Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
56 | pj | 1 | /* $Id: m_eval.c,v 1.1 2003-02-28 11:48:05 pj Exp $ */ |
2 | |||
3 | /* |
||
4 | * Mesa 3-D graphics library |
||
5 | * Version: 3.5 |
||
6 | * |
||
7 | * Copyright (C) 1999-2001 Brian Paul All Rights Reserved. |
||
8 | * |
||
9 | * Permission is hereby granted, free of charge, to any person obtaining a |
||
10 | * copy of this software and associated documentation files (the "Software"), |
||
11 | * to deal in the Software without restriction, including without limitation |
||
12 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
||
13 | * and/or sell copies of the Software, and to permit persons to whom the |
||
14 | * Software is furnished to do so, subject to the following conditions: |
||
15 | * |
||
16 | * The above copyright notice and this permission notice shall be included |
||
17 | * in all copies or substantial portions of the Software. |
||
18 | * |
||
19 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS |
||
20 | * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
||
21 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
||
22 | * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN |
||
23 | * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
||
24 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
||
25 | */ |
||
26 | |||
27 | |||
28 | /* |
||
29 | * eval.c was written by |
||
30 | * Bernd Barsuhn (bdbarsuh@cip.informatik.uni-erlangen.de) and |
||
31 | * Volker Weiss (vrweiss@cip.informatik.uni-erlangen.de). |
||
32 | * |
||
33 | * My original implementation of evaluators was simplistic and didn't |
||
34 | * compute surface normal vectors properly. Bernd and Volker applied |
||
35 | * used more sophisticated methods to get better results. |
||
36 | * |
||
37 | * Thanks guys! |
||
38 | */ |
||
39 | |||
40 | |||
41 | #include "glheader.h" |
||
42 | #include "config.h" |
||
43 | #include "m_eval.h" |
||
44 | |||
45 | static GLfloat inv_tab[MAX_EVAL_ORDER]; |
||
46 | |||
47 | |||
48 | |||
49 | /* |
||
50 | * Horner scheme for Bezier curves |
||
51 | * |
||
52 | * Bezier curves can be computed via a Horner scheme. |
||
53 | * Horner is numerically less stable than the de Casteljau |
||
54 | * algorithm, but it is faster. For curves of degree n |
||
55 | * the complexity of Horner is O(n) and de Casteljau is O(n^2). |
||
56 | * Since stability is not important for displaying curve |
||
57 | * points I decided to use the Horner scheme. |
||
58 | * |
||
59 | * A cubic Bezier curve with control points b0, b1, b2, b3 can be |
||
60 | * written as |
||
61 | * |
||
62 | * (([3] [3] ) [3] ) [3] |
||
63 | * c(t) = (([0]*s*b0 + [1]*t*b1)*s + [2]*t^2*b2)*s + [3]*t^2*b3 |
||
64 | * |
||
65 | * [n] |
||
66 | * where s=1-t and the binomial coefficients [i]. These can |
||
67 | * be computed iteratively using the identity: |
||
68 | * |
||
69 | * [n] [n ] [n] |
||
70 | * [i] = (n-i+1)/i * [i-1] and [0] = 1 |
||
71 | */ |
||
72 | |||
73 | |||
74 | void |
||
