Subversion Repositories shark

Rev

Rev 3 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2 pj 1
/*
2
 * Copyright (c) 1997-1999 Massachusetts Institute of Technology
3
 *
4
 * This program is free software; you can redistribute it and/or modify
5
 * it under the terms of the GNU General Public License as published by
6
 * the Free Software Foundation; either version 2 of the License, or
7
 * (at your option) any later version.
8
 *
9
 * This program is distributed in the hope that it will be useful,
10
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12
 * GNU General Public License for more details.
13
 *
14
 * You should have received a copy of the GNU General Public License
15
 * along with this program; if not, write to the Free Software
16
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
17
 *
18
 */
19
 
20
/* This file was automatically generated --- DO NOT EDIT */
21
/* Generated on Tue May 18 13:54:47 EDT 1999 */
22
 
107 pj 23
#include <fftw-int.h>
24
#include <fftw.h>
2 pj 25
 
26
/* Generated by: ./genfft -magic-alignment-check -magic-twiddle-load-all -magic-variables 4 -magic-loopi -notwiddleinv 9 */
27
 
28
/*
29
 * This function contains 80 FP additions, 40 FP multiplications,
30
 * (or, 60 additions, 20 multiplications, 20 fused multiply/add),
31
 * 30 stack variables, and 36 memory accesses
32
 */
33
static const fftw_real K642787609 = FFTW_KONST(+0.642787609686539326322643409907263432907559884);
34
static const fftw_real K766044443 = FFTW_KONST(+0.766044443118978035202392650555416673935832457);
35
static const fftw_real K939692620 = FFTW_KONST(+0.939692620785908384054109277324731469936208134);
36
static const fftw_real K342020143 = FFTW_KONST(+0.342020143325668733044099614682259580763083368);
37
static const fftw_real K984807753 = FFTW_KONST(+0.984807753012208059366743024589523013670643252);
38
static const fftw_real K173648177 = FFTW_KONST(+0.173648177666930348851716626769314796000375677);
39
static const fftw_real K866025403 = FFTW_KONST(+0.866025403784438646763723170752936183471402627);
40
static const fftw_real K500000000 = FFTW_KONST(+0.500000000000000000000000000000000000000000000);
41
 
42
/*
43
 * Generator Id's :
107 pj 44
 * $Id: fni_9.c,v 1.2 2003-03-24 11:14:52 pj Exp $
45
 * $Id: fni_9.c,v 1.2 2003-03-24 11:14:52 pj Exp $
46
 * $Id: fni_9.c,v 1.2 2003-03-24 11:14:52 pj Exp $
2 pj 47
 */
48
 
