Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1663 | pj | 1 | /* |
2 | * Project: S.Ha.R.K. |
||
3 | * |
||
4 | * Coordinators: |
||
5 | * Giorgio Buttazzo <giorgio@sssup.it> |
||
6 | * Paolo Gai <pj@gandalf.sssup.it> |
||
7 | * |
||
8 | * Authors : |
||
9 | * Paolo Gai <pj@gandalf.sssup.it> |
||
10 | * Massimiliano Giorgi <massy@gandalf.sssup.it> |
||
11 | * Luca Abeni <luca@gandalf.sssup.it> |
||
12 | * (see the web pages for full authors list) |
||
13 | * |
||
14 | * ReTiS Lab (Scuola Superiore S.Anna - Pisa - Italy) |
||
15 | * |
||
16 | * http://www.sssup.it |
||
17 | * http://retis.sssup.it |
||
18 | * http://shark.sssup.it |
||
19 | */ |
||
20 | |||
21 | /** |
||
22 | ------------ |
||
23 | CVS : $Id: rrvalue.c,v 1.1 2004-07-05 14:17:13 pj Exp $ |
||
24 | |||
25 | File: $File$ |
||
26 | Revision: $Revision: 1.1 $ |
||
27 | Last update: $Date: 2004-07-05 14:17:13 $ |
||
28 | ------------ |
||
29 | |||
30 | This file contains the scheduling module RRVALUE (Round Robin) |
||
31 | |||
32 | Read rrvalue.h for further details. |
||
33 | |||
34 | **/ |
||
35 | |||
36 | /* |
||
37 | * Copyright (C) 2001 Paolo Gai |
||
38 | * |
||
39 | * This program is free software; you can redistribute it and/or modify |
||
40 | * it under the terms of the GNU General Public License as published by |
||
41 | * the Free Software Foundation; either version 2 of the License, or |
||
42 | * (at your option) any later version. |
||
43 | * |
||
44 | * This program is distributed in the hope that it will be useful, |
||
45 | * but WITHOUT ANY WARRSOFTANTY; without even the implied waRRSOFTanty of |
||
46 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||
47 | * GNU General Public License for more details. |
||
48 | * |
||
49 | * You should have received a copy of the GNU General Public License |
||
50 | * along with this program; if not, write to the Free Software |
||
51 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
||
52 | * |
||
53 | */ |
||
54 | |||
55 | |||
56 | #include "rrvalue.h" |
||
57 | #include <ll/stdio.h> |
||
58 | #include <ll/string.h> |
||
59 | #include <kernel/model.h> |
||
60 | #include <kernel/descr.h> |
||
61 | #include <kernel/var.h> |
||
62 | #include <kernel/func.h> |
||
63 | |||
64 | /*+ Status used in the level +*/ |
||
65 | #define RRVALUE_READY MODULE_STATUS_BASE |
||
66 | #define RRVALUE_DELAY MODULE_STATUS_BASE+1 |
||
67 | #define RRVALUE_IDLE MODULE_STATUS_BASE+2 |
||
68 | |||
69 | /*+ the level redefinition for the Round Robin level +*/ |
||
70 | typedef struct { |
||
71 | level_des l; /*+ the standard level descriptor +*/ |
||
72 | |||
73 | int nact[MAX_PROC]; /*+ number of pending activations +*/ |
||
74 | |||
75 | QQUEUE ready; /*+ the ready queue +*/ |
||
76 | |||
77 | int slice; /*+ the level's time slice +*/ |
||
78 | |||
79 | TIME period[MAX_PROC]; /*+ activation period (reldlines for value tasks)+*/ |
||
80 | |||
81 | struct timespec reactivation_time[MAX_PROC]; |
||
82 | /*+ the time at witch the reactivation timer is post, |
||
83 | absdlines for value tasks +*/ |
||
84 | int reactivation_timer[MAX_PROC]; |
||
85 | /*+ the recativation timer +*/ |
||
86 | |||
87 | BYTE periodic[MAX_PROC]; |
||
88 | |||
89 | |||
90 | struct multiboot_info *multiboot; /*+ used if the level have to insert |
||
91 | the main task +*/ |
||
92 | |||
93 | BYTE models; /*+ Task Model that the Module can Handle +*/ |
||
94 | |||
95 | int totalvalue; |
||
