Subversion Repositories shark

Compare Revisions

Ignore whitespace Rev 133 → Rev 134

/shark/trunk/ports/mesa/src/math/m_debug_xform.c
File deleted
/shark/trunk/ports/mesa/src/math/m_xform_tmp.h
File deleted
/shark/trunk/ports/mesa/src/math/m_debug_norm.c
File deleted
/shark/trunk/ports/mesa/src/math/m_debug_clip.c
File deleted
/shark/trunk/ports/mesa/src/math/m_xform.c
1,4 → 1,4
/* $Id: m_xform.c,v 1.2 2003-03-13 12:20:29 giacomo Exp $ */
/* $Id: m_xform.c,v 1.3 2003-04-24 13:37:47 giacomo Exp $ */
 
/*
* Mesa 3-D graphics library
81,7 → 81,7
#define STRIDE_LOOP for ( i = 0 ; i < count ; i++, STRIDE_F(from, stride) )
#define LOOP for ( i = 0 ; i < n ; i++ )
#define ARGS
#include "m_xform_tmp.h"
#include "m_tmp_xform.h"
#include "m_clip_tmp.h"
#include "m_norm_tmp.h"
#include "m_dotprod_tmp.h"
/shark/trunk/ports/mesa/src/math/m_clip_debug.c
0,0 → 1,367
/* $Id: m_clip_debug.c,v 1.1 2003-04-24 13:37:46 giacomo Exp $ */
 
/*
* Mesa 3-D graphics library
* Version: 5.0
*
* Copyright (C) 1999-2001 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* Authors:
* Gareth Hughes
*/
 
#include "glheader.h"
#include "context.h"
#include "macros.h"
#include "imports.h"
 
#include "m_matrix.h"
#include "m_xform.h"
 
#include "m_debug.h"
#include "m_debug_util.h"
 
#ifdef DEBUG /* This code only used for debugging */
 
static clip_func *clip_tab[2] = {
_mesa_clip_tab,
_mesa_clip_np_tab
};
static char *cnames[2] = {
"_mesa_clip_tab",
"_mesa_clip_np_tab"
};
#ifdef RUN_DEBUG_BENCHMARK
static char *cstrings[2] = {
"clip, perspective divide",
"clip, no divide"
};
#endif
 
 
/* =============================================================
* Reference cliptests
*/
 
static GLvector4f *ref_cliptest_points4( GLvector4f *clip_vec,
GLvector4f *proj_vec,
GLubyte clipMask[],
GLubyte *orMask,
GLubyte *andMask )
{
const GLuint stride = clip_vec->stride;
const GLuint count = clip_vec->count;
const GLfloat *from = (GLfloat *)clip_vec->start;
GLuint c = 0;
GLfloat (*vProj)[4] = (GLfloat (*)[4])proj_vec->start;
GLubyte tmpAndMask = *andMask;
GLubyte tmpOrMask = *orMask;
GLuint i;
for ( i = 0 ; i < count ; i++, STRIDE_F(from, stride) ) {
const GLfloat cx = from[0];
const GLfloat cy = from[1];
const GLfloat cz = from[2];
const GLfloat cw = from[3];
GLubyte mask = 0;
if ( -cx + cw < 0 ) mask |= CLIP_RIGHT_BIT;
if ( cx + cw < 0 ) mask |= CLIP_LEFT_BIT;
if ( -cy + cw < 0 ) mask |= CLIP_TOP_BIT;
if ( cy + cw < 0 ) mask |= CLIP_BOTTOM_BIT;
if ( -cz + cw < 0 ) mask |= CLIP_FAR_BIT;
if ( cz + cw < 0 ) mask |= CLIP_NEAR_BIT;
clipMask[i] = mask;
if ( mask ) {
c++;
tmpAndMask &= mask;
tmpOrMask |= mask;
vProj[i][0] = 0;
vProj[i][1] = 0;
vProj[i][2] = 0;
vProj[i][3] = 1;
} else {
GLfloat oow = 1.0F / cw;
vProj[i][0] = cx * oow;
vProj[i][1] = cy * oow;
vProj[i][2] = cz * oow;
vProj[i][3] = oow;
}
}
 
