Rev 2 | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | pj | 1 | /*- |
2 | * Copyright (c) 1992, 1993 |
||
3 | * The Regents of the University of California. All rights reserved. |
||
4 | * |
||
5 | * This software was developed by the Computer Systems Engineering group |
||
6 | * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and |
||
7 | * contributed to Berkeley. |
||
8 | * |
||
9 | * Redistribution and use in source and binary forms, with or without |
||
10 | * modification, are permitted provided that the following conditions |
||
11 | * are met: |
||
12 | * 1. Redistributions of source code must retain the above copyright |
||
13 | * notice, this list of conditions and the following disclaimer. |
||
14 | * 2. Redistributions in binary form must reproduce the above copyright |
||
15 | * notice, this list of conditions and the following disclaimer in the |
||
16 | * documentation and/or other materials provided with the distribution. |
||
17 | * 3. All advertising materials mentioning features or use of this software |
||
18 | * must display the following acknowledgement: |
||
19 | * This product includes software developed by the University of |
||
20 | * California, Berkeley and its contributors. |
||
21 | * 4. Neither the name of the University nor the names of its contributors |
||
22 | * may be used to endorse or promote products derived from this software |
||
23 | * without specific prior written permission. |
||
24 | * |
||
25 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
||
26 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
||
27 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
||
28 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
||
29 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
||
30 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
||
31 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
||
32 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
||
33 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
||
34 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
||
35 | * SUCH DAMAGE. |
||
36 | */ |
||
37 | |||
38 | #if defined(LIBC_SCCS) && !defined(lint) |
||
39 | static char sccsid[] = "@(#)qdivrem.c 8.1 (Berkeley) 6/4/93"; |
||
40 | #endif /* LIBC_SCCS and not lint */ |
||
41 | |||
42 | /* |
||
43 | * Multiprecision divide. This algorithm is from Knuth vol. 2 (2nd ed), |
||
44 | * section 4.3.1, pp. 257--259. |
||
45 | */ |
||
46 | |||
47 | #include "quad.h" |
||
48 | |||
49 | #define B (1 << HALF_BITS) /* digit base */ |
||
50 | |||
51 | /* Combine two `digits' to make a single two-digit number. */ |
||
52 | #define COMBINE(a, b) (((u_long)(a) << HALF_BITS) | (b)) |
||
53 | |||
54 | /* select a type for digits in base B: use unsigned short if they fit */ |
||
55 | #if ULONG_MAX == 0xffffffff && USHRT_MAX >= 0xffff |
||
56 | typedef unsigned short digit; |
||
57 | #else |
||
58 | typedef u_long digit; |
||
59 | #endif |
||
60 | |||
61 | /* |
||
62 | * Shift p[0]..p[len] left `sh' bits, ignoring any bits that |
||
63 | * `fall out' the left (there never will be any such anyway). |
||
64 | * We may assume len >= 0. NOTE THAT THIS WRITES len+1 DIGITS. |
||
65 | */ |
||
66 | static void |
||
67 | shl(register digit *p, register int len, register int sh) |
||
68 | { |
||
69 | register int i; |
||
70 | |||
71 | for (i = 0; i < len; i++) |
||
72 | p[i] = LHALF(p[i] << sh) | (p[i + 1] >> (HALF_BITS - sh)); |