96 | int value[MAX_PROC]; |
||
97 | int penalty[MAX_PROC]; |
||
98 | |||
99 | int max_tasks; /*+ Max number of tasks that the level can afford +*/ |
||
100 | } RRVALUE_level_des; |
||
101 | |||
102 | |||
103 | static char *RRVALUE_status_to_a(WORD status) |
||
104 | { |
||
105 | if (status < MODULE_STATUS_BASE) |
||
106 | return status_to_a(status); |
||
107 | |||
108 | switch (status) { |
||
109 | case RRVALUE_READY: return "RRVALUE_Ready"; |
||
110 | case RRVALUE_DELAY: return "RRVALUE_Delay"; |
||
111 | case RRVALUE_IDLE : return "RRVALUE_Idle"; |
||
112 | default : return "RRVALUE_Unknown"; |
||
113 | } |
||
114 | } |
||
115 | |||
116 | |||
117 | /* this is the periodic reactivation of the task... it is posted only |
||
118 | if the task is a periodic task */ |
||
119 | static void RRVALUE_timer_reactivate(void *par) |
||
120 | { |
||
121 | PID p = (PID) par; |
||
122 | RRVALUE_level_des *lev; |
||
123 | // kern_printf("react"); |
||
124 | |||
125 | lev = (RRVALUE_level_des *)level_table[proc_table[p].task_level]; |
||
126 | |||
127 | if (proc_table[p].status == RRVALUE_IDLE) { |
||
128 | /* the task has finished the current activation and must be |
||
129 | reactivated */ |
||
130 | TIMESPEC_ASSIGN(&proc_table[p].request_time, |
||
131 | &lev->reactivation_time[p]); |
||
132 | ll_gettime(TIME_EXACT, &proc_table[p].request_time); |
||
133 | proc_table[p].status = RRVALUE_READY; |
||
134 | qq_insertlast(p,&lev->ready); |
||
135 | |||
136 | event_need_reschedule(); |
||
137 | } |
||
138 | else if (lev->nact[p] >= 0) |
||
139 | /* the task has not completed the current activation, so we save |
||
140 | the activation incrementing nact... */ |
||
141 | lev->nact[p]++; |
||
142 | |||
143 | /* repost the event at the next period end... */ |
||
144 | ADDUSEC2TIMESPEC(lev->period[p], &lev->reactivation_time[p]); |
||
145 | lev->reactivation_timer[p] = kern_event_post(&lev->reactivation_time[p], |
||
146 | RRVALUE_timer_reactivate, |
||
147 | (void *)p); |
||
148 | /* tracer stuff */ |
||
149 | // trc_logevent(TRC_INTACTIVATION,&p); |
||
150 | } |
||
151 | |||
152 | |||
153 | /*+ this function is called when a task finish his delay +*/ |
||
154 | static void RRVALUE_timer_delay(void *par) |
||
155 | { |
||
156 | PID p = (PID) par; |
||
157 | RRVALUE_level_des *lev; |
||
158 | |||
159 | lev = (RRVALUE_level_des *)level_table[proc_table[p].task_level]; |
||
160 | |||
161 | proc_table[p].status = RRVALUE_READY; |
||
162 | qq_insertlast(p,&lev->ready); |
||
163 | |||
164 | proc_table[p].delay_timer = NIL; /* Paranoia */ |
||
165 | |||
166 | // kern_printf(" DELAY TIMER %d ", p); |
||
167 | |||
168 | event_need_reschedule(); |
||
169 | } |
||
170 | |||
171 | |||
172 | static int RRVALUE_level_accept_task_model(LEVEL l, TASK_MODEL *m) |
||
173 | { |
||
174 | RRVALUE_level_des *lev = (RRVALUE_level_des *)(level_table[l]); |
||
175 | |||
176 | if ((m->pclass == NRT_PCLASS || m->pclass == (NRT_PCLASS | l)) && lev->models & RRVALUE_ONLY_NRT) |
||
177 | return 0; |
||
178 | else if ((m->pclass == SOFT_PCLASS || m->pclass == (SOFT_PCLASS | l)) && lev->models & RRVALUE_ONLY_SOFT) |
||
179 | return 0; |
||
180 | else if ((m->pclass == HARD_PCLASS || m->pclass == (HARD_PCLASS | l)) && lev->models & RRVALUE_ONLY_HARD) |
||
181 | return 0; |
||
182 | else if ((m->pclass == VALUE_PCLASS || m->pclass == (VALUE_PCLASS | l)) && lev->models & RRVALUE_ONLY_VALUE) |
||
183 | return 0; |
||
184 | else |
||
185 | return -1; |
