Subversion Repositories shark

Compare Revisions

Ignore whitespace Rev 422 → Rev 1054

/shark/trunk/drivers/linuxc26/include/linux/sched.h
1,911 → 1,911
#ifndef _LINUX_SCHED_H
#define _LINUX_SCHED_H
 
#include <asm/param.h> /* for HZ */
 
#include <linux/config.h>
#include <linux/capability.h>
#include <linux/threads.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/timex.h>
#include <linux/jiffies.h>
#include <linux/rbtree.h>
#include <linux/thread_info.h>
#include <linux/cpumask.h>
 
#include <asm/system.h>
#include <asm/semaphore.h>
#include <asm/page.h>
#include <asm/ptrace.h>
#include <asm/mmu.h>
 
#include <linux/smp.h>
#include <linux/sem.h>
#include <linux/signal.h>
#include <linux/securebits.h>
#include <linux/fs_struct.h>
#include <linux/compiler.h>
#include <linux/completion.h>
#include <linux/pid.h>
#include <linux/percpu.h>
 
struct exec_domain;
 
/*
* cloning flags:
*/
#define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
#define CLONE_VM 0x00000100 /* set if VM shared between processes */
#define CLONE_FS 0x00000200 /* set if fs info shared between processes */
#define CLONE_FILES 0x00000400 /* set if open files shared between processes */
#define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
#define CLONE_IDLETASK 0x00001000 /* set if new pid should be 0 (kernel only)*/
#define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
#define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
#define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
#define CLONE_THREAD 0x00010000 /* Same thread group? */
#define CLONE_NEWNS 0x00020000 /* New namespace group? */
#define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
#define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
#define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
#define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
#define CLONE_DETACHED 0x00400000 /* Not used - CLONE_THREAD implies detached uniquely */
#define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
#define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
#define CLONE_STOPPED 0x02000000 /* Start in stopped state */
 
/*
* List of flags we want to share for kernel threads,
* if only because they are not used by them anyway.
*/
#define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
 
/*
* These are the constant used to fake the fixed-point load-average
* counting. Some notes:
* - 11 bit fractions expand to 22 bits by the multiplies: this gives
* a load-average precision of 10 bits integer + 11 bits fractional
* - if you want to count load-averages more often, you need more
* precision, or rounding will get you. With 2-second counting freq,
* the EXP_n values would be 1981, 2034 and 2043 if still using only
* 11 bit fractions.
*/
extern unsigned long avenrun[]; /* Load averages */
 
#define FSHIFT 11 /* nr of bits of precision */
#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
#define LOAD_FREQ (5*HZ) /* 5 sec intervals */
#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
#define EXP_5 2014 /* 1/exp(5sec/5min) */
#define EXP_15 2037 /* 1/exp(5sec/15min) */
 
#define CALC_LOAD(load,exp,n) \
load *= exp; \
load += n*(FIXED_1-exp); \
load >>= FSHIFT;
 
#define CT_TO_SECS(x) ((x) / HZ)
#define CT_TO_USECS(x) (((x) % HZ) * 1000000/HZ)
 
extern int nr_threads;
extern int last_pid;
DECLARE_PER_CPU(unsigned long, process_counts);
extern int nr_processes(void);
extern unsigned long nr_running(void);
extern unsigned long nr_uninterruptible(void);
extern unsigned long nr_iowait(void);
 
#include <linux/time.h>
#include <linux/param.h>
#include <linux/resource.h>
#include <linux/timer.h>
 
#include <asm/processor.h>
 
#define TASK_RUNNING 0
#define TASK_INTERRUPTIBLE 1
#define TASK_UNINTERRUPTIBLE 2
#define TASK_STOPPED 4
#define TASK_ZOMBIE 8
#define TASK_DEAD 16
 
#define __set_task_state(tsk, state_value) \
do { (tsk)->state = (state_value); } while (0)
#define set_task_state(tsk, state_value) \
set_mb((tsk)->state, (state_value))
 
#define __set_current_state(state_value) \
do { current->state = (state_value); } while (0)
#define set_current_state(state_value) \
set_mb(current->state, (state_value))
 
/*
* Scheduling policies
*/
#define SCHED_NORMAL 0
#define SCHED_FIFO 1
#define SCHED_RR 2
 
struct sched_param {
int sched_priority;
};
 
#ifdef __KERNEL__
 
#include <linux/spinlock.h>
 
/*
* This serializes "schedule()" and also protects
* the run-queue from deletions/modifications (but
* _adding_ to the beginning of the run-queue has
* a separate lock).
*/
extern rwlock_t tasklist_lock;
extern spinlock_t mmlist_lock;
 
typedef struct task_struct task_t;
 
extern void sched_init(void);
extern void init_idle(task_t *idle, int cpu);
 
extern void show_state(void);
extern void show_regs(struct pt_regs *);
 
/*
* TASK is a pointer to the task whose backtrace we want to see (or NULL for current
* task), SP is the stack pointer of the first frame that should be shown in the back
* trace (or NULL if the entire call-chain of the task should be shown).
*/
extern void show_stack(struct task_struct *task, unsigned long *sp);
 
void io_schedule(void);
long io_schedule_timeout(long timeout);
 
extern void cpu_init (void);
extern void trap_init(void);
extern void update_process_times(int user);
extern void update_one_process(struct task_struct *p, unsigned long user,
unsigned long system, int cpu);
extern void scheduler_tick(int user_tick, int system);
extern unsigned long cache_decay_ticks;
 
 
#define MAX_SCHEDULE_TIMEOUT LONG_MAX
extern signed long FASTCALL(schedule_timeout(signed long timeout));
asmlinkage void schedule(void);
 
struct namespace;
 
/* Maximum number of active map areas.. This is a random (large) number */
#define MAX_MAP_COUNT (65536)
 
#include <linux/aio.h>
 
struct mm_struct {
struct vm_area_struct * mmap; /* list of VMAs */
struct rb_root mm_rb;
struct vm_area_struct * mmap_cache; /* last find_vma result */
unsigned long free_area_cache; /* first hole */
pgd_t * pgd;
atomic_t mm_users; /* How many users with user space? */
atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */
int map_count; /* number of VMAs */
struct rw_semaphore mmap_sem;
spinlock_t page_table_lock; /* Protects task page tables and mm->rss */
 
struct list_head mmlist; /* List of all active mm's. These are globally strung
* together off init_mm.mmlist, and are protected
* by mmlist_lock
*/
 
unsigned long start_code, end_code, start_data, end_data;
unsigned long start_brk, brk, start_stack;
unsigned long arg_start, arg_end, env_start, env_end;
unsigned long rss, total_vm, locked_vm;
unsigned long def_flags;
cpumask_t cpu_vm_mask;
unsigned long swap_address;
 
unsigned long saved_auxv[40]; /* for /proc/PID/auxv */
 
unsigned dumpable:1;
#ifdef CONFIG_HUGETLB_PAGE
int used_hugetlb;
#endif
/* Architecture-specific MM context */
mm_context_t context;
 
