Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1658 | giacomo | 1 | /* |
2 | * Project: S.Ha.R.K. |
||
3 | * |
||
4 | * Coordinators: Giorgio Buttazzo <giorgio@sssup.it> |
||
5 | * Paolo Gai <pj@hartik.sssup.it> |
||
6 | * |
||
7 | * Authors : Marco Caccamo and Paolo Gai |
||
8 | * |
||
9 | * ReTiS Lab (Scuola Superiore S.Anna - Pisa - Italy) |
||
10 | * |
||
11 | * http://www.sssup.it |
||
12 | * http://retis.sssup.it |
||
13 | * http://shark.sssup.it |
||
14 | */ |
||
15 | |||
16 | /** |
||
17 | ------------ |
||
18 | CVS : $Id: cbs_ft.c,v 1.1 2004-06-01 11:42:41 giacomo Exp $ |
||
19 | |||
20 | File: $File$ |
||
21 | Revision: $Revision: 1.1 $ |
||
22 | Last update: $Date: 2004-06-01 11:42:41 $ |
||
23 | ------------ |
||
24 | |||
25 | This file contains the server CBS_FT |
||
26 | |||
27 | Read CBS_FT.h for further details. |
||
28 | |||
29 | **/ |
||
30 | |||
31 | /* |
||
32 | * Copyright (C) 2000 Marco Caccamo and Paolo Gai |
||
33 | * |
||
34 | * This program is free software; you can redistribute it and/or modify |
||
35 | * it under the terms of the GNU General Public License as published by |
||
36 | * the Free Software Foundation; either version 2 of the License, or |
||
37 | * (at your option) any later version. |
||
38 | * |
||
39 | * This program is distributed in the hope that it will be useful, |
||
40 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
||
41 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||
42 | * GNU General Public License for more details. |
||
43 | * |
||
44 | * You should have received a copy of the GNU General Public License |
||
45 | * along with this program; if not, write to the Free Software |
||
46 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
||
47 | * |
||
48 | */ |
||
49 | |||
50 | |||
51 | #include "cbs_ft.h" |
||
52 | |||
53 | /*+ Status used in the level +*/ |
||
54 | #define CBS_FT_IDLE APER_STATUS_BASE /*+ waiting the activation +*/ |
||
55 | #define CBS_FT_ZOMBIE APER_STATUS_BASE+1 /*+ waiting the period end +*/ |
||
56 | |||
57 | /* structure of an element of the capacity queue */ |
||
58 | struct cap_queue { |
||
59 | int cap; |
||
60 | struct timespec dead; |
||
61 | struct cap_queue *next; |
||
62 | }; |
||
63 | |||
64 | /*+ the level redefinition for the CBS_FT level +*/ |
||
65 | typedef struct { |
||
66 | level_des l; /*+ the standard level descriptor +*/ |
||
67 | |||
68 | /* The wcet are stored in the task descriptor, but we need |
||
69 | an array for the deadlines. We can't use the timespec_priority |
||
70 | field because it is used by the master level!!!... |
||
71 | Notice that however the use of the timespec_priority field |
||
72 | does not cause any problem... */ |
||
73 | |||
74 | struct timespec cbs_ft_dline[MAX_PROC]; /*+ CBS_FT deadlines +*/ |
||
75 | |||
76 | |||
77 | TIME period[MAX_PROC]; /*+ CBS_FT activation period +*/ |
||
78 | |||
79 | |||
80 | int maxcap[MAX_PROC]; /* amount of capacity reserved to a primary+backup |
||
81 | couple */ |
||
82 | |||
83 | PID backup[MAX_PROC]; /* Backup task pointers, defined for primary tasks */ |
||
84 | |||
85 | char CP[MAX_PROC]; /* checkpoint flag */ |
||
86 | |||
87 | char P_or_B[MAX_PROC]; /* Type of task: PRIMARY or BACKUP */ |
||
88 | |||
89 | |||
90 | struct timespec reactivation_time[MAX_PROC]; |
||
91 | /*+ the time at witch the reactivation timer is post +*/ |
||
92 | |||
93 | int reactivation_timer[MAX_PROC]; /*+ the recativation timer +*/ |
||
94 | |||
95 | struct cap_queue *queue; /* pointer to the spare capacity queue */ |