||
186 | } |
||
187 | |||
188 | static int RRVALUE_level_accept_guest_model(LEVEL l, TASK_MODEL *m) |
||
189 | { |
||
190 | return -1; |
||
191 | } |
||
192 | |||
193 | static void RRVALUE_level_status(LEVEL l) |
||
194 | { |
||
195 | RRVALUE_level_des *lev = (RRVALUE_level_des *)(level_table[l]); |
||
196 | PID p = qq_queryfirst(&lev->ready); |
||
197 | |||
198 | kern_printf("Slice: %d \n", lev->slice); |
||
199 | |||
200 | while (p != NIL) { |
||
201 | kern_printf("Pid: %d\t Name: %20s Status: %s\n",p,proc_table[p].name, |
||
202 | RRVALUE_status_to_a(proc_table[p].status)); |
||
203 | p = proc_table[p].next; |
||
204 | } |
||
205 | |||
206 | for (p=0; p<MAX_PROC; p++) |
||
207 | if (proc_table[p].task_level == l && proc_table[p].status != RRVALUE_READY |
||
208 | && proc_table[p].status != FREE ) |
||
209 | kern_printf("Pid: %d\t Name: %20s Status: %s\n",p,proc_table[p].name, |
||
210 | RRVALUE_status_to_a(proc_table[p].status)); |
||
211 | |||
212 | } |
||
213 | |||
214 | |||
215 | /* This is not efficient but very fair :-) |
||
216 | The need of all this stuff is because if a task execute a long time |
||
217 | due to (shadow!) priority inheritance, then the task shall go to the |
||
218 | tail of the queue many times... */ |
||
219 | static PID RRVALUE_level_scheduler(LEVEL l) |
||
220 | { |
||
221 | RRVALUE_level_des *lev = (RRVALUE_level_des *)(level_table[l]); |
||
222 | |||
223 | PID p; |
||
224 | |||
225 | for (;;) { |
||
226 | p = qq_queryfirst(&lev->ready); |
||
227 | if (p == -1) |
||
228 | return p; |
||
229 | //{kern_printf("(s%d)",p); return p;} |
||
230 | |||
231 | // kern_printf("(p=%d l=%d avail=%d wcet =%d)\n",p,l,proc_table[p].avail_time, proc_table[p].wcet); |
||
232 | if (proc_table[p].avail_time <= 0) { |
||
233 | proc_table[p].avail_time += proc_table[p].wcet; |
||
234 | qq_extract(p,&lev->ready); |
||
235 | qq_insertlast(p,&lev->ready); |
||
236 | } |
||
237 | else |
||
238 | //{kern_printf("(s%d)",p); return p;} |
||
239 | return p; |
||
240 | } |
||
241 | } |
||
242 | |||
243 | static int RRVALUE_level_guarantee(LEVEL l, bandwidth_t *freebandwidth) |
||
244 | { |
||
245 | /* the RRVALUE level always guarantee... the function is defined because |
||
246 | there can be an aperiodic server at a level with less priority than |
||
247 | the RRVALUE that need guarantee (e.g., a TBS server) */ |
||
248 | |||
249 | RRVALUE_level_des *lev = (RRVALUE_level_des *)(level_table[l]); |
||
250 | |||
251 | // kern_printf("R%d ",lev->max_tasks>0); |
||
252 | return lev->max_tasks > 0; |
||
253 | } |
||
254 | |||
255 | |||
256 | static int RRVALUE_task_create(LEVEL l, PID p, TASK_MODEL *m) |
||
257 | { |
||
258 | RRVALUE_level_des *lev = (RRVALUE_level_des *)(level_table[l]); |
||
259 | |||
260 | // kern_printf("create %d mod %d\n",p,m->pclass); |
||
261 | /* the task state is set at SLEEP by the general task_create |
||
262 | the only thing to set remains the capacity stuffs that are set |
||
263 | to the values passed in the model... */ |
||
264 | |||
265 | /* I used the wcet field because using wcet can account if a task |
||
266 | consume more than the timeslice... */ |
||
267 | |||
268 | if (lev->models & RRVALUE_ONLY_NRT && |
||
269 | (m->pclass == NRT_PCLASS || m->pclass == (NRT_PCLASS | l))) { |
||
270 | NRT_TASK_MODEL *nrt = (NRT_TASK_MODEL *)m; |
||
271 | |||
272 | // kern_printf("nrt"); |
||
273 | if (nrt->slice) { |
||
274 | proc_table[p].avail_time = nrt->slice; |