/* coredumping support */
int core_waiters;
struct completion *core_startup_done, core_done;
 
/* aio bits */
rwlock_t ioctx_list_lock;
struct kioctx *ioctx_list;
 
struct kioctx default_kioctx;
};
 
extern int mmlist_nr;
 
struct sighand_struct {
atomic_t count;
struct k_sigaction action[_NSIG];
spinlock_t siglock;
};
 
/*
* NOTE! "signal_struct" does not have it's own
* locking, because a shared signal_struct always
* implies a shared sighand_struct, so locking
* sighand_struct is always a proper superset of
* the locking of signal_struct.
*/
struct signal_struct {
atomic_t count;
 
/* current thread group signal load-balancing target: */
task_t *curr_target;
 
/* shared signal handling: */
struct sigpending shared_pending;
 
/* thread group exit support */
int group_exit;
int group_exit_code;
/* overloaded:
* - notify group_exit_task when ->count is equal to notify_count
* - everyone except group_exit_task is stopped during signal delivery
* of fatal signals, group_exit_task processes the signal.
*/
struct task_struct *group_exit_task;
int notify_count;
 
/* thread group stop support, overloads group_exit_code too */
int group_stop_count;
};
 
/*
* Priority of a process goes from 0..MAX_PRIO-1, valid RT
* priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL tasks are
* in the range MAX_RT_PRIO..MAX_PRIO-1. Priority values
* are inverted: lower p->prio value means higher priority.
*
* The MAX_RT_USER_PRIO value allows the actual maximum
* RT priority to be separate from the value exported to
* user-space. This allows kernel threads to set their
* priority to a value higher than any user task. Note:
* MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
*/
 
#define MAX_USER_RT_PRIO 100
#define MAX_RT_PRIO MAX_USER_RT_PRIO
 
#define MAX_PRIO (MAX_RT_PRIO + 40)
 
#define rt_task(p) ((p)->prio < MAX_RT_PRIO)
 
/*
* Some day this will be a full-fledged user tracking system..
*/
struct user_struct {
atomic_t __count; /* reference count */
atomic_t processes; /* How many processes does this user have? */
atomic_t files; /* How many open files does this user have? */
 
/* Hash table maintenance information */
struct list_head uidhash_list;
uid_t uid;
};
 
extern struct user_struct *find_user(uid_t);
 
extern struct user_struct root_user;
#define INIT_USER (&root_user)
 
typedef struct prio_array prio_array_t;
struct backing_dev_info;
struct reclaim_state;
 
/* POSIX.1b interval timer structure. */
struct k_itimer {
struct list_head list; /* free/ allocate list */
spinlock_t it_lock;
clockid_t it_clock; /* which timer type */
timer_t it_id; /* timer id */
int it_overrun; /* overrun on pending signal */
int it_overrun_last; /* overrun on last delivered signal */
int it_requeue_pending; /* waiting to requeue this timer */
int it_sigev_notify; /* notify word of sigevent struct */
int it_sigev_signo; /* signo word of sigevent struct */
sigval_t it_sigev_value; /* value word of sigevent struct */
unsigned long it_incr; /* interval specified in jiffies */
struct task_struct *it_process; /* process to send signal to */
struct timer_list it_timer;
struct sigqueue *sigq; /* signal queue entry. */
};
 
 
struct io_context; /* See blkdev.h */
void exit_io_context(void);
 
struct task_struct {
volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
struct thread_info *thread_info;
atomic_t usage;
unsigned long flags; /* per process flags, defined below */
unsigned long ptrace;
 
int lock_depth; /* Lock depth */
 
int prio, static_prio;
struct list_head run_list;
prio_array_t *array;
 
unsigned long sleep_avg;
long interactive_credit;
unsigned long long timestamp;
int activated;
 
unsigned long policy;
cpumask_t cpus_allowed;
unsigned int time_slice, first_time_slice;
 
struct list_head tasks;
struct list_head ptrace_children;
struct list_head ptrace_list;
 
struct mm_struct *mm, *active_mm;
 
/* task state */
struct linux_binfmt *binfmt;
int exit_code, exit_signal;
int pdeath_signal; /* The signal sent when the parent dies */
/* ??? */
unsigned long personality;
int did_exec:1;
pid_t pid;
pid_t __pgrp; /* Accessed via process_group() */
pid_t tty_old_pgrp;
pid_t session;
pid_t tgid;
/* boolean value for session group leader */
int leader;
/*
* pointers to (original) parent process, youngest child, younger sibling,
* older sibling, respectively. (p->father can be replaced with
* p->parent->pid)
*/
struct task_struct *real_parent; /* real parent process (when being debugged) */
struct task_struct *parent; /* parent process */
struct list_head children; /* list of my children */
struct list_head sibling; /* linkage in my parent's children list */
struct task_struct *group_leader; /* threadgroup leader */
 
/* PID/PID hash table linkage. */
struct pid_link pids[PIDTYPE_MAX];
 
wait_queue_head_t wait_chldexit; /* for wait4() */
struct completion *vfork_done; /* for vfork() */
int __user *set_child_tid; /* CLONE_CHILD_SETTID */
int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
 
unsigned long rt_priority;
unsigned long it_real_value, it_prof_value, it_virt_value;
unsigned long it_real_incr, it_prof_incr, it_virt_incr;
struct timer_list real_timer;
struct list_head posix_timers; /* POSIX.1b Interval Timers */
unsigned long utime, stime, cutime, cstime;
unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; /* context switch counts */
u64 start_time;
/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
unsigned long min_flt, maj_flt, nswap, cmin_flt, cmaj_flt, cnswap;
/* process credentials */
uid_t uid,euid,suid,fsuid;
gid_t gid,egid,sgid,fsgid;
int ngroups;
gid_t groups[NGROUPS];
kernel_cap_t cap_effective, cap_inheritable, cap_permitted;
int keep_capabilities:1;
struct user_struct *user;
/* limits */
struct rlimit rlim[RLIM_NLIMITS];
unsigned short used_math;
char comm[16];
/* file system info */
int link_count, total_link_count;
struct tty_struct *tty; /* NULL if no tty */
/* ipc stuff */
struct sysv_sem sysvsem;
/* CPU-specific state of this task */
struct thread_struct thread;
/* filesystem information */
struct fs_struct *fs;
/* open file information */
struct files_struct *files;
/* namespace */
struct namespace *namespace;
/* signal handlers */
struct signal_struct *signal;
struct sighand_struct *sighand;
 
sigset_t blocked, real_blocked;
struct sigpending pending;
 
unsigned long sas_ss_sp;
size_t sas_ss_size;
int (*notifier)(void *priv);
void *notifier_data;
sigset_t *notifier_mask;
void *security;
 
