Subversion Repositories shark

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
57 pj 1
/* $Id: s_aaline.c,v 1.1 2003-02-28 11:49:40 pj Exp $ */
2
 
3
/*
4
 * Mesa 3-D graphics library
5
 * Version:  4.1
6
 *
7
 * Copyright (C) 1999-2002  Brian Paul   All Rights Reserved.
8
 *
9
 * Permission is hereby granted, free of charge, to any person obtaining a
10
 * copy of this software and associated documentation files (the "Software"),
11
 * to deal in the Software without restriction, including without limitation
12
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13
 * and/or sell copies of the Software, and to permit persons to whom the
14
 * Software is furnished to do so, subject to the following conditions:
15
 *
16
 * The above copyright notice and this permission notice shall be included
17
 * in all copies or substantial portions of the Software.
18
 *
19
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
22
 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
23
 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
 */
26
 
27
 
28
#include "glheader.h"
29
#include "swrast/s_aaline.h"
30
#include "swrast/s_context.h"
31
#include "swrast/s_span.h"
32
#include "swrast/swrast.h"
33
#include "mtypes.h"
34
#include "mmath.h"
35
 
36
 
37
#define SUB_PIXEL 4
38
 
39
 
40
/*
41
 * Info about the AA line we're rendering
42
 */
43
struct LineInfo
44
{
45
   GLfloat x0, y0;        /* start */
46
   GLfloat x1, y1;        /* end */
47
   GLfloat dx, dy;        /* direction vector */
48
   GLfloat len;           /* length */
49
   GLfloat halfWidth;     /* half of line width */
50
   GLfloat xAdj, yAdj;    /* X and Y adjustment for quad corners around line */
51
   /* for coverage computation */
52
   GLfloat qx0, qy0;      /* quad vertices */
53
   GLfloat qx1, qy1;
54
   GLfloat qx2, qy2;
55
   GLfloat qx3, qy3;
56
   GLfloat ex0, ey0;      /* quad edge vectors */
57
   GLfloat ex1, ey1;
58
   GLfloat ex2, ey2;
59
   GLfloat ex3, ey3;
60
 
61
   /* DO_Z */
62
   GLfloat zPlane[4];
63
   /* DO_FOG */
64
   GLfloat fPlane[4];
65
   /* DO_RGBA */
66
   GLfloat rPlane[4], gPlane[4], bPlane[4], aPlane[4];
67
   /* DO_INDEX */
68
   GLfloat iPlane[4];
69
   /* DO_SPEC */
70
   GLfloat srPlane[4], sgPlane[4], sbPlane[4];
71
   /* DO_TEX or DO_MULTITEX */
72
   GLfloat sPlane[MAX_TEXTURE_UNITS][4];
73
   GLfloat tPlane[MAX_TEXTURE_UNITS][4];
74
   GLfloat uPlane[MAX_TEXTURE_UNITS][4];
75
   GLfloat vPlane[MAX_TEXTURE_UNITS][4];
76
   GLfloat lambda[MAX_TEXTURE_UNITS];
77
   GLfloat texWidth[MAX_TEXTURE_UNITS], texHeight[MAX_TEXTURE_UNITS];
78
 