75 | _math_horner_bezier_curve(const GLfloat * cp, GLfloat * out, GLfloat t, |
||
76 | GLuint dim, GLuint order) |
||
77 | { |
||
78 | GLfloat s, powert, bincoeff; |
||
79 | GLuint i, k; |
||
80 | |||
81 | if (order >= 2) { |
||
82 | bincoeff = (GLfloat) (order - 1); |
||
83 | s = 1.0F - t; |
||
84 | |||
85 | for (k = 0; k < dim; k++) |
||
86 | out[k] = s * cp[k] + bincoeff * t * cp[dim + k]; |
||
87 | |||
88 | for (i = 2, cp += 2 * dim, powert = t * t; i < order; |
||
89 | i++, powert *= t, cp += dim) { |
||
90 | bincoeff *= (GLfloat) (order - i); |
||
91 | bincoeff *= inv_tab[i]; |
||
92 | |||
93 | for (k = 0; k < dim; k++) |
||
94 | out[k] = s * out[k] + bincoeff * powert * cp[k]; |
||
95 | } |
||
96 | } |
||
97 | else { /* order=1 -> constant curve */ |
||
98 | |||
99 | for (k = 0; k < dim; k++) |
||
100 | out[k] = cp[k]; |
||
101 | } |
||
102 | } |
||
103 | |||
104 | /* |
||
105 | * Tensor product Bezier surfaces |
||
106 | * |
||
107 | * Again the Horner scheme is used to compute a point on a |
||
108 | * TP Bezier surface. First a control polygon for a curve |
||
109 | * on the surface in one parameter direction is computed, |
||
110 | * then the point on the curve for the other parameter |
||
111 | * direction is evaluated. |
||
112 | * |
||
113 | * To store the curve control polygon additional storage |
||
114 | * for max(uorder,vorder) points is needed in the |
||
115 | * control net cn. |
||
116 | */ |
||
117 | |||
118 | void |
||
119 | _math_horner_bezier_surf(GLfloat * cn, GLfloat * out, GLfloat u, GLfloat v, |
||
120 | GLuint dim, GLuint uorder, GLuint vorder) |
||
121 | { |
||
122 | GLfloat *cp = cn + uorder * vorder * dim; |
||
123 | GLuint i, uinc = vorder * dim; |
||
124 | |||
125 | if (vorder > uorder) { |
||
126 | if (uorder >= 2) { |
||
127 | GLfloat s, poweru, bincoeff; |
||
128 | GLuint j, k; |
||
129 | |||
130 | /* Compute the control polygon for the surface-curve in u-direction */ |
||
131 | for (j = 0; j < vorder; j++) { |
||
132 | GLfloat *ucp = &cn[j * dim]; |
||
133 | |||
134 | /* Each control point is the point for parameter u on a */ |
||
135 | /* curve defined by the control polygons in u-direction */ |
||
136 | bincoeff = (GLfloat) (uorder - 1); |
||
137 | s = 1.0F - u; |
||
138 | |||
139 | for (k = 0; k < dim; k++) |
||
140 | cp[j * dim + k] = s * ucp[k] + bincoeff * u * ucp[uinc + k]; |
||
141 | |||
142 | for (i = 2, ucp += 2 * uinc, poweru = u * u; i < uorder; |
||
143 | i++, poweru *= u, ucp += uinc) { |
||
144 | bincoeff *= (GLfloat) (uorder - i); |
||
145 | bincoeff *= inv_tab[i]; |
||
146 | |||
147 | for (k = 0; k < dim; k++) |
||
148 | cp[j * dim + k] = |
||
149 | s * cp[j * dim + k] + bincoeff * poweru * ucp[k]; |
||
150 | } |
||
151 | } |
||
152 | |||
153 | /* Evaluate curve point in v */ |
||
154 | _math_horner_bezier_curve(cp, out, v, dim, vorder); |
||
155 | } |
||
156 | else /* uorder=1 -> cn defines a curve in v */ |
||
157 | _math_horner_bezier_curve(cn, out, v, dim, vorder); |
||
158 | } |
||
159 | else { /* vorder <= uorder */ |
||
160 | |||
161 | if (vorder > 1) { |
