Rev 47 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
47 | pj | 1 | /* Copyright (C) 1991, 1992, 1996, 1997, 1999 Free Software Foundation, Inc. |
2 | This file is part of the GNU C Library. |
||
3 | Written by Douglas C. Schmidt (schmidt@ics.uci.edu). |
||
4 | |||
5 | The GNU C Library is free software; you can redistribute it and/or |
||
6 | modify it under the terms of the GNU Lesser General Public |
||
7 | License as published by the Free Software Foundation; either |
||
8 | version 2.1 of the License, or (at your option) any later version. |
||
9 | |||
10 | The GNU C Library is distributed in the hope that it will be useful, |
||
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
||
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||
13 | Lesser General Public License for more details. |
||
14 | |||
15 | You should have received a copy of the GNU Lesser General Public |
||
16 | License along with the GNU C Library; if not, write to the Free |
||
17 | Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA |
||
18 | 02111-1307 USA. */ |
||
19 | |||
20 | /* If you consider tuning this algorithm, you should consult first: |
||
21 | Engineering a sort function; Jon Bentley and M. Douglas McIlroy; |
||
22 | Software - Practice and Experience; Vol. 23 (11), 1249-1265, 1993. */ |
||
23 | |||
24 | //#include <alloca.h> //SHARK |
||
25 | #include <limits.h> |
||
26 | #include <stdlib.h> |
||
27 | #include <string.h> |
||
28 | |||
29 | /* Byte-wise swap two items of size SIZE. */ |
||
30 | #define SWAP(a, b, size) \ |
||
31 | do \ |
||
32 | { \ |
||
33 | register size_t __size = (size); \ |
||
34 | register char *__a = (a), *__b = (b); \ |
||
35 | do \ |
||
36 | { \ |
||
37 | char __tmp = *__a; \ |
||
38 | *__a++ = *__b; \ |
||
39 | *__b++ = __tmp; \ |
||
40 | } while (--__size > 0); \ |
||
41 | } while (0) |
||
42 | |||
43 | /* Discontinue quicksort algorithm when partition gets below this size. |
||
44 | This particular magic number was chosen to work best on a Sun 4/260. */ |
||
45 | #define MAX_THRESH 4 |
||
46 | |||
47 | /* Stack node declarations used to store unfulfilled partition obligations. */ |
||
48 | typedef struct |
||
49 | { |
||
50 | char *lo; |
||
51 | char *hi; |
||
52 | } stack_node; |
||
53 | |||
54 | /* The next 4 #defines implement a very fast in-line stack abstraction. */ |
||
55 | /* The stack needs log (total_elements) entries (we could even subtract |
||
56 | log(MAX_THRESH)). Since total_elements has type size_t, we get as |
||
57 | upper bound for log (total_elements): |
||
58 | bits per byte (CHAR_BIT) * sizeof(size_t). */ |
||
379 | giacomo | 59 | #define QSORT_STACK_SIZE (CHAR_BIT * sizeof(size_t)) |
47 | pj | 60 | #define PUSH(low, high) ((void) ((top->lo = (low)), (top->hi = (high)), ++top)) |
61 | #define POP(low, high) ((void) (--top, (low = top->lo), (high = top->hi))) |
||
62 | #define STACK_NOT_EMPTY (stack < top) |
||
63 | |||
64 | |||
65 | /* Order size using quicksort. This implementation incorporates |
||
66 | four optimizations discussed in Sedgewick: |
||
67 | |||
68 | 1. Non-recursive, using an explicit stack of pointer that store the |
||
69 | next array partition to sort. To save time, this maximum amount |
||