||
96 | |||
97 | int flags; /*+ the init flags... +*/ |
||
98 | |||
99 | bandwidth_t U; /*+ the used bandwidth by the server +*/ |
||
100 | |||
101 | int idle; /* the idle flag... */ |
||
102 | |||
103 | struct timespec start_idle; /*gives the start time of the last idle period */ |
||
104 | |||
105 | LEVEL scheduling_level; |
||
106 | |||
107 | } CBS_FT_level_des; |
||
108 | |||
109 | |||
110 | |||
111 | /* insert a capacity in the queue capacity ordering by deadline */ |
||
112 | |||
113 | static int c_insert(struct timespec dead, int cap, struct cap_queue **que, |
||
114 | PID p) |
||
115 | { |
||
116 | struct cap_queue *prev, *n, *new; |
||
117 | |||
118 | prev = NULL; |
||
119 | n = *que; |
||
120 | |||
121 | while ((n != NULL) && |
||
122 | !TIMESPEC_A_LT_B(&dead, &n->dead)) { |
||
123 | prev = n; |
||
124 | n = n->next; |
||
125 | } |
||
126 | |||
127 | |||
128 | new = (struct cap_queue *)kern_alloc(sizeof(struct cap_queue)); |
||
129 | if (new == NULL) { |
||
130 | kern_printf("\nNew cash_queue element failed\n"); |
||
131 | kern_raise(XINVALID_TASK, p); |
||
132 | return -1; |
||
133 | } |
||
134 | new->next = NULL; |
||
135 | new->cap = cap; |
||
136 | new->dead = dead; |
||
137 | |||
138 | if (prev != NULL) |
||
139 | prev->next = new; |
||
140 | else |
||
141 | *que = new; |
||
142 | |||
143 | if (n != NULL) |
||
144 | new->next = n; |
||
145 | return 0; |
||
146 | |||
147 | } |
||
148 | |||
149 | /* extract the first element from the capacity queue */ |
||
150 | |||
151 | int c_extractfirst(struct cap_queue **que) |
||
152 | { |
||
153 | struct cap_queue *p = *que; |
||
154 | |||
155 | |||
156 | if (*que == NULL) return(-1); |
||
157 | |||
158 | *que = (*que)->next; |
||
159 | |||
160 | kern_free(p, sizeof(struct cap_queue)); |
||
161 | return(1); |
||
162 | } |
||
163 | |||
164 | /* read data of the first element from the capacity queue */ |
||
165 | |||
166 | static void c_readfirst(struct timespec *d, int *c, struct cap_queue *que) |
||
167 | { |
||
168 | *d = que->dead; |
||
169 | *c = que->cap; |
||
170 | } |
||
171 | |||
172 | /* write data of the first element from the capacity queue */ |
||
173 | |||
174 | static void c_writefirst(struct timespec dead, int cap, struct cap_queue *que) |
||
175 | { |
||
176 | que->dead = dead; |
||
177 | que->cap = cap; |
||
178 | } |
||
179 | |||
180 | |||
181 | static void CBS_FT_activation(CBS_FT_level_des *lev, |
||
182 | PID p, |
||
183 | struct timespec *acttime) |
||
184 | { |
||
185 | JOB_TASK_MODEL job; |
||
186 | int capacity; |
||
187 | |||
188 | /* This rule is used when we recharge the budget at initial task activation |
||
189 | and each time a new task instance must be activated */ |
||
190 | |||
191 | if (TIMESPEC_A_GT_B(acttime, &lev->cbs_ft_dline[p])) { |
||
192 | /* we modify the deadline ... */ |
||
193 | TIMESPEC_ASSIGN(&lev->cbs_ft_dline[p], acttime); |
||
194 | } |
||
195 | |||
196 | |||
197 | if (proc_table[p].avail_time > 0) |
||
198 | proc_table[p].avail_time = 0; |
||
199 | |||
200 | |||
201 | |||
202 | /* A spare capacity is inserted in the capacity queue!! */ |
||
203 | ADDUSEC2TIMESPEC(lev->period[p], &lev->cbs_ft_dline[p]); |
||
204 | capacity = lev->maxcap[p] - proc_table[ lev->backup[p] ].wcet; |
||
205 | c_insert(lev->cbs_ft_dline[p], capacity, &lev->queue, p); |
||
206 | |||
207 | |||
208 | /* it exploits available capacities from the capacity queue */ |
||
209 | while (proc_table[p].avail_time < proc_table[p].wcet && |