79
   struct sw_span span;
80
};
81
 
82
 
83
 
84
/*
85
 * Compute the equation of a plane used to interpolate line fragment data
86
 * such as color, Z, texture coords, etc.
87
 * Input: (x0, y0) and (x1,y1) are the endpoints of the line.
88
 *        z0, and z1 are the end point values to interpolate.
89
 * Output:  plane - the plane equation.
90
 *
91
 * Note: we don't really have enough parameters to specify a plane.
92
 * We take the endpoints of the line and compute a plane such that
93
 * the cross product of the line vector and the plane normal is
94
 * parallel to the projection plane.
95
 */
96
static void
97
compute_plane(GLfloat x0, GLfloat y0, GLfloat x1, GLfloat y1,
98
              GLfloat z0, GLfloat z1, GLfloat plane[4])
99
{
100
#if 0
101
   /* original */
102
   const GLfloat px = x1 - x0;
103
   const GLfloat py = y1 - y0;
104
   const GLfloat pz = z1 - z0;
105
   const GLfloat qx = -py;
106
   const GLfloat qy = px;
107
   const GLfloat qz = 0;
108
   const GLfloat a = py * qz - pz * qy;
109
   const GLfloat b = pz * qx - px * qz;
110
   const GLfloat c = px * qy - py * qx;
111
   const GLfloat d = -(a * x0 + b * y0 + c * z0);
112
   plane[0] = a;
113
   plane[1] = b;
114
   plane[2] = c;
115
   plane[3] = d;
116
#else
117
   /* simplified */
118
   const GLfloat px = x1 - x0;
119
   const GLfloat py = y1 - y0;
120
   const GLfloat pz = z0 - z1;
121
   const GLfloat a = pz * px;
122
   const GLfloat b = pz * py;
123
   const GLfloat c = px * px + py * py;
124
   const GLfloat d = -(a * x0 + b * y0 + c * z0);
125
   if (a == 0.0 && b == 0.0 && c == 0.0 && d == 0.0) {
126
      plane[0] = 0.0;
127
      plane[1] = 0.0;
128
      plane[2] = 1.0;
129
      plane[3] = 0.0;
130
   }
131
   else {
132
      plane[0] = a;
133
      plane[1] = b;
134
      plane[2] = c;
135
      plane[3] = d;
136
   }
137
#endif
138
}
139
 
140
 
141
static INLINE void
142
constant_plane(GLfloat value, GLfloat plane[4])
143
{
144
   plane[0] = 0.0;
145
   plane[1] = 0.0;
146
   plane[2] = -1.0;
147
   plane[3] = value;
148
}
149
 
150
 
151
static INLINE GLfloat
152
solve_plane(GLfloat x, GLfloat y, const GLfloat plane[4])
153
{
154
   const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
155
   return z;
156
}
157
 
158
#define SOLVE_PLANE(X, Y, PLANE) \
159
   ((PLANE[3] + PLANE[0] * (X) + PLANE[1] * (Y)) / -PLANE[2])
160
 
161
 
162
/*
163
 * Return 1 / solve_plane().
164
 */
165
static INLINE GLfloat
166
solve_plane_recip(GLfloat x, GLfloat y, const GLfloat plane[4])
167
{
168
   const GLfloat denom = plane[3] + plane[0] * x + plane[1] * y;
169
   if (denom == 0.0)
170
      return 0.0;
171
   else
172
      return -plane[2] / denom;
173
}
174
 
175
 
176
/*
177
 * Solve plane and return clamped GLchan value.
178
 */
179
static INLINE GLchan
180
solve_plane_chan(GLfloat x, GLfloat y, const GLfloat plane[4])
181
{
182
   GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2] + 0.5F;
183
   if (z < 0.0F)
184
      return 0;
185
   else if (z > CHAN_MAXF)
186
      return (GLchan) CHAN_MAXF;
187
   return (GLchan) (GLint) z;
188
}
189
 
190
 
191
/*
192
 * Compute mipmap level of detail.
193
 */
194
static INLINE GLfloat
195
compute_lambda(const GLfloat sPlane[4], const GLfloat tPlane[4],
196
               GLfloat invQ, GLfloat width, GLfloat height)
197
{
198
   GLfloat dudx = sPlane[0] / sPlane[2] * invQ * width;
199
   GLfloat dudy = sPlane[1] / sPlane[2] * invQ * width;
200
   GLfloat dvdx = tPlane[0] / tPlane[2] * invQ * height;
201
   GLfloat dvdy = tPlane[1] / tPlane[2] * invQ * height;
202
   GLfloat r1 = dudx * dudx + dudy * dudy;
203
   GLfloat r2 = dvdx * dvdx + dvdy * dvdy;
204
   GLfloat rho2 = r1 + r2;
205
   /* return log base 2 of rho */
206
   if (rho2 == 0.0F)
207
      return 0.0;
208
   else
209
      return (GLfloat) (log(rho2) * 1.442695 * 0.5);/* 1.442695 = 1/log(2) */
210
}
211
 
