Subversion Repositories shark

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
57 pj 1
/* $Id: s_aatriangle.c,v 1.1 2003-02-28 11:49:40 pj Exp $ */
2
 
3
/*
4
 * Mesa 3-D graphics library
5
 * Version:  4.1
6
 *
7
 * Copyright (C) 1999-2002  Brian Paul   All Rights Reserved.
8
 *
9
 * Permission is hereby granted, free of charge, to any person obtaining a
10
 * copy of this software and associated documentation files (the "Software"),
11
 * to deal in the Software without restriction, including without limitation
12
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13
 * and/or sell copies of the Software, and to permit persons to whom the
14
 * Software is furnished to do so, subject to the following conditions:
15
 *
16
 * The above copyright notice and this permission notice shall be included
17
 * in all copies or substantial portions of the Software.
18
 *
19
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
22
 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
23
 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
 */
26
 
27
 
28
/*
29
 * Antialiased Triangle rasterizers
30
 */
31
 
32
 
33
#include "glheader.h"
34
#include "macros.h"
35
#include "imports.h"
36
#include "mmath.h"
37
#include "s_aatriangle.h"
38
#include "s_context.h"
39
#include "s_span.h"
40
 
41
 
42
/*
43
 * Compute coefficients of a plane using the X,Y coords of the v0, v1, v2
44
 * vertices and the given Z values.
45
 * A point (x,y,z) lies on plane iff a*x+b*y+c*z+d = 0.
46
 */
47
static INLINE void
48
compute_plane(const GLfloat v0[], const GLfloat v1[], const GLfloat v2[],
49
              GLfloat z0, GLfloat z1, GLfloat z2, GLfloat plane[4])
50
{
51
   const GLfloat px = v1[0] - v0[0];
52
   const GLfloat py = v1[1] - v0[1];
53
   const GLfloat pz = z1 - z0;
54
 
55
   const GLfloat qx = v2[0] - v0[0];
56
   const GLfloat qy = v2[1] - v0[1];
57
   const GLfloat qz = z2 - z0;
58
 
59
   /* Crossproduct "(a,b,c):= dv1 x dv2" is orthogonal to plane. */
60
   const GLfloat a = py * qz - pz * qy;
61
   const GLfloat b = pz * qx - px * qz;
62
   const GLfloat c = px * qy - py * qx;
63
   /* Point on the plane = "r*(a,b,c) + w", with fixed "r" depending
64
      on the distance of plane from origin and arbitrary "w" parallel
65
      to the plane. */
66
   /* The scalar product "(r*(a,b,c)+w)*(a,b,c)" is "r*(a^2+b^2+c^2)",
67
      which is equal to "-d" below. */
68
   const GLfloat d = -(a * v0[0] + b * v0[1] + c * z0);
69
 
70
   plane[0] = a;
71
   plane[1] = b;
72
   plane[2] = c;
73
   plane[3] = d;
74
}
75
 
76
 
77
/*
78
 * Compute coefficients of a plane with a constant Z value.
79
 */
80
static INLINE void
81
constant_plane(GLfloat value, GLfloat plane[4])
82
{
83
   plane[0] = 0.0;
84
   plane[1] = 0.0;
85
   plane[2] = -1.0;
86
   plane[3] = value;
87
}
88
 
89
#define CONSTANT_PLANE(VALUE, PLANE)    \
90
do {                                    \
91
   PLANE[0] = 0.0F;                     \
92
   PLANE[1] = 0.0F;                     \
93
   PLANE[2] = -1.0F;                    \
94
   PLANE[3] = VALUE;                    \
95
} while (0)
96
 
97
 
98
 
99
/*
100
 * Solve plane equation for Z at (X,Y).
101
 */
102
static INLINE GLfloat
103
solve_plane(GLfloat x, GLfloat y, const GLfloat plane[4])
104
{
105
   ASSERT(plane[2] != 0.0F);
106
   return (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
107
}
108
 
109
 
110
#define SOLVE_PLANE(X, Y, PLANE) \
111
   ((PLANE[3] + PLANE[0] * (X) + PLANE[1] * (Y)) / -PLANE[2])
112
 
113
 
114
/*
115
 * Return 1 / solve_plane().
116
 */
117
static INLINE GLfloat
118
solve_plane_recip(GLfloat x, GLfloat y, const GLfloat plane[4])
119
{
120
   const GLfloat denom = plane[3] + plane[0] * x + plane[1] * y;
121
   if (denom == 0.0F)
122
      return 0.0F;
123
   else
124
      return -plane[2] / denom;
125
}
126
 