||
210 | lev->queue != NULL) { |
||
211 | struct timespec dead; |
||
212 | int cap, delta; |
||
213 | delta = proc_table[p].wcet - proc_table[p].avail_time; |
||
214 | c_readfirst(&dead, &cap, lev->queue); |
||
215 | if (!TIMESPEC_A_GT_B(&dead, &lev->cbs_ft_dline[p])) { |
||
216 | if (cap > delta) { |
||
217 | proc_table[p].avail_time += delta; |
||
218 | c_writefirst(dead, cap - delta, lev->queue); |
||
219 | } |
||
220 | else { |
||
221 | proc_table[p].avail_time += cap; |
||
222 | c_extractfirst(&lev->queue); |
||
223 | } |
||
224 | } |
||
225 | else |
||
226 | break; |
||
227 | } |
||
228 | |||
229 | /* If the budget is still less than 0, an exception is raised */ |
||
230 | if (proc_table[p].avail_time <= 0) { |
||
231 | kern_printf("\nnegative value for the budget!\n"); |
||
232 | kern_raise(XINVALID_TASK, p); |
||
233 | return; |
||
234 | } |
||
235 | |||
236 | |||
237 | |||
238 | /*if (p==6) |
||
239 | kern_printf("(act_time:%d dead:%d av_time:%d)\n", |
||
240 | acttime->tv_sec*1000000+ |
||
241 | acttime->tv_nsec/1000, |
||
242 | lev->cbs_ft_dline[p].tv_sec*1000000+ |
||
243 | lev->cbs_ft_dline[p].tv_nsec/1000, |
||
244 | proc_table[p].avail_time); */ |
||
245 | |||
246 | |||
247 | |||
248 | |||
249 | |||
250 | |||
251 | #ifdef TESTG |
||
252 | if (starttime && p == 3) { |
||
253 | oldx = x; |
||
254 | x = ((lev->cbs_ft_dline[p].tv_sec*1000000+lev->cbs_ft_dline[p].tv_nsec/1000)/5000 - starttime) + 20; |
||
255 | // kern_printf("(a%d)",lev->cbs_ft_dline[p].tv_sec*1000000+lev->cbs_ft_dline[p].tv_nsec/1000); |
||
256 | if (oldx > x) sys_end(); |
||
257 | if (x<640) |
||
258 | grx_plot(x, 15, 8); |
||
259 | } |
||
260 | #endif |
||
261 | |||
262 | /* and, finally, we reinsert the task in the master level */ |
||
263 | job_task_default_model(job, lev->cbs_ft_dline[p]); |
||
264 | job_task_def_yesexc(job); |
||
265 | level_table[ lev->scheduling_level ]-> |
||
266 | private_insert(lev->scheduling_level, p, (TASK_MODEL *)&job); |
||
267 | } |
||
268 | |||
269 | |||
270 | /* this is the periodic reactivation of the task... */ |
||
271 | static void CBS_FT_timer_reactivate(void *par) |
||
272 | { |
||
273 | PID p = (PID) par; |
||
274 | CBS_FT_level_des *lev; |
||
275 | struct timespec t; |
||
276 | |||
277 | lev = (CBS_FT_level_des *)level_table[proc_table[p].task_level]; |
||
278 | |||
279 | if (proc_table[p].status == CBS_FT_IDLE) { |
||
280 | /* the task has finished the current activation and must be |
||
281 | reactivated */ |
||
282 | |||
283 | /* request_time represents the time of the last instance release!! */ |
||
284 | TIMESPEC_ASSIGN(&t, &lev->reactivation_time[p]); |
||
285 | |||
286 | /* If idle=1, then we have to discharge the capacities stored in |
||
287 | the capacity queue up to the length of the idle interval */ |
||
288 | if (lev->idle == 1) { |
||
289 | TIME interval; |
||
290 | struct timespec delta; |
||
291 | lev->idle = 0; |
||
292 | SUBTIMESPEC(&t, &lev->start_idle, &delta); |
||
293 | /* length of the idle interval expressed in usec! */ |
||
294 | interval = TIMESPEC2NANOSEC(&delta) / 1000; |
||
295 | |||
296 | /* it discharges the available capacities from the capacity queue */ |
||
297 | while (interval > 0 && lev->queue != NULL) { |
||
298 | struct timespec dead; |
||
299 | int cap; |
||
300 | c_readfirst(&dead, &cap, lev->queue); |
||
301 | if (cap > interval) { |
||
302 | c_writefirst(dead, cap - interval, lev->queue); |
||
303 | interval = 0; |
||
304 | } |
||
305 | else { |
||
306 | interval -= cap; |
||