||
162 | GLuint i; |
||
163 | |||
164 | /* Compute the control polygon for the surface-curve in u-direction */ |
||
165 | for (i = 0; i < uorder; i++, cn += uinc) { |
||
166 | /* For constant i all cn[i][j] (j=0..vorder) are located */ |
||
167 | /* on consecutive memory locations, so we can use */ |
||
168 | /* horner_bezier_curve to compute the control points */ |
||
169 | |||
170 | _math_horner_bezier_curve(cn, &cp[i * dim], v, dim, vorder); |
||
171 | } |
||
172 | |||
173 | /* Evaluate curve point in u */ |
||
174 | _math_horner_bezier_curve(cp, out, u, dim, uorder); |
||
175 | } |
||
176 | else /* vorder=1 -> cn defines a curve in u */ |
||
177 | _math_horner_bezier_curve(cn, out, u, dim, uorder); |
||
178 | } |
||
179 | } |
||
180 | |||
181 | /* |
||
182 | * The direct de Casteljau algorithm is used when a point on the |
||
183 | * surface and the tangent directions spanning the tangent plane |
||
184 | * should be computed (this is needed to compute normals to the |
||
185 | * surface). In this case the de Casteljau algorithm approach is |
||
186 | * nicer because a point and the partial derivatives can be computed |
||
187 | * at the same time. To get the correct tangent length du and dv |
||
188 | * must be multiplied with the (u2-u1)/uorder-1 and (v2-v1)/vorder-1. |
||
189 | * Since only the directions are needed, this scaling step is omitted. |
||
190 | * |
||
191 | * De Casteljau needs additional storage for uorder*vorder |
||
192 | * values in the control net cn. |
||
193 | */ |
||
194 | |||
195 | void |
||
196 | _math_de_casteljau_surf(GLfloat * cn, GLfloat * out, GLfloat * du, |
||
197 | GLfloat * dv, GLfloat u, GLfloat v, GLuint dim, |
||
198 | GLuint uorder, GLuint vorder) |
||
199 | { |
||
200 | GLfloat *dcn = cn + uorder * vorder * dim; |
||
201 | GLfloat us = 1.0F - u, vs = 1.0F - v; |
||
202 | GLuint h, i, j, k; |
||
203 | GLuint minorder = uorder < vorder ? uorder : vorder; |
||
204 | GLuint uinc = vorder * dim; |
||
205 | GLuint dcuinc = vorder; |
||
206 | |||
207 | /* Each component is evaluated separately to save buffer space */ |
||
208 | /* This does not drasticaly decrease the performance of the */ |
||
209 | /* algorithm. If additional storage for (uorder-1)*(vorder-1) */ |
||
210 | /* points would be available, the components could be accessed */ |
||
211 | /* in the innermost loop which could lead to less cache misses. */ |
||
212 | |||
213 | #define CN(I,J,K) cn[(I)*uinc+(J)*dim+(K)] |
||
214 | #define DCN(I, J) dcn[(I)*dcuinc+(J)] |
||
215 | if (minorder < 3) { |
||
216 | if (uorder == vorder) { |
||
217 | for (k = 0; k < dim; k++) { |
||
218 | /* Derivative direction in u */ |
||
219 | du[k] = vs * (CN(1, 0, k) - CN(0, 0, k)) + |
||
220 | v * (CN(1, 1, k) - CN(0, 1, k)); |
||
221 | |||
222 | /* Derivative direction in v */ |
||
223 | dv[k] = us * (CN(0, 1, k) - CN(0, 0, k)) + |
||
224 | u * (CN(1, 1, k) - CN(1, 0, k)); |
||
225 | |||
226 | /* bilinear de Casteljau step */ |
||
227 | out[k] = us * (vs * CN(0, 0, k) + v * CN(0, 1, k)) + |