49
void fftwi_no_twiddle_9(const fftw_complex *input, fftw_complex *output, int istride, int ostride)
50
{
51
     fftw_real tmp5;
52
     fftw_real tmp37;
53
     fftw_real tmp57;
54
     fftw_real tmp22;
55
     fftw_real tmp56;
56
     fftw_real tmp38;
57
     fftw_real tmp10;
58
     fftw_real tmp42;
59
     fftw_real tmp66;
60
     fftw_real tmp27;
61
     fftw_real tmp45;
62
     fftw_real tmp67;
63
     fftw_real tmp15;
64
     fftw_real tmp52;
65
     fftw_real tmp69;
66
     fftw_real tmp32;
67
     fftw_real tmp49;
68
     fftw_real tmp70;
69
     ASSERT_ALIGNED_DOUBLE();
70
     {
71
          fftw_real tmp1;
72
          fftw_real tmp2;
73
          fftw_real tmp3;
74
          fftw_real tmp4;
75
          ASSERT_ALIGNED_DOUBLE();
76
          tmp1 = c_re(input[0]);
77
          tmp2 = c_re(input[3 * istride]);
78
          tmp3 = c_re(input[6 * istride]);
79
          tmp4 = tmp2 + tmp3;
80
          tmp5 = tmp1 + tmp4;
81
          tmp37 = tmp1 - (K500000000 * tmp4);
82
          tmp57 = K866025403 * (tmp2 - tmp3);
83
     }
84
     {
85
          fftw_real tmp18;
86
          fftw_real tmp19;
87
          fftw_real tmp20;
88
          fftw_real tmp21;
89
          ASSERT_ALIGNED_DOUBLE();
90
          tmp18 = c_im(input[0]);
91
          tmp19 = c_im(input[3 * istride]);
92
          tmp20 = c_im(input[6 * istride]);
93
          tmp21 = tmp19 + tmp20;
94
          tmp22 = tmp18 + tmp21;
95
          tmp56 = tmp18 - (K500000000 * tmp21);
96
          tmp38 = K866025403 * (tmp20 - tmp19);
97
     }
98
     {
99
          fftw_real tmp6;
100
          fftw_real tmp23;
101
          fftw_real tmp9;
102
          fftw_real tmp44;
103
          fftw_real tmp26;
104
          fftw_real tmp41;
105
          fftw_real tmp40;
106
          fftw_real tmp43;
107
          ASSERT_ALIGNED_DOUBLE();
108
          tmp6 = c_re(input[istride]);
109
          tmp23 = c_im(input[istride]);
110
          {
111
               fftw_real tmp7;
112
               fftw_real tmp8;
113
               fftw_real tmp24;
114
               fftw_real tmp25;
115
               ASSERT_ALIGNED_DOUBLE();
116
               tmp7 = c_re(input[4 * istride]);
117
               tmp8 = c_re(input[7 * istride]);
118
               tmp9 = tmp7 + tmp8;
119
               tmp44 = K866025403 * (tmp7 - tmp8);
120
               tmp24 = c_im(input[4 * istride]);
121
               tmp25 = c_im(input[7 * istride]);
122
               tmp26 = tmp24 + tmp25;
123
               tmp41 = K866025403 * (tmp25 - tmp24);
124
          }
125
          tmp10 = tmp6 + tmp9;
126
          tmp40 = tmp6 - (K500000000 * tmp9);
127
          tmp42 = tmp40 - tmp41;
128
          tmp66 = tmp40 + tmp41;
129
          tmp27 = tmp23 + tmp26;
130
          tmp43 = tmp23 - (K500000000 * tmp26);
131
          tmp45 = tmp43 - tmp44;
132
          tmp67 = tmp44 + tmp43;
133
     }
134
     {
135
          fftw_real tmp11;
136
          fftw_real tmp28;
137
          fftw_real tmp14;
138
          fftw_real tmp48;
139
          fftw_real tmp31;
140
          fftw_real tmp51;
141
          fftw_real tmp50;
142
          fftw_real tmp47;
143
          ASSERT_ALIGNED_DOUBLE();
144
          tmp11 = c_re(input[2 * istride]);
145
          tmp28 = c_im(input[2 * istride]);
146
          {
147
               fftw_real tmp12;
148
               fftw_real tmp13;
149
               fftw_real tmp29;
150
               fftw_real tmp30;
151
               ASSERT_ALIGNED_DOUBLE();
152
               tmp12 = c_re(input[5 * istride]);
153
               tmp13 = c_re(input[8 * istride]);
154
               tmp14 = tmp12 + tmp13;
155
               tmp48 = K866025403 * (tmp12 - tmp13);
156
               tmp29 = c_im(input[5 * istride]);
157
               tmp30 = c_im(input[8 * istride]);
158
               tmp31 = tmp29 + tmp30;
159
               tmp51 = K866025403 * (tmp30 - tmp29);
160
          }
161
          tmp15 = tmp11 + tmp14;
162
          tmp50 = tmp11 - (K500000000 * tmp14);
163
          tmp52 = tmp50 - tmp51;
164
          tmp69 = tmp50 + tmp51;
165
          tmp32 = tmp28 + tmp31;
166
          tmp47 = tmp28 - (K500000000 * tmp31);
167
          tmp49 = tmp47 - tmp48;
168
          tmp70 = tmp48 + tmp47;