/* Thread group tracking */
u32 parent_exec_id;
u32 self_exec_id;
/* Protection of (de-)allocation: mm, files, fs, tty */
spinlock_t alloc_lock;
/* Protection of proc_dentry: nesting proc_lock, dcache_lock, write_lock_irq(&tasklist_lock); */
spinlock_t proc_lock;
/* context-switch lock */
spinlock_t switch_lock;
 
/* journalling filesystem info */
void *journal_info;
 
/* VM state */
struct reclaim_state *reclaim_state;
 
struct dentry *proc_dentry;
struct backing_dev_info *backing_dev_info;
 
struct io_context *io_context;
 
unsigned long ptrace_message;
siginfo_t *last_siginfo; /* For ptrace use. */
};
 
static inline pid_t process_group(struct task_struct *tsk)
{
return tsk->group_leader->__pgrp;
}
 
extern void __put_task_struct(struct task_struct *tsk);
#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
#define put_task_struct(tsk) \
do { if (atomic_dec_and_test(&(tsk)->usage)) __put_task_struct(tsk); } while(0)
 
/*
* Per process flags
*/
#define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
/* Not implemented yet, only for 486*/
#define PF_STARTING 0x00000002 /* being created */
#define PF_EXITING 0x00000004 /* getting shut down */
#define PF_DEAD 0x00000008 /* Dead */
#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
#define PF_DUMPCORE 0x00000200 /* dumped core */
#define PF_SIGNALED 0x00000400 /* killed by a signal */
#define PF_MEMALLOC 0x00000800 /* Allocating memory */
#define PF_MEMDIE 0x00001000 /* Killed for out-of-memory */
#define PF_FLUSHER 0x00002000 /* responsible for disk writeback */
 
#define PF_FREEZE 0x00004000 /* this task should be frozen for suspend */
#define PF_IOTHREAD 0x00008000 /* this thread is needed for doing I/O to swap */
#define PF_FROZEN 0x00010000 /* frozen for system suspend */
#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
#define PF_KSWAPD 0x00040000 /* I am kswapd */
#define PF_SWAPOFF 0x00080000 /* I am in swapoff */
#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
#define PF_SYNCWRITE 0x00200000 /* I am doing a sync write */
 
#ifdef CONFIG_SMP
extern int set_cpus_allowed(task_t *p, cpumask_t new_mask);
#else
static inline int set_cpus_allowed(task_t *p, cpumask_t new_mask)
{
return 0;
}
#endif
 
extern unsigned long long sched_clock(void);
 
#ifdef CONFIG_NUMA
extern void sched_balance_exec(void);
extern void node_nr_running_init(void);
#else
#define sched_balance_exec() {}
#define node_nr_running_init() {}
#endif
 
extern void set_user_nice(task_t *p, long nice);
extern int task_prio(task_t *p);
extern int task_nice(task_t *p);
extern int task_curr(task_t *p);
extern int idle_cpu(int cpu);
 
void yield(void);
 
/*
* The default (Linux) execution domain.
*/
extern struct exec_domain default_exec_domain;
 
#ifndef INIT_THREAD_SIZE
# define INIT_THREAD_SIZE 2048*sizeof(long)
#endif
 
union thread_union {
struct thread_info thread_info;
unsigned long stack[INIT_THREAD_SIZE/sizeof(long)];
};
 
#ifndef __HAVE_ARCH_KSTACK_END
static inline int kstack_end(void *addr)
{
/* Reliable end of stack detection:
* Some APM bios versions misalign the stack
*/
return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
}
#endif
 
extern union thread_union init_thread_union;
extern struct task_struct init_task;
 
extern struct mm_struct init_mm;
 
extern struct task_struct *find_task_by_pid(int pid);
extern void set_special_pids(pid_t session, pid_t pgrp);
extern void __set_special_pids(pid_t session, pid_t pgrp);
 
/* per-UID process charging. */
extern struct user_struct * alloc_uid(uid_t);
extern void free_uid(struct user_struct *);
extern void switch_uid(struct user_struct *);
 
#include <asm/current.h>
 
extern unsigned long itimer_ticks;
extern unsigned long itimer_next;
extern void do_timer(struct pt_regs *);
 
extern int FASTCALL(wake_up_state(struct task_struct * tsk, unsigned int state));
extern int FASTCALL(wake_up_process(struct task_struct * tsk));
#ifdef CONFIG_SMP
extern void FASTCALL(kick_process(struct task_struct * tsk));
#else
static inline void kick_process(struct task_struct *tsk) { }
#endif
extern void FASTCALL(wake_up_forked_process(struct task_struct * tsk));
extern void FASTCALL(sched_exit(task_t * p));
 
asmlinkage long sys_wait4(pid_t pid,unsigned int * stat_addr, int options, struct rusage * ru);
 
extern int in_group_p(gid_t);
extern int in_egroup_p(gid_t);
 
extern void proc_caches_init(void);
extern void flush_signals(struct task_struct *);
extern void flush_signal_handlers(struct task_struct *, int force_default);
extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
 
static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
{
unsigned long flags;
int ret;
 
spin_lock_irqsave(&tsk->sighand->siglock, flags);
ret = dequeue_signal(tsk, mask, info);
spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 
return ret;
}
 
extern void block_all_signals(int (*notifier)(void *priv), void *priv,
sigset_t *mask);
extern void unblock_all_signals(void);
extern void release_task(struct task_struct * p);
extern int send_sig_info(int, struct siginfo *, struct task_struct *);
extern int send_group_sig_info(int, struct siginfo *, struct task_struct *);
extern int force_sig_info(int, struct siginfo *, struct task_struct *);
extern int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp);
extern int kill_pg_info(int, struct siginfo *, pid_t);
extern int kill_sl_info(int, struct siginfo *, pid_t);
extern int kill_proc_info(int, struct siginfo *, pid_t);
extern void notify_parent(struct task_struct *, int);
extern void do_notify_parent(struct task_struct *, int);
extern void force_sig(int, struct task_struct *);
extern void force_sig_specific(int, struct task_struct *);
extern int send_sig(int, struct task_struct *, int);
extern void zap_other_threads(struct task_struct *p);
extern int kill_pg(pid_t, int, int);
extern int kill_sl(pid_t, int, int);
extern int kill_proc(pid_t, int, int);
extern struct sigqueue *sigqueue_alloc(void);
extern void sigqueue_free(struct sigqueue *);
extern int send_sigqueue(int, struct sigqueue *, struct task_struct *);
extern int send_group_sigqueue(int, struct sigqueue *, struct task_struct *);
extern int do_sigaction(int, const struct k_sigaction *, struct k_sigaction *);
extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
 
/* These can be the second arg to send_sig_info/send_group_sig_info. */
#define SEND_SIG_NOINFO ((struct siginfo *) 0)
#define SEND_SIG_PRIV ((struct siginfo *) 1)
#define SEND_SIG_FORCED ((struct siginfo *) 2)
 
