Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1663 | pj | 1 | /* |
2 | * Copyright (C) 2000 Paolo Gai |
||
3 | * |
||
4 | * This program is free software; you can redistribute it and/or modify |
||
5 | * it under the terms of the GNU General Public License as published by |
||
6 | * the Free Software Foundation; either version 2 of the License, or |
||
7 | * (at your option) any later version. |
||
8 | * |
||
9 | * This program is distributed in the hope that it will be useful, |
||
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
||
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||
12 | * GNU General Public License for more details. |
||
13 | * |
||
14 | * You should have received a copy of the GNU General Public License |
||
15 | * along with this program; if not, write to the Free Software |
||
16 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
||
17 | * |
||
18 | */ |
||
19 | |||
20 | #include "edf.h" |
||
21 | #include "valmodel.h" |
||
22 | #include <ll/stdio.h> |
||
23 | #include <ll/string.h> |
||
24 | #include <kernel/model.h> |
||
25 | #include <kernel/descr.h> |
||
26 | #include <kernel/var.h> |
||
27 | #include <kernel/func.h> |
||
28 | #include <kernel/trace.h> |
||
29 | |||
30 | //#define edf_printf kern_printf |
||
31 | #define edf_printf printk |
||
32 | |||
33 | /*+ Status used in the level +*/ |
||
34 | #define EDF_READY MODULE_STATUS_BASE /*+ - Ready status +*/ |
||
35 | #define EDF_DELAY MODULE_STATUS_BASE+1 /*+ - Delay status +*/ |
||
36 | #define EDF_WCET_VIOLATED MODULE_STATUS_BASE+2 /*+ when wcet is finished +*/ |
||
37 | #define EDF_WAIT MODULE_STATUS_BASE+3 /*+ to wait the deadline +*/ |
||
38 | #define EDF_IDLE MODULE_STATUS_BASE+4 /*+ to wait the deadline +*/ |
||
39 | #define EDF_ZOMBIE MODULE_STATUS_BASE+5 /*+ to wait the free time +*/ |
||
40 | |||
41 | |||
42 | /* For group create */ |
||
43 | #define EDF_NOTYET_GUARANTEED 1 |
||
44 | #define EDF_GUARANTEED 2 |
||
45 | #define EDF_REJECTED 3 |
||
46 | |||
47 | /*+ flags +*/ |
||
48 | #define EDF_FLAG_SPORADIC 1 |
||
49 | #define EDF_FLAG_NORAISEEXC 2 |
||
50 | #define EDF_FLAG_APERIODIC 3 |
||
51 | |||
52 | static LEVEL ModuleLevel; //Ugling to save the level we r registered at. |
||
53 | |||
54 | /*+ the level redefinition for the Earliest Deadline First level +*/ |
||
55 | typedef struct{ |
||
56 | level_des l; /*+ the standard level descriptor +*/ |
||
57 | |||
58 | TIME period[MAX_PROC]; /*+ The task periods; the deadlines are |
||
59 | stored in the priority field +*/ |
||
60 | int deadline_timer[MAX_PROC]; |
||
61 | /*+ The task deadline timers +*/ |
||
62 | |||
63 | int flag[MAX_PROC]; /*+ used to manage the JOB_TASK_MODEL and the |
||
64 | periodicity +*/ |
||
65 | |||
66 | QUEUE ready; /*+ the ready queue +*/ |
||
67 | |||
68 | int flags; /*+ the init flags... +*/ |
||
69 | |||
70 | bandwidth_t U; /*+ the used bandwidth +*/ |
||
71 | |||
72 | int guarantee_status[MAX_PROC]; /* for the group create */ |
||
73 | |||
74 | QUEUE arrived; /* for all the tasks that arrive */ |
||
75 | |||
76 | |||
77 | /* VALUE_TASK specific data */ |
||
78 | long accumulatedValue; /* The accumulated system value */ |
||
79 | |||
80 | TIME dline[MAX_PROC]; |
||
81 | |||
82 | int value[MAX_PROC]; |
||
83 | int penalty[MAX_PROC]; |
||
84 | |||
85 | } EDF_level_des; |
||
86 | |||
87 | |||
88 | static char *EDF_status_to_a(WORD status) |
||
89 | { |
||
90 | if (status < MODULE_STATUS_BASE) |
||
91 | return status_to_a(status); |
||
92 | |||
93 | switch (status) { |
||
94 | case EDF_READY : return "EDF_Ready"; |
||
95 | case EDF_DELAY : return "EDF_Delay"; |
||
96 | case EDF_WCET_VIOLATED: return "EDF_Wcet_Violated"; |