70 | of space required to store an array of SIZE_MAX is allocated on the |
||
71 | stack. Assuming a 32-bit (64 bit) integer for size_t, this needs |
||
72 | only 32 * sizeof(stack_node) == 256 bytes (for 64 bit: 1024 bytes). |
||
73 | Pretty cheap, actually. |
||
74 | |||
75 | 2. Chose the pivot element using a median-of-three decision tree. |
||
76 | This reduces the probability of selecting a bad pivot value and |
||
77 | eliminates certain extraneous comparisons. |
||
78 | |||
79 | 3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving |
||
80 | insertion sort to order the MAX_THRESH items within each partition. |
||
81 | This is a big win, since insertion sort is faster for small, mostly |
||
82 | sorted array segments. |
||
83 | |||
84 | 4. The larger of the two sub-partitions is always pushed onto the |
||
85 | stack first, with the algorithm then concentrating on the |
||
86 | smaller partition. This *guarantees* no more than log (total_elems) |
||
87 | stack size is needed (actually O(1) in this case)! */ |
||
88 | |||
89 | void |
||
90 | _quicksort (void *const pbase, size_t total_elems, size_t size, |
||
91 | __compar_fn_t cmp) |
||
92 | { |
||
93 | register char *base_ptr = (char *) pbase; |
||
94 | |||
95 | const size_t max_thresh = MAX_THRESH * size; |
||
96 | |||
97 | if (total_elems == 0) |
||
98 | /* Avoid lossage with unsigned arithmetic below. */ |
||
99 | return; |
||
100 | |||
101 | if (total_elems > MAX_THRESH) |
||
102 | { |
||
103 | char *lo = base_ptr; |
||
104 | char *hi = &lo[size * (total_elems - 1)]; |
||
379 | giacomo | 105 | stack_node stack[QSORT_STACK_SIZE]; |
47 | pj | 106 | stack_node *top = stack + 1; |
107 | |||
108 | while (STACK_NOT_EMPTY) |
||
109 | { |
||
110 | char *left_ptr; |
||
111 | char *right_ptr; |
||
112 | |||
113 | /* Select median value from among LO, MID, and HI. Rearrange |
||
114 | LO and HI so the three values are sorted. This lowers the |
||
115 | probability of picking a pathological pivot value and |
||
116 | skips a comparison for both the LEFT_PTR and RIGHT_PTR in |
||
117 | the while loops. */ |
||
118 | |||
119 | char *mid = lo + size * ((hi - lo) / size >> 1); |
||
120 | |||
121 | if ((*cmp) ((void *) mid, (void *) lo) < 0) |
||
122 | SWAP (mid, lo, size); |
||
123 | if ((*cmp) ((void *) hi, (void *) mid) < 0) |
||
124 | SWAP (mid, hi, size); |
||
125 | else |
||
126 | goto jump_over; |
||
127 | if ((*cmp) ((void *) mid, (void *) lo) < 0) |
||
128 | SWAP (mid, lo, size); |
||
129 | jump_over:; |
||
130 | |||
131 | left_ptr = lo + size; |
||
132 | right_ptr = hi - size; |
||
133 | |||
134 | /* Here's the famous ``collapse the walls'' section of quicksort. |
||
135 | Gotta like those tight inner loops! They are the main reason |
||
136 | that this algorithm runs much faster than others. */ |
||
137 | do |
||
138 | { |
||
139 | while ((*cmp) ((void *) left_ptr, (void *) mid) < 0) |
||
140 | left_ptr += size; |
||
141 | |||
142 | while ((*cmp) ((void *) mid, (void *) right_ptr) < 0) |
||
143 | right_ptr -= size; |
||
144 | |||
145 | if (left_ptr < right_ptr) |
||
146 | { |
||
147 | SWAP (left_ptr, right_ptr, size); |
||
148 | if (mid == left_ptr) |
||
149 | mid = right_ptr; |
||
150 | else if (mid == right_ptr) |
||
151 | mid = left_ptr; |
||
152 | left_ptr += size; |
