423 | TRACER_LOGEVENT(FTrace_EVT_interrupt_end,(unsigned short int)no,0); |
353 | giacomo | 1424 | |
496 | giacomo | 1425 | /* If a sporadic process is linked,activate it */ |
1426 | p = int_table[no].proc_index; |
||
1427 | task_activate(p); // no problem if p == nil |
||
2 | pj | 1428 | } |
1429 | |||
1430 | /*----------------------------------------------------------------------*/ |
||
1431 | /* Interrupt table management. The following function install the fast */ |
||
1432 | /* handler and the sporadic task linked to the interrupt no. */ |
||
1433 | /* If the fast parameter is NULL, no handler is called. */ |
||
1434 | /* If the pi parameter is NIL no task is installed */ |
||
1435 | /*----------------------------------------------------------------------*/ |
||
1005 | mauro | 1436 | int handler_set(int no, void (*fast)(int n), BYTE lock, PID pi, void (*intdrv)(int n)) |
2 | pj | 1437 | { |
496 | giacomo | 1438 | SYS_FLAGS f; |
1018 | mauro | 1439 | |
496 | giacomo | 1440 | if ((no < 1) || (no > 15)) { |
1018 | mauro | 1441 | errno = EWRONG_INT_NO; |
1442 | return -1; |
||
496 | giacomo | 1443 | } |
2 | pj | 1444 | |
496 | giacomo | 1445 | f = kern_fsave(); |
1020 | mauro | 1446 | |
1447 | //kern_printf("(handler_set: no %d pid %d)",no, pi); |
||
1448 | |||
496 | giacomo | 1449 | if (int_table[no].isUsed == TRUE) { |
1018 | mauro | 1450 | kern_frestore(f); |
1451 | errno = EUSED_INT_NO; |
||
1452 | return -1; |
||
496 | giacomo | 1453 | } |
1454 | int_table[no].fast = fast; |
||
1005 | mauro | 1455 | int_table[no].intdrv = intdrv; |
496 | giacomo | 1456 | int_table[no].proc_index = pi; |
1457 | int_table[no].isUsed = TRUE; |
||
1458 | int_table[no].irqLock = lock; |
||
2 | pj | 1459 | |
496 | giacomo | 1460 | irq_bind(no, irq_fasthandler, INT_FORCE); |
1461 | irq_unmask(no); |
||
1462 | kern_frestore(f); |
||
2 | pj | 1463 | |
496 | giacomo | 1464 | return 1; |
2 | pj | 1465 | } |
1466 | |||
1467 | int handler_remove(int no) |
||
1468 | { |
||
496 | giacomo | 1469 | SYS_FLAGS f; |
2 | pj | 1470 | |
496 | giacomo | 1471 | if (no < 1 || no > 15) { |
1018 | mauro | 1472 | errno = EWRONG_INT_NO; |
1473 | return -1; |
||
496 | giacomo | 1474 | } |
2 | pj | 1475 | |
496 | giacomo | 1476 | f = kern_fsave(); |
1020 | mauro | 1477 | |
1478 | //kern_printf("(handler_remove: no %d )",no); |
||
1479 | |||
496 | giacomo | 1480 | if (int_table[no].isUsed == FALSE) { |
1018 | mauro | 1481 | kern_frestore(f); |
1482 | errno = EUNUSED_INT_NO; |
||
1483 | return -1; |
||
496 | giacomo | 1484 | } |
2 | pj | 1485 | |
1077 | fabio | 1486 | if (int_table[no].intdrv != NULL) |
1487 | invalidate_pending_jobs(no); |
||
1488 | |||
496 | giacomo | 1489 | int_table[no].fast = NULL; |
1005 | mauro | 1490 | int_table[no].intdrv = NULL; |
496 | giacomo | 1491 | int_table[no].proc_index = NIL; |
1492 | int_table[no].isUsed = FALSE; |
||
1493 | int_table[no].irqLock = FALSE; |
