Subversion Repositories shark

Rev

Rev 2 | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2 pj 1
/*-
2
 * Copyright (c) 1992, 1993
3
 *      The Regents of the University of California.  All rights reserved.
4
 *
5
 * This software was developed by the Computer Systems Engineering group
6
 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
7
 * contributed to Berkeley.
8
 *
9
 * Redistribution and use in source and binary forms, with or without
10
 * modification, are permitted provided that the following conditions
11
 * are met:
12
 * 1. Redistributions of source code must retain the above copyright
13
 *    notice, this list of conditions and the following disclaimer.
14
 * 2. Redistributions in binary form must reproduce the above copyright
15
 *    notice, this list of conditions and the following disclaimer in the
16
 *    documentation and/or other materials provided with the distribution.
17
 * 3. All advertising materials mentioning features or use of this software
18
 *    must display the following acknowledgement:
19
 *      This product includes software developed by the University of
20
 *      California, Berkeley and its contributors.
21
 * 4. Neither the name of the University nor the names of its contributors
22
 *    may be used to endorse or promote products derived from this software
23
 *    without specific prior written permission.
24
 *
25
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35
 * SUCH DAMAGE.
36
 */
37
 
38
#if defined(LIBC_SCCS) && !defined(lint)
39
static char sccsid[] = "@(#)qdivrem.c   8.1 (Berkeley) 6/4/93";
40
#endif /* LIBC_SCCS and not lint */
41
 
42
/*
43
 * Multiprecision divide.  This algorithm is from Knuth vol. 2 (2nd ed),
44
 * section 4.3.1, pp. 257--259.
45
 */
46
 
47
#include "quad.h"
48
 
49
#define B       (1 << HALF_BITS)        /* digit base */
50
 
51
/* Combine two `digits' to make a single two-digit number. */
52
#define COMBINE(a, b) (((u_long)(a) << HALF_BITS) | (b))
53
 
54
/* select a type for digits in base B: use unsigned short if they fit */
55
#if ULONG_MAX == 0xffffffff && USHRT_MAX >= 0xffff
56
typedef unsigned short digit;
57
#else
58
typedef u_long digit;
59
#endif
60
 
61
/*
62
 * Shift p[0]..p[len] left `sh' bits, ignoring any bits that
63
 * `fall out' the left (there never will be any such anyway).
64
 * We may assume len >= 0.  NOTE THAT THIS WRITES len+1 DIGITS.
65
 */
66
static void
67
shl(register digit *p, register int len, register int sh)
68
{
69
        register int i;
70
 
71
        for (i = 0; i < len; i++)
72
                p[i] = LHALF(p[i] << sh) | (p[i + 1] >> (HALF_BITS - sh));
73
        p[i] = LHALF(p[i] << sh);
74
}
75
 
76
/*
77
 * __qdivrem(u, v, rem) returns u/v and, optionally, sets *rem to u%v.
78
 *
79
 * We do this in base 2-sup-HALF_BITS, so that all intermediate products
80
 * fit within u_long.  As a consequence, the maximum length dividend and
81
 * divisor are 4 `digits' in this base (they are shorter if they have
82
 * leading zeros).
83
 */
84
u_quad_t
85
__qdivrem(uq, vq, arq)
86
        u_quad_t uq, vq, *arq;
87
{
88
        union uu tmp;
89
        digit *u, *v, *q;
90
        register digit v1, v2;
91
        u_long qhat, rhat, t;
92
        int m, n, d, j, i;
93
        digit uspace[5], vspace[5], qspace[5];
94
 
95
        /*
96
         * Take care of special cases: divide by zero, and u < v.
97
         */
98
        if (vq == 0) {
99
                /* divide by zero. */
100
                static volatile const unsigned int zero = 0;
101
 
102
                tmp.ul[H] = tmp.ul[L] = 1 / zero;
103
                if (arq)
104
                        *arq = uq;
105
                return (tmp.q);
106
        }
107
        if (uq < vq) {
108
                if (arq)
109
                        *arq = uq;
110
                return (0);
111
        }
112
        u = &uspace[0];
113
        v = &vspace[0];
114
        q = &qspace[0];
115
 
116
        /*
117
         * Break dividend and divisor into digits in base B, then
118
         * count leading zeros to determine m and n.  When done, we
119
         * will have:
120
         *      u = (u[1]u[2]...u[m+n]) sub B
121
         *      v = (v[1]v[2]...v[n]) sub B
122
         *      v[1] != 0
123
         *      1 < n <= 4 (if n = 1, we use a different division algorithm)
124
         *      m >= 0 (otherwise u < v, which we already checked)
125
         *      m + n = 4
126
         * and thus
127
         *      m = 4 - n <= 2
128
         */
129
        tmp.uq = uq;
130
        u[0] = 0;
131
        u[1] = HHALF(tmp.ul[H]);
132
        u[2] = LHALF(tmp.ul[H]);
133
        u[3] = HHALF(tmp.ul[L]);
134
        u[4] = LHALF(tmp.ul[L]);
135
        tmp.uq = vq;
136
        v[1] = HHALF(tmp.ul[H]);
137
        v[2] = LHALF(tmp.ul[H]);
138
        v[3] = HHALF(tmp.ul[L]);
139
        v[4] = LHALF(tmp.ul[L]);
140
        for (n = 4; v[1] == 0; v++) {
141
                if (--n == 1) {
142
                        u_long rbj;     /* r*B+u[j] (not root boy jim) */
143
                        digit q1, q2, q3, q4;
144
 