||
73 | p[i] = LHALF(p[i] << sh); |
||
74 | } |
||
75 | |||
76 | /* |
||
77 | * __qdivrem(u, v, rem) returns u/v and, optionally, sets *rem to u%v. |
||
78 | * |
||
79 | * We do this in base 2-sup-HALF_BITS, so that all intermediate products |
||
80 | * fit within u_long. As a consequence, the maximum length dividend and |
||
81 | * divisor are 4 `digits' in this base (they are shorter if they have |
||
82 | * leading zeros). |
||
83 | */ |
||
84 | u_quad_t |
||
85 | __qdivrem(uq, vq, arq) |
||
86 | u_quad_t uq, vq, *arq; |
||
87 | { |
||
88 | union uu tmp; |
||
89 | digit *u, *v, *q; |
||
90 | register digit v1, v2; |
||
91 | u_long qhat, rhat, t; |
||
92 | int m, n, d, j, i; |
||
93 | digit uspace[5], vspace[5], qspace[5]; |
||
94 | |||
95 | /* |
||
96 | * Take care of special cases: divide by zero, and u < v. |
||
97 | */ |
||
98 | if (vq == 0) { |
||
99 | /* divide by zero. */ |
||
100 | static volatile const unsigned int zero = 0; |
||
101 | |||
102 | tmp.ul[H] = tmp.ul[L] = 1 / zero; |
||
103 | if (arq) |
||
104 | *arq = uq; |
||
105 | return (tmp.q); |
||
106 | } |
||
107 | if (uq < vq) { |
||
108 | if (arq) |
||
109 | *arq = uq; |
||
110 | return (0); |
||
111 | } |
||
112 | u = &uspace[0]; |
||
113 | v = &vspace[0]; |
||
114 | q = &qspace[0]; |
||
115 | |||
116 | /* |
||
117 | * Break dividend and divisor into digits in base B, then |
||
118 | * count leading zeros to determine m and n. When done, we |
||
119 | * will have: |
||
120 | * u = (u[1]u[2]...u[m+n]) sub B |
||
121 | * v = (v[1]v[2]...v[n]) sub B |
||
122 | * v[1] != 0 |
||
123 | * 1 < n <= 4 (if n = 1, we use a different division algorithm) |
||
124 | * m >= 0 (otherwise u < v, which we already checked) |
||
125 | * m + n = 4 |
||
126 | * and thus |
||
127 | * m = 4 - n <= 2 |
||
128 | */ |
||
129 | tmp.uq = uq; |
||
130 | u[0] = 0; |
||
131 | u[1] = HHALF(tmp.ul[H]); |
||
132 | u[2] = LHALF(tmp.ul[H]); |
||
133 | u[3] = HHALF(tmp.ul[L]); |
||
134 | u[4] = LHALF(tmp.ul[L]); |
||
135 | tmp.uq = vq; |
||
136 | v[1] = HHALF(tmp.ul[H]); |
||
137 | v[2] = LHALF(tmp.ul[H]); |
||
138 | v[3] = HHALF(tmp.ul[L]); |
||
139 | v[4] = LHALF(tmp.ul[L]); |
||
140 | for (n = 4; v[1] == 0; v++) { |
||
141 | if (--n == 1) { |
||
142 | u_long rbj; /* r*B+u[j] (not root boy jim) */ |
||
143 | digit q1, q2, q3, q4; |
||
144 | |||
145 | /* |
||
146 | * Change of plan, per exercise 16. |
||
147 | * r = 0; |
||
148 | * for j = 1..4: |
||
149 | * q[j] = floor((r*B + u[j]) / v), |
||
150 | * r = (r*B + u[j]) % v; |
||
151 | * We unroll this completely here. |
||
152 | */ |
||
153 | t = v[2]; /* nonzero, by definition */ |
||
154 | q1 = u[1] / t; |
||
155 | rbj = COMBINE(u[1] % t, u[2]); |
||
156 | q2 = rbj / t; |
||
157 | rbj = COMBINE(rbj % t, u[3]); |
||
158 | q3 = rbj / t; |
||
159 | rbj = COMBINE(rbj % t, u[4]); |
||
160 | q4 = rbj / t; |
||
161 | if (arq) |
||
162 | *arq = rbj % t; |
||
163 | tmp.ul[H] = COMBINE(q1, q2); |
||
164 | tmp.ul[L] = COMBINE(q3, q4); |
||
165 | return (tmp.q); |
||
166 | } |
||
167 | } |
||
168 | |||
169 | /* |
||
170 | * By adjusting q once we determine m, we can guarantee that |
||
171 | * there is a complete four-digit quotient at &qspace[1] when |
||
172 | * we finally stop. |
||
173 | */ |
||
174 | for (m = 4 - n; u[1] == 0; u++) |
||
175 | m--; |
||
176 | for (i = 4 - m; --i >= 0;) |
||
177 | q[i] = 0; |
||
178 | q += 4 - m; |
||