||
97 | case EDF_WAIT : return "EDF_Sporadic_Wait"; |
||
98 | case EDF_IDLE : return "EDF_Idle"; |
||
99 | case EDF_ZOMBIE : return "EDF_Zombie"; |
||
100 | default : return "EDF_Unknown"; |
||
101 | } |
||
102 | } |
||
103 | |||
104 | static void EDF_timer_deadline(void *par) |
||
105 | { |
||
106 | PID p = (PID) par; |
||
107 | EDF_level_des *lev; |
||
108 | |||
109 | edf_printf("$"); |
||
110 | |||
111 | lev = (EDF_level_des *)level_table[proc_table[p].task_level]; |
||
112 | |||
113 | switch (proc_table[p].status) { |
||
114 | case EDF_ZOMBIE: |
||
115 | /* we finally put the task in the ready queue */ |
||
116 | proc_table[p].status = FREE; |
||
117 | q_insertfirst(p,&freedesc); |
||
118 | /* and free the allocated bandwidth */ |
||
119 | if(lev->flag[p] == EDF_FLAG_APERIODIC){ |
||
120 | //!!!!! FRIG™R den allokerade bandbredden h„r!!!! |
||
121 | // kanske n†ge mera |
||
122 | }else{ |
||
123 | /* SPORADIC, could be removed. (we do not use them)*/ |
||
124 | |||
125 | lev->U -= (MAX_BANDWIDTH/lev->period[p]) * proc_table[p].wcet; |
||
126 | } |
||
127 | break; |
||
128 | |||
129 | case EDF_IDLE: |
||
130 | /* tracer stuff */ |
||
131 | trc_logevent(TRC_INTACTIVATION,&p); |
||
132 | /* similar to EDF_task_activate */ |
||
133 | TIMESPEC_ASSIGN(&proc_table[p].request_time, |
||
134 | &proc_table[p].timespec_priority); |
||
135 | ADDUSEC2TIMESPEC(lev->period[p], &proc_table[p].timespec_priority); |
||
136 | proc_table[p].status = EDF_READY; |
||
137 | q_timespec_insert(p,&lev->ready); |
||
138 | lev->deadline_timer[p] = kern_event_post(&proc_table[p].timespec_priority, |
||
139 | EDF_timer_deadline, |
||
140 | (void *)p); |
||
141 | edf_printf("(dline p%d ev%d %d.%d)",(int)p,(int)lev->deadline_timer[p],(int)proc_table[p].timespec_priority.tv_sec,(int)proc_table[p].timespec_priority.tv_nsec/1000); |
||
142 | //printk("(d%d idle priority set to %d)",p,proc_table[p].priority ); |
||
143 | event_need_reschedule(); |
||
144 | printk("el%d|",p); |
||
145 | break; |
||
146 | |||
147 | case EDF_WAIT: |
||
148 | /* Without this, the task cannot be reactivated!!! */ |
||
149 | proc_table[p].status = SLEEP; |
||
150 | break; |
||
151 | |||
152 | default: |
||
153 | /* else, a deadline miss occurred!!! */ |
||
154 | edf_printf("\nstatus %d\n", (int)proc_table[p].status); |
||
155 | edf_printf("timer_deadline:AAARRRGGGHHH!!!"); |
||
156 | kern_raise(XDEADLINE_MISS,p); |
||
157 | } |
||
158 | } |
||
159 | |||
160 | |||
161 | /*+ this function is called when a task finish his delay +*/ |
||
162 | static void EDF_timer_delay(void *par) |
||
163 | { |
||
164 | PID p = (PID) par; |
||
165 | EDF_level_des *lev; |
||
166 | |||
167 | lev = (EDF_level_des *)level_table[proc_table[p].task_level]; |
||
168 | |||
169 | proc_table[p].status = EDF_READY; |
||
170 | q_timespec_insert(p,&lev->ready); |
||
171 | |||
172 | proc_table[p].delay_timer = NIL; /* Paranoia */ |
||
173 | |||
174 | event_need_reschedule(); |
||
175 | } |
||
176 | |||
177 | |||
178 | static int EDF_level_accept_task_model(LEVEL l, TASK_MODEL *m) |
||
179 | { |
||
180 | if(m->pclass == VALUE_PCLASS){ |
||
181 | /* VALUE_TASK_MODEL */ |
||
182 | VALUE_TASK_MODEL *v = (VALUE_TASK_MODEL *)m; |
||
183 | |||
184 | if(v->wcet && v->dline && v->value && v->penalty){ |
||
185 | if(v->dline >= v->wcet && v->value <= 100 && v->penalty <= 100) |
||
186 | return 0; |
||
187 | } |
||
188 | }else if (m->pclass == HARD_PCLASS || m->pclass == (HARD_PCLASS | l)) { |
||
189 | /* HARD_TASK_MODEL */ |
||
190 | |||
191 | HARD_TASK_MODEL *h = (HARD_TASK_MODEL *)m; |
||
192 | |||
193 | if (h->wcet && h->mit) |
||
194 | return 0; |
||
195 | } |
||
196 | |||