307 | c_extractfirst(&lev->queue); |
||
308 | } |
||
309 | } |
||
310 | } |
||
311 | |||
312 | CBS_FT_activation(lev,p,&lev->reactivation_time[p]); |
||
313 | |||
314 | |||
315 | /* Set the reactivation timer */ |
||
316 | TIMESPEC_ASSIGN(&lev->reactivation_time[p], &lev->cbs_ft_dline[p]); |
||
317 | lev->reactivation_timer[p] = kern_event_post(&lev->reactivation_time[p], |
||
318 | CBS_FT_timer_reactivate, |
||
319 | (void *)p); |
||
320 | event_need_reschedule(); |
||
321 | } |
||
322 | else { |
||
323 | /* this situation cannot occur */ |
||
324 | kern_printf("\nTrying to reactivate a primary task which is not IDLE!\n"); |
||
325 | kern_raise(XINVALID_TASK,p); |
||
326 | } |
||
327 | } |
||
328 | |||
329 | |||
330 | |||
331 | static void CBS_FT_avail_time_check(CBS_FT_level_des *lev, PID p) |
||
332 | { |
||
333 | |||
334 | /*+ if the capacity became negative the remaining computation time |
||
335 | is diminuished.... +*/ |
||
336 | /* if (p==4) |
||
337 | kern_printf("(old dead:%d av_time:%d)\n", |
||
338 | lev->cbs_ft_dline[p].tv_sec*1000000+ |
||
339 | lev->cbs_ft_dline[p].tv_nsec/1000, |
||
340 | proc_table[p].avail_time); */ |
||
341 | |||
342 | |||
343 | int newcap = proc_table[p].wcet / 100 * 30; |
||
344 | if (newcap <= 0) |
||
345 | newcap = proc_table[p].wcet; |
||
346 | /* it exploits available capacities from the capacity queue */ |
||
347 | while (proc_table[p].avail_time < newcap |
||
348 | && lev->queue != NULL) { |
||
349 | struct timespec dead; |
||
350 | int cap, delta; |
||
351 | delta = newcap - proc_table[p].avail_time; |
||
352 | c_readfirst(&dead, &cap, lev->queue); |
||
353 | if (!TIMESPEC_A_GT_B(&dead, &lev->cbs_ft_dline[p])) { |
||
354 | if (cap > delta) { |
||
355 | proc_table[p].avail_time += delta; |
||
356 | c_writefirst(dead, cap - delta, lev->queue); |
||
357 | } |
||
358 | else { |
||
359 | proc_table[p].avail_time += cap; |
||
360 | c_extractfirst(&lev->queue); |
||
361 | } |
||
362 | } |
||
363 | else |
||
364 | break; |
||
365 | } |
||
366 | |||
367 | |||
368 | |||
369 | /*if (p==6) |
||
370 | kern_printf("(ATC dead:%d av_time:%d)\n", |
||
371 | lev->cbs_ft_dline[p].tv_sec*1000000+ |
||
372 | lev->cbs_ft_dline[p].tv_nsec/1000, |
||
373 | proc_table[p].avail_time); */ |
||
374 | |||
375 | |||
376 | |||
377 | /* if the budget is still empty, the backup task must be woken up. |
||
378 | Remind that a short chunk of primary will go ahead executing |
||
379 | before the task switch occurs */ |
||
380 | if (proc_table[p].avail_time <= 0) { |
||
381 | lev->CP[p] = 1; |
||
382 | proc_table[p].avail_time += proc_table[ lev->backup[p] ].wcet; |
||
383 | } |
||
384 | |||
385 | |||
386 | /*if (p==6) |
||
387 | kern_printf("(ATC1 dead:%d av_time:%d)\n", |
||
388 | lev->cbs_ft_dline[p].tv_sec*1000000+ |
||
389 | lev->cbs_ft_dline[p].tv_nsec/1000, |
||
390 | proc_table[p].avail_time); */ |
||
391 | |||
392 | |||
393 | |||
394 | } |
||
395 | |||
396 | |||
397 | /*+ this function is called when a killed or ended task reach the |
||
398 | period end +*/ |
||
399 | static void CBS_FT_timer_zombie(void *par) |
||
400 | { |
||
401 | PID p = (PID) par; |
||
402 | CBS_FT_level_des *lev; |
||
403 | |||
404 | lev = (CBS_FT_level_des *)level_table[proc_table[p].task_level]; |
||
405 | |||
406 | /* we finally put the task in the FREE status */ |
||
407 | proc_table[p].status = FREE; |
||
408 | iq_insertfirst(p,&freedesc); |
||
409 | |||
410 | |||
411 | /* and free the allocated bandwidth */ |
||