127
 
128
/*
129
 * Solve plane and return clamped GLchan value.
130
 */
131
static INLINE GLchan
132
solve_plane_chan(GLfloat x, GLfloat y, const GLfloat plane[4])
133
{
134
   GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2] + 0.5F;
135
   if (z < 0.0F)
136
      return 0;
137
   else if (z > CHAN_MAXF)
138
      return (GLchan) CHAN_MAXF;
139
   return (GLchan) (GLint) z;
140
}
141
 
142
 
143
 
144
/*
145
 * Compute how much (area) of the given pixel is inside the triangle.
146
 * Vertices MUST be specified in counter-clockwise order.
147
 * Return:  coverage in [0, 1].
148
 */
149
static GLfloat
150
compute_coveragef(const GLfloat v0[3], const GLfloat v1[3],
151
                  const GLfloat v2[3], GLint winx, GLint winy)
152
{
153
   /* Given a position [0,3]x[0,3] return the sub-pixel sample position.
154
    * Contributed by Ray Tice.
155
    *
156
    * Jitter sample positions -
157
    * - average should be .5 in x & y for each column
158
    * - each of the 16 rows and columns should be used once
159
    * - the rectangle formed by the first four points
160
    *   should contain the other points
161
    * - the distrubition should be fairly even in any given direction
162
    *
163
    * The pattern drawn below isn't optimal, but it's better than a regular
164
    * grid.  In the drawing, the center of each subpixel is surrounded by
165
    * four dots.  The "x" marks the jittered position relative to the
166
    * subpixel center.
167
    */
168
#define POS(a, b) (0.5+a*4+b)/16
169
   static const GLfloat samples[16][2] = {
170
      /* start with the four corners */
171
      { POS(0, 2), POS(0, 0) },
172
      { POS(3, 3), POS(0, 2) },
173
      { POS(0, 0), POS(3, 1) },
174
      { POS(3, 1), POS(3, 3) },
175
      /* continue with interior samples */
176
      { POS(1, 1), POS(0, 1) },
177
      { POS(2, 0), POS(0, 3) },
178
      { POS(0, 3), POS(1, 3) },
179
      { POS(1, 2), POS(1, 0) },
180
      { POS(2, 3), POS(1, 2) },
181
      { POS(3, 2), POS(1, 1) },
182
      { POS(0, 1), POS(2, 2) },
183
      { POS(1, 0), POS(2, 1) },
184
      { POS(2, 1), POS(2, 3) },
185
      { POS(3, 0), POS(2, 0) },
186
      { POS(1, 3), POS(3, 0) },
187
      { POS(2, 2), POS(3, 2) }
188
   };
189
 
190
   const GLfloat x = (GLfloat) winx;
191
   const GLfloat y = (GLfloat) winy;
192
   const GLfloat dx0 = v1[0] - v0[0];
193
   const GLfloat dy0 = v1[1] - v0[1];
194
   const GLfloat dx1 = v2[0] - v1[0];
195
   const GLfloat dy1 = v2[1] - v1[1];
196
   const GLfloat dx2 = v0[0] - v2[0];
197
   const GLfloat dy2 = v0[1] - v2[1];
198
   GLint stop = 4, i;
199
   GLfloat insideCount = 16.0F;
200
 
201
#ifdef DEBUG
202
   {
203
      const GLfloat area = dx0 * dy1 - dx1 * dy0;
204
      ASSERT(area >= 0.0);
205
   }
206
#endif
207
 
208
   for (i = 0; i < stop; i++) {
209
      const GLfloat sx = x + samples[i][0];
210
      const GLfloat sy = y + samples[i][1];
211
      const GLfloat fx0 = sx - v0[0];
212
      const GLfloat fy0 = sy - v0[1];
213
      const GLfloat fx1 = sx - v1[0];
214
      const GLfloat fy1 = sy - v1[1];
215
      const GLfloat fx2 = sx - v2[0];
216
      const GLfloat fy2 = sy - v2[1];
217
      /* cross product determines if sample is inside or outside each edge */
218
      GLfloat cross0 = (dx0 * fy0 - dy0 * fx0);
219
      GLfloat cross1 = (dx1 * fy1 - dy1 * fx1);
220
      GLfloat cross2 = (dx2 * fy2 - dy2 * fx2);
221
      /* Check if the sample is exactly on an edge.  If so, let cross be a
222
       * positive or negative value depending on the direction of the edge.
223
       */
224
      if (cross0 == 0.0F)
225
         cross0 = dx0 + dy0;
226
      if (cross1 == 0.0F)
227
         cross1 = dx1 + dy1;
228
      if (cross2 == 0.0F)
229
         cross2 = dx2 + dy2;
230
      if (cross0 < 0.0F || cross1 < 0.0F || cross2 < 0.0F) {
231
         /* point is outside triangle */
232
         insideCount -= 1.0F;
233
         stop = 16;
234
      }
235
   }
236
   if (stop == 4)
237
      return 1.0F;
238
   else
239
      return insideCount * (1.0F / 16.0F);
240
}
241
 
