Subversion Repositories shark

Rev

Rev 2 | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2 pj 1
/*
2
 * Layer 2 Alloc tables ..
3
 * most other tables are calculated on program start (which is (of course)
4
 * not ISO-conform) ..
5
 * Layer-3 huffman table is in huffman.h
6
 */
7
 
8
struct al_table alloc_0[] = {
9
        {4,0},{5,3},{3,-3},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},{9,-255},{10,-511},
10
        {11,-1023},{12,-2047},{13,-4095},{14,-8191},{15,-16383},{16,-32767},
11
        {4,0},{5,3},{3,-3},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},{9,-255},{10,-511},
12
        {11,-1023},{12,-2047},{13,-4095},{14,-8191},{15,-16383},{16,-32767},
13
        {4,0},{5,3},{3,-3},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},{9,-255},{10,-511},
14
        {11,-1023},{12,-2047},{13,-4095},{14,-8191},{15,-16383},{16,-32767},
15
        {4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
16
        {9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{16,-32767},
17
        {4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
18
        {9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{16,-32767},
19
        {4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
20
        {9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{16,-32767},
21
        {4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
22
        {9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{16,-32767},
23
        {4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
24
        {9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{16,-32767},
25
        {4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
26
        {9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{16,-32767},
27
        {4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
28
        {9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{16,-32767},
29
        {4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
30
        {9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{16,-32767},
31
        {3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
32
        {3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
33
        {3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
34
        {3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
35
        {3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
36
        {3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
37
        {3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
38
        {3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
39
        {3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
40
        {3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
41
        {3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
42
        {3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
43
        {2,0},{5,3},{7,5},{16,-32767},
44
        {2,0},{5,3},{7,5},{16,-32767},
45
        {2,0},{5,3},{7,5},{16,-32767},
46
        {2,0},{5,3},{7,5},{16,-32767} };
47
 
48
struct al_table alloc_1[] = {
49
        {4,0},{5,3},{3,-3},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},{9,-255},{10,-511},
50
        {11,-1023},{12,-2047},{13,-4095},{14,-8191},{15,-16383},{16,-32767},
51
        {4,0},{5,3},{3,-3},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},{9,-255},{10,-511},
52
        {11,-1023},{12,-2047},{13,-4095},{14,-8191},{15,-16383},{16,-32767},
53
        {4,0},{5,3},{3,-3},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},{9,-255},{10,-511},
54
        {11,-1023},{12,-2047},{13,-4095},{14,-8191},{15,-16383},{16,-32767},
55
        {4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
56
        {9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{16,-32767},
57
        {4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
58
        {9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{16,-32767},
59
        {4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
60
        {9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{16,-32767},
61
        {4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
62
        {9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{16,-32767},
63
        {4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
64
        {9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{16,-32767},
65
        {4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
66
        {9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{16,-32767},
67
        {4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
68
        {9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{16,-32767},
69
        {4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
70
        {9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{16,-32767},
71
        {3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
72
        {3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
73
        {3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
74
        {3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
75
        {3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
76
        {3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
77
        {3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
78
        {3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
79
        {3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
80
        {3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
81
        {3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
82
        {3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
83
        {2,0},{5,3},{7,5},{16,-32767},
84
        {2,0},{5,3},{7,5},{16,-32767},
85
        {2,0},{5,3},{7,5},{16,-32767},
86
        {2,0},{5,3},{7,5},{16,-32767},
87
        {2,0},{5,3},{7,5},{16,-32767},
88
        {2,0},{5,3},{7,5},{16,-32767},
89
        {2,0},{5,3},{7,5},{16,-32767} };
90
 
91
struct al_table alloc_2[] = {
92
        {4,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},{9,-255},
93
        {10,-511},{11,-1023},{12,-2047},{13,-4095},{14,-8191},{15,-16383},
94
        {4,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},{9,-255},
95
        {10,-511},{11,-1023},{12,-2047},{13,-4095},{14,-8191},{15,-16383},
96
        {3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
97
        {3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
98
        {3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
99
        {3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
100
        {3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
101
        {3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63} };
102
 
103
struct al_table alloc_3[] = {
104
        {4,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},{9,-255},
105
        {10,-511},{11,-1023},{12,-2047},{13,-4095},{14,-8191},{15,-16383},
106
        {4,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},{9,-255},
107
        {10,-511},{11,-1023},{12,-2047},{13,-4095},{14,-8191},{15,-16383},
108
        {3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
109
        {3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
110
        {3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
111
        {3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
112
        {3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
113
        {3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
114
        {3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
115
        {3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
116
        {3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
117
        {3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63} };
118
 
119
struct al_table alloc_4[] = {
120
        {4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
121
                {9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{14,-8191},
122
        {4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
123
                {9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{14,-8191},
124
        {4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
125
                {9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{14,-8191},
126
        {4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
127
                {9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{14,-8191},
128
        {3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
129
        {3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
130
        {3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
131
        {3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
132
        {3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
133
        {3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
134
        {3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
135
        {2,0},{5,3},{7,5},{10,9},
136
        {2,0},{5,3},{7,5},{10,9},
137
        {2,0},{5,3},{7,5},{10,9},
138
        {2,0},{5,3},{7,5},{10,9},
139
        {2,0},{5,3},{7,5},{10,9},
140
        {2,0},{5,3},{7,5},{10,9},
141
        {2,0},{5,3},{7,5},{10,9},
142
        {2,0},{5,3},{7,5},{10,9},
143
        {2,0},{5,3},{7,5},{10,9},
144
        {2,0},{5,3},{7,5},{10,9},
145
        {2,0},{5,3},{7,5},{10,9},
146
    {2,0},{5,3},{7,5},{10,9},
147
    {2,0},{5,3},{7,5},{10,9},
148
    {2,0},{5,3},{7,5},{10,9},
149
    {2,0},{5,3},{7,5},{10,9},
150
    {2,0},{5,3},{7,5},{10,9},
151
    {2,0},{5,3},{7,5},{10,9},
152
    {2,0},{5,3},{7,5},{10,9},
153
    {2,0},{5,3},{7,5},{10,9}  };
154