169
     }
170
     {
171
          fftw_real tmp36;
172
          fftw_real tmp16;
173
          fftw_real tmp35;
174
          fftw_real tmp17;
175
          fftw_real tmp33;
176
          fftw_real tmp34;
177
          ASSERT_ALIGNED_DOUBLE();
178
          tmp36 = K866025403 * (tmp32 - tmp27);
179
          tmp16 = tmp10 + tmp15;
180
          tmp35 = tmp5 - (K500000000 * tmp16);
181
          c_re(output[0]) = tmp5 + tmp16;
182
          c_re(output[3 * ostride]) = tmp35 + tmp36;
183
          c_re(output[6 * ostride]) = tmp35 - tmp36;
184
          tmp17 = K866025403 * (tmp10 - tmp15);
185
          tmp33 = tmp27 + tmp32;
186
          tmp34 = tmp22 - (K500000000 * tmp33);
187
          c_im(output[3 * ostride]) = tmp17 + tmp34;
188
          c_im(output[6 * ostride]) = tmp34 - tmp17;
189
          c_im(output[0]) = tmp22 + tmp33;
190
     }
191
     {
192
          fftw_real tmp39;
193
          fftw_real tmp61;
194
          fftw_real tmp64;
195
          fftw_real tmp58;
196
          fftw_real tmp54;
197
          fftw_real tmp55;
198
          fftw_real tmp63;
199
          fftw_real tmp62;
200
          ASSERT_ALIGNED_DOUBLE();
201
          {
202
               fftw_real tmp59;
203
               fftw_real tmp60;
204
               fftw_real tmp46;
205
               fftw_real tmp53;
206
               ASSERT_ALIGNED_DOUBLE();
207
               tmp39 = tmp37 - tmp38;
208
               tmp59 = (K173648177 * tmp45) + (K984807753 * tmp42);
209
               tmp60 = (K342020143 * tmp52) - (K939692620 * tmp49);
210
               tmp61 = tmp59 + tmp60;
211
               tmp64 = K866025403 * (tmp60 - tmp59);
212
               tmp58 = tmp56 - tmp57;
213
               tmp46 = (K173648177 * tmp42) - (K984807753 * tmp45);
214
               tmp53 = (K342020143 * tmp49) + (K939692620 * tmp52);
215
               tmp54 = tmp46 - tmp53;
216
               tmp55 = K866025403 * (tmp46 + tmp53);
217
          }
218
          c_re(output[2 * ostride]) = tmp39 + tmp54;
219
          tmp63 = tmp39 - (K500000000 * tmp54);
220
          c_re(output[8 * ostride]) = tmp63 - tmp64;
221
          c_re(output[5 * ostride]) = tmp63 + tmp64;
222
          c_im(output[2 * ostride]) = tmp58 + tmp61;
223
          tmp62 = tmp58 - (K500000000 * tmp61);
224
          c_im(output[5 * ostride]) = tmp55 + tmp62;
225
          c_im(output[8 * ostride]) = tmp62 - tmp55;
226
     }
227
     {
228
          fftw_real tmp65;
229
          fftw_real tmp77;
230
          fftw_real tmp80;
231
          fftw_real tmp74;
232
          fftw_real tmp72;
233
          fftw_real tmp73;
234
          fftw_real tmp79;
235
          fftw_real tmp78;
236
          ASSERT_ALIGNED_DOUBLE();
237
          {
238
               fftw_real tmp75;
239
               fftw_real tmp76;
240
               fftw_real tmp68;
241
               fftw_real tmp71;
242
               ASSERT_ALIGNED_DOUBLE();
243
               tmp65 = tmp37 + tmp38;
244
               tmp75 = (K766044443 * tmp67) + (K642787609 * tmp66);
245
               tmp76 = (K173648177 * tmp70) + (K984807753 * tmp69);
246
               tmp77 = tmp75 + tmp76;
247
               tmp80 = K866025403 * (tmp76 - tmp75);
248
               tmp74 = tmp57 + tmp56;
249
               tmp68 = (K766044443 * tmp66) - (K642787609 * tmp67);
250
               tmp71 = (K173648177 * tmp69) - (K984807753 * tmp70);
251
               tmp72 = tmp68 + tmp71;
252
               tmp73 = K866025403 * (tmp68 - tmp71);
253
          }
254
          c_re(output[ostride]) = tmp65 + tmp72;
255
          tmp79 = tmp65 - (K500000000 * tmp72);
256
          c_re(output[7 * ostride]) = tmp79 - tmp80;
257
          c_re(output[4 * ostride]) = tmp79 + tmp80;
258
          c_im(output[ostride]) = tmp74 + tmp77;
259
          tmp78 = tmp74 - (K500000000 * tmp77);
260
          c_im(output[4 * ostride]) = tmp73 + tmp78;
261
          c_im(output[7 * ostride]) = tmp78 - tmp73;
262
     }
263
}
264
 
265
fftw_codelet_desc fftwi_no_twiddle_9_desc =
266
{
267
     "fftwi_no_twiddle_9",
268
     (void (*)()) fftwi_no_twiddle_9,
269
     9,
270
     FFTW_BACKWARD,
271
     FFTW_NOTW,
272
     210,
273
     0,
274
     (const int *) 0,
275
};