*orMask = tmpOrMask;
*andMask = (GLubyte) (c < count ? 0 : tmpAndMask);
 
proj_vec->flags |= VEC_SIZE_4;
proj_vec->size = 4;
proj_vec->count = clip_vec->count;
return proj_vec;
}
 
/* Keep these here for now, even though we don't use them...
*/
static GLvector4f *ref_cliptest_points3( GLvector4f *clip_vec,
GLvector4f *proj_vec,
GLubyte clipMask[],
GLubyte *orMask,
GLubyte *andMask )
{
const GLuint stride = clip_vec->stride;
const GLuint count = clip_vec->count;
const GLfloat *from = (GLfloat *)clip_vec->start;
 
GLubyte tmpOrMask = *orMask;
GLubyte tmpAndMask = *andMask;
GLuint i;
for ( i = 0 ; i < count ; i++, STRIDE_F(from, stride) ) {
const GLfloat cx = from[0], cy = from[1], cz = from[2];
GLubyte mask = 0;
if ( cx > 1.0 ) mask |= CLIP_RIGHT_BIT;
else if ( cx < -1.0 ) mask |= CLIP_LEFT_BIT;
if ( cy > 1.0 ) mask |= CLIP_TOP_BIT;
else if ( cy < -1.0 ) mask |= CLIP_BOTTOM_BIT;
if ( cz > 1.0 ) mask |= CLIP_FAR_BIT;
else if ( cz < -1.0 ) mask |= CLIP_NEAR_BIT;
clipMask[i] = mask;
tmpOrMask |= mask;
tmpAndMask &= mask;
}
 
*orMask = tmpOrMask;
*andMask = tmpAndMask;
return clip_vec;
}
 
static GLvector4f * ref_cliptest_points2( GLvector4f *clip_vec,
GLvector4f *proj_vec,
GLubyte clipMask[],
GLubyte *orMask,
GLubyte *andMask )
{
const GLuint stride = clip_vec->stride;
const GLuint count = clip_vec->count;
const GLfloat *from = (GLfloat *)clip_vec->start;
 
GLubyte tmpOrMask = *orMask;
GLubyte tmpAndMask = *andMask;
GLuint i;
for ( i = 0 ; i < count ; i++, STRIDE_F(from, stride) ) {
const GLfloat cx = from[0], cy = from[1];
GLubyte mask = 0;
if ( cx > 1.0 ) mask |= CLIP_RIGHT_BIT;
else if ( cx < -1.0 ) mask |= CLIP_LEFT_BIT;
if ( cy > 1.0 ) mask |= CLIP_TOP_BIT;
else if ( cy < -1.0 ) mask |= CLIP_BOTTOM_BIT;
clipMask[i] = mask;
tmpOrMask |= mask;
tmpAndMask &= mask;
}
 
*orMask = tmpOrMask;
*andMask = tmpAndMask;
return clip_vec;
}
 
static clip_func ref_cliptest[5] = {
0,
0,
ref_cliptest_points2,
ref_cliptest_points3,
ref_cliptest_points4
};
 
 
/* =============================================================
* Cliptest tests
*/
 
static GLfloat s[TEST_COUNT][4] ALIGN16;
static GLfloat d[TEST_COUNT][4] ALIGN16;
static GLfloat r[TEST_COUNT][4] ALIGN16;
 
static int test_cliptest_function( clip_func func, int np,
int psize, long *cycles )
{
GLvector4f source[1], dest[1], ref[1];
GLubyte dm[TEST_COUNT], dco, dca;
GLubyte rm[TEST_COUNT], rco, rca;
int i, j;
#ifdef RUN_DEBUG_BENCHMARK
int cycle_i; /* the counter for the benchmarks we run */
#endif
 