||
228 | u * (vs * CN(1, 0, k) + v * CN(1, 1, k)); |
||
229 | } |
||
230 | } |
||
231 | else if (minorder == uorder) { |
||
232 | for (k = 0; k < dim; k++) { |
||
233 | /* bilinear de Casteljau step */ |
||
234 | DCN(1, 0) = CN(1, 0, k) - CN(0, 0, k); |
||
235 | DCN(0, 0) = us * CN(0, 0, k) + u * CN(1, 0, k); |
||
236 | |||
237 | for (j = 0; j < vorder - 1; j++) { |
||
238 | /* for the derivative in u */ |
||
239 | DCN(1, j + 1) = CN(1, j + 1, k) - CN(0, j + 1, k); |
||
240 | DCN(1, j) = vs * DCN(1, j) + v * DCN(1, j + 1); |
||
241 | |||
242 | /* for the `point' */ |
||
243 | DCN(0, j + 1) = us * CN(0, j + 1, k) + u * CN(1, j + 1, k); |
||
244 | DCN(0, j) = vs * DCN(0, j) + v * DCN(0, j + 1); |
||
245 | } |
||
246 | |||
247 | /* remaining linear de Casteljau steps until the second last step */ |
||
248 | for (h = minorder; h < vorder - 1; h++) |
||
249 | for (j = 0; j < vorder - h; j++) { |
||
250 | /* for the derivative in u */ |
||
251 | DCN(1, j) = vs * DCN(1, j) + v * DCN(1, j + 1); |
||
252 | |||
253 | /* for the `point' */ |
||
254 | DCN(0, j) = vs * DCN(0, j) + v * DCN(0, j + 1); |
||
255 | } |
||
256 | |||
257 | /* derivative direction in v */ |
||
258 | dv[k] = DCN(0, 1) - DCN(0, 0); |
||
259 | |||
260 | /* derivative direction in u */ |
||
261 | du[k] = vs * DCN(1, 0) + v * DCN(1, 1); |
||
262 | |||
263 | /* last linear de Casteljau step */ |
||
264 | out[k] = vs * DCN(0, 0) + v * DCN(0, 1); |
||
265 | } |
||
266 | } |
||
267 | else { /* minorder == vorder */ |
||
268 | |||
269 | for (k = 0; k < dim; k++) { |
||
270 | /* bilinear de Casteljau step */ |
||
271 | DCN(0, 1) = CN(0, 1, k) - CN(0, 0, k); |
||
272 | DCN(0, 0) = vs * CN(0, 0, k) + v * CN(0, 1, k); |
||
273 | for (i = 0; i < uorder - 1; i++) { |
||
274 | /* for the derivative in v */ |
||
275 | DCN(i + 1, 1) = CN(i + 1, 1, k) - CN(i + 1, 0, k); |
||
276 | DCN(i, 1) = us * DCN(i, 1) + u * DCN(i + 1, 1); |
||
277 | |||
278 | /* for the `point' */ |
||
279 | DCN(i + 1, 0) = vs * CN(i + 1, 0, k) + v * CN(i + 1, 1, k); |
||
280 | DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0); |
||
281 | } |
||
282 | |||
283 | /* remaining linear de Casteljau steps until the second last step */ |
||
284 | for (h = minorder; h < uorder - 1; h++) |
||
285 | for (i = 0; i < uorder - h; i++) { |
||
286 | /* for the derivative in v */ |
||
287 | DCN(i, 1) = us * DCN(i, 1) + u * DCN(i + 1, 1); |
||
288 | |||
289 | /* for the `point' */ |
||
290 | DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0); |
||
291 | } |
||
292 | |||
293 | /* derivative direction in u */ |
||
294 | du[k] = DCN(1, 0) - DCN(0, 0); |
||
295 | |||
296 | /* derivative direction in v */ |
||
297 | dv[k] = us * DCN(0, 1) + u * DCN(1, 1); |
||
298 | |||
299 | /* last linear de Casteljau step */ |
||
300 | out[k] = us * DCN(0, 0) + u * DCN(1, 0); |
||
301 | } |
||
302 | } |
||
303 | } |
||
304 | else if (uorder == vorder) { |
||
305 | for (k = 0; k < dim; k++) { |
||
306 | /* first bilinear de Casteljau step */ |
||
307 | for (i = 0; i < uorder - 1; i++) { |