197 | |||
198 | return -1; |
||
199 | } |
||
200 | |||
201 | /* We do not accept any guest calls and models */ |
||
202 | static int EDF_level_accept_guest_model(LEVEL l, TASK_MODEL *m) |
||
203 | { return -1; } |
||
204 | |||
205 | |||
206 | static char *onoff(int i) |
||
207 | { |
||
208 | if (i) |
||
209 | return "On "; |
||
210 | else |
||
211 | return "Off"; |
||
212 | } |
||
213 | |||
214 | static void EDF_level_status(LEVEL l) |
||
215 | { |
||
216 | EDF_level_des *lev = (EDF_level_des *)(level_table[l]); |
||
217 | PID p = lev->ready; |
||
218 | |||
219 | kern_printf("Wcet Check : %s\n", |
||
220 | onoff(lev->flags & EDF_ENABLE_WCET_CHECK)); |
||
221 | kern_printf("On-line guarantee : %s\n", |
||
222 | onoff(lev->flags & EDF_ENABLE_GUARANTEE)); |
||
223 | kern_printf("Used Bandwidth : %u/%u\n", |
||
224 | lev->U, MAX_BANDWIDTH); |
||
225 | |||
226 | while (p != NIL) { |
||
227 | if ((proc_table[p].pclass) == JOB_PCLASS) |
||
228 | kern_printf("Pid: %2d (GUEST)\n", p); |
||
229 | else |
||
230 | kern_printf("Pid: %2d Name: %10s %s: %9ld Dline: %9ld.%6ld Stat: %s\n", |
||
231 | p, |
||
232 | proc_table[p].name, |
||
233 | lev->flag[p] & EDF_FLAG_SPORADIC ? "MinITime" : "Period ", |
||
234 | lev->period[p], |
||
235 | proc_table[p].timespec_priority.tv_sec, |
||
236 | proc_table[p].timespec_priority.tv_nsec/1000, |
||
237 | EDF_status_to_a(proc_table[p].status)); |
||
238 | p = proc_table[p].next; |
||
239 | } |
||
240 | |||
241 | for (p=0; p<MAX_PROC; p++) |
||
242 | if (proc_table[p].task_level == l && proc_table[p].status != EDF_READY |
||
243 | && proc_table[p].status != FREE ) |
||
244 | kern_printf("Pid: %2d Name: %10s %s: %9ld Dline: %9ld.%6ld Stat: %s\n", |
||
245 | p, |
||
246 | proc_table[p].name, |
||
247 | lev->flag[p] & EDF_FLAG_SPORADIC ? "MinITime" : "Period ", |
||
248 | lev->period[p], |
||
249 | proc_table[p].timespec_priority.tv_sec, |
||
250 | proc_table[p].timespec_priority.tv_nsec/1000, |
||
251 | EDF_status_to_a(proc_table[p].status)); |
||
252 | } |
||
253 | |||
254 | /* The scheduler only gets the first task in the queue */ |
||
255 | static PID EDF_level_scheduler(LEVEL l) |
||
256 | { |
||
257 | EDF_level_des *lev = (EDF_level_des *)(level_table[l]); |
||
258 | |||
259 | /* { // print 4 dbg the ready queue |
||
260 | PID p= lev->ready; |
||
261 | kern_printf("(s"); |
||
262 | while (p != NIL) { |
||
263 | kern_printf("%d ",p); |
||
264 | p = proc_table[p].next; |
||
265 | } |
||
266 | kern_printf(") "); |
||
267 | } |
||
268 | */ |
||
269 | return (PID)lev->ready; |
||
270 | } |
||
271 | |||
272 | /* The on-line guarantee is enabled only if the appropriate flag is set... */ |
||
273 | static int EDF_level_guarantee(LEVEL l, bandwidth_t *freebandwidth) |
||
274 | { |
||
275 | EDF_level_des *lev = (EDF_level_des *)(level_table[l]); |
||
276 | PID p; |
||
277 | |||
278 | |||
279 | //om flaggan sattes i task_create, |
||
280 | //kanske inte ska vara h„r men det fungerar just nu i alla fall. |
||
281 | if (lev->flags & EDF_FAILED_GUARANTEE) { |
||
282 | *freebandwidth = 0; |
||
283 | return 0; |
||
284 | } |
||
285 | |||
286 | |||
287 | /*check all the arrived tasks, guarantee them or not */ |
||
288 | while(lev->arrived != NIL){ |
||
289 | p = q_getfirst(&lev->arrived); |
||
290 | |||
291 | if(lev->flag[p] == EDF_FLAG_APERIODIC){ |
||
292 | |||
293 | //!!!! h„r ska v†rat acceptans test f”r value task ligga |
||
294 | |||
295 | lev->guarantee_status[p] = EDF_GUARANTEED; |
||
296 | }else{ |
||
297 | /* Accept all the periodic tasks */ |
||
298 | lev->guarantee_status[p] = EDF_GUARANTEED; |
||
299 | } |
||
300 | } |
||
301 | |||
302 | |||
303 | if (*freebandwidth >= lev->U) { |