/* True if we are on the alternate signal stack. */
 
static inline int on_sig_stack(unsigned long sp)
{
return (sp - current->sas_ss_sp < current->sas_ss_size);
}
 
static inline int sas_ss_flags(unsigned long sp)
{
return (current->sas_ss_size == 0 ? SS_DISABLE
: on_sig_stack(sp) ? SS_ONSTACK : 0);
}
 
 
#ifdef CONFIG_SECURITY
/* code is in security.c */
extern int capable(int cap);
#else
static inline int capable(int cap)
{
if (cap_raised(current->cap_effective, cap)) {
current->flags |= PF_SUPERPRIV;
return 1;
}
return 0;
}
#endif
 
/*
* Routines for handling mm_structs
*/
extern struct mm_struct * mm_alloc(void);
 
/* mmdrop drops the mm and the page tables */
extern inline void FASTCALL(__mmdrop(struct mm_struct *));
static inline void mmdrop(struct mm_struct * mm)
{
if (atomic_dec_and_test(&mm->mm_count))
__mmdrop(mm);
}
 
/* mmput gets rid of the mappings and all user-space */
extern void mmput(struct mm_struct *);
/* Grab a reference to the mm if its not already going away */
extern struct mm_struct *mmgrab(struct mm_struct *);
/* Remove the current tasks stale references to the old mm_struct */
extern void mm_release(struct task_struct *, struct mm_struct *);
 
extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
extern void flush_thread(void);
extern void exit_thread(void);
 
extern void exit_mm(struct task_struct *);
extern void exit_files(struct task_struct *);
extern void exit_signal(struct task_struct *);
extern void __exit_signal(struct task_struct *);
extern void exit_sighand(struct task_struct *);
extern void __exit_sighand(struct task_struct *);
extern void exit_itimers(struct task_struct *);
 
extern NORET_TYPE void do_group_exit(int);
 
extern void reparent_to_init(void);
extern void daemonize(const char *, ...);
extern int allow_signal(int);
extern int disallow_signal(int);
extern task_t *child_reaper;
 
extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
extern struct task_struct * copy_process(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
 
#ifdef CONFIG_SMP
extern void wait_task_inactive(task_t * p);
#else
#define wait_task_inactive(p) do { } while (0)
#endif
 
#define remove_parent(p) list_del_init(&(p)->sibling)
#define add_parent(p, parent) list_add_tail(&(p)->sibling,&(parent)->children)
 
#define REMOVE_LINKS(p) do { \
if (thread_group_leader(p)) \
list_del_init(&(p)->tasks); \
remove_parent(p); \
} while (0)
 
#define SET_LINKS(p) do { \
if (thread_group_leader(p)) \
list_add_tail(&(p)->tasks,&init_task.tasks); \
add_parent(p, (p)->parent); \
} while (0)
 
#define next_task(p) list_entry((p)->tasks.next, struct task_struct, tasks)
#define prev_task(p) list_entry((p)->tasks.prev, struct task_struct, tasks)
 
#define for_each_process(p) \
for (p = &init_task ; (p = next_task(p)) != &init_task ; )
 
/*
* Careful: do_each_thread/while_each_thread is a double loop so
* 'break' will not work as expected - use goto instead.
*/
#define do_each_thread(g, t) \
for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
 
#define while_each_thread(g, t) \
while ((t = next_thread(t)) != g)
 
extern task_t * FASTCALL(next_thread(task_t *p));
 
#define thread_group_leader(p) (p->pid == p->tgid)
 
static inline int thread_group_empty(task_t *p)
{
struct pid *pid = p->pids[PIDTYPE_TGID].pidptr;
 
return pid->task_list.next->next == &pid->task_list;
}
 
#define delay_group_leader(p) \
(thread_group_leader(p) && !thread_group_empty(p))
 
extern void unhash_process(struct task_struct *p);
 
/* Protects ->fs, ->files, ->mm, and synchronises with wait4().
* Nests both inside and outside of read_lock(&tasklist_lock).
* It must not be nested with write_lock_irq(&tasklist_lock),
* neither inside nor outside.
*/
static inline void task_lock(struct task_struct *p)
{
spin_lock(&p->alloc_lock);
}
 
static inline void task_unlock(struct task_struct *p)
{
spin_unlock(&p->alloc_lock);
}
/**
* get_task_mm - acquire a reference to the task's mm
*
* Returns %NULL if the task has no mm. User must release
* the mm via mmput() after use.
*/
static inline struct mm_struct * get_task_mm(struct task_struct * task)
{
struct mm_struct * mm;
task_lock(task);
mm = task->mm;
if (mm)
mm = mmgrab(mm);
task_unlock(task);
 
return mm;
}
/* set thread flags in other task's structures
* - see asm/thread_info.h for TIF_xxxx flags available
*/
static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
{
set_ti_thread_flag(tsk->thread_info,flag);
}
 
static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
{
clear_ti_thread_flag(tsk->thread_info,flag);
}
 
static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
{
return test_and_set_ti_thread_flag(tsk->thread_info,flag);
}
 
static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
{
return test_and_clear_ti_thread_flag(tsk->thread_info,flag);
}
 
static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
{
return test_ti_thread_flag(tsk->thread_info,flag);
}
 
static inline void set_tsk_need_resched(struct task_struct *tsk)
{
set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
}
 
static inline void clear_tsk_need_resched(struct task_struct *tsk)
{
clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
}
 
static inline int signal_pending(struct task_struct *p)
{
return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
}
static inline int need_resched(void)
{
return unlikely(test_thread_flag(TIF_NEED_RESCHED));
}
 
extern void __cond_resched(void);
static inline void cond_resched(void)
{
if (need_resched())
__cond_resched();
}
 
/*
* cond_resched_lock() - if a reschedule is pending, drop the given lock,
* call schedule, and on return reacquire the lock.
*
* This works OK both with and without CONFIG_PREEMPT. We do strange low-level
* operations here to prevent schedule() from being called twice (once via
* spin_unlock(), once by hand).
*/
static inline void cond_resched_lock(spinlock_t * lock)
{
if (need_resched()) {
_raw_spin_unlock(lock);
preempt_enable_no_resched();
__cond_resched();
spin_lock(lock);
}
}
 
/* Reevaluate whether the task has signals pending delivery.
This is required every time the blocked sigset_t changes.
callers must hold sighand->siglock. */
 
extern FASTCALL(void recalc_sigpending_tsk(struct task_struct *t));
extern void recalc_sigpending(void);
 
extern void signal_wake_up(struct task_struct *t, int resume_stopped);
 
/*
* Wrappers for p->thread_info->cpu access. No-op on UP.
*/
#ifdef CONFIG_SMP
 
static inline unsigned int task_cpu(struct task_struct *p)
{
return p->thread_info->cpu;
}
 
static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
{
p->thread_info->cpu = cpu;
}
 