242
 
243
 
244
/*
245
 * Compute how much (area) of the given pixel is inside the triangle.
246
 * Vertices MUST be specified in counter-clockwise order.
247
 * Return:  coverage in [0, 15].
248
 */
249
static GLint
250
compute_coveragei(const GLfloat v0[3], const GLfloat v1[3],
251
                  const GLfloat v2[3], GLint winx, GLint winy)
252
{
253
   /* NOTE: 15 samples instead of 16. */
254
   static const GLfloat samples[15][2] = {
255
      /* start with the four corners */
256
      { POS(0, 2), POS(0, 0) },
257
      { POS(3, 3), POS(0, 2) },
258
      { POS(0, 0), POS(3, 1) },
259
      { POS(3, 1), POS(3, 3) },
260
      /* continue with interior samples */
261
      { POS(1, 1), POS(0, 1) },
262
      { POS(2, 0), POS(0, 3) },
263
      { POS(0, 3), POS(1, 3) },
264
      { POS(1, 2), POS(1, 0) },
265
      { POS(2, 3), POS(1, 2) },
266
      { POS(3, 2), POS(1, 1) },
267
      { POS(0, 1), POS(2, 2) },
268
      { POS(1, 0), POS(2, 1) },
269
      { POS(2, 1), POS(2, 3) },
270
      { POS(3, 0), POS(2, 0) },
271
      { POS(1, 3), POS(3, 0) }
272
   };
273
   const GLfloat x = (GLfloat) winx;
274
   const GLfloat y = (GLfloat) winy;
275
   const GLfloat dx0 = v1[0] - v0[0];
276
   const GLfloat dy0 = v1[1] - v0[1];
277
   const GLfloat dx1 = v2[0] - v1[0];
278
   const GLfloat dy1 = v2[1] - v1[1];
279
   const GLfloat dx2 = v0[0] - v2[0];
280
   const GLfloat dy2 = v0[1] - v2[1];
281
   GLint stop = 4, i;
282
   GLint insideCount = 15;
283
 
284
#ifdef DEBUG
285
   {
286
      const GLfloat area = dx0 * dy1 - dx1 * dy0;
287
      ASSERT(area >= 0.0);
288
   }
289
#endif
290
 
291
   for (i = 0; i < stop; i++) {
292
      const GLfloat sx = x + samples[i][0];
293
      const GLfloat sy = y + samples[i][1];
294
      const GLfloat fx0 = sx - v0[0];
295
      const GLfloat fy0 = sy - v0[1];
296
      const GLfloat fx1 = sx - v1[0];
297
      const GLfloat fy1 = sy - v1[1];
298
      const GLfloat fx2 = sx - v2[0];
299
      const GLfloat fy2 = sy - v2[1];
300
      /* cross product determines if sample is inside or outside each edge */
301
      GLfloat cross0 = (dx0 * fy0 - dy0 * fx0);
302
      GLfloat cross1 = (dx1 * fy1 - dy1 * fx1);
303
      GLfloat cross2 = (dx2 * fy2 - dy2 * fx2);
304
      /* Check if the sample is exactly on an edge.  If so, let cross be a
305
       * positive or negative value depending on the direction of the edge.
306
       */
307
      if (cross0 == 0.0F)
308
         cross0 = dx0 + dy0;
309
      if (cross1 == 0.0F)
310
         cross1 = dx1 + dy1;
311
      if (cross2 == 0.0F)
312
         cross2 = dx2 + dy2;
313
      if (cross0 < 0.0F || cross1 < 0.0F || cross2 < 0.0F) {
314
         /* point is outside triangle */
315
         insideCount--;
316
         stop = 15;
317
      }
318
   }
319
   if (stop == 4)
320
      return 15;
321
   else
322
      return insideCount;
323
}
324
 
325
 
326
 
327
static void
328
rgba_aa_tri(GLcontext *ctx,
329
            const SWvertex *v0,
330
            const SWvertex *v1,
331
            const SWvertex *v2)
332
{
333
#define DO_Z
334
#define DO_FOG
335
#define DO_RGBA
336
#include "s_aatritemp.h"
337
}
338
 
339
 
340
static void
341
index_aa_tri(GLcontext *ctx,
342
             const SWvertex *v0,
343
             const SWvertex *v1,
344
             const SWvertex *v2)
345
{
346
#define DO_Z
347
#define DO_FOG
348
#define DO_INDEX
349
#include "s_aatritemp.h"
350
}
351
 