||
275 | proc_table[p].wcet = nrt->slice; |
||
276 | } |
||
277 | else { |
||
278 | proc_table[p].avail_time = lev->slice; |
||
279 | proc_table[p].wcet = lev->slice; |
||
280 | } |
||
281 | proc_table[p].control |= CONTROL_CAP; |
||
282 | |||
283 | if (nrt->arrivals == SAVE_ARRIVALS) |
||
284 | lev->nact[p] = 0; |
||
285 | else |
||
286 | lev->nact[p] = -1; |
||
287 | |||
288 | lev->periodic[p] = 0; |
||
289 | lev->period[p] = 0; |
||
290 | |||
291 | lev->value[p] = 0; |
||
292 | lev->penalty[p] = 0; |
||
293 | } |
||
294 | else if (lev->models & RRVALUE_ONLY_SOFT && |
||
295 | (m->pclass == SOFT_PCLASS || m->pclass == (SOFT_PCLASS | l))) { |
||
296 | SOFT_TASK_MODEL *soft = (SOFT_TASK_MODEL *)m; |
||
297 | // kern_printf("soft"); |
||
298 | proc_table[p].avail_time = lev->slice; |
||
299 | proc_table[p].wcet = lev->slice; |
||
300 | proc_table[p].control |= CONTROL_CAP; |
||
301 | |||
302 | if (soft->arrivals == SAVE_ARRIVALS) |
||
303 | lev->nact[p] = 0; |
||
304 | else |
||
305 | lev->nact[p] = -1; |
||
306 | |||
307 | if (soft->periodicity == PERIODIC) { |
||
308 | lev->periodic[p] = 1; |
||
309 | lev->period[p] = soft->period; |
||
310 | } |
||
311 | else { |
||
312 | lev->periodic[p] = 0; |
||
313 | lev->period[p] = 0; |
||
314 | } |
||
315 | |||
316 | lev->value[p] = 0; |
||
317 | lev->penalty[p] = 0; |
||
318 | } |
||
319 | else if (lev->models & RRVALUE_ONLY_HARD && |
||
320 | (m->pclass == HARD_PCLASS || m->pclass == (HARD_PCLASS | l))) { |
||
321 | HARD_TASK_MODEL *hard = (HARD_TASK_MODEL *)m; |
||
322 | // kern_printf("hard"); |
||
323 | proc_table[p].avail_time = lev->slice; |
||
324 | proc_table[p].wcet = lev->slice; |
||
325 | proc_table[p].control |= CONTROL_CAP; |
||
326 | |||
327 | lev->nact[p] = 0; |
||
328 | |||
329 | if (hard->periodicity == PERIODIC) { |
||
330 | lev->periodic[p] = 1; |
||
331 | lev->period[p] = hard->mit; |
||
332 | } |
||
333 | else { |
||
334 | lev->periodic[p] = 0; |
||
335 | lev->period[p] = 0; |
||
336 | } |
||
337 | |||
338 | lev->value[p] = 0; |
||
339 | lev->penalty[p] = 0; |
||
340 | } |
||
341 | |||
342 | if (lev->models & RRVALUE_ONLY_VALUE && |
||
343 | (m->pclass == VALUE_PCLASS || m->pclass == (VALUE_PCLASS | l))) { |
||
344 | VALUE_TASK_MODEL *v = (VALUE_TASK_MODEL *)m; |
||
345 | proc_table[p].avail_time = lev->slice; |
||
346 | proc_table[p].wcet = lev->slice; |
||
347 | proc_table[p].control |= CONTROL_CAP; |
||
348 | lev->nact[p] = -1; |
||
349 | lev->periodic[p] = 0; |
||
350 | |||
351 | lev->value[p] = v->value; |
||
352 | lev->penalty[p] = v->penalty; |
||
353 | lev->period[p] = v->dline; |
||
354 | } |
||
355 | |||
356 | lev->max_tasks--; |
||
357 | |||
358 | return 0; /* OK */ |
||
359 | } |
||
360 | |||
361 | static void RRVALUE_task_detach(LEVEL l, PID p) |
||
362 | { |
||
363 | RRVALUE_level_des *lev = (RRVALUE_level_des *)(level_table[l]); |
||
364 | |||
365 | //lev->totalvalue += lev->penalty[p]; |
||
366 | |||
367 | lev->max_tasks++; |
||
368 | } |
||
369 | |||
370 | static int RRVALUE_task_eligible(LEVEL l, PID p) |
||
371 | { |
||
372 | return 0; /* if the task p is chosen, it is always eligible */ |
||
373 | } |
||
374 | |||
375 | #ifdef __TEST1__ |
||
376 | extern int testactive; |
||
377 | extern struct timespec s_stime[]; |
||
378 | extern TIME s_curr[]; |
||
379 | extern TIME s_PID[]; |
||
380 | extern int useds; |
||
381 | #endif |
||
382 | |||
383 | static void RRVALUE_task_dispatch(LEVEL l, PID p, int nostop) |