#else
 
static inline unsigned int task_cpu(struct task_struct *p)
{
return 0;
}
 
static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
{
}
 
#endif /* CONFIG_SMP */
 
#endif /* __KERNEL__ */
 
#endif
#ifndef _LINUX_SCHED_H
#define _LINUX_SCHED_H
 
#include <asm/param.h> /* for HZ */
 
#include <linux/config.h>
#include <linux/capability.h>
#include <linux/threads.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/timex.h>
#include <linux/jiffies.h>
#include <linux/rbtree.h>
#include <linux/thread_info.h>
#include <linux/cpumask.h>
 
#include <asm/system.h>
#include <asm/semaphore.h>
#include <asm/page.h>
#include <asm/ptrace.h>
#include <asm/mmu.h>
 
#include <linux/smp.h>
#include <linux/sem.h>
#include <linux/signal.h>
#include <linux/securebits.h>
#include <linux/fs_struct.h>
#include <linux/compiler.h>
#include <linux/completion.h>
#include <linux/pid.h>
#include <linux/percpu.h>
 
struct exec_domain;
 
/*
* cloning flags:
*/
#define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
#define CLONE_VM 0x00000100 /* set if VM shared between processes */
#define CLONE_FS 0x00000200 /* set if fs info shared between processes */
#define CLONE_FILES 0x00000400 /* set if open files shared between processes */
#define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
#define CLONE_IDLETASK 0x00001000 /* set if new pid should be 0 (kernel only)*/
#define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
#define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
#define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
#define CLONE_THREAD 0x00010000 /* Same thread group? */
#define CLONE_NEWNS 0x00020000 /* New namespace group? */
#define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
#define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
#define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
#define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
#define CLONE_DETACHED 0x00400000 /* Not used - CLONE_THREAD implies detached uniquely */
#define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
#define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
#define CLONE_STOPPED 0x02000000 /* Start in stopped state */
 
/*
* List of flags we want to share for kernel threads,
* if only because they are not used by them anyway.
*/
#define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
 
/*
* These are the constant used to fake the fixed-point load-average
* counting. Some notes:
* - 11 bit fractions expand to 22 bits by the multiplies: this gives
* a load-average precision of 10 bits integer + 11 bits fractional
* - if you want to count load-averages more often, you need more
* precision, or rounding will get you. With 2-second counting freq,
* the EXP_n values would be 1981, 2034 and 2043 if still using only
* 11 bit fractions.
*/
extern unsigned long avenrun[]; /* Load averages */
 
#define FSHIFT 11 /* nr of bits of precision */
#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
#define LOAD_FREQ (5*HZ) /* 5 sec intervals */
#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
#define EXP_5 2014 /* 1/exp(5sec/5min) */
#define EXP_15 2037 /* 1/exp(5sec/15min) */
 
#define CALC_LOAD(load,exp,n) \
load *= exp; \
load += n*(FIXED_1-exp); \
load >>= FSHIFT;
 
#define CT_TO_SECS(x) ((x) / HZ)
#define CT_TO_USECS(x) (((x) % HZ) * 1000000/HZ)
 
extern int nr_threads;
extern int last_pid;
DECLARE_PER_CPU(unsigned long, process_counts);
extern int nr_processes(void);
extern unsigned long nr_running(void);
extern unsigned long nr_uninterruptible(void);
extern unsigned long nr_iowait(void);
 
#include <linux/time.h>
#include <linux/param.h>
#include <linux/resource.h>
#include <linux/timer.h>
 
#include <asm/processor.h>
 
#define TASK_RUNNING 0
#define TASK_INTERRUPTIBLE 1
#define TASK_UNINTERRUPTIBLE 2
#define TASK_STOPPED 4
#define TASK_ZOMBIE 8
#define TASK_DEAD 16
 
#define __set_task_state(tsk, state_value) \
do { (tsk)->state = (state_value); } while (0)
#define set_task_state(tsk, state_value) \
set_mb((tsk)->state, (state_value))
 
#define __set_current_state(state_value) \
do { current->state = (state_value); } while (0)
#define set_current_state(state_value) \
set_mb(current->state, (state_value))
 
/*
* Scheduling policies
*/
#define SCHED_NORMAL 0
#define SCHED_FIFO 1
#define SCHED_RR 2
 
struct sched_param {
int sched_priority;
};
 
#ifdef __KERNEL__
 
#include <linux/spinlock.h>
 
/*
* This serializes "schedule()" and also protects
* the run-queue from deletions/modifications (but
* _adding_ to the beginning of the run-queue has
* a separate lock).
*/
extern rwlock_t tasklist_lock;
extern spinlock_t mmlist_lock;
 
typedef struct task_struct task_t;
 
extern void sched_init(void);
extern void init_idle(task_t *idle, int cpu);
 
extern void show_state(void);
extern void show_regs(struct pt_regs *);
 
/*
* TASK is a pointer to the task whose backtrace we want to see (or NULL for current
* task), SP is the stack pointer of the first frame that should be shown in the back
* trace (or NULL if the entire call-chain of the task should be shown).
*/
extern void show_stack(struct task_struct *task, unsigned long *sp);
 
void io_schedule(void);
long io_schedule_timeout(long timeout);
 
extern void cpu_init (void);
extern void trap_init(void);
extern void update_process_times(int user);
extern void update_one_process(struct task_struct *p, unsigned long user,
unsigned long system, int cpu);
extern void scheduler_tick(int user_tick, int system);
extern unsigned long cache_decay_ticks;
 
 
#define MAX_SCHEDULE_TIMEOUT LONG_MAX
extern signed long FASTCALL(schedule_timeout(signed long timeout));
asmlinkage void schedule(void);
 
struct namespace;
 
/* Maximum number of active map areas.. This is a random (large) number */
#define MAX_MAP_COUNT (65536)
 
#include <linux/aio.h>
 
struct mm_struct {
struct vm_area_struct * mmap; /* list of VMAs */
struct rb_root mm_rb;
struct vm_area_struct * mmap_cache; /* last find_vma result */
unsigned long free_area_cache; /* first hole */
pgd_t * pgd;
atomic_t mm_users; /* How many users with user space? */
atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */
int map_count; /* number of VMAs */
struct rw_semaphore mmap_sem;
spinlock_t page_table_lock; /* Protects task page tables and mm->rss */
 
struct list_head mmlist; /* List of all active mm's. These are globally strung
* together off init_mm.mmlist, and are protected
* by mmlist_lock
*/
 
unsigned long start_code, end_code, start_data, end_data;
unsigned long start_brk, brk, start_stack;
unsigned long arg_start, arg_end, env_start, env_end;
unsigned long rss, total_vm, locked_vm;
unsigned long def_flags;
cpumask_t cpu_vm_mask;
unsigned long swap_address;
 
unsigned long saved_auxv[40]; /* for /proc/PID/auxv */
 
unsigned dumpable:1;
#ifdef CONFIG_HUGETLB_PAGE
int used_hugetlb;
#endif
/* Architecture-specific MM context */
mm_context_t context;
 