179 | |||
180 | /* |
||
181 | * Here we run Program D, translated from MIX to C and acquiring |
||
182 | * a few minor changes. |
||
183 | * |
||
184 | * D1: choose multiplier 1 << d to ensure v[1] >= B/2. |
||
185 | */ |
||
186 | d = 0; |
||
187 | for (t = v[1]; t < B / 2; t <<= 1) |
||
188 | d++; |
||
189 | if (d > 0) { |
||
190 | shl(&u[0], m + n, d); /* u <<= d */ |
||
191 | shl(&v[1], n - 1, d); /* v <<= d */ |
||
192 | } |
||
193 | /* |
||
194 | * D2: j = 0. |
||
195 | */ |
||
196 | j = 0; |
||
197 | v1 = v[1]; /* for D3 -- note that v[1..n] are constant */ |
||
198 | v2 = v[2]; /* for D3 */ |
||
199 | do { |
||
200 | register digit uj0, uj1, uj2; |
||
201 | |||
202 | /* |
||
203 | * D3: Calculate qhat (\^q, in TeX notation). |
||
204 | * Let qhat = min((u[j]*B + u[j+1])/v[1], B-1), and |
||
205 | * let rhat = (u[j]*B + u[j+1]) mod v[1]. |
||
206 | * While rhat < B and v[2]*qhat > rhat*B+u[j+2], |
||
207 | * decrement qhat and increase rhat correspondingly. |
||
208 | * Note that if rhat >= B, v[2]*qhat < rhat*B. |
||
209 | */ |
||
210 | uj0 = u[j + 0]; /* for D3 only -- note that u[j+...] change */ |
||
211 | uj1 = u[j + 1]; /* for D3 only */ |
||
212 | uj2 = u[j + 2]; /* for D3 only */ |
||
213 | if (uj0 == v1) { |
||
214 | qhat = B; |
||
215 | rhat = uj1; |
||
216 | goto qhat_too_big; |
||
217 | } else { |
||
218 | u_long n = COMBINE(uj0, uj1); |
||
219 | qhat = n / v1; |
||
220 | rhat = n % v1; |
||
221 | } |
||
222 | while (v2 * qhat > COMBINE(rhat, uj2)) { |
||
223 | qhat_too_big: |
||
224 | qhat--; |
||
225 | if ((rhat += v1) >= B) |
||
226 | break; |
||
227 | } |
||
228 | /* |
||
229 | * D4: Multiply and subtract. |
||
230 | * The variable `t' holds any borrows across the loop. |
||
231 | * We split this up so that we do not require v[0] = 0, |
||
232 | * and to eliminate a final special case. |
||
233 | */ |
||
234 | for (t = 0, i = n; i > 0; i--) { |
||
235 | t = u[i + j] - v[i] * qhat - t; |
||
236 | u[i + j] = LHALF(t); |
||
237 | t = (B - HHALF(t)) & (B - 1); |
||
238 | } |
||
239 | t = u[j] - t; |
||
240 | u[j] = LHALF(t); |
||
241 | /* |
||
242 | * D5: test remainder. |
||
243 | * There is a borrow if and only if HHALF(t) is nonzero; |
||
244 | * in that (rare) case, qhat was too large (by exactly 1). |
||
245 | * Fix it by adding v[1..n] to u[j..j+n]. |
||
246 | */ |
||
247 | if (HHALF(t)) { |
||
248 | qhat--; |
||
249 | for (t = 0, i = n; i > 0; i--) { /* D6: add back. */ |
||
250 | t += u[i + j] + v[i]; |
||
251 | u[i + j] = LHALF(t); |
||
252 | t = HHALF(t); |
||
253 | } |
||
254 | u[j] = LHALF(u[j] + t); |
||
255 | } |
||
256 | q[j] = qhat; |
||
257 | } while (++j <= m); /* D7: loop on j. */ |
||
258 | |||
259 | /* |
||
260 | * If caller wants the remainder, we have to calculate it as |
||
261 | * u[m..m+n] >> d (this is at most n digits and thus fits in |
||
262 | * u[m+1..m+n], but we may need more source digits). |
||
263 | */ |
||
264 | if (arq) { |
||
265 | if (d) { |
||
266 | for (i = m + n; i > m; --i) |
||
267 | u[i] = (u[i] >> d) | |
||
268 | LHALF(u[i - 1] << (HALF_BITS - d)); |
||
269 | u[i] = 0; |
||
270 | } |
||
271 | tmp.ul[H] = COMBINE(uspace[1], uspace[2]); |
||
272 | tmp.ul[L] = COMBINE(uspace[3], uspace[4]); |
||
273 | *arq = tmp.q; |
||
274 | } |
||
275 | |||
276 | tmp.ul[H] = COMBINE(qspace[1], qspace[2]); |
||
277 | tmp.ul[L] = COMBINE(qspace[3], qspace[4]); |
||
278 | return (tmp.q); |
||
279 | } |