412 | lev->U -= (MAX_BANDWIDTH / lev->period[p]) * (TIME)lev->maxcap[p]; |
||
413 | } |
||
414 | |||
415 | static PID CBS_FT_public_scheduler(LEVEL l) |
||
416 | { |
||
417 | CBS_FT_level_des *lev = (CBS_FT_level_des *)(level_table[l]); |
||
418 | |||
419 | /* it stores the actual time and set the IDLE flag in order to handle |
||
420 | the capacity queue discharging!!! */ |
||
421 | lev->idle = 1; |
||
422 | kern_gettime(&lev->start_idle); |
||
423 | |||
424 | |||
425 | /* the CBS_FT don't schedule anything... |
||
426 | it's an EDF level or similar that do it! */ |
||
427 | return NIL; |
||
428 | } |
||
429 | |||
430 | |||
431 | /* The on-line guarantee is enabled only if the appropriate flag is set... */ |
||
432 | static int CBS_FT_public_guarantee(LEVEL l, bandwidth_t *freebandwidth) |
||
433 | { |
||
434 | CBS_FT_level_des *lev = (CBS_FT_level_des *)(level_table[l]); |
||
435 | |||
436 | if (lev->flags & CBS_FT_FAILED_GUARANTEE) { |
||
437 | *freebandwidth = 0; |
||
438 | kern_printf("guarantee :garanzia fallita!!!!!!\n"); |
||
439 | return 0; |
||
440 | } |
||
441 | else if (*freebandwidth >= lev->U) { |
||
442 | *freebandwidth -= lev->U; |
||
443 | return 1; |
||
444 | } |
||
445 | else { |
||
446 | kern_printf("guarantee :garanzia fallita per mancanza di banda!!!!!!\n"); |
||
447 | kern_printf("freeband: %d request band: %d", *freebandwidth, lev->U); |
||
448 | return 0; |
||
449 | } |
||
450 | } |
||
451 | |||
452 | |||
453 | static int CBS_FT_public_create(LEVEL l, PID p, TASK_MODEL *m) |
||
454 | |||
455 | { |
||
456 | CBS_FT_level_des *lev = (CBS_FT_level_des *)(level_table[l]); |
||
457 | FT_TASK_MODEL *s; |
||
458 | |||
459 | if (m->pclass != FT_PCLASS) return -1; |
||
460 | if (m->level != 0 && m->level != l) return -1; |
||
461 | s = (FT_TASK_MODEL *) m; |
||
462 | //kern_printf("accept :FAULT TOLERANT TASK found!!!!!!\n"); */ |
||
463 | if (!(s->type == PRIMARY && s->execP > 0 && s->budget < (int)s->period |
||
464 | && s->backup != NIL)) return -1; |
||
465 | if (!(s->type == BACKUP && s->wcetB > 0)) |
||
466 | return -1; |
||
467 | /* now we know that m is a valid model */ |
||
468 | |||
469 | /* Enable budget check */ |
||
470 | proc_table[p].control |= CONTROL_CAP; |
||
471 | |||
472 | proc_table[p].avail_time = 0; |
||
473 | NULL_TIMESPEC(&lev->cbs_ft_dline[p]); |
||
474 | |||
475 | |||
476 | if (s->type == PRIMARY) { |
||
477 | proc_table[p].wcet = (int)s->execP; |
||
478 | lev->period[p] = s->period; |
||
479 | lev->maxcap[p] = s->budget; |
||
480 | lev->backup[p] = s->backup; |
||
481 | lev->CP[p] = 0; |
||
482 | lev->P_or_B[p] = PRIMARY; |
||
483 | |||
484 | /* update the bandwidth... */ |
||
485 | if (lev->flags & CBS_FT_ENABLE_GUARANTEE) { |
||
486 | bandwidth_t b; |
||
487 | b = (MAX_BANDWIDTH / lev->period[p]) * (TIME)lev->maxcap[p]; |
||
488 | |||
489 | /* really update lev->U, checking an overflow... */ |
||
490 | if (MAX_BANDWIDTH - lev->U > b) |
||
491 | lev->U += b; |
||
492 | else |
||
493 | /* The task can NOT be guaranteed (U>MAX_BANDWIDTH)... |
||
494 | (see EDF.c) */ |
||
495 | lev->flags |= CBS_FT_FAILED_GUARANTEE; |
||
496 | } |
||
497 | } |
||
498 | else { |
||
499 | proc_table[p].wcet = (int)s->wcetB; |
||
500 | lev->P_or_B[p] = BACKUP; |
||
501 | |||
502 | /* Backup tasks are unkillable tasks! */ |
||
503 | proc_table[p].control |= NO_KILL; |
||
504 | } |
||
505 | |||
506 | return 0; /* OK, also if the task cannot be guaranteed... */ |
||
507 | } |
||
508 | |||
509 | |||
510 | static void CBS_FT_public_detach(LEVEL l, PID p) |
||