/* coredumping support */
int core_waiters;
struct completion *core_startup_done, core_done;
 
/* aio bits */
rwlock_t ioctx_list_lock;
struct kioctx *ioctx_list;
 
struct kioctx default_kioctx;
};
 
extern int mmlist_nr;
 
struct sighand_struct {
atomic_t count;
struct k_sigaction action[_NSIG];
spinlock_t siglock;
};
 
/*
* NOTE! "signal_struct" does not have it's own
* locking, because a shared signal_struct always
* implies a shared sighand_struct, so locking
* sighand_struct is always a proper superset of
* the locking of signal_struct.
*/
struct signal_struct {
atomic_t count;
 
/* current thread group signal load-balancing target: */
task_t *curr_target;
 
/* shared signal handling: */
struct sigpending shared_pending;
 
/* thread group exit support */
int group_exit;
int group_exit_code;
/* overloaded:
* - notify group_exit_task when ->count is equal to notify_count
* - everyone except group_exit_task is stopped during signal delivery
* of fatal signals, group_exit_task processes the signal.
*/
struct task_struct *group_exit_task;
int notify_count;
 
/* thread group stop support, overloads group_exit_code too */
int group_stop_count;
};
 
/*
* Priority of a process goes from 0..MAX_PRIO-1, valid RT
* priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL tasks are
* in the range MAX_RT_PRIO..MAX_PRIO-1. Priority values
* are inverted: lower p->prio value means higher priority.
*
* The MAX_RT_USER_PRIO value allows the actual maximum
* RT priority to be separate from the value exported to
* user-space. This allows kernel threads to set their
* priority to a value higher than any user task. Note:
* MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
*/
 
#define MAX_USER_RT_PRIO 100
#define MAX_RT_PRIO MAX_USER_RT_PRIO
 
#define MAX_PRIO (MAX_RT_PRIO + 40)
 
#define rt_task(p) ((p)->prio < MAX_RT_PRIO)
 
/*
* Some day this will be a full-fledged user tracking system..
*/
struct user_struct {
atomic_t __count; /* reference count */
atomic_t processes; /* How many processes does this user have? */
atomic_t files; /* How many open files does this user have? */
 
/* Hash table maintenance information */
struct list_head uidhash_list;
uid_t uid;
};
 
extern struct user_struct *find_user(uid_t);
 
extern struct user_struct root_user;
#define INIT_USER (&root_user)
 
typedef struct prio_array prio_array_t;
struct backing_dev_info;
struct reclaim_state;
 
/* POSIX.1b interval timer structure. */
struct k_itimer {
struct list_head list; /* free/ allocate list */
spinlock_t it_lock;
clockid_t it_clock; /* which timer type */
timer_t it_id; /* timer id */
int it_overrun; /* overrun on pending signal */
int it_overrun_last; /* overrun on last delivered signal */
int it_requeue_pending; /* waiting to requeue this timer */
int it_sigev_notify; /* notify word of sigevent struct */
int it_sigev_signo; /* signo word of sigevent struct */
sigval_t it_sigev_value; /* value word of sigevent struct */
unsigned long it_incr; /* interval specified in jiffies */
struct task_struct *it_process; /* process to send signal to */
struct timer_list it_timer;
struct sigqueue *sigq; /* signal queue entry. */
};
 
 
struct io_context; /* See blkdev.h */
void exit_io_context(void);
 
struct task_struct {
volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
struct thread_info *thread_info;
atomic_t usage;
unsigned long flags; /* per process flags, defined below */
unsigned long ptrace;
 
int lock_depth; /* Lock depth */
 
int prio, static_prio;
struct list_head run_list;
prio_array_t *array;
 
unsigned long sleep_avg;
long interactive_credit;
unsigned long long timestamp;
int activated;
 
unsigned long policy;
cpumask_t cpus_allowed;
unsigned int time_slice, first_time_slice;
 
struct list_head tasks;
struct list_head ptrace_children;
struct list_head ptrace_list;
 
struct mm_struct *mm, *active_mm;
 
/* task state */
struct linux_binfmt *binfmt;
int exit_code, exit_signal;
int pdeath_signal; /* The signal sent when the parent dies */
/* ??? */
unsigned long personality;
int did_exec:1;
pid_t pid;
pid_t __pgrp; /* Accessed via process_group() */
pid_t tty_old_pgrp;
pid_t session;
pid_t tgid;
/* boolean value for session group leader */
int leader;
/*
* pointers to (original) parent process, youngest child, younger sibling,
* older sibling, respectively. (p->father can be replaced with
* p->parent->pid)
*/
struct task_struct *real_parent; /* real parent process (when being debugged) */
struct task_struct *parent; /* parent process */
struct list_head children; /* list of my children */
struct list_head sibling; /* linkage in my parent's children list */
struct task_struct *group_leader; /* threadgroup leader */
 
/* PID/PID hash table linkage. */
struct pid_link pids[PIDTYPE_MAX];
 
wait_queue_head_t wait_chldexit; /* for wait4() */
struct completion *vfork_done; /* for vfork() */
int __user *set_child_tid; /* CLONE_CHILD_SETTID */
int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
 
unsigned long rt_priority;
unsigned long it_real_value, it_prof_value, it_virt_value;
unsigned long it_real_incr, it_prof_incr, it_virt_incr;
struct timer_list real_timer;
struct list_head posix_timers; /* POSIX.1b Interval Timers */
unsigned long utime, stime, cutime, cstime;
unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; /* context switch counts */
u64 start_time;
/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
unsigned long min_flt, maj_flt, nswap, cmin_flt, cmaj_flt, cnswap;
/* process credentials */
uid_t uid,euid,suid,fsuid;
gid_t gid,egid,sgid,fsgid;
int ngroups;
gid_t groups[NGROUPS];
kernel_cap_t cap_effective, cap_inheritable, cap_permitted;
int keep_capabilities:1;
struct user_struct *user;
/* limits */
struct rlimit rlim[RLIM_NLIMITS];
unsigned short used_math;
char comm[16];
/* file system info */
int link_count, total_link_count;
struct tty_struct *tty; /* NULL if no tty */
/* ipc stuff */
struct sysv_sem sysvsem;
/* CPU-specific state of this task */
struct thread_struct thread;
/* filesystem information */
struct fs_struct *fs;
/* open file information */
struct files_struct *files;
/* namespace */
struct namespace *namespace;
/* signal handlers */
struct signal_struct *signal;
struct sighand_struct *sighand;
 
sigset_t blocked, real_blocked;
struct sigpending pending;
 
unsigned long sas_ss_sp;
size_t sas_ss_size;
int (*notifier)(void *priv);
void *notifier_data;
sigset_t *notifier_mask;
void *security;
 
/* Thread group tracking */
u32 parent_exec_id;
u32 self_exec_id;
/* Protection of (de-)allocation: mm, files, fs, tty */
spinlock_t alloc_lock;
/* Protection of proc_dentry: nesting proc_lock, dcache_lock, write_lock_irq(&tasklist_lock); */
spinlock_t proc_lock;
/* context-switch lock */
spinlock_t switch_lock;
 