||
304 | *freebandwidth -= lev->U; |
||
305 | return 1; |
||
306 | }else |
||
307 | return 0; |
||
308 | |||
309 | } |
||
310 | |||
311 | static int EDF_task_create(LEVEL l, PID p, TASK_MODEL *m) |
||
312 | { |
||
313 | EDF_level_des *lev = (EDF_level_des *)(level_table[l]); |
||
314 | |||
315 | |||
316 | /* if the EDF_task_create is called, then the pclass must be a |
||
317 | valid pclass. */ |
||
318 | |||
319 | |||
320 | if(m->pclass == VALUE_PCLASS){ |
||
321 | /* VALUE_TASK_MODEL */ |
||
322 | |||
323 | //!!!!!!!!!!!! Kan vara smart att sortera value task i kön efter priority fältet !!!!!!!!! |
||
324 | |||
325 | |||
326 | VALUE_TASK_MODEL *v = (VALUE_TASK_MODEL *)m; |
||
327 | |||
328 | |||
329 | lev->value[p] = v->value; |
||
330 | lev->penalty[p] = v->penalty; |
||
331 | lev->dline[p] = v->dline; |
||
332 | |||
333 | |||
334 | /* Mark that this is a value task (aperiodic)*/ |
||
335 | lev->flag[p] = EDF_FLAG_APERIODIC; |
||
336 | |||
337 | /* Enable wcet check */ |
||
338 | if (lev->flags & EDF_ENABLE_WCET_CHECK) { |
||
339 | proc_table[p].avail_time = v->wcet; |
||
340 | proc_table[p].wcet = v->wcet; |
||
341 | proc_table[p].control |= CONTROL_CAP; |
||
342 | } |
||
343 | }else{ |
||
344 | /* HARD_TASK_MODEL */ |
||
345 | |||
346 | HARD_TASK_MODEL *h = (HARD_TASK_MODEL *)m; |
||
347 | |||
348 | lev->period[p] = h->mit; |
||
349 | |||
350 | if (h->periodicity == APERIODIC) |
||
351 | lev->flag[p] = EDF_FLAG_SPORADIC; |
||
352 | else |
||
353 | lev->flag[p] = 0; |
||
354 | |||
355 | lev->deadline_timer[p] = -1; |
||
356 | |||
357 | |||
358 | /* Enable wcet check */ |
||
359 | if (lev->flags & EDF_ENABLE_WCET_CHECK) { |
||
360 | proc_table[p].avail_time = h->wcet; |
||
361 | proc_table[p].wcet = h->wcet; |
||
362 | proc_table[p].control |= CONTROL_CAP; |
||
363 | } |
||
364 | } |
||
365 | |||
366 | |||
367 | //detta test kan/SKA man g”ra i level_guarantee, kanske tom i v†rat |
||
368 | //acceptans test. H„r m†ste man ju „nd† alltid returnera ok (0) |
||
369 | |||
370 | /* update the bandwidth... */ |
||
371 | // if (lev->flags & EDF_ENABLE_GUARANTEE) { |
||
372 | // bandwidth_t b; |
||
373 | // b = (MAX_BANDWIDTH / h->mit) * h->wcet; |
||
374 | |||
375 | /* really update lev->U, checking an overflow... */ |
||
376 | // if (MAX_BANDWIDTH - lev->U > b) |
||
377 | // lev->U += b; |
||
378 | // else |
||
379 | /* The task can NOT be guaranteed (U>MAX_BANDWIDTH)... |
||
380 | in this case, we don't raise an exception... in fact, after the |
||
381 | EDF_task_create the task_create will call level_guarantee that return |
||
382 | -1... return -1 in EDF_task_create isn't correct, because: |
||
383 | . generally, the guarantee must be done when also the resources |
||
384 | are registered |
||
385 | . returning -1 will cause the task_create to return with an errno |
||
386 | ETASK_CREATE instead of ENO_GUARANTEE!!! |
||
387 | |||
388 | Why I use the flag??? because if the lev->U overflows, if i.e. I set |
||
389 | it to MAX_BANDWIDTH, I lose the correct allocated bandwidth... |
||
390 | */ |
||
391 | // lev->flags |= EDF_FAILED_GUARANTEE; |
||
392 | // } |
||
393 | |||
394 | |||
395 | |||
396 | /* Insert the tasks in the arrived QUEUE to enable group_create */ |
||
397 | q_insert(p, &lev->arrived); |
||
398 | lev->guarantee_status[p] = EDF_NOTYET_GUARANTEED; |
||
399 | |||
400 | |||
401 | |||
402 | return 0; /* OK, also if the task cannot be guaranteed... */ |
||
403 | } |
||
404 | |||
405 | /* Called if task creation did'nt work */ |
||
406 | static void EDF_task_detach(LEVEL l, PID p) |
||
407 | { |
||
408 | /* the EDF level doesn't introduce any dinamic allocated new field. |
||