||
384 | { |
||
385 | RRVALUE_level_des *lev = (RRVALUE_level_des *)(level_table[l]); |
||
386 | struct timespec t; |
||
387 | |||
388 | /* the task state is set EXE by the scheduler() |
||
389 | we extract the task from the ready queue |
||
390 | NB: we can't assume that p is the first task in the queue!!! */ |
||
391 | qq_extract(p, &lev->ready); |
||
392 | |||
393 | // kill the task if it already has missed the deadline |
||
394 | t = proc_table[p].request_time; |
||
395 | ADDUSEC2TIMESPEC(lev->period[p],&t); |
||
396 | if (TIMESPEC_A_LT_B(&t,&schedule_time)) |
||
397 | proc_table[p].control |= KILL_REQUEST; |
||
398 | } |
||
399 | |||
400 | static void RRVALUE_task_epilogue(LEVEL l, PID p) |
||
401 | { |
||
402 | RRVALUE_level_des *lev = (RRVALUE_level_des *)(level_table[l]); |
||
403 | |||
404 | /* check if the slice is finished and insert the task in the coRRVALUEect |
||
405 | qqueue position */ |
||
406 | if (proc_table[p].avail_time <= 0) { |
||
407 | proc_table[p].avail_time += proc_table[p].wcet; |
||
408 | qq_insertlast(p,&lev->ready); |
||
409 | proc_table[p].control |= KILL_REQUEST; |
||
410 | } |
||
411 | else |
||
412 | /* curr is >0, so the running task have to run for another cuRRVALUE usec */ |
||
413 | qq_insertfirst(p,&lev->ready); |
||
414 | |||
415 | proc_table[p].status = RRVALUE_READY; |
||
416 | } |
||
417 | |||
418 | static void RRVALUE_task_activate(LEVEL l, PID p) |
||
419 | { |
||
420 | RRVALUE_level_des *lev = (RRVALUE_level_des *)(level_table[l]); |
||
421 | |||
422 | /* Test if we are trying to activate a non sleeping task */ |
||
423 | /* save activation (only if needed... */ |
||
424 | if (proc_table[p].status != SLEEP && proc_table[p].status != RRVALUE_IDLE) { |
||
425 | if (lev->nact[p] != -1) |
||
426 | lev->nact[p]++; |
||
427 | return; |
||
428 | } |
||
429 | |||
430 | ll_gettime(TIME_EXACT, &proc_table[p].request_time); |
||
431 | |||
432 | /* Insert task in the coRRVALUEect position */ |
||
433 | proc_table[p].status = RRVALUE_READY; |
||
434 | qq_insertlast(p,&lev->ready); |
||
435 | |||
436 | |||
437 | /* Set the reactivation timer */ |
||
438 | TIMESPEC_ASSIGN(&lev->reactivation_time[p], &proc_table[p].request_time); |
||
439 | ADDUSEC2TIMESPEC(lev->period[p], &lev->reactivation_time[p]); |
||
440 | if (lev->periodic[p]) |
||
441 | { |
||
442 | // timespec stuffs moved up for value tasks! |
||
443 | lev->reactivation_timer[p] = kern_event_post(&lev->reactivation_time[p], |
||
444 | RRVALUE_timer_reactivate, |
||
445 | (void *)p); |
||
446 | } |
||
447 | } |
||
448 | |||
449 | static void RRVALUE_task_insert(LEVEL l, PID p) |
||
450 | { |
||
451 | RRVALUE_level_des *lev = (RRVALUE_level_des *)(level_table[l]); |
||
452 | |||
453 | /* Similar to RRVALUE_task_activate, but we don't check in what state |
||
454 | the task is and we don't set the request_time */ |
||
455 | |||
456 | /* Insert task in the coRRVALUEect position */ |
||
457 | proc_table[p].status = RRVALUE_READY; |
||
458 | qq_insertlast(p,&lev->ready); |
||
459 | } |
||
460 | |||
461 | static void RRVALUE_task_extract(LEVEL l, PID p) |
||
462 | { |
||
463 | /* Extract the running task from the level |
||
464 | . we have already extract it from the ready queue at the dispatch time. |
||
465 | . the capacity event have to be removed by the generic kernel |
||
466 | . the wcet don't need modification... |
||
467 | . the state of the task is set by the calling function |