511 | { |
||
512 | /* the CBS_FT level doesn't introduce any dynamic allocated new field. |
||
513 | we have only to reset the NO_GUARANTEE FIELD and decrement the allocated |
||
514 | bandwidth */ |
||
515 | |||
516 | CBS_FT_level_des *lev = (CBS_FT_level_des *)(level_table[l]); |
||
517 | |||
518 | if (lev->flags & CBS_FT_FAILED_GUARANTEE) |
||
519 | lev->flags &= ~CBS_FT_FAILED_GUARANTEE; |
||
520 | else |
||
521 | lev->U -= (MAX_BANDWIDTH / lev->period[p]) * (TIME)lev->maxcap[p]; |
||
522 | } |
||
523 | |||
524 | |||
525 | static void CBS_FT_public_dispatch(LEVEL l, PID p, int nostop) |
||
526 | { |
||
527 | CBS_FT_level_des *lev = (CBS_FT_level_des *)(level_table[l]); |
||
528 | level_table[ lev->scheduling_level ]-> |
||
529 | private_dispatch(lev->scheduling_level,p,nostop); |
||
530 | } |
||
531 | |||
532 | static void CBS_FT_public_epilogue(LEVEL l, PID p) |
||
533 | { |
||
534 | CBS_FT_level_des *lev = (CBS_FT_level_des *)(level_table[l]); |
||
535 | |||
536 | /* check if the budget is finished... */ |
||
537 | if (proc_table[p].avail_time <= 0) { |
||
538 | |||
539 | /* A backup task cannot ever exhaust its budget! */ |
||
540 | if (lev->P_or_B[p] == BACKUP) { |
||
541 | kern_printf("\nBACKUP wcet violation!\n"); |
||
542 | kern_raise(XWCET_VIOLATION,p); |
||
543 | /* we kill the current activation */ |
||
544 | level_table[ lev->scheduling_level ]-> |
||
545 | private_extract(lev->scheduling_level, p); |
||
546 | return; |
||
547 | } |
||
548 | |||
549 | /* we try to recharge the budget */ |
||
550 | CBS_FT_avail_time_check(lev, p); |
||
551 | |||
552 | /* The budget must be greater than 0! */ |
||
553 | if (proc_table[p].avail_time <= 0) { |
||
554 | kern_printf("\nBackup task starting with exhausted budget\n"); |
||
555 | kern_raise(XINVALID_TASK, p); |
||
556 | lev->CP[p] = 0; |
||
557 | /* we kill the current activation */ |
||
558 | level_table[ lev->scheduling_level ]-> |
||
559 | private_extract(lev->scheduling_level, p); |
||
560 | return; |
||
561 | } |
||
562 | } |
||
563 | |||
564 | /* the task returns into the ready queue by |
||
565 | calling the guest_epilogue... */ |
||
566 | level_table[ lev->scheduling_level ]-> |
||
567 | private_epilogue(lev->scheduling_level,p); |
||
568 | } |
||
569 | |||
570 | |||
571 | static void CBS_FT_public_activate(LEVEL l, PID p) |
||
572 | { |
||
573 | CBS_FT_level_des *lev = (CBS_FT_level_des *)(level_table[l]); |
||
574 | struct timespec t; |
||
575 | |||
576 | kern_gettime(&t); |
||
577 | |||
578 | if (lev->P_or_B[p] == BACKUP) { |
||
579 | kern_printf("\nTrying to activate a BACKUP task!\n"); |
||
580 | kern_raise(XINVALID_TASK, p); |
||
581 | } |
||
582 | else { |
||
583 | |||
584 | /* If idle=1, then we have to discharge the capacities stored in |
||
585 | the capacity queue up to the length of the idle interval */ |
||
586 | if (lev->idle == 1) { |
||
587 | TIME interval; |
||
588 | struct timespec delta; |
||
589 | lev->idle = 0; |
||
590 | SUBTIMESPEC(&t, &lev->start_idle, &delta); |
||
591 | /* length of the idle interval expressed in usec! */ |
||
592 | interval = TIMESPEC2NANOSEC(&delta) / 1000; |
||
593 | |||
594 | /* it discharge the available capacities from the capacity queue */ |
||
595 | while (interval > 0 && lev->queue != NULL) { |
||
596 | struct timespec dead; |
||
597 | int cap; |
||
598 | c_readfirst(&dead, &cap, lev->queue); |
||
599 | if (cap > interval) { |
||
600 | c_writefirst(dead, cap - interval, lev->queue); |
||
601 | interval = 0; |
||
602 | } |
||