409 | we have only to reset the NO_GUARANTEE FIELD and decrement the allocated |
||
410 | bandwidth */ |
||
411 | |||
412 | EDF_level_des *lev = (EDF_level_des *)(level_table[l]); |
||
413 | |||
414 | if (lev->flags & EDF_FAILED_GUARANTEE) |
||
415 | lev->flags &= ~EDF_FAILED_GUARANTEE; |
||
416 | else |
||
417 | lev->U -= (MAX_BANDWIDTH / lev->period[p]) * proc_table[p].wcet; |
||
418 | |||
419 | |||
420 | //extract the arrived task from the Q |
||
421 | q_extract(p, &lev->arrived); |
||
422 | lev->guarantee_status[p] = EDF_NOTYET_GUARANTEED; |
||
423 | |||
424 | } |
||
425 | |||
426 | static int EDF_task_eligible(LEVEL l, PID p) |
||
427 | { |
||
428 | return 0; /* if the task p is chosen, it is always eligible */ |
||
429 | } |
||
430 | |||
431 | #ifdef __TEST1__ |
||
432 | extern int testactive; |
||
433 | extern struct timespec s_stime[]; |
||
434 | extern TIME s_curr[]; |
||
435 | extern TIME s_PID[]; |
||
436 | extern int useds; |
||
437 | #endif |
||
438 | |||
439 | static void EDF_task_dispatch(LEVEL l, PID p, int nostop) |
||
440 | { |
||
441 | EDF_level_des *lev = (EDF_level_des *)(level_table[l]); |
||
442 | |||
443 | edf_printf("(disp p%d %d.%d)",(int)p,(int)schedule_time.tv_sec,(int)schedule_time.tv_nsec/1000); |
||
444 | |||
445 | /* the task state is set EXE by the scheduler() |
||
446 | we extract the task from the ready queue |
||
447 | NB: we can't assume that p is the first task in the queue!!! */ |
||
448 | q_extract(p, &lev->ready); |
||
449 | |||
450 | #ifdef __TEST1__ |
||
451 | if (testactive) |
||
452 | { |
||
453 | TIMESPEC_ASSIGN(&s_stime[useds], &schedule_time); |
||
454 | s_curr[useds] = proc_table[p].avail_time; |
||
455 | s_PID[useds] = p; |
||
456 | useds++; |
||
457 | } |
||
458 | #endif |
||
459 | } |
||
460 | |||
461 | static void EDF_task_epilogue(LEVEL l, PID p) |
||
462 | { |
||
463 | EDF_level_des *lev = (EDF_level_des *)(level_table[l]); |
||
464 | |||
465 | edf_printf("(epil p%d %d.%d)",p,(int)schedule_time.tv_sec,(int)schedule_time.tv_nsec/1000); |
||
466 | |||
467 | /* check if the wcet is finished... */ |
||
468 | if ((lev->flags & EDF_ENABLE_WCET_CHECK) && proc_table[p].avail_time <= 0) { |
||
469 | /* if it is, raise a XWCET_VIOLATION exception */ |
||
470 | kern_raise(XWCET_VIOLATION,p); |
||
471 | proc_table[p].status = EDF_WCET_VIOLATED; |
||
472 | } |
||
473 | else { |
||
474 | /* the task has been preempted. it returns into the ready queue... */ |
||
475 | q_timespec_insert(p,&lev->ready); |
||
476 | proc_table[p].status = EDF_READY; |
||
477 | } |
||
478 | } |
||
479 | |||
480 | static void EDF_task_activate(LEVEL l, PID p) |
||
481 | { |
||
482 | EDF_level_des *lev = (EDF_level_des *)(level_table[l]); |
||
483 | |||
484 | if (proc_table[p].status == EDF_WAIT) { |
||
485 | kern_raise(XACTIVATION,p); |
||
486 | return; |
||
487 | } |
||
488 | |||
489 | /* Test if we are trying to activate a non sleeping task */ |
||
490 | /* Ignore this; the task is already active */ |
||
491 | if (proc_table[p].status != SLEEP && |
||
492 | proc_table[p].status != EDF_WCET_VIOLATED) |
||
493 | return; |
||
494 | |||
495 | |||
496 | /* Set the deadline for the task*/ |
||
497 | if(lev->flag[p] == EDF_FLAG_APERIODIC ){ |
||
498 | /* VALUE_TASK */ |
||
499 | |||
500 | ll_gettime(TIME_EXACT, &proc_table[p].request_time); |
||
501 | |||
502 | TIMESPEC_ASSIGN(&proc_table[p].timespec_priority, |
||
503 | &proc_table[p].request_time); |
||
504 | ADDUSEC2TIMESPEC(lev->dline[p], &proc_table[p].timespec_priority); |
||
505 | }else{ |
||
506 | /* HARD_TASK */ |
||
507 | |||
508 | /* see also EDF_timer_deadline */ |
||
509 | /* e.g. set a new deadline for the hard periodic task */ |