(void) cycles;
 
if ( psize > 4 ) {
_mesa_problem( NULL, "test_cliptest_function called with psize > 4\n" );
return 0;
}
 
for ( i = 0 ; i < TEST_COUNT ; i++) {
ASSIGN_4V( d[i], 0.0, 0.0, 0.0, 1.0 );
ASSIGN_4V( s[i], 0.0, 0.0, 0.0, 1.0 );
for ( j = 0 ; j < psize ; j++ )
s[i][j] = rnd();
}
 
source->data = (GLfloat(*)[4])s;
source->start = (GLfloat *)s;
source->count = TEST_COUNT;
source->stride = sizeof(s[0]);
source->size = 4;
source->flags = 0;
 
dest->data = (GLfloat(*)[4])d;
dest->start = (GLfloat *)d;
dest->count = TEST_COUNT;
dest->stride = sizeof(float[4]);
dest->size = 0;
dest->flags = 0;
 
ref->data = (GLfloat(*)[4])r;
ref->start = (GLfloat *)r;
ref->count = TEST_COUNT;
ref->stride = sizeof(float[4]);
ref->size = 0;
ref->flags = 0;
 
dco = rco = 0;
dca = rca = CLIP_ALL_BITS;
 
ref_cliptest[psize]( source, ref, rm, &rco, &rca );
 
if ( mesa_profile ) {
BEGIN_RACE( *cycles );
func( source, dest, dm, &dco, &dca );
END_RACE( *cycles );
}
else {
func( source, dest, dm, &dco, &dca );
}
 
if ( dco != rco ) {
_mesa_printf(NULL, "\n-----------------------------\n" );
_mesa_printf(NULL, "dco = 0x%02x rco = 0x%02x\n", dco, rco );
return 0;
}
if ( dca != rca ) {
_mesa_printf(NULL, "\n-----------------------------\n" );
_mesa_printf(NULL, "dca = 0x%02x rca = 0x%02x\n", dca, rca );
return 0;
}
for ( i = 0 ; i < TEST_COUNT ; i++ ) {
if ( dm[i] != rm[i] ) {
_mesa_printf(NULL, "\n-----------------------------\n" );
_mesa_printf(NULL, "(i = %i)\n", i );
_mesa_printf(NULL, "dm = 0x%02x rm = 0x%02x\n", dm[i], rm[i] );
return 0;
}
}
 
/* Only verify output on projected points4 case. FIXME: Do we need
* to test other cases?
*/
if ( np || psize < 4 )
return 1;
 
for ( i = 0 ; i < TEST_COUNT ; i++ ) {
for ( j = 0 ; j < 4 ; j++ ) {
if ( significand_match( d[i][j], r[i][j] ) < REQUIRED_PRECISION ) {
_mesa_printf(NULL, "\n-----------------------------\n" );
_mesa_printf(NULL, "(i = %i, j = %i) dm = 0x%02x rm = 0x%02x\n",
i, j, dm[i], rm[i] );
_mesa_printf(NULL, "%f \t %f \t [diff = %e - %i bit missed]\n",
d[i][0], r[i][0], r[i][0]-d[i][0],
MAX_PRECISION - significand_match( d[i][0], r[i][0] ) );
_mesa_printf(NULL, "%f \t %f \t [diff = %e - %i bit missed]\n",
d[i][1], r[i][1], r[i][1]-d[i][1],
MAX_PRECISION - significand_match( d[i][1], r[i][1] ) );
_mesa_printf(NULL, "%f \t %f \t [diff = %e - %i bit missed]\n",
d[i][2], r[i][2], r[i][2]-d[i][2],
MAX_PRECISION - significand_match( d[i][2], r[i][2] ) );
_mesa_printf(NULL, "%f \t %f \t [diff = %e - %i bit missed]\n",
d[i][3], r[i][3], r[i][3]-d[i][3],
MAX_PRECISION - significand_match( d[i][3], r[i][3] ) );
return 0;
}
}
}
 
return 1;
}
 
void _math_test_all_cliptest_functions( char *description )
{
int np, psize;
long benchmark_tab[2][4];
static int first_time = 1;
 
if ( first_time ) {
first_time = 0;
mesa_profile = _mesa_getenv( "MESA_PROFILE" );
}
 
#ifdef RUN_DEBUG_BENCHMARK
if ( mesa_profile ) {
if ( !counter_overhead ) {
INIT_COUNTER();
_mesa_printf(NULL, "counter overhead: %ld cycles\n\n", counter_overhead );
}
_mesa_printf(NULL, "cliptest results after hooking in %s functions:\n", description );
}
#endif
 