352
 
353
/*
354
 * Compute mipmap level of detail.
355
 * XXX we should really include the R coordinate in this computation
356
 * in order to do 3-D texture mipmapping.
357
 */
358
static INLINE GLfloat
359
compute_lambda(const GLfloat sPlane[4], const GLfloat tPlane[4],
360
               const GLfloat qPlane[4], GLfloat cx, GLfloat cy,
361
               GLfloat invQ, GLfloat texWidth, GLfloat texHeight)
362
{
363
   const GLfloat s = solve_plane(cx, cy, sPlane);
364
   const GLfloat t = solve_plane(cx, cy, tPlane);
365
   const GLfloat invQ_x1 = solve_plane_recip(cx+1.0F, cy, qPlane);
366
   const GLfloat invQ_y1 = solve_plane_recip(cx, cy+1.0F, qPlane);
367
   const GLfloat s_x1 = s - sPlane[0] / sPlane[2];
368
   const GLfloat s_y1 = s - sPlane[1] / sPlane[2];
369
   const GLfloat t_x1 = t - tPlane[0] / tPlane[2];
370
   const GLfloat t_y1 = t - tPlane[1] / tPlane[2];
371
   GLfloat dsdx = s_x1 * invQ_x1 - s * invQ;
372
   GLfloat dsdy = s_y1 * invQ_y1 - s * invQ;
373
   GLfloat dtdx = t_x1 * invQ_x1 - t * invQ;
374
   GLfloat dtdy = t_y1 * invQ_y1 - t * invQ;
375
   GLfloat maxU, maxV, rho, lambda;
376
   dsdx = FABSF(dsdx);
377
   dsdy = FABSF(dsdy);
378
   dtdx = FABSF(dtdx);
379
   dtdy = FABSF(dtdy);
380
   maxU = MAX2(dsdx, dsdy) * texWidth;
381
   maxV = MAX2(dtdx, dtdy) * texHeight;
382
   rho = MAX2(maxU, maxV);
383
   lambda = LOG2(rho);
384
   return lambda;
385
}
386
 
387
 
388
static void
389
tex_aa_tri(GLcontext *ctx,
390
           const SWvertex *v0,
391
           const SWvertex *v1,
392
           const SWvertex *v2)
393
{
394
#define DO_Z
395
#define DO_FOG
396
#define DO_RGBA
397
#define DO_TEX
398
#include "s_aatritemp.h"
399
}
400
 
401
 
402
static void
403
spec_tex_aa_tri(GLcontext *ctx,
404
                const SWvertex *v0,
405
                const SWvertex *v1,
406
                const SWvertex *v2)
407
{
408
#define DO_Z
409
#define DO_FOG
410
#define DO_RGBA
411
#define DO_TEX
412
#define DO_SPEC
413
#include "s_aatritemp.h"
414
}
415
 
416
 
417
static void
418
multitex_aa_tri(GLcontext *ctx,
419
                const SWvertex *v0,
420
                const SWvertex *v1,
421
                const SWvertex *v2)
422
{
423
#define DO_Z
424
#define DO_FOG
425
#define DO_RGBA
426
#define DO_MULTITEX
427
#include "s_aatritemp.h"
428
}
429
 
430
static void
431
spec_multitex_aa_tri(GLcontext *ctx,
432
                     const SWvertex *v0,
433
                     const SWvertex *v1,
434
                     const SWvertex *v2)
435
{
436
#define DO_Z
437
#define DO_FOG
438
#define DO_RGBA
439
#define DO_MULTITEX
440
#define DO_SPEC
441
#include "s_aatritemp.h"
442
}
443
 
444
 
445
/*
446
 * Examine GL state and set swrast->Triangle to an
447
 * appropriate antialiased triangle rasterizer function.
448
 */
449
void
450
_mesa_set_aa_triangle_function(GLcontext *ctx)
451
{
452
   ASSERT(ctx->Polygon.SmoothFlag);
453
 
454
   if (ctx->Texture._EnabledUnits != 0) {
455
      if (ctx->_TriangleCaps & DD_SEPARATE_SPECULAR) {
456
         if (ctx->Texture._EnabledUnits > 1) {
457
            SWRAST_CONTEXT(ctx)->Triangle = spec_multitex_aa_tri;
458
         }
459
         else {
460
            SWRAST_CONTEXT(ctx)->Triangle = spec_tex_aa_tri;
461
         }
462
      }
463
      else {
464
         if (ctx->Texture._EnabledUnits > 1) {
465
            SWRAST_CONTEXT(ctx)->Triangle = multitex_aa_tri;
466
         }
467
         else {
468
            SWRAST_CONTEXT(ctx)->Triangle = tex_aa_tri;
469
         }
470
      }
471
   }
472
   else if (ctx->Visual.rgbMode) {
473
      SWRAST_CONTEXT(ctx)->Triangle = rgba_aa_tri;
474
   }
475
   else {
476
      SWRAST_CONTEXT(ctx)->Triangle = index_aa_tri;
477
   }
478
 
479
   ASSERT(SWRAST_CONTEXT(ctx)->Triangle);
480
}