||
510 | ll_gettime(TIME_EXACT, &proc_table[p].request_time); |
||
511 | |||
512 | TIMESPEC_ASSIGN(&proc_table[p].timespec_priority, |
||
513 | &proc_table[p].request_time); |
||
514 | ADDUSEC2TIMESPEC(lev->period[p], &proc_table[p].timespec_priority); |
||
515 | } |
||
516 | |||
517 | /* Insert task in the correct position */ |
||
518 | proc_table[p].status = EDF_READY; |
||
519 | q_timespec_insert(p,&lev->ready); |
||
520 | |||
521 | /* Set the deadline timer */ |
||
522 | lev->deadline_timer[p] = kern_event_post(&proc_table[p].timespec_priority, |
||
523 | EDF_timer_deadline, |
||
524 | (void *)p); |
||
525 | edf_printf("(dline p%d ev%d %d.%d)",p,(int)lev->deadline_timer[p],(int)proc_table[p].timespec_priority.tv_sec,(int)proc_table[p].timespec_priority.tv_nsec/1000); |
||
526 | |||
527 | } |
||
528 | |||
529 | static void EDF_task_insert(LEVEL l, PID p) |
||
530 | { |
||
531 | EDF_level_des *lev = (EDF_level_des *)(level_table[l]); |
||
532 | |||
533 | /* Similar to EDF_task_activate, but we don't check in what state |
||
534 | the task is and we don't set the request_time*/ |
||
535 | |||
536 | /* Insert task in the coEDFect position */ |
||
537 | proc_table[p].status = EDF_READY; |
||
538 | q_timespec_insert(p,&lev->ready); |
||
539 | } |
||
540 | |||
541 | static void EDF_task_extract(LEVEL l, PID p) |
||
542 | { |
||
543 | /* Extract the running task from the level |
||
544 | . we have already extract it from the ready queue at the dispatch time. |
||
545 | . the capacity event have to be removed by the generic kernel |
||
546 | . the wcet don't need modification... |
||
547 | . the state of the task is set by the calling function |
||
548 | . the deadline must remain... |
||
549 | |||
550 | So, we do nothing!!! |
||
551 | */ |
||
552 | } |
||
553 | |||
554 | static void EDF_task_endcycle(LEVEL l, PID p) |
||
555 | { |
||
556 | EDF_level_des *lev = (EDF_level_des *)(level_table[l]); |
||
557 | |||
558 | edf_printf("(ecyc p%d %d.%d)",p,(int)schedule_time.tv_sec,(int)schedule_time.tv_nsec/1000); |
||
559 | |||
560 | /* the task has terminated his job before it consume the wcet. All OK! */ |
||
561 | if (lev->flag[p] & EDF_FLAG_SPORADIC) |
||
562 | proc_table[p].status = EDF_WAIT; |
||
563 | else /* pclass = sporadic_pclass */ |
||
564 | proc_table[p].status = EDF_IDLE; |
||
565 | |||
566 | /* we reset the capacity counters... */ |
||
567 | if (lev->flags & EDF_ENABLE_WCET_CHECK) |
||
568 | proc_table[p].avail_time = proc_table[p].wcet; |
||
569 | |||
570 | /* when the deadline timer fire, it recognize the situation and set |
||
571 | correctly all the stuffs (like reactivation, request_time, etc... ) */ |
||
572 | } |
||
573 | |||
574 | static void EDF_task_end(LEVEL l, PID p) |
||
575 | { |
||
576 | // EDF_level_des *lev = (EDF_level_des *)(level_table[l]); |
||
577 | |||
578 | kern_printf("EDF_task_end: %s\n", proc_table[p].name); |
||
579 | |||
580 | proc_table[p].status = EDF_ZOMBIE; |
||
581 | |||
582 | /* When the deadline timer fire, it put the task descriptor in |
||
583 | the free queue, and free the allocated bandwidth... */ |
||
584 | } |
||
585 | |||
586 | static void EDF_task_sleep(LEVEL l, PID p) |
||
587 | { |
||
588 | EDF_level_des *lev = (EDF_level_des *)(level_table[l]); |
||
589 | |||
590 | /* the task has terminated his job before it consume the wcet. All OK! */ |
||
591 | proc_table[p].status = EDF_WAIT; |
||
592 | |||
593 | /* we reset the capacity counters... */ |
||
594 | if (lev->flags & EDF_ENABLE_WCET_CHECK) |
||
595 | proc_table[p].avail_time = proc_table[p].wcet; |
||
596 | |||
597 | /* when the deadline timer fire, it recognize the situation and set |