#ifdef RUN_DEBUG_BENCHMARK
if ( mesa_profile ) {
_mesa_printf(NULL, "\n\t" );
for ( psize = 2 ; psize <= 4 ; psize++ ) {
_mesa_printf(NULL, " p%d\t", psize );
}
_mesa_printf(NULL, "\n--------------------------------------------------------\n\t" );
}
#endif
 
for ( np = 0 ; np < 2 ; np++ ) {
for ( psize = 2 ; psize <= 4 ; psize++ ) {
clip_func func = clip_tab[np][psize];
long *cycles = &(benchmark_tab[np][psize-1]);
 
if ( test_cliptest_function( func, np, psize, cycles ) == 0 ) {
char buf[100];
_mesa_sprintf(NULL, buf, "%s[%d] failed test (%s)",
cnames[np], psize, description );
_mesa_problem( NULL, buf );
}
#ifdef RUN_DEBUG_BENCHMARK
if ( mesa_profile )
_mesa_printf(NULL, " %li\t", benchmark_tab[np][psize-1] );
#endif
}
#ifdef RUN_DEBUG_BENCHMARK
if ( mesa_profile )
_mesa_printf(NULL, " | [%s]\n\t", cstrings[np] );
#endif
}
#ifdef RUN_DEBUG_BENCHMARK
if ( mesa_profile )
_mesa_printf(NULL, "\n" );
#endif
}
 
 
#endif /* DEBUG */
/shark/trunk/ports/mesa/src/math/m_xform_debug.c
0,0 → 1,335
/* $Id: m_xform_debug.c,v 1.1 2003-04-24 13:37:47 giacomo Exp $ */
 
/*
* Mesa 3-D graphics library
* Version: 3.5
*
* Copyright (C) 1999-2001 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
 
/*
* Updated for P6 architecture by Gareth Hughes.
*/
 
#include "glheader.h"
#include "context.h"
#include "macros.h"
#include "imports.h"
 
#include "m_matrix.h"
#include "m_xform.h"
 
#include "m_debug.h"
#include "m_debug_util.h"
 
#ifdef DEBUG /* This code only used for debugging */
 
 
/* Overhead of profiling counter in cycles. Automatically adjusted to
* your machine at run time - counter initialization should give very
* consistent results.
*/
long counter_overhead = 0;
 
/* This is the value of the environment variable MESA_PROFILE, and is
* used to determine if we should benchmark the functions as well as
* verify their correctness.
*/
char *mesa_profile = NULL;
 
 
static int m_general[16] = {
VAR, VAR, VAR, VAR,
VAR, VAR, VAR, VAR,
VAR, VAR, VAR, VAR,
VAR, VAR, VAR, VAR
};
static int m_identity[16] = {
ONE, NIL, NIL, NIL,
NIL, ONE, NIL, NIL,
NIL, NIL, ONE, NIL,
NIL, NIL, NIL, ONE
};
static int m_2d[16] = {
VAR, VAR, NIL, VAR,
VAR, VAR, NIL, VAR,
NIL, NIL, ONE, NIL,
NIL, NIL, NIL, ONE
};
static int m_2d_no_rot[16] = {
VAR, NIL, NIL, VAR,
NIL, VAR, NIL, VAR,
NIL, NIL, ONE, NIL,
NIL, NIL, NIL, ONE
};
static int m_3d[16] = {
VAR, VAR, VAR, VAR,
VAR, VAR, VAR, VAR,
VAR, VAR, VAR, VAR,
NIL, NIL, NIL, ONE
};
static int m_3d_no_rot[16] = {
VAR, NIL, NIL, VAR,
NIL, VAR, NIL, VAR,
NIL, NIL, VAR, VAR,
NIL, NIL, NIL, ONE
};
static int m_perspective[16] = {
VAR, NIL, VAR, NIL,
NIL, VAR, VAR, NIL,
NIL, NIL, VAR, VAR,
NIL, NIL, NEG, NIL
};
static int *templates[7] = {
m_general,
m_identity,
m_3d_no_rot,
m_perspective,
m_2d,
m_2d_no_rot,
m_3d
};
static int mtypes[7] = {
MATRIX_GENERAL,
MATRIX_IDENTITY,
MATRIX_3D_NO_ROT,
MATRIX_PERSPECTIVE,
MATRIX_2D,
MATRIX_2D_NO_ROT,
MATRIX_3D
};
static char *mstrings[7] = {
"MATRIX_GENERAL",
"MATRIX_IDENTITY",
"MATRIX_3D_NO_ROT",
"MATRIX_PERSPECTIVE",
"MATRIX_2D",
"MATRIX_2D_NO_ROT",
"MATRIX_3D"
};
 