||
468 | |||
469 | So, we do nothing!!! |
||
470 | */ |
||
471 | } |
||
472 | |||
473 | static void RRVALUE_task_endcycle(LEVEL l, PID p) |
||
474 | { |
||
475 | RRVALUE_level_des *lev = (RRVALUE_level_des *)(level_table[l]); |
||
476 | |||
477 | if (lev->nact[p] > 0) { |
||
478 | /* continue!!!! */ |
||
479 | ll_gettime(TIME_EXACT, &proc_table[p].request_time); |
||
480 | lev->nact[p]--; |
||
481 | // qq_insertlast(p,&lev->ready); |
||
482 | qq_insertfirst(p,&lev->ready); |
||
483 | proc_table[p].status = RRVALUE_READY; |
||
484 | } |
||
485 | else |
||
486 | proc_table[p].status = RRVALUE_IDLE; |
||
487 | } |
||
488 | |||
489 | static void RRVALUE_task_end(LEVEL l, PID p) |
||
490 | { |
||
491 | RRVALUE_level_des *lev = (RRVALUE_level_des *)(level_table[l]); |
||
492 | struct timespec t; |
||
493 | |||
494 | lev->nact[p] = -1; |
||
495 | |||
496 | /* we delete the reactivation timer */ |
||
497 | if (lev->periodic[p]) { |
||
498 | event_delete(lev->reactivation_timer[p]); |
||
499 | lev->reactivation_timer[p] = -1; |
||
500 | } |
||
501 | |||
502 | /* then, we insert the task in the free queue */ |
||
503 | proc_table[p].status = FREE; |
||
504 | q_insert(p,&freedesc); |
||
505 | |||
506 | // account for the value only if it<finishes in time |
||
507 | if (lev->penalty[p] || lev->value[p]) { |
||
508 | ll_gettime(TIME_EXACT,&t); |
||
509 | if (TIMESPEC_A_LT_B(&t, &lev->reactivation_time[p])) |
||
510 | lev->totalvalue += lev->penalty[p] + lev->value[p]; |
||
511 | } |
||
512 | |||
513 | lev->max_tasks++; |
||
514 | } |
||
515 | |||
516 | static void RRVALUE_task_sleep(LEVEL l, PID p) |
||
517 | { |
||
518 | RRVALUE_level_des *lev = (RRVALUE_level_des *)(level_table[l]); |
||
519 | |||
520 | if (lev->nact[p] >= 0) lev->nact[p] = 0; |
||
521 | |||
522 | /* we delete the reactivation timer */ |
||
523 | if (lev->periodic[p]) { |
||
524 | event_delete(lev->reactivation_timer[p]); |
||
525 | lev->reactivation_timer[p] = -1; |
||
526 | } |
||
527 | |||
528 | proc_table[p].status = SLEEP; |
||
529 | } |
||
530 | |||
531 | static void RRVALUE_task_delay(LEVEL l, PID p, TIME usdelay) |
||
532 | { |
||
533 | // RRVALUE_level_des *lev = (RRVALUE_level_des *)(level_table[l]); |
||
534 | struct timespec wakeuptime; |
||
535 | |||
536 | /* equal to RRVALUE_task_endcycle */ |
||
537 | proc_table[p].status = RRVALUE_DELAY; |
||
538 | |||
539 | /* we need to delete this event if we kill the task while it is sleeping */ |
||
540 | ll_gettime(TIME_EXACT,&wakeuptime); |
||
541 | ADDUSEC2TIMESPEC(usdelay,&wakeuptime); |
||
542 | proc_table[p].delay_timer = kern_event_post(&wakeuptime, |
||
543 | RRVALUE_timer_delay, |
||
544 | (void *)p); |
||
545 | } |
||
546 | |||
547 | |||
548 | static int RRVALUE_guest_create(LEVEL l, PID p, TASK_MODEL *m) |
||
549 | { kern_raise(XUNVALID_GUEST,exec_shadow); return 0; } |
||
550 | |||
551 | static void RRVALUE_guest_detach(LEVEL l, PID p) |
||
552 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
553 | |||
554 | static void RRVALUE_guest_dispatch(LEVEL l, PID p, int nostop) |
||
555 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
556 | |||
557 | static void RRVALUE_guest_epilogue(LEVEL l, PID p) |
||
558 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
559 | |||
560 | static void RRVALUE_guest_activate(LEVEL l, PID p) |
||
561 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
562 | |||
563 | static void RRVALUE_guest_insert(LEVEL l, PID p) |