212
 
213
 
214
 
215
/*
216
 * Fill in the samples[] array with the (x,y) subpixel positions of
217
 * xSamples * ySamples sample positions.
218
 * Note that the four corner samples are put into the first four
219
 * positions of the array.  This allows us to optimize for the common
220
 * case of all samples being inside the polygon.
221
 */
222
static void
223
make_sample_table(GLint xSamples, GLint ySamples, GLfloat samples[][2])
224
{
225
   const GLfloat dx = 1.0F / (GLfloat) xSamples;
226
   const GLfloat dy = 1.0F / (GLfloat) ySamples;
227
   GLint x, y;
228
   GLint i;
229
 
230
   i = 4;
231
   for (x = 0; x < xSamples; x++) {
232
      for (y = 0; y < ySamples; y++) {
233
         GLint j;
234
         if (x == 0 && y == 0) {
235
            /* lower left */
236
            j = 0;
237
         }
238
         else if (x == xSamples - 1 && y == 0) {
239
            /* lower right */
240
            j = 1;
241
         }
242
         else if (x == 0 && y == ySamples - 1) {
243
            /* upper left */
244
            j = 2;
245
         }
246
         else if (x == xSamples - 1 && y == ySamples - 1) {
247
            /* upper right */
248
            j = 3;
249
         }
250
         else {
251
            j = i++;
252
         }
253
         samples[j][0] = x * dx + 0.5F * dx;
254
         samples[j][1] = y * dy + 0.5F * dy;
255
      }
256
   }
257
}
258
 
259
 
260
 
261
/*
262
 * Compute how much of the given pixel's area is inside the rectangle
263
 * defined by vertices v0, v1, v2, v3.
264
 * Vertices MUST be specified in counter-clockwise order.
265
 * Return:  coverage in [0, 1].
266
 */
267
static GLfloat
268
compute_coveragef(const struct LineInfo *info,
269
                  GLint winx, GLint winy)
270
{
271
   static GLfloat samples[SUB_PIXEL * SUB_PIXEL][2];
272
   static GLboolean haveSamples = GL_FALSE;
273
   const GLfloat x = (GLfloat) winx;
274
   const GLfloat y = (GLfloat) winy;
275
   GLint stop = 4, i;
276
   GLfloat insideCount = SUB_PIXEL * SUB_PIXEL;
277
 
278
   if (!haveSamples) {
279
      make_sample_table(SUB_PIXEL, SUB_PIXEL, samples);
280
      haveSamples = GL_TRUE;
281
   }
282
 
283
#if 0 /*DEBUG*/
284
   {
285
      const GLfloat area = dx0 * dy1 - dx1 * dy0;
286
      assert(area >= 0.0);
287
   }
288
#endif
289
 
290
   for (i = 0; i < stop; i++) {
291
      const GLfloat sx = x + samples[i][0];
292
      const GLfloat sy = y + samples[i][1];
293
      const GLfloat fx0 = sx - info->qx0;
294
      const GLfloat fy0 = sy - info->qy0;
295
      const GLfloat fx1 = sx - info->qx1;
296
      const GLfloat fy1 = sy - info->qy1;
297
      const GLfloat fx2 = sx - info->qx2;
298
      const GLfloat fy2 = sy - info->qy2;
299
      const GLfloat fx3 = sx - info->qx3;
300
      const GLfloat fy3 = sy - info->qy3;
301
      /* cross product determines if sample is inside or outside each edge */
302
      GLfloat cross0 = (info->ex0 * fy0 - info->ey0 * fx0);
303
      GLfloat cross1 = (info->ex1 * fy1 - info->ey1 * fx1);
304
      GLfloat cross2 = (info->ex2 * fy2 - info->ey2 * fx2);
305
      GLfloat cross3 = (info->ex3 * fy3 - info->ey3 * fx3);
306
      /* Check if the sample is exactly on an edge.  If so, let cross be a
307
       * positive or negative value depending on the direction of the edge.
308
       */
309
      if (cross0 == 0.0F)
310
         cross0 = info->ex0 + info->ey0;
311
      if (cross1 == 0.0F)
312
         cross1 = info->ex1 + info->ey1;
313
      if (cross2 == 0.0F)
314
         cross2 = info->ex2 + info->ey2;
315
      if (cross3 == 0.0F)
316
         cross3 = info->ex3 + info->ey3;
317
      if (cross0 < 0.0F || cross1 < 0.0F || cross2 < 0.0F || cross3 < 0.0F) {
318
         /* point is outside quadrilateral */
319
         insideCount -= 1.0F;
320
         stop = SUB_PIXEL * SUB_PIXEL;
321
      }
322
   }
323
   if (stop == 4)
324
      return 1.0F;
325
   else
326
      return insideCount * (1.0F / (SUB_PIXEL * SUB_PIXEL));
327
}
328
 