 
/* =============================================================
* Reference transformations
*/
 
static void ref_transform( GLvector4f *dst,
const GLmatrix *mat,
const GLvector4f *src )
{
GLuint i;
GLfloat *s = (GLfloat *)src->start;
GLfloat (*d)[4] = (GLfloat (*)[4])dst->start;
const GLfloat *m = mat->m;
 
for ( i = 0 ; i < src->count ; i++ ) {
TRANSFORM_POINT( d[i], m, s );
s = (GLfloat *)((char *)s + src->stride);
}
}
 
 
/* =============================================================
* Vertex transformation tests
*/
 
static void init_matrix( GLfloat *m )
{
m[0] = 63.0; m[4] = 43.0; m[ 8] = 29.0; m[12] = 43.0;
m[1] = 55.0; m[5] = 17.0; m[ 9] = 31.0; m[13] = 7.0;
m[2] = 44.0; m[6] = 9.0; m[10] = 7.0; m[14] = 3.0;
m[3] = 11.0; m[7] = 23.0; m[11] = 91.0; m[15] = 9.0;
}
 
static GLfloat s[TEST_COUNT][4] ALIGN16;
static GLfloat d[TEST_COUNT][4] ALIGN16;
static GLfloat r[TEST_COUNT][4] ALIGN16;
 
static int test_transform_function( transform_func func, int psize,
int mtype, long *cycles )
{
GLvector4f source[1], dest[1], ref[1];
GLmatrix mat[1];
GLfloat *m;
int i, j;
#ifdef RUN_DEBUG_BENCHMARK
int cycle_i; /* the counter for the benchmarks we run */
#endif
 
(void) cycles;
 
if ( psize > 4 ) {
_mesa_problem( NULL, "test_transform_function called with psize > 4\n" );
return 0;
}
 
mat->m = (GLfloat *) ALIGN_MALLOC( 16 * sizeof(GLfloat), 16 );
mat->type = mtypes[mtype];
 
m = mat->m;
ASSERT( ((GLuint)m & 15) == 0 );
 
init_matrix( m );
 
for ( i = 0 ; i < 4 ; i++ ) {
for ( j = 0 ; j < 4 ; j++ ) {
switch ( templates[mtype][i * 4 + j] ) {
case NIL:
m[j * 4 + i] = 0.0;
break;
case ONE:
m[j * 4 + i] = 1.0;
break;
case NEG:
m[j * 4 + i] = -1.0;
break;
case VAR:
break;
default:
abort();
}
}
}
 
for ( i = 0 ; i < TEST_COUNT ; i++) {
ASSIGN_4V( d[i], 0.0, 0.0, 0.0, 1.0 );
ASSIGN_4V( s[i], 0.0, 0.0, 0.0, 1.0 );
for ( j = 0 ; j < psize ; j++ )
s[i][j] = rnd();
}
 
source->data = (GLfloat(*)[4])s;
source->start = (GLfloat *)s;
source->count = TEST_COUNT;
source->stride = sizeof(s[0]);
source->size = 4;
source->flags = 0;
 
dest->data = (GLfloat(*)[4])d;
dest->start = (GLfloat *)d;
dest->count = TEST_COUNT;
dest->stride = sizeof(float[4]);
dest->size = 0;
dest->flags = 0;
 
ref->data = (GLfloat(*)[4])r;
ref->start = (GLfloat *)r;
ref->count = TEST_COUNT;
ref->stride = sizeof(float[4]);
ref->size = 0;
ref->flags = 0;
 
ref_transform( ref, mat, source );
 
if ( mesa_profile ) {
BEGIN_RACE( *cycles );
func( dest, mat->m, source );
END_RACE( *cycles );
}
else {
func( dest, mat->m, source );
}
 