||
564 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
565 | |||
566 | static void RRVALUE_guest_extract(LEVEL l, PID p) |
||
567 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
568 | |||
569 | static void RRVALUE_guest_endcycle(LEVEL l, PID p) |
||
570 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
571 | |||
572 | static void RRVALUE_guest_end(LEVEL l, PID p) |
||
573 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
574 | |||
575 | static void RRVALUE_guest_sleep(LEVEL l, PID p) |
||
576 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
577 | |||
578 | static void RRVALUE_guest_delay(LEVEL l, PID p,DWORD tickdelay) |
||
579 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
580 | |||
581 | |||
582 | |||
583 | |||
584 | /* Registration functions */ |
||
585 | |||
586 | /*+ This init function install the "main" task +*/ |
||
587 | static void RRVALUE_call_main(void *l) |
||
588 | { |
||
589 | LEVEL lev; |
||
590 | PID p; |
||
591 | NRT_TASK_MODEL m; |
||
592 | void *mb; |
||
593 | |||
594 | lev = (LEVEL)l; |
||
595 | |||
596 | nrt_task_default_model(m); |
||
597 | nrt_task_def_level(m,lev); /* with this we are sure that the task aRRVALUEives |
||
598 | to the coRRVALUEect level */ |
||
599 | |||
600 | mb = ((RRVALUE_level_des *)level_table[lev])->multiboot; |
||
601 | nrt_task_def_arg(m,mb); |
||
602 | nrt_task_def_usemath(m); |
||
603 | nrt_task_def_nokill(m); |
||
604 | nrt_task_def_ctrl_jet(m); |
||
605 | |||
606 | p = task_create("Main", __init__, (TASK_MODEL *)&m, NULL); |
||
607 | |||
608 | if (p == NIL) |
||
609 | printk("\nPanic!!! can't create main task...\n"); |
||
610 | |||
611 | RRVALUE_task_activate(lev,p); |
||
612 | } |
||
613 | |||
614 | |||
615 | /*+ Registration function: |
||
616 | TIME slice the slice for the Round Robin queue |
||
617 | int createmain 1 if the level creates the main task 0 otherwise |
||
618 | struct multiboot_info *mb used if createmain specified +*/ |
||
619 | void RRVALUE_register_level(TIME slice, |
||
620 | int createmain, |
||
621 | struct multiboot_info *mb, |
||
622 | BYTE models, int m) |
||
623 | { |
||
624 | LEVEL l; /* the level that we register */ |
||
625 | RRVALUE_level_des *lev; /* for readableness only */ |
||
626 | PID i; |
||
627 | |||
628 | printk("RRVALUE_register_level\n"); |
||
629 | |||
630 | /* request an entry in the level_table */ |
||
631 | l = level_alloc_descriptor(); |
||
632 | |||
633 | /* alloc the space needed for the RRVALUE_level_des */ |
||
634 | lev = (RRVALUE_level_des *)kern_alloc(sizeof(RRVALUE_level_des)); |
||
635 | |||
636 | printk(" lev=%d\n",(int)lev); |
||
637 | |||
638 | /* update the level_table with the new entry */ |
||
639 | level_table[l] = (level_des *)lev; |
||
640 | |||
641 | /* fill the standard descriptor */ |
||
642 | strncpy(lev->l.level_name, RRVALUE_LEVELNAME, MAX_LEVELNAME); |
||
643 | lev->l.level_code = RRVALUE_LEVEL_CODE; |
||
644 | lev->l.level_version = RRVALUE_LEVEL_VERSION; |
||
645 | |||
646 | lev->l.level_accept_task_model = RRVALUE_level_accept_task_model; |
||
647 | lev->l.level_accept_guest_model = RRVALUE_level_accept_guest_model; |
||
648 | lev->l.level_status = RRVALUE_level_status; |
||
649 | lev->l.level_scheduler = RRVALUE_level_scheduler; |
||
650 | lev->l.level_guarantee = RRVALUE_level_guarantee; |
||
651 | |||
652 | lev->l.task_create = RRVALUE_task_create; |
||
653 | lev->l.task_detach = RRVALUE_task_detach; |
||