||
308 | DCN(i, 0) = us * CN(i, 0, k) + u * CN(i + 1, 0, k); |
||
309 | for (j = 0; j < vorder - 1; j++) { |
||
310 | DCN(i, j + 1) = us * CN(i, j + 1, k) + u * CN(i + 1, j + 1, k); |
||
311 | DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1); |
||
312 | } |
||
313 | } |
||
314 | |||
315 | /* remaining bilinear de Casteljau steps until the second last step */ |
||
316 | for (h = 2; h < minorder - 1; h++) |
||
317 | for (i = 0; i < uorder - h; i++) { |
||
318 | DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0); |
||
319 | for (j = 0; j < vorder - h; j++) { |
||
320 | DCN(i, j + 1) = us * DCN(i, j + 1) + u * DCN(i + 1, j + 1); |
||
321 | DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1); |
||
322 | } |
||
323 | } |
||
324 | |||
325 | /* derivative direction in u */ |
||
326 | du[k] = vs * (DCN(1, 0) - DCN(0, 0)) + v * (DCN(1, 1) - DCN(0, 1)); |
||
327 | |||
328 | /* derivative direction in v */ |
||
329 | dv[k] = us * (DCN(0, 1) - DCN(0, 0)) + u * (DCN(1, 1) - DCN(1, 0)); |
||
330 | |||
331 | /* last bilinear de Casteljau step */ |
||
332 | out[k] = us * (vs * DCN(0, 0) + v * DCN(0, 1)) + |
||
333 | u * (vs * DCN(1, 0) + v * DCN(1, 1)); |
||
334 | } |
||
335 | } |
||
336 | else if (minorder == uorder) { |
||
337 | for (k = 0; k < dim; k++) { |
||
338 | /* first bilinear de Casteljau step */ |
||
339 | for (i = 0; i < uorder - 1; i++) { |
||
340 | DCN(i, 0) = us * CN(i, 0, k) + u * CN(i + 1, 0, k); |
||
341 | for (j = 0; j < vorder - 1; j++) { |
||
342 | DCN(i, j + 1) = us * CN(i, j + 1, k) + u * CN(i + 1, j + 1, k); |
||
343 | DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1); |
||
344 | } |
||
345 | } |
||
346 | |||
347 | /* remaining bilinear de Casteljau steps until the second last step */ |
||
348 | for (h = 2; h < minorder - 1; h++) |
||
349 | for (i = 0; i < uorder - h; i++) { |
||
350 | DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0); |
||
351 | for (j = 0; j < vorder - h; j++) { |
||
352 | DCN(i, j + 1) = us * DCN(i, j + 1) + u * DCN(i + 1, j + 1); |
||
353 | DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1); |
||
354 | } |
||
355 | } |
||
356 | |||
357 | /* last bilinear de Casteljau step */ |
||
358 | DCN(2, 0) = DCN(1, 0) - DCN(0, 0); |
||
359 | DCN(0, 0) = us * DCN(0, 0) + u * DCN(1, 0); |
||
360 | for (j = 0; j < vorder - 1; j++) { |
||
361 | /* for the derivative in u */ |
||
362 | DCN(2, j + 1) = DCN(1, j + 1) - DCN(0, j + 1); |
||
363 | DCN(2, j) = vs * DCN(2, j) + v * DCN(2, j + 1); |
||
364 | |||
365 | /* for the `point' */ |
||
366 | DCN(0, j + 1) = us * DCN(0, j + 1) + u * DCN(1, j + 1); |
||
367 | DCN(0, j) = vs * DCN(0, j) + v * DCN(0, j + 1); |
||
368 | } |
||
369 | |||
370 | /* remaining linear de Casteljau steps until the second last step */ |
||
371 | for (h = minorder; h < vorder - 1; h++) |
||
372 | for (j = 0; j < vorder - h; j++) { |
||
373 | /* for the derivative in u */ |
||
374 | DCN(2, j) = vs * DCN(2, j) + v * DCN(2, j + 1); |
||
375 | |||
376 | /* for the `point' */ |
||