603 | else { |
||
604 | interval -= cap; |
||
605 | c_extractfirst(&lev->queue); |
||
606 | } |
||
607 | } |
||
608 | } |
||
609 | |||
610 | CBS_FT_activation(lev, p, &t); |
||
611 | |||
612 | |||
613 | /* Set the reactivation timer */ |
||
614 | TIMESPEC_ASSIGN(&lev->reactivation_time[p], &lev->cbs_ft_dline[p]); |
||
615 | lev->reactivation_timer[p] = kern_event_post(&lev->reactivation_time[p], |
||
616 | CBS_FT_timer_reactivate, |
||
617 | (void *)p); |
||
618 | |||
619 | // kern_printf("act : %d %d |",lev->cbs_ft_dline[p].tv_nsec/1000,p); |
||
620 | } |
||
621 | } |
||
622 | |||
623 | static int CBS_FT_public_message(LEVEL l, PID p, void *m) |
||
624 | { |
||
625 | CBS_FT_level_des *lev = (CBS_FT_level_des *)(level_table[l]); |
||
626 | |||
627 | |||
628 | level_table[ lev->scheduling_level ]-> |
||
629 | private_extract(lev->scheduling_level,p); |
||
630 | |||
631 | |||
632 | proc_table[p].status = CBS_FT_IDLE; |
||
633 | |||
634 | |||
635 | if (lev->P_or_B[p] == PRIMARY) { |
||
636 | if (lev->CP[p]) { |
||
637 | JOB_TASK_MODEL job; |
||
638 | |||
639 | /* We have to start the backup task */ |
||
640 | TIMESPEC_ASSIGN(&lev->cbs_ft_dline[ lev->backup[p] ], |
||
641 | &lev->cbs_ft_dline[p]); |
||
642 | proc_table[ lev->backup[p] ].avail_time = proc_table[p].avail_time; |
||
643 | lev->CP[p] = 0; |
||
644 | |||
645 | /* and, finally, we insert the backup task in the master level */ |
||
646 | job_task_default_model(job, lev->cbs_ft_dline[p]); |
||
647 | job_task_def_yesexc(job); |
||
648 | level_table[ lev->scheduling_level ]-> |
||
649 | private_insert(lev->scheduling_level, lev->backup[p], |
||
650 | (TASK_MODEL *)&job); |
||
651 | } |
||
652 | else { |
||
653 | /* A spare capacity is inserted in the capacity queue!! */ |
||
654 | proc_table[p].avail_time += proc_table[ lev->backup[p] ].wcet; |
||
655 | if (proc_table[p].avail_time > 0) { |
||
656 | c_insert(lev->cbs_ft_dline[p], proc_table[p].avail_time, |
||
657 | &lev->queue, p); |
||
658 | proc_table[p].avail_time = 0; |
||
659 | } |
||
660 | } |
||
661 | } |
||
662 | else { |
||
663 | /* this branch is for backup tasks: |
||
664 | A spare capacity is inserted in the capacity queue!! */ |
||
665 | if (proc_table[p].avail_time > 0) { |
||
666 | c_insert(lev->cbs_ft_dline[p], proc_table[p].avail_time, |
||
667 | &lev->queue, p); |
||
668 | proc_table[p].avail_time = 0; |
||
669 | } |
||
670 | } |
||
671 | |||
672 | jet_update_endcycle(); /* Update the Jet data... */ |
||
673 | |||
674 | return 0; |
||
675 | } |
||
676 | |||
677 | |||
678 | static void CBS_FT_public_end(LEVEL l, PID p) |
||
679 | { |
||
680 | CBS_FT_level_des *lev = (CBS_FT_level_des *)(level_table[l]); |
||
681 | |||
682 | /* A backup task cannot be killed, this behaviour can be modified |
||
683 | in a new release */ |
||
684 | if (lev->P_or_B[p] == BACKUP) { |
||
685 | kern_printf("\nKilling a BACKUP task!\n"); |
||
686 | kern_raise(XINVALID_TASK, p); |
||
687 | return; |
||
688 | } |
||
689 | |||
690 | /* check if the capacity becomes negative... */ |
||
691 | /* there is a while because if the wcet is << than the system tick |
||
692 | we need to postpone the deadline many times */ |
||
693 | while (proc_table[p].avail_time < 0) { |
||
694 | /* the CBS_FT rule for recharging the capacity */ |
||
695 | proc_table[p].avail_time += lev->maxcap[p]; |
||
696 | ADDUSEC2TIMESPEC(lev->period[p], &lev->cbs_ft_dline[p]); |
||
697 | } |
||
698 | |||
699 | level_table[ lev->scheduling_level ]-> |
||
700 | private_extract(lev->scheduling_level,p); |