for ( i = 0 ; i < TEST_COUNT ; i++ ) {
for ( j = 0 ; j < 4 ; j++ ) {
if ( significand_match( d[i][j], r[i][j] ) < REQUIRED_PRECISION ) {
_mesa_printf(NULL, "-----------------------------\n" );
_mesa_printf(NULL, "(i = %i, j = %i)\n", i, j );
_mesa_printf(NULL, "%f \t %f \t [diff = %e - %i bit missed]\n",
d[i][0], r[i][0], r[i][0]-d[i][0],
MAX_PRECISION - significand_match( d[i][0], r[i][0] ) );
_mesa_printf(NULL, "%f \t %f \t [diff = %e - %i bit missed]\n",
d[i][1], r[i][1], r[i][1]-d[i][1],
MAX_PRECISION - significand_match( d[i][1], r[i][1] ) );
_mesa_printf(NULL, "%f \t %f \t [diff = %e - %i bit missed]\n",
d[i][2], r[i][2], r[i][2]-d[i][2],
MAX_PRECISION - significand_match( d[i][2], r[i][2] ) );
_mesa_printf(NULL, "%f \t %f \t [diff = %e - %i bit missed]\n",
d[i][3], r[i][3], r[i][3]-d[i][3],
MAX_PRECISION - significand_match( d[i][3], r[i][3] ) );
return 0;
}
}
}
 
ALIGN_FREE( mat->m );
return 1;
}
 
void _math_test_all_transform_functions( char *description )
{
int psize, mtype;
long benchmark_tab[4][7];
static int first_time = 1;
 
if ( first_time ) {
first_time = 0;
mesa_profile = getenv( "MESA_PROFILE" );
}
 
#ifdef RUN_DEBUG_BENCHMARK
if ( mesa_profile ) {
if ( !counter_overhead ) {
INIT_COUNTER();
_mesa_printf(NULL, "counter overhead: %ld cycles\n\n", counter_overhead );
}
_mesa_printf(NULL, "transform results after hooking in %s functions:\n", description );
}
#endif
 
#ifdef RUN_DEBUG_BENCHMARK
if ( mesa_profile ) {
_mesa_printf(NULL, "\n" );
for ( psize = 1 ; psize <= 4 ; psize++ ) {
_mesa_printf(NULL, " p%d\t", psize );
}
_mesa_printf(NULL, "\n--------------------------------------------------------\n" );
}
#endif
 
for ( mtype = 0 ; mtype < 7 ; mtype++ ) {
for ( psize = 1 ; psize <= 4 ; psize++ ) {
transform_func func = _mesa_transform_tab[psize][mtypes[mtype]];
long *cycles = &(benchmark_tab[psize-1][mtype]);
 
if ( test_transform_function( func, psize, mtype, cycles ) == 0 ) {
char buf[100];
_mesa_sprintf(NULL, buf, "_mesa_transform_tab[0][%d][%s] failed test (%s)",
psize, mstrings[mtype], description );
_mesa_problem( NULL, buf );
}
#ifdef RUN_DEBUG_BENCHMARK
if ( mesa_profile )
_mesa_printf(NULL, " %li\t", benchmark_tab[psize-1][mtype] );
#endif
}
#ifdef RUN_DEBUG_BENCHMARK
if ( mesa_profile )
_mesa_printf(NULL, " | [%s]\n", mstrings[mtype] );
#endif
}
#ifdef RUN_DEBUG_BENCHMARK
if ( mesa_profile )
_mesa_printf(NULL, "\n" );
#endif
}
 
 
#endif /* DEBUG */
/shark/trunk/ports/mesa/src/math/m_tmp_xform.h
0,0 → 1,807
/* $Id: m_tmp_xform.h,v 1.1 2003-04-24 13:37:47 giacomo Exp $ */
 
/*
* Mesa 3-D graphics library
* Version: 3.5
*
* Copyright (C) 1999-2001 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
 
/*
* New (3.1) transformation code written by Keith Whitwell.
*/
 
 
/*----------------------------------------------------------------------
* Begin Keith's new code
*
*----------------------------------------------------------------------
*/
 
/* KW: Fixed stride, now measured in bytes as is the OpenGL array stride.
*/
 
/* KW: These are now parameterized to produce two versions, one
* which transforms all incoming points, and a second which
* takes notice of a cullmask array, and only transforms
* unculled vertices.
*/
 