145
                        /*
146
                         * Change of plan, per exercise 16.
147
                         *      r = 0;
148
                         *      for j = 1..4:
149
                         *              q[j] = floor((r*B + u[j]) / v),
150
                         *              r = (r*B + u[j]) % v;
151
                         * We unroll this completely here.
152
                         */
153
                        t = v[2];       /* nonzero, by definition */
154
                        q1 = u[1] / t;
155
                        rbj = COMBINE(u[1] % t, u[2]);
156
                        q2 = rbj / t;
157
                        rbj = COMBINE(rbj % t, u[3]);
158
                        q3 = rbj / t;
159
                        rbj = COMBINE(rbj % t, u[4]);
160
                        q4 = rbj / t;
161
                        if (arq)
162
                                *arq = rbj % t;
163
                        tmp.ul[H] = COMBINE(q1, q2);
164
                        tmp.ul[L] = COMBINE(q3, q4);
165
                        return (tmp.q);
166
                }
167
        }
168
 
169
        /*
170
         * By adjusting q once we determine m, we can guarantee that
171
         * there is a complete four-digit quotient at &qspace[1] when
172
         * we finally stop.
173
         */
174
        for (m = 4 - n; u[1] == 0; u++)
175
                m--;
176
        for (i = 4 - m; --i >= 0;)
177
                q[i] = 0;
178
        q += 4 - m;
179
 
180
        /*
181
         * Here we run Program D, translated from MIX to C and acquiring
182
         * a few minor changes.
183
         *
184
         * D1: choose multiplier 1 << d to ensure v[1] >= B/2.
185
         */
186
        d = 0;
187
        for (t = v[1]; t < B / 2; t <<= 1)
188
                d++;
189
        if (d > 0) {
190
                shl(&u[0], m + n, d);           /* u <<= d */
191
                shl(&v[1], n - 1, d);           /* v <<= d */
192
        }
193
        /*
194
         * D2: j = 0.
195
         */
196
        j = 0;
197
        v1 = v[1];      /* for D3 -- note that v[1..n] are constant */
198
        v2 = v[2];      /* for D3 */
199
        do {
200
                register digit uj0, uj1, uj2;
201
 
202
                /*
203
                 * D3: Calculate qhat (\^q, in TeX notation).
204
                 * Let qhat = min((u[j]*B + u[j+1])/v[1], B-1), and
205
                 * let rhat = (u[j]*B + u[j+1]) mod v[1].
206
                 * While rhat < B and v[2]*qhat > rhat*B+u[j+2],
207
                 * decrement qhat and increase rhat correspondingly.
208
                 * Note that if rhat >= B, v[2]*qhat < rhat*B.
209
                 */
210
                uj0 = u[j + 0]; /* for D3 only -- note that u[j+...] change */
211
                uj1 = u[j + 1]; /* for D3 only */
212
                uj2 = u[j + 2]; /* for D3 only */
213
                if (uj0 == v1) {
214
                        qhat = B;
215
                        rhat = uj1;
216
                        goto qhat_too_big;
217
                } else {
218
                        u_long n = COMBINE(uj0, uj1);
219
                        qhat = n / v1;
220
                        rhat = n % v1;
221
                }
222
                while (v2 * qhat > COMBINE(rhat, uj2)) {
223
        qhat_too_big:
224
                        qhat--;
225
                        if ((rhat += v1) >= B)
226
                                break;
227
                }
228
                /*
229
                 * D4: Multiply and subtract.
230
                 * The variable `t' holds any borrows across the loop.
231
                 * We split this up so that we do not require v[0] = 0,
232
                 * and to eliminate a final special case.
233
                 */
234
                for (t = 0, i = n; i > 0; i--) {
235
                        t = u[i + j] - v[i] * qhat - t;
236
                        u[i + j] = LHALF(t);
237
                        t = (B - HHALF(t)) & (B - 1);
238
                }
239
                t = u[j] - t;
240
                u[j] = LHALF(t);
241
                /*
242
                 * D5: test remainder.
243
                 * There is a borrow if and only if HHALF(t) is nonzero;
244
                 * in that (rare) case, qhat was too large (by exactly 1).
245
                 * Fix it by adding v[1..n] to u[j..j+n].
246
                 */
247
                if (HHALF(t)) {
248
                        qhat--;
249
                        for (t = 0, i = n; i > 0; i--) { /* D6: add back. */
250
                                t += u[i + j] + v[i];
251
                                u[i + j] = LHALF(t);
252
                                t = HHALF(t);
253
                        }
254
                        u[j] = LHALF(u[j] + t);
255
                }
256
                q[j] = qhat;
257
        } while (++j <= m);             /* D7: loop on j. */
258
 
259
        /*
260
         * If caller wants the remainder, we have to calculate it as
261
         * u[m..m+n] >> d (this is at most n digits and thus fits in
262
         * u[m+1..m+n], but we may need more source digits).
263
         */
264
        if (arq) {
265
                if (d) {
266
                        for (i = m + n; i > m; --i)
267
                                u[i] = (u[i] >> d) |
268
                                    LHALF(u[i - 1] << (HALF_BITS - d));
269
                        u[i] = 0;
270
                }
271
                tmp.ul[H] = COMBINE(uspace[1], uspace[2]);
272
                tmp.ul[L] = COMBINE(uspace[3], uspace[4]);
273
                *arq = tmp.q;
274
        }
275
 
276
        tmp.ul[H] = COMBINE(qspace[1], qspace[2]);
277
        tmp.ul[L] = COMBINE(qspace[3], qspace[4]);
278
        return (tmp.q);
279
}