329
 
330
 
331
typedef void (*plot_func)(GLcontext *ctx, struct LineInfo *line,
332
                          int ix, int iy);
333
 
334
 
335
 
336
/*
337
 * Draw an AA line segment (called many times per line when stippling)
338
 */
339
static void
340
segment(GLcontext *ctx,
341
        struct LineInfo *line,
342
        plot_func plot,
343
        GLfloat t0, GLfloat t1)
344
{
345
   const GLfloat absDx = (line->dx < 0.0F) ? -line->dx : line->dx;
346
   const GLfloat absDy = (line->dy < 0.0F) ? -line->dy : line->dy;
347
   /* compute the actual segment's endpoints */
348
   const GLfloat x0 = line->x0 + t0 * line->dx;
349
   const GLfloat y0 = line->y0 + t0 * line->dy;
350
   const GLfloat x1 = line->x0 + t1 * line->dx;
351
   const GLfloat y1 = line->y0 + t1 * line->dy;
352
 
353
   /* compute vertices of the line-aligned quadrilateral */
354
   line->qx0 = x0 - line->yAdj;
355
   line->qy0 = y0 + line->xAdj;
356
   line->qx1 = x0 + line->yAdj;
357
   line->qy1 = y0 - line->xAdj;
358
   line->qx2 = x1 + line->yAdj;
359
   line->qy2 = y1 - line->xAdj;
360
   line->qx3 = x1 - line->yAdj;
361
   line->qy3 = y1 + line->xAdj;
362
   /* compute the quad's edge vectors (for coverage calc) */
363
   line->ex0 = line->qx1 - line->qx0;
364
   line->ey0 = line->qy1 - line->qy0;
365
   line->ex1 = line->qx2 - line->qx1;
366
   line->ey1 = line->qy2 - line->qy1;
367
   line->ex2 = line->qx3 - line->qx2;
368
   line->ey2 = line->qy3 - line->qy2;
369
   line->ex3 = line->qx0 - line->qx3;
370
   line->ey3 = line->qy0 - line->qy3;
371
 
372
   if (absDx > absDy) {
373
      /* X-major line */
374
      GLfloat dydx = line->dy / line->dx;
375
      GLfloat xLeft, xRight, yBot, yTop;
376
      GLint ix, ixRight;
377
      if (x0 < x1) {
378
         xLeft = x0 - line->halfWidth;
379
         xRight = x1 + line->halfWidth;
380
         if (line->dy >= 0.0) {
381
            yBot = y0 - 3.0F * line->halfWidth;
382
            yTop = y0 + line->halfWidth;
383
         }
384
         else {
385
            yBot = y0 - line->halfWidth;
386
            yTop = y0 + 3.0F * line->halfWidth;
387
         }
388
      }
389
      else {
390
         xLeft = x1 - line->halfWidth;
391
         xRight = x0 + line->halfWidth;
392
         if (line->dy <= 0.0) {
393
            yBot = y1 - 3.0F * line->halfWidth;
394
            yTop = y1 + line->halfWidth;
395
         }
396
         else {
397
            yBot = y1 - line->halfWidth;
398
            yTop = y1 + 3.0F * line->halfWidth;
399
         }
400
      }
401
 
402
      /* scan along the line, left-to-right */
403
      ixRight = (GLint) (xRight + 1.0F);
404
 