/* KW: 1-vectors can sneak into the texture pipeline via the array
* interface. These functions are here because I want consistant
* treatment of the vertex sizes and a lazy strategy for
* cleaning unused parts of the vector, and so as not to exclude
* them from the vertex array interface.
*
* Under our current analysis of matrices, there is no way that
* the product of a matrix and a 1-vector can remain a 1-vector,
* with the exception of the identity transform.
*/
 
/* KW: No longer zero-pad outgoing vectors. Now that external
* vectors can get into the pipeline we cannot ever assume
* that there is more to a vector than indicated by its
* size.
*/
 
/* KW: Now uses clipmask and a flag to allow us to skip both/either
* cliped and/or culled vertices.
*/
 
/* GH: Not any more -- it's easier (and faster) to just process the
* entire vector. Clipping and culling are handled further down
* the pipe, most often during or after the conversion to some
* driver-specific vertex format.
*/
 
static void _XFORMAPI
TAG(transform_points1_general)( GLvector4f *to_vec,
const GLfloat m[16],
const GLvector4f *from_vec )
{
const GLuint stride = from_vec->stride;
GLfloat *from = from_vec->start;
GLfloat (*to)[4] = (GLfloat (*)[4])to_vec->start;
GLuint count = from_vec->count;
const GLfloat m0 = m[0], m12 = m[12];
const GLfloat m1 = m[1], m13 = m[13];
const GLfloat m2 = m[2], m14 = m[14];
const GLfloat m3 = m[3], m15 = m[15];
GLuint i;
STRIDE_LOOP {
const GLfloat ox = from[0];
to[i][0] = m0 * ox + m12;
to[i][1] = m1 * ox + m13;
to[i][2] = m2 * ox + m14;
to[i][3] = m3 * ox + m15;
}
to_vec->size = 4;
to_vec->flags |= VEC_SIZE_4;
to_vec->count = from_vec->count;
}
 
static void _XFORMAPI
TAG(transform_points1_identity)( GLvector4f *to_vec,
const GLfloat m[16],
const GLvector4f *from_vec )
{
const GLuint stride = from_vec->stride;
GLfloat *from = from_vec->start;
GLuint count = from_vec->count;
GLfloat (*to)[4] = (GLfloat (*)[4])to_vec->start;
GLuint i;
if (to_vec == from_vec) return;
STRIDE_LOOP {
to[i][0] = from[0];
}
to_vec->size = 1;
to_vec->flags |= VEC_SIZE_1;
to_vec->count = from_vec->count;
}
 
static void _XFORMAPI
TAG(transform_points1_2d)( GLvector4f *to_vec,
const GLfloat m[16],
const GLvector4f *from_vec )
{
const GLuint stride = from_vec->stride;
GLfloat *from = from_vec->start;
GLfloat (*to)[4] = (GLfloat (*)[4])to_vec->start;
GLuint count = from_vec->count;
const GLfloat m0 = m[0], m1 = m[1];
const GLfloat m12 = m[12], m13 = m[13];
GLuint i;
STRIDE_LOOP {
const GLfloat ox = from[0];
to[i][0] = m0 * ox + m12;
to[i][1] = m1 * ox + m13;
}
to_vec->size = 2;
to_vec->flags |= VEC_SIZE_2;
to_vec->count = from_vec->count;
}
 
static void _XFORMAPI
TAG(transform_points1_2d_no_rot)( GLvector4f *to_vec,
const GLfloat m[16],
const GLvector4f *from_vec )
{
const GLuint stride = from_vec->stride;
GLfloat *from = from_vec->start;
GLfloat (*to)[4] = (GLfloat (*)[4])to_vec->start;
GLuint count = from_vec->count;
const GLfloat m0 = m[0], m12 = m[12], m13 = m[13];
GLuint i;
STRIDE_LOOP {
const GLfloat ox = from[0];
to[i][0] = m0 * ox + m12;
to[i][1] = m13;
}
to_vec->size = 2;
to_vec->flags |= VEC_SIZE_2;
to_vec->count = from_vec->count;
}
 