/* journalling filesystem info */
void *journal_info;
 
/* VM state */
struct reclaim_state *reclaim_state;
 
struct dentry *proc_dentry;
struct backing_dev_info *backing_dev_info;
 
struct io_context *io_context;
 
unsigned long ptrace_message;
siginfo_t *last_siginfo; /* For ptrace use. */
};
 
static inline pid_t process_group(struct task_struct *tsk)
{
return tsk->group_leader->__pgrp;
}
 
extern void __put_task_struct(struct task_struct *tsk);
#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
#define put_task_struct(tsk) \
do { if (atomic_dec_and_test(&(tsk)->usage)) __put_task_struct(tsk); } while(0)
 
/*
* Per process flags
*/
#define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
/* Not implemented yet, only for 486*/
#define PF_STARTING 0x00000002 /* being created */
#define PF_EXITING 0x00000004 /* getting shut down */
#define PF_DEAD 0x00000008 /* Dead */
#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
#define PF_DUMPCORE 0x00000200 /* dumped core */
#define PF_SIGNALED 0x00000400 /* killed by a signal */
#define PF_MEMALLOC 0x00000800 /* Allocating memory */
#define PF_MEMDIE 0x00001000 /* Killed for out-of-memory */
#define PF_FLUSHER 0x00002000 /* responsible for disk writeback */
 
#define PF_FREEZE 0x00004000 /* this task should be frozen for suspend */
#define PF_IOTHREAD 0x00008000 /* this thread is needed for doing I/O to swap */
#define PF_FROZEN 0x00010000 /* frozen for system suspend */
#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
#define PF_KSWAPD 0x00040000 /* I am kswapd */
#define PF_SWAPOFF 0x00080000 /* I am in swapoff */
#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
#define PF_SYNCWRITE 0x00200000 /* I am doing a sync write */
 
#ifdef CONFIG_SMP
extern int set_cpus_allowed(task_t *p, cpumask_t new_mask);
#else
static inline int set_cpus_allowed(task_t *p, cpumask_t new_mask)
{
return 0;
}
#endif
 
extern unsigned long long sched_clock(void);
 
#ifdef CONFIG_NUMA
extern void sched_balance_exec(void);
extern void node_nr_running_init(void);
#else
#define sched_balance_exec() {}
#define node_nr_running_init() {}
#endif
 
extern void set_user_nice(task_t *p, long nice);
extern int task_prio(task_t *p);
extern int task_nice(task_t *p);
extern int task_curr(task_t *p);
extern int idle_cpu(int cpu);
 
void yield(void);
 
/*
* The default (Linux) execution domain.
*/
extern struct exec_domain default_exec_domain;
 
#ifndef INIT_THREAD_SIZE
# define INIT_THREAD_SIZE 2048*sizeof(long)
#endif
 
union thread_union {
struct thread_info thread_info;
unsigned long stack[INIT_THREAD_SIZE/sizeof(long)];
};
 
#ifndef __HAVE_ARCH_KSTACK_END
static inline int kstack_end(void *addr)
{
/* Reliable end of stack detection:
* Some APM bios versions misalign the stack
*/
return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
}
#endif
 
extern union thread_union init_thread_union;
extern struct task_struct init_task;
 
extern struct mm_struct init_mm;
 
extern struct task_struct *find_task_by_pid(int pid);
extern void set_special_pids(pid_t session, pid_t pgrp);
extern void __set_special_pids(pid_t session, pid_t pgrp);
 
/* per-UID process charging. */
extern struct user_struct * alloc_uid(uid_t);
extern void free_uid(struct user_struct *);
extern void switch_uid(struct user_struct *);
 
#include <asm/current.h>
 
extern unsigned long itimer_ticks;
extern unsigned long itimer_next;
extern void do_timer(struct pt_regs *);
 
extern int FASTCALL(wake_up_state(struct task_struct * tsk, unsigned int state));
extern int FASTCALL(wake_up_process(struct task_struct * tsk));
#ifdef CONFIG_SMP
extern void FASTCALL(kick_process(struct task_struct * tsk));
#else
static inline void kick_process(struct task_struct *tsk) { }
#endif
extern void FASTCALL(wake_up_forked_process(struct task_struct * tsk));
extern void FASTCALL(sched_exit(task_t * p));
 
asmlinkage long sys_wait4(pid_t pid,unsigned int * stat_addr, int options, struct rusage * ru);
 
extern int in_group_p(gid_t);
extern int in_egroup_p(gid_t);
 
extern void proc_caches_init(void);
extern void flush_signals(struct task_struct *);
extern void flush_signal_handlers(struct task_struct *, int force_default);
extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
 
static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
{
unsigned long flags;
int ret;
 
spin_lock_irqsave(&tsk->sighand->siglock, flags);
ret = dequeue_signal(tsk, mask, info);
spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 
return ret;
}
 
extern void block_all_signals(int (*notifier)(void *priv), void *priv,
sigset_t *mask);
extern void unblock_all_signals(void);
extern void release_task(struct task_struct * p);
extern int send_sig_info(int, struct siginfo *, struct task_struct *);
extern int send_group_sig_info(int, struct siginfo *, struct task_struct *);
extern int force_sig_info(int, struct siginfo *, struct task_struct *);
extern int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp);
extern int kill_pg_info(int, struct siginfo *, pid_t);
extern int kill_sl_info(int, struct siginfo *, pid_t);
extern int kill_proc_info(int, struct siginfo *, pid_t);
extern void notify_parent(struct task_struct *, int);
extern void do_notify_parent(struct task_struct *, int);
extern void force_sig(int, struct task_struct *);
extern void force_sig_specific(int, struct task_struct *);
extern int send_sig(int, struct task_struct *, int);
extern void zap_other_threads(struct task_struct *p);
extern int kill_pg(pid_t, int, int);
extern int kill_sl(pid_t, int, int);
extern int kill_proc(pid_t, int, int);
extern struct sigqueue *sigqueue_alloc(void);
extern void sigqueue_free(struct sigqueue *);
extern int send_sigqueue(int, struct sigqueue *, struct task_struct *);
extern int send_group_sigqueue(int, struct sigqueue *, struct task_struct *);
extern int do_sigaction(int, const struct k_sigaction *, struct k_sigaction *);
extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
 
/* These can be the second arg to send_sig_info/send_group_sig_info. */
#define SEND_SIG_NOINFO ((struct siginfo *) 0)
#define SEND_SIG_PRIV ((struct siginfo *) 1)
#define SEND_SIG_FORCED ((struct siginfo *) 2)
 