||
598 | correctly the task state to sleep... */ |
||
599 | } |
||
600 | |||
601 | static void EDF_task_delay(LEVEL l, PID p, TIME usdelay) |
||
602 | { |
||
603 | struct timespec wakeuptime; |
||
604 | // EDF_level_des *lev = (EDF_level_des *)(level_table[l]); |
||
605 | |||
606 | /* equal to EDF_task_endcycle */ |
||
607 | proc_table[p].status = EDF_DELAY; |
||
608 | |||
609 | /* we need to delete this event if we kill the task while it is sleeping */ |
||
610 | ll_gettime(TIME_EXACT, &wakeuptime); |
||
611 | ADDUSEC2TIMESPEC(usdelay, &wakeuptime); |
||
612 | proc_table[p].delay_timer = kern_event_post(&wakeuptime, |
||
613 | EDF_timer_delay, |
||
614 | (void *)p); |
||
615 | } |
||
616 | |||
617 | /* Guest Functions |
||
618 | These functions manages a JOB_TASK_MODEL, that is used to put |
||
619 | a guest task in the EDF ready queue. */ |
||
620 | |||
621 | |||
622 | static void EDF_timer_guest_deadline(void *par) |
||
623 | { |
||
624 | kern_raise(XUNVALID_GUEST, exec_shadow); |
||
625 | } |
||
626 | |||
627 | static int EDF_guest_create(LEVEL l, PID p, TASK_MODEL *m) |
||
628 | { |
||
629 | kern_raise(XUNVALID_GUEST, exec_shadow); |
||
630 | return 0; |
||
631 | } |
||
632 | |||
633 | static void EDF_guest_detach(LEVEL l, PID p) |
||
634 | { |
||
635 | kern_raise(XUNVALID_GUEST, exec_shadow); |
||
636 | } |
||
637 | |||
638 | static void EDF_guest_dispatch(LEVEL l, PID p, int nostop) |
||
639 | { |
||
640 | kern_raise(XUNVALID_GUEST, exec_shadow); |
||
641 | } |
||
642 | |||
643 | static void EDF_guest_epilogue(LEVEL l, PID p) |
||
644 | { |
||
645 | kern_raise(XUNVALID_GUEST, exec_shadow); |
||
646 | } |
||
647 | |||
648 | static void EDF_guest_activate(LEVEL l, PID p) |
||
649 | { |
||
650 | kern_raise(XUNVALID_GUEST, exec_shadow); |
||
651 | } |
||
652 | |||
653 | static void EDF_guest_insert(LEVEL l, PID p) |
||
654 | { |
||
655 | kern_raise(XUNVALID_GUEST, exec_shadow); |
||
656 | } |
||
657 | |||
658 | static void EDF_guest_extract(LEVEL l, PID p) |
||
659 | { |
||
660 | kern_raise(XUNVALID_GUEST, exec_shadow); |
||
661 | } |
||
662 | |||
663 | static void EDF_guest_endcycle(LEVEL l, PID p) |
||
664 | { |
||
665 | kern_raise(XUNVALID_GUEST, exec_shadow); |
||
666 | } |
||
667 | static void EDF_guest_end(LEVEL l, PID p) |
||
668 | { |
||
669 | kern_raise(XUNVALID_GUEST, exec_shadow); |
||
670 | } |
||
671 | |||
672 | static void EDF_guest_sleep(LEVEL l, PID p) |
||
673 | { |
||
674 | kern_raise(XUNVALID_GUEST, exec_shadow); |
||
675 | } |
||
676 | |||
677 | static void EDF_guest_delay(LEVEL l, PID p, TIME usdelay) |
||
678 | { |
||
679 | kern_raise(XUNVALID_GUEST, exec_shadow); |
||
680 | } |
||
681 | |||
682 | /* Registration functions */ |
||
683 | |||
684 | /*+ Registration function: |
||
685 | int flags the init flags ... see edf.h +*/ |
||
686 | void EDF_register_level(int flags) |
||
687 | { |
||
688 | LEVEL l; /* the level that we register */ |
||
689 | EDF_level_des *lev; /* for readableness only */ |
||
690 | PID i; /* a counter */ |
||
691 | |||
692 | printk("EDF_register_level\n"); |
||
693 | |||
694 | /* request an entry in the level_table */ |
||
695 | l = level_alloc_descriptor(); |
||
696 | |||
697 | printk(" alloco descrittore %d %d\n",l,(int)sizeof(EDF_level_des)); |
||
698 | |||
699 | /* alloc the space needed for the EDF_level_des */ |
||
700 | lev = (EDF_level_des *)kern_alloc(sizeof(EDF_level_des)); |
||
701 | |||
702 | printk(" lev=%d\n",(int)lev); |
||
703 | |||
704 | /* update the level_table with the new entry */ |
||
705 | level_table[l] = (level_des *)lev; |
||
706 | |||
707 | /* fill the standard descriptor */ |
||
708 | strncpy(lev->l.level_name, EDF_LEVELNAME, MAX_LEVELNAME); |