654 | lev->l.task_eligible = RRVALUE_task_eligible; |
||
655 | lev->l.task_dispatch = RRVALUE_task_dispatch; |
||
656 | lev->l.task_epilogue = RRVALUE_task_epilogue; |
||
657 | lev->l.task_activate = RRVALUE_task_activate; |
||
658 | lev->l.task_insert = RRVALUE_task_insert; |
||
659 | lev->l.task_extract = RRVALUE_task_extract; |
||
660 | lev->l.task_endcycle = RRVALUE_task_endcycle; |
||
661 | lev->l.task_end = RRVALUE_task_end; |
||
662 | lev->l.task_sleep = RRVALUE_task_sleep; |
||
663 | lev->l.task_delay = RRVALUE_task_delay; |
||
664 | |||
665 | lev->l.guest_create = RRVALUE_guest_create; |
||
666 | lev->l.guest_detach = RRVALUE_guest_detach; |
||
667 | lev->l.guest_dispatch = RRVALUE_guest_dispatch; |
||
668 | lev->l.guest_epilogue = RRVALUE_guest_epilogue; |
||
669 | lev->l.guest_activate = RRVALUE_guest_activate; |
||
670 | lev->l.guest_insert = RRVALUE_guest_insert; |
||
671 | lev->l.guest_extract = RRVALUE_guest_extract; |
||
672 | lev->l.guest_endcycle = RRVALUE_guest_endcycle; |
||
673 | lev->l.guest_end = RRVALUE_guest_end; |
||
674 | lev->l.guest_sleep = RRVALUE_guest_sleep; |
||
675 | lev->l.guest_delay = RRVALUE_guest_delay; |
||
676 | |||
677 | /* fill the RRVALUE descriptor part */ |
||
678 | for (i = 0; i < MAX_PROC; i++) { |
||
679 | lev->nact[i] = -1; |
||
680 | NULL_TIMESPEC(&lev->reactivation_time[i]); |
||
681 | lev->reactivation_timer[i] = -1; |
||
682 | lev->periodic[i] = 0; |
||
683 | lev->period[i] = 0; |
||
684 | lev->value[i] = 0; |
||
685 | lev->penalty[i] = 0; |
||
686 | } |
||
687 | |||
688 | qq_init(&lev->ready); |
||
689 | |||
690 | if (slice < RRVALUE_MINIMUM_SLICE) slice = RRVALUE_MINIMUM_SLICE; |
||
691 | if (slice > RRVALUE_MAXIMUM_SLICE) slice = RRVALUE_MAXIMUM_SLICE; |
||
692 | lev->slice = slice; |
||
693 | |||
694 | lev->multiboot = mb; |
||
695 | |||
696 | lev->models = models; |
||
697 | |||
698 | lev->totalvalue = 0; |
||
699 | |||
700 | lev->max_tasks = m; |
||
701 | |||
702 | if (createmain) |
||
703 | sys_atrunlevel(RRVALUE_call_main,(void *) l, RUNLEVEL_INIT); |
||
704 | } |
||
705 | |||
706 | |||
707 | /*+ returns the current total value +*/ |
||
708 | int RRVALUE_getvalue(LEVEL l) |
||
709 | { |
||
710 | RRVALUE_level_des *lev = (RRVALUE_level_des *)(level_table[l]); |
||
711 | if (lev->l.level_code == RRVALUE_LEVEL_CODE && |
||
712 | lev->l.level_version == RRVALUE_LEVEL_VERSION) |
||
713 | return lev->totalvalue; |
||
714 | else |
||
715 | return 0; |
||
716 | } |
||
717 | |||
718 | /* |
||
719 | * These functions are needed only to link with the crunch application |
||
720 | * They should not be used in other applications. |
||
721 | */ |
||
722 | |||
723 | #include <modules/edf.h> |
||
724 | |||
725 | void crunch_register_models(struct multiboot_info *mb) |
||
726 | { |
||
727 | EDF_register_level(EDF_ENABLE_ALL); |
||
728 | RRVALUE_register_level(10000, RRVALUE_MAIN_NO, mb, |
||
729 | RRVALUE_ONLY_HARD|RRVALUE_ONLY_SOFT|RRVALUE_ONLY_VALUE,5); |
||
730 | } |
||
731 | |||
732 | int crunch_taskaccepted(PID p) |
||
733 | { |
||
734 | LEVEL l = proc_table[p].task_level; |
||
735 | RRVALUE_level_des *lev = (RRVALUE_level_des *)(level_table[l]); |
||
736 | |||
737 | if (lev->max_tasks > 0) { |
||
738 | lev->totalvalue -= lev->penalty[p]; |
||
739 | return 1; |
||
740 | } |
||
741 | else { |
||
742 | return 0; |
||
743 | } |
||
744 | } |
||
745 | |||
746 | int crunch_getvalue() |
||
747 | { |
||
748 | return RRVALUE_getvalue(2); |
||
749 | } |