/* True if we are on the alternate signal stack. */
 
static inline int on_sig_stack(unsigned long sp)
{
return (sp - current->sas_ss_sp < current->sas_ss_size);
}
 
static inline int sas_ss_flags(unsigned long sp)
{
return (current->sas_ss_size == 0 ? SS_DISABLE
: on_sig_stack(sp) ? SS_ONSTACK : 0);
}
 
 
#ifdef CONFIG_SECURITY
/* code is in security.c */
extern int capable(int cap);
#else
static inline int capable(int cap)
{
if (cap_raised(current->cap_effective, cap)) {
current->flags |= PF_SUPERPRIV;
return 1;
}
return 0;
}
#endif
 
/*
* Routines for handling mm_structs
*/
extern struct mm_struct * mm_alloc(void);
 
/* mmdrop drops the mm and the page tables */
extern inline void FASTCALL(__mmdrop(struct mm_struct *));
static inline void mmdrop(struct mm_struct * mm)
{
if (atomic_dec_and_test(&mm->mm_count))
__mmdrop(mm);
}
 
/* mmput gets rid of the mappings and all user-space */
extern void mmput(struct mm_struct *);
/* Grab a reference to the mm if its not already going away */
extern struct mm_struct *mmgrab(struct mm_struct *);
/* Remove the current tasks stale references to the old mm_struct */
extern void mm_release(struct task_struct *, struct mm_struct *);
 
extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
extern void flush_thread(void);
extern void exit_thread(void);
 
extern void exit_mm(struct task_struct *);
extern void exit_files(struct task_struct *);
extern void exit_signal(struct task_struct *);
extern void __exit_signal(struct task_struct *);
extern void exit_sighand(struct task_struct *);
extern void __exit_sighand(struct task_struct *);
extern void exit_itimers(struct task_struct *);
 
extern NORET_TYPE void do_group_exit(int);
 
extern void reparent_to_init(void);
extern void daemonize(const char *, ...);
extern int allow_signal(int);
extern int disallow_signal(int);
extern task_t *child_reaper;
 
extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
extern struct task_struct * copy_process(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
 
#ifdef CONFIG_SMP
extern void wait_task_inactive(task_t * p);
#else
#define wait_task_inactive(p) do { } while (0)
#endif
 
#define remove_parent(p) list_del_init(&(p)->sibling)
#define add_parent(p, parent) list_add_tail(&(p)->sibling,&(parent)->children)
 
#define REMOVE_LINKS(p) do { \
if (thread_group_leader(p)) \
list_del_init(&(p)->tasks); \
remove_parent(p); \
} while (0)
 
#define SET_LINKS(p) do { \
if (thread_group_leader(p)) \
list_add_tail(&(p)->tasks,&init_task.tasks); \
add_parent(p, (p)->parent); \
} while (0)
 
#define next_task(p) list_entry((p)->tasks.next, struct task_struct, tasks)
#define prev_task(p) list_entry((p)->tasks.prev, struct task_struct, tasks)
 
#define for_each_process(p) \
for (p = &init_task ; (p = next_task(p)) != &init_task ; )
 
/*
* Careful: do_each_thread/while_each_thread is a double loop so
* 'break' will not work as expected - use goto instead.
*/
#define do_each_thread(g, t) \
for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
 
#define while_each_thread(g, t) \
while ((t = next_thread(t)) != g)
 
extern task_t * FASTCALL(next_thread(task_t *p));
 
#define thread_group_leader(p) (p->pid == p->tgid)
 
static inline int thread_group_empty(task_t *p)
{
struct pid *pid = p->pids[PIDTYPE_TGID].pidptr;
 
return pid->task_list.next->next == &pid->task_list;
}
 
#define delay_group_leader(p) \
(thread_group_leader(p) && !thread_group_empty(p))
 
extern void unhash_process(struct task_struct *p);
 
/* Protects ->fs, ->files, ->mm, and synchronises with wait4().
* Nests both inside and outside of read_lock(&tasklist_lock).
* It must not be nested with write_lock_irq(&tasklist_lock),
* neither inside nor outside.
*/
static inline void task_lock(struct task_struct *p)
{
spin_lock(&p->alloc_lock);
}
 
static inline void task_unlock(struct task_struct *p)
{
spin_unlock(&p->alloc_lock);
}
/**
* get_task_mm - acquire a reference to the task's mm
*
* Returns %NULL if the task has no mm. User must release
* the mm via mmput() after use.
*/
static inline struct mm_struct * get_task_mm(struct task_struct * task)
{
struct mm_struct * mm;
task_lock(task);
mm = task->mm;
if (mm)
mm = mmgrab(mm);
task_unlock(task);
 
return mm;
}
/* set thread flags in other task's structures
* - see asm/thread_info.h for TIF_xxxx flags available
*/
static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
{
set_ti_thread_flag(tsk->thread_info,flag);
}
 
static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
{
clear_ti_thread_flag(tsk->thread_info,flag);
}
 
static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
{
return test_and_set_ti_thread_flag(tsk->thread_info,flag);
}
 
static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
{
return test_and_clear_ti_thread_flag(tsk->thread_info,flag);
}
 
static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
{
return test_ti_thread_flag(tsk->thread_info,flag);
}
 
static inline void set_tsk_need_resched(struct task_struct *tsk)
{
set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
}
 
static inline void clear_tsk_need_resched(struct task_struct *tsk)
{
clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
}
 
static inline int signal_pending(struct task_struct *p)
{
return 0; //**unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
}
static inline int need_resched(void)
{
return unlikely(test_thread_flag(TIF_NEED_RESCHED));
}
 
extern void __cond_resched(void);
static inline void cond_resched(void)
{
if (need_resched())
__cond_resched();
}
 
/*
* cond_resched_lock() - if a reschedule is pending, drop the given lock,
* call schedule, and on return reacquire the lock.
*
* This works OK both with and without CONFIG_PREEMPT. We do strange low-level
* operations here to prevent schedule() from being called twice (once via
* spin_unlock(), once by hand).
*/
static inline void cond_resched_lock(spinlock_t * lock)
{
if (need_resched()) {
_raw_spin_unlock(lock);
preempt_enable_no_resched();
__cond_resched();
spin_lock(lock);
}
}
 
/* Reevaluate whether the task has signals pending delivery.
This is required every time the blocked sigset_t changes.
callers must hold sighand->siglock. */
 
extern FASTCALL(void recalc_sigpending_tsk(struct task_struct *t));
extern void recalc_sigpending(void);
 
extern void signal_wake_up(struct task_struct *t, int resume_stopped);
 
/*
* Wrappers for p->thread_info->cpu access. No-op on UP.
*/
#ifdef CONFIG_SMP
 
static inline unsigned int task_cpu(struct task_struct *p)
{
return p->thread_info->cpu;
}
 
static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
{
p->thread_info->cpu = cpu;
}
 
#else
 
static inline unsigned int task_cpu(struct task_struct *p)
{
return 0;
}
 
static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
{
}
 
#endif /* CONFIG_SMP */
 
#endif /* __KERNEL__ */
 
#endif