||
709 | lev->l.level_code = EDF_LEVEL_CODE; |
||
710 | lev->l.level_version = EDF_LEVEL_VERSION; |
||
711 | |||
712 | lev->l.level_accept_task_model = EDF_level_accept_task_model; |
||
713 | lev->l.level_accept_guest_model = EDF_level_accept_guest_model; |
||
714 | lev->l.level_status = EDF_level_status; |
||
715 | lev->l.level_scheduler = EDF_level_scheduler; |
||
716 | |||
717 | if (flags & EDF_ENABLE_GUARANTEE) |
||
718 | lev->l.level_guarantee = EDF_level_guarantee; |
||
719 | else |
||
720 | lev->l.level_guarantee = NULL; |
||
721 | |||
722 | lev->l.task_create = EDF_task_create; |
||
723 | lev->l.task_detach = EDF_task_detach; |
||
724 | lev->l.task_eligible = EDF_task_eligible; |
||
725 | lev->l.task_dispatch = EDF_task_dispatch; |
||
726 | lev->l.task_epilogue = EDF_task_epilogue; |
||
727 | lev->l.task_activate = EDF_task_activate; |
||
728 | lev->l.task_insert = EDF_task_insert; |
||
729 | lev->l.task_extract = EDF_task_extract; |
||
730 | lev->l.task_endcycle = EDF_task_endcycle; |
||
731 | lev->l.task_end = EDF_task_end; |
||
732 | lev->l.task_sleep = EDF_task_sleep; |
||
733 | lev->l.task_delay = EDF_task_delay; |
||
734 | |||
735 | lev->l.guest_create = EDF_guest_create; |
||
736 | lev->l.guest_detach = EDF_guest_detach; |
||
737 | lev->l.guest_dispatch = EDF_guest_dispatch; |
||
738 | lev->l.guest_epilogue = EDF_guest_epilogue; |
||
739 | lev->l.guest_activate = EDF_guest_activate; |
||
740 | lev->l.guest_insert = EDF_guest_insert; |
||
741 | lev->l.guest_extract = EDF_guest_extract; |
||
742 | lev->l.guest_endcycle = EDF_guest_endcycle; |
||
743 | lev->l.guest_end = EDF_guest_end; |
||
744 | lev->l.guest_sleep = EDF_guest_sleep; |
||
745 | lev->l.guest_delay = EDF_guest_delay; |
||
746 | |||
747 | /* fill the EDF descriptor part */ |
||
748 | for(i=0; i<MAX_PROC; i++) { |
||
749 | lev->period[i] = 0; |
||
750 | lev->deadline_timer[i] = -1; |
||
751 | lev->flag[i] = 0; |
||
752 | lev->value[i] = -1; |
||
753 | lev->penalty[i] = -1; |
||
754 | lev->dline[i] = -1; |
||
755 | } |
||
756 | |||
757 | lev->ready = NIL; |
||
758 | lev->flags = flags & 0x07; |
||
759 | lev->U = 0; |
||
760 | lev->accumulatedValue = 0; |
||
761 | } |
||
762 | |||
763 | |||
764 | int is_accepted(LEVEL l, PID p){ |
||
765 | EDF_level_des *lev = (EDF_level_des *)(level_table[l]); |
||
766 | |||
767 | if(lev->guarantee_status[p] == EDF_GUARANTEED) |
||
768 | return 1; |
||
769 | |||
770 | return 0; |
||
771 | } |
||
772 | |||
773 | |||
774 | bandwidth_t EDF_usedbandwidth(LEVEL l) |
||
775 | { |
||
776 | EDF_level_des *lev = (EDF_level_des *)(level_table[l]); |
||
777 | if (lev->l.level_code == EDF_LEVEL_CODE && |
||
778 | lev->l.level_version == EDF_LEVEL_VERSION) |
||
779 | return lev->U; |
||
780 | else |
||
781 | return 0; |
||
782 | } |
||
783 | |||
784 | /*+ returns the current total value +*/ |
||
785 | int GROUP5_getvalue(LEVEL l){ |
||
786 | return ((EDF_level_des *)(level_table[l]))->accumulatedValue; |
||
787 | } |
||
788 | |||
789 | /* Interface with the crunch application */ |
||
790 | |||
791 | void crunch_register_models(struct multiboot_info *mb){ |
||
792 | // here you can register your scheduling modules |
||
793 | EDF_register_level(EDF_ENABLE_ALL); // Level 0 |
||
794 | } |
||
795 | |||
796 | int crunch_taskaccepted(PID p){ |
||
797 | return is_accepted(proc_table[p].task_level, p ); |
||
798 | } |
||
799 | |||
800 | int crunch_getvalue(/*LEVEL l*/){ |
||
801 | // here just return the accumulated value by the modules you used. |
||
802 | // Should call the GROUP5_getvalue(LEVEL l) function. |
||
803 | return GROUP5_getvalue(ModuleLevel); |
||
804 | } |
||
805 |