377 | DCN(0, j) = vs * DCN(0, j) + v * DCN(0, j + 1); |
||
378 | } |
||
379 | |||
380 | /* derivative direction in v */ |
||
381 | dv[k] = DCN(0, 1) - DCN(0, 0); |
||
382 | |||
383 | /* derivative direction in u */ |
||
384 | du[k] = vs * DCN(2, 0) + v * DCN(2, 1); |
||
385 | |||
386 | /* last linear de Casteljau step */ |
||
387 | out[k] = vs * DCN(0, 0) + v * DCN(0, 1); |
||
388 | } |
||
389 | } |
||
390 | else { /* minorder == vorder */ |
||
391 | |||
392 | for (k = 0; k < dim; k++) { |
||
393 | /* first bilinear de Casteljau step */ |
||
394 | for (i = 0; i < uorder - 1; i++) { |
||
395 | DCN(i, 0) = us * CN(i, 0, k) + u * CN(i + 1, 0, k); |
||
396 | for (j = 0; j < vorder - 1; j++) { |
||
397 | DCN(i, j + 1) = us * CN(i, j + 1, k) + u * CN(i + 1, j + 1, k); |
||
398 | DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1); |
||
399 | } |
||
400 | } |
||
401 | |||
402 | /* remaining bilinear de Casteljau steps until the second last step */ |
||
403 | for (h = 2; h < minorder - 1; h++) |
||
404 | for (i = 0; i < uorder - h; i++) { |
||
405 | DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0); |
||
406 | for (j = 0; j < vorder - h; j++) { |
||
407 | DCN(i, j + 1) = us * DCN(i, j + 1) + u * DCN(i + 1, j + 1); |
||
408 | DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1); |
||
409 | } |
||
410 | } |
||
411 | |||
412 | /* last bilinear de Casteljau step */ |
||
413 | DCN(0, 2) = DCN(0, 1) - DCN(0, 0); |
||
414 | DCN(0, 0) = vs * DCN(0, 0) + v * DCN(0, 1); |
||
415 | for (i = 0; i < uorder - 1; i++) { |
||
416 | /* for the derivative in v */ |
||
417 | DCN(i + 1, 2) = DCN(i + 1, 1) - DCN(i + 1, 0); |
||
418 | DCN(i, 2) = us * DCN(i, 2) + u * DCN(i + 1, 2); |
||
419 | |||
420 | /* for the `point' */ |
||
421 | DCN(i + 1, 0) = vs * DCN(i + 1, 0) + v * DCN(i + 1, 1); |
||
422 | DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0); |
||
423 | } |
||
424 | |||
425 | /* remaining linear de Casteljau steps until the second last step */ |
||
426 | for (h = minorder; h < uorder - 1; h++) |
||
427 | for (i = 0; i < uorder - h; i++) { |
||
428 | /* for the derivative in v */ |
||
429 | DCN(i, 2) = us * DCN(i, 2) + u * DCN(i + 1, 2); |
||
430 | |||
431 | /* for the `point' */ |
||
432 | DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0); |
||
433 | } |
||
434 | |||
435 | /* derivative direction in u */ |
||
436 | du[k] = DCN(1, 0) - DCN(0, 0); |
||
437 | |||
438 | /* derivative direction in v */ |
||
439 | dv[k] = us * DCN(0, 2) + u * DCN(1, 2); |
||
440 | |||
441 | /* last linear de Casteljau step */ |
||
442 | out[k] = us * DCN(0, 0) + u * DCN(1, 0); |
||
443 | } |
||
444 | } |
||
445 | #undef DCN |
||
446 | #undef CN |
||
447 | } |
||
448 | |||
449 | |||
450 | /* |
||
451 | * Do one-time initialization for evaluators. |
||
452 | */ |
||
453 | void |
||
454 | _math_init_eval(void) |
||
455 | { |
||
456 | GLuint i; |
||
457 | |||
458 | /* KW: precompute 1/x for useful x. |
||
459 | */ |
||
460 | for (i = 1; i < MAX_EVAL_ORDER; i++) |
||
461 | inv_tab[i] = 1.0F / i; |
||
462 | } |