405
      /*printf("avg span height: %g\n", yTop - yBot);*/
406
      for (ix = (GLint) xLeft; ix < ixRight; ix++) {
407
         const GLint iyBot = (GLint) yBot;
408
         const GLint iyTop = (GLint) (yTop + 1.0F);
409
         GLint iy;
410
         /* scan across the line, bottom-to-top */
411
         for (iy = iyBot; iy < iyTop; iy++) {
412
            (*plot)(ctx, line, ix, iy);
413
         }
414
         yBot += dydx;
415
         yTop += dydx;
416
      }
417
   }
418
   else {
419
      /* Y-major line */
420
      GLfloat dxdy = line->dx / line->dy;
421
      GLfloat yBot, yTop, xLeft, xRight;
422
      GLint iy, iyTop;
423
      if (y0 < y1) {
424
         yBot = y0 - line->halfWidth;
425
         yTop = y1 + line->halfWidth;
426
         if (line->dx >= 0.0) {
427
            xLeft = x0 - 3.0F * line->halfWidth;
428
            xRight = x0 + line->halfWidth;
429
         }
430
         else {
431
            xLeft = x0 - line->halfWidth;
432
            xRight = x0 + 3.0F * line->halfWidth;
433
         }
434
      }
435
      else {
436
         yBot = y1 - line->halfWidth;
437
         yTop = y0 + line->halfWidth;
438
         if (line->dx <= 0.0) {
439
            xLeft = x1 - 3.0F * line->halfWidth;
440
            xRight = x1 + line->halfWidth;
441
         }
442
         else {
443
            xLeft = x1 - line->halfWidth;
444
            xRight = x1 + 3.0F * line->halfWidth;
445
         }
446
      }
447
 
448
      /* scan along the line, bottom-to-top */
449
      iyTop = (GLint) (yTop + 1.0F);
450
 
451
      /*printf("avg span width: %g\n", xRight - xLeft);*/
452
      for (iy = (GLint) yBot; iy < iyTop; iy++) {
453
         const GLint ixLeft = (GLint) xLeft;
454
         const GLint ixRight = (GLint) (xRight + 1.0F);
455
         GLint ix;
456
         /* scan across the line, left-to-right */
457
         for (ix = ixLeft; ix < ixRight; ix++) {
458
            (*plot)(ctx, line, ix, iy);
459
         }
460
         xLeft += dxdy;
461
         xRight += dxdy;
462
      }
463
   }
464
}
465
 
466
 
467
#define NAME(x) aa_ci_##x
468
#define DO_Z
469
#define DO_FOG
470
#define DO_INDEX
471
#include "s_aalinetemp.h"
472
 
473
 
474
#define NAME(x) aa_rgba_##x
475
#define DO_Z
476
#define DO_FOG
477
#define DO_RGBA
478
#include "s_aalinetemp.h"
479
 
480
 
481
#define NAME(x)  aa_tex_rgba_##x
482
#define DO_Z
483
#define DO_FOG
484
#define DO_RGBA
485
#define DO_TEX
486
#include "s_aalinetemp.h"
487
 
488
 
489
#define NAME(x)  aa_multitex_rgba_##x
490
#define DO_Z
491
#define DO_FOG
492
#define DO_RGBA
493
#define DO_MULTITEX
494
#include "s_aalinetemp.h"
495
 
496
 
497
#define NAME(x)  aa_multitex_spec_##x
498
#define DO_Z
499
#define DO_FOG
500
#define DO_RGBA
501
#define DO_MULTITEX
502
#define DO_SPEC
503
#include "s_aalinetemp.h"
504
 
505
 
506
 
507
void
508
_swrast_choose_aa_line_function(GLcontext *ctx)
509
{
510
   SWcontext *swrast = SWRAST_CONTEXT(ctx);
511
 
512
   ASSERT(ctx->Line.SmoothFlag);
513
 
514
   if (ctx->Visual.rgbMode) {
515
      /* RGBA */
516
      if (ctx->Texture._EnabledUnits != 0) {
517
         if (ctx->Texture._EnabledUnits > 1) {
518
            /* Multitextured! */
519
            if (ctx->Light.Model.ColorControl==GL_SEPARATE_SPECULAR_COLOR ||
520
                ctx->Fog.ColorSumEnabled)
521
               swrast->Line = aa_multitex_spec_line;
522
            else
523
               swrast->Line = aa_multitex_rgba_line;
524
         }
525
         else {
526
            swrast->Line = aa_tex_rgba_line;
527
         }
528
      }
529
      else {
530
         swrast->Line = aa_rgba_line;
531
      }
532
   }
533
   else {
534
      /* Color Index */
535
      swrast->Line = aa_ci_line;
536
   }
537
}