||
153 | right_ptr -= size; |
||
154 | } |
||
155 | else if (left_ptr == right_ptr) |
||
156 | { |
||
157 | left_ptr += size; |
||
158 | right_ptr -= size; |
||
159 | break; |
||
160 | } |
||
161 | } |
||
162 | while (left_ptr <= right_ptr); |
||
163 | |||
164 | /* Set up pointers for next iteration. First determine whether |
||
165 | left and right partitions are below the threshold size. If so, |
||
166 | ignore one or both. Otherwise, push the larger partition's |
||
167 | bounds on the stack and continue sorting the smaller one. */ |
||
168 | |||
169 | if ((size_t) (right_ptr - lo) <= max_thresh) |
||
170 | { |
||
171 | if ((size_t) (hi - left_ptr) <= max_thresh) |
||
172 | /* Ignore both small partitions. */ |
||
173 | POP (lo, hi); |
||
174 | else |
||
175 | /* Ignore small left partition. */ |
||
176 | lo = left_ptr; |
||
177 | } |
||
178 | else if ((size_t) (hi - left_ptr) <= max_thresh) |
||
179 | /* Ignore small right partition. */ |
||
180 | hi = right_ptr; |
||
181 | else if ((right_ptr - lo) > (hi - left_ptr)) |
||
182 | { |
||
183 | /* Push larger left partition indices. */ |
||
184 | PUSH (lo, right_ptr); |
||
185 | lo = left_ptr; |
||
186 | } |
||
187 | else |
||
188 | { |
||
189 | /* Push larger right partition indices. */ |
||
190 | PUSH (left_ptr, hi); |
||
191 | hi = right_ptr; |
||
192 | } |
||
193 | } |
||
194 | } |
||
195 | |||
196 | /* Once the BASE_PTR array is partially sorted by quicksort the rest |
||
197 | is completely sorted using insertion sort, since this is efficient |
||
198 | for partitions below MAX_THRESH size. BASE_PTR points to the beginning |
||
199 | of the array to sort, and END_PTR points at the very last element in |
||
200 | the array (*not* one beyond it!). */ |
||
201 | |||
202 | |||
203 | { |
||
204 | char *const end_ptr = &base_ptr[size * (total_elems - 1)]; |
||
205 | char *tmp_ptr = base_ptr; |
||
206 | char *thresh = min(end_ptr, base_ptr + max_thresh); |
||
207 | register char *run_ptr; |
||
208 | |||
209 | /* Find smallest element in first threshold and place it at the |
||
210 | array's beginning. This is the smallest array element, |
||
211 | and the operation speeds up insertion sort's inner loop. */ |
||
212 | |||
213 | for (run_ptr = tmp_ptr + size; run_ptr <= thresh; run_ptr += size) |
||
214 | if ((*cmp) ((void *) run_ptr, (void *) tmp_ptr) < 0) |
||
215 | tmp_ptr = run_ptr; |
||
216 | |||
217 | if (tmp_ptr != base_ptr) |
||
218 | SWAP (tmp_ptr, base_ptr, size); |
||
219 | |||
220 | /* Insertion sort, running from left-hand-side up to right-hand-side. */ |
||
221 | |||
222 | run_ptr = base_ptr + size; |
||
223 | while ((run_ptr += size) <= end_ptr) |
||
224 | { |
||
225 | tmp_ptr = run_ptr - size; |
||
226 | while ((*cmp) ((void *) run_ptr, (void *) tmp_ptr) < 0) |
||
227 | tmp_ptr -= size; |
||
228 | |||
229 | tmp_ptr += size; |
||
230 | if (tmp_ptr != run_ptr) |
||
231 | { |
||
232 | char *trav; |
||
233 | |||
234 | trav = run_ptr + size; |
||
235 | while (--trav >= run_ptr) |
||
236 | { |
||
237 | char c = *trav; |
||
238 | char *hi, *lo; |
||
239 | |||
240 | for (hi = lo = trav; (lo -= size) >= tmp_ptr; hi = lo) |
||
241 | *hi = *lo; |
||
242 | *hi = c; |
||
243 | } |
||
244 | } |
||
245 | } |
||
246 | } |
||
247 | } |