||
701 | |||
702 | |||
703 | /* we delete the reactivation timer */ |
||
704 | kern_event_delete(lev->reactivation_timer[p]); |
||
705 | lev->reactivation_timer[p] = -1; |
||
706 | |||
707 | |||
708 | /* Finally, we post the zombie event. when the end period is reached, |
||
709 | the task descriptor and banwidth are freed */ |
||
710 | proc_table[p].status = CBS_FT_ZOMBIE; |
||
711 | lev->reactivation_timer[p] = kern_event_post(&lev->cbs_ft_dline[p], |
||
712 | CBS_FT_timer_zombie, |
||
713 | (void *)p); |
||
714 | } |
||
715 | |||
716 | /* Registration functions */ |
||
717 | |||
718 | /*+ Registration function: |
||
719 | int flags the init flags ... see CBS.h +*/ |
||
720 | LEVEL CBS_FT_register_level(int flags, LEVEL master) |
||
721 | { |
||
722 | LEVEL l; /* the level that we register */ |
||
723 | CBS_FT_level_des *lev; /* for readableness only */ |
||
724 | PID i; /* a counter */ |
||
725 | |||
726 | printk("CBS_FT_register_level\n"); |
||
727 | |||
728 | /* request an entry in the level_table */ |
||
729 | l = level_alloc_descriptor(sizeof(CBS_FT_level_des)); |
||
730 | |||
731 | lev = (CBS_FT_level_des *)level_table[l]; |
||
732 | |||
733 | printk(" lev=%d\n",(int)lev); |
||
734 | |||
735 | /* fill the standard descriptor */ |
||
736 | lev->l.public_scheduler = CBS_FT_public_scheduler; |
||
737 | |||
738 | if (flags & CBS_FT_ENABLE_GUARANTEE) |
||
739 | lev->l.public_guarantee = CBS_FT_public_guarantee; |
||
740 | else |
||
741 | lev->l.public_guarantee = NULL; |
||
742 | |||
743 | lev->l.public_create = CBS_FT_public_create; |
||
744 | lev->l.public_detach = CBS_FT_public_detach; |
||
745 | lev->l.public_end = CBS_FT_public_end; |
||
746 | lev->l.public_dispatch = CBS_FT_public_dispatch; |
||
747 | lev->l.public_epilogue = CBS_FT_public_epilogue; |
||
748 | lev->l.public_activate = CBS_FT_public_activate; |
||
749 | lev->l.public_message = CBS_FT_public_message; |
||
750 | |||
751 | /* fill the CBS_FT descriptor part */ |
||
752 | for (i=0; i<MAX_PROC; i++) { |
||
753 | NULL_TIMESPEC(&lev->cbs_ft_dline[i]); |
||
754 | lev->period[i] = 0; |
||
755 | NULL_TIMESPEC(&lev->reactivation_time[i]); |
||
756 | lev->reactivation_timer[i] = -1; |
||
757 | lev->maxcap[i] = 0; |
||
758 | lev->backup[i] = NIL; |
||
759 | lev->CP[i] = 0; |
||
760 | lev->P_or_B[i] = PRIMARY; |
||
761 | } |
||
762 | |||
763 | lev->U = 0; |
||
764 | lev->idle = 0; |
||
765 | lev->queue = NULL; |
||
766 | |||
767 | lev->scheduling_level = master; |
||
768 | |||
769 | lev->flags = flags & 0x07; |
||
770 | |||
771 | return l; |
||
772 | } |
||
773 | |||
774 | |||
775 | |||
776 | bandwidth_t CBS_FT_usedbandwidth(LEVEL l) |
||
777 | { |
||
778 | CBS_FT_level_des *lev = (CBS_FT_level_des *)(level_table[l]); |
||
779 | |||
780 | return lev->U; |
||
781 | } |
||
782 | |||
783 | |||
784 | |||
785 | void CBS_FT_Primary_Abort() |
||
786 | { |
||
787 | PID p; |
||
788 | CBS_FT_level_des *lev; |
||
789 | |||
790 | kern_cli(); |
||
791 | p = exec_shadow; |
||
792 | lev = (CBS_FT_level_des *)level_table[proc_table[p].task_level]; |
||
793 | lev->CP[p] = 1; |
||
794 | kern_sti(); |
||
795 | } |
||
796 | |||
797 | |||
798 | char CBS_FT_Checkpoint() |
||
799 | { |
||
800 | char f; |
||
801 | PID p; |
||
802 | CBS_FT_level_des *lev; |
||
803 | |||
804 | kern_cli(); |
||
805 | p = exec_shadow; |
||
806 | lev = (CBS_FT_level_des *)level_table[proc_table[p].task_level]; |
||
807 | f = lev->CP[p]; |
||
808 | kern_sti(); |
||
809 | return f; |
||
810 | } |
||
811 |