||
2 | pj | 1494 | |
496 | giacomo | 1495 | irq_bind(no,NULL, INT_PREEMPTABLE); |
1496 | irq_mask(no); |
||
1497 | kern_frestore(f); |
||
2 | pj | 1498 | |
496 | giacomo | 1499 | return 1; |
2 | pj | 1500 | } |
1501 | |||
1005 | mauro | 1502 | void *handler_get_intdrive(int no) |
1503 | { |
||
1504 | return int_table[no].intdrv; |
||
1505 | } |
||
1506 | |||
2 | pj | 1507 | /* this is the test that is done when a task is being killed |
1508 | and it is waiting on a sigwait */ |
||
1509 | static int signal_cancellation_point(PID i, void *arg) |
||
1510 | { |
||
496 | giacomo | 1511 | LEVEL l; |
2 | pj | 1512 | |
496 | giacomo | 1513 | if (proc_table[i].status == WAIT_SIG) { |
2 | pj | 1514 | |
496 | giacomo | 1515 | if (proc_table[i].delay_timer != -1) { |
1516 | kern_event_delete(proc_table[i].delay_timer); |
||
1517 | proc_table[i].delay_timer = -1; |
||
1518 | } |
||
2 | pj | 1519 | |
496 | giacomo | 1520 | iq_extract(i, &sigwaiters); |
2 | pj | 1521 | |
496 | giacomo | 1522 | l = proc_table[i].task_level; |
1523 | level_table[l]->public_unblock(l,i); |
||
2 | pj | 1524 | |
496 | giacomo | 1525 | return 1; |
1526 | } else if (proc_table[i].status == WAIT_SIGSUSPEND) { |
||
1527 | l = proc_table[i].task_level; |
||
1528 | level_table[l]->public_unblock(l,i); |
||
2 | pj | 1529 | |
496 | giacomo | 1530 | return 1; |
1531 | } |
||
2 | pj | 1532 | |
496 | giacomo | 1533 | return 0; |
2 | pj | 1534 | } |
1535 | |||
1536 | void signals_init() |
||
1537 | { |
||
1538 | int i; |
||
1539 | |||
496 | giacomo | 1540 | /* Initialize the default signal actions and the signal queue headers. */ |
2 | pj | 1541 | for (i = 0; i < SIG_MAX; i++) { |
496 | giacomo | 1542 | sigactions[i].sa_handler = SIG_DFL; |
1543 | sigactions[i].sa_flags = 0; |
||
1544 | sigactions[i].sa_mask = 0; |
||
1545 | sigactions[i].sa_sigaction = 0; |
||
1546 | sigqueued[i] = -1; |
||
1547 | } |
||
2 | pj | 1548 | |
496 | giacomo | 1549 | /* Initialize the signal queue */ |
1550 | for (i=0; i < SIGQUEUE_MAX-1; i++) { |
||
1551 | sig_queue[i].next = i+1; |
||
1552 | sig_queue[i].flags = 0; |
||
1553 | } |
||
1554 | sig_queue[SIGQUEUE_MAX-1].next = NIL; |
||
1555 | sig_queue[SIGQUEUE_MAX-1].flags = 0; |
||
1556 | sigqueue_free = 0; |
||
2 | pj | 1557 | |
496 | giacomo | 1558 | procsigpending = 0; |
2 | pj | 1559 | |
496 | giacomo | 1560 | iq_init(&sigwaiters, &freedesc, 0); |
1561 | alarm_timer = -1; |
||
2 | pj | 1562 | |
496 | giacomo | 1563 | /* Interrupt handling init */ |
1564 | for (i=0; i<16; i++) { |
||
1565 | int_table[i].fast = NULL; |
||
1005 | mauro | 1566 | int_table[i].intdrv = NULL; |
496 | giacomo | 1567 | int_table[i].proc_index = NIL; |
1568 | int_table[i].isUsed = FALSE; |
||
1569 | int_table[i].irqLock = FALSE; |
||
1570 | } |
||
2 | pj | 1571 | |
496 | giacomo | 1572 | register_cancellation_point(signal_cancellation_point, NULL); |
2 | pj | 1573 | } |
1574 | |||
1575 |