static void _XFORMAPI
TAG(transform_points1_3d)( GLvector4f *to_vec,
const GLfloat m[16],
const GLvector4f *from_vec )
{
const GLuint stride = from_vec->stride;
GLfloat *from = from_vec->start;
GLfloat (*to)[4] = (GLfloat (*)[4])to_vec->start;
GLuint count = from_vec->count;
const GLfloat m0 = m[0], m1 = m[1], m2 = m[2];
const GLfloat m12 = m[12], m13 = m[13], m14 = m[14];
GLuint i;
STRIDE_LOOP {
const GLfloat ox = from[0];
to[i][0] = m0 * ox + m12;
to[i][1] = m1 * ox + m13;
to[i][2] = m2 * ox + m14;
}
to_vec->size = 3;
to_vec->flags |= VEC_SIZE_3;
to_vec->count = from_vec->count;
}
 
 
static void _XFORMAPI
TAG(transform_points1_3d_no_rot)( GLvector4f *to_vec,
const GLfloat m[16],
const GLvector4f *from_vec )
{
const GLuint stride = from_vec->stride;
GLfloat *from = from_vec->start;
GLfloat (*to)[4] = (GLfloat (*)[4])to_vec->start;
GLuint count = from_vec->count;
const GLfloat m0 = m[0];
const GLfloat m12 = m[12], m13 = m[13], m14 = m[14];
GLuint i;
STRIDE_LOOP {
const GLfloat ox = from[0];
to[i][0] = m0 * ox + m12;
to[i][1] = m13;
to[i][2] = m14;
}
to_vec->size = 3;
to_vec->flags |= VEC_SIZE_3;
to_vec->count = from_vec->count;
}
 
static void _XFORMAPI
TAG(transform_points1_perspective)( GLvector4f *to_vec,
const GLfloat m[16],
const GLvector4f *from_vec )
{
const GLuint stride = from_vec->stride;
GLfloat *from = from_vec->start;
GLfloat (*to)[4] = (GLfloat (*)[4])to_vec->start;
GLuint count = from_vec->count;
const GLfloat m0 = m[0], m14 = m[14];
GLuint i;
STRIDE_LOOP {
const GLfloat ox = from[0];
to[i][0] = m0 * ox ;
to[i][1] = 0 ;
to[i][2] = m14;
to[i][3] = 0;
}
to_vec->size = 4;
to_vec->flags |= VEC_SIZE_4;
to_vec->count = from_vec->count;
}
 
 
 
 
/* 2-vectors, which are a lot more relevant than 1-vectors, are
* present early in the geometry pipeline and throughout the
* texture pipeline.
*/
static void _XFORMAPI
TAG(transform_points2_general)( GLvector4f *to_vec,
const GLfloat m[16],
const GLvector4f *from_vec )
{
const GLuint stride = from_vec->stride;
GLfloat *from = from_vec->start;
GLfloat (*to)[4] = (GLfloat (*)[4])to_vec->start;
GLuint count = from_vec->count;
const GLfloat m0 = m[0], m4 = m[4], m12 = m[12];
const GLfloat m1 = m[1], m5 = m[5], m13 = m[13];
const GLfloat m2 = m[2], m6 = m[6], m14 = m[14];
const GLfloat m3 = m[3], m7 = m[7], m15 = m[15];
GLuint i;
STRIDE_LOOP {
const GLfloat ox = from[0], oy = from[1];
to[i][0] = m0 * ox + m4 * oy + m12;
to[i][1] = m1 * ox + m5 * oy + m13;
to[i][2] = m2 * ox + m6 * oy + m14;
to[i][3] = m3 * ox + m7 * oy + m15;
}
to_vec->size = 4;
to_vec->flags |= VEC_SIZE_4;
to_vec->count = from_vec->count;
}
 
static void _XFORMAPI
TAG(transform_points2_identity)( GLvector4f *to_vec,
const GLfloat m[16],
const GLvector4f *from_vec )
{
const GLuint stride = from_vec->stride;
GLfloat *from = from_vec->start;
GLfloat (*to)[4] = (GLfloat (*)[4])to_vec->start;
GLuint count = from_vec->count;
GLuint i;
if (to_vec == from_vec) return;
STRIDE_LOOP {
to[i][0] = from[0];
to[i][1] = from[1];
}
to_vec->size = 2;
to_vec->flags |= VEC_SIZE_2;
to_vec->count = from_vec->count;
}
 
static void _XFORMAPI
TAG(transform_points2_2d)( GLvector4f *to_vec,
const GLfloat m[16],
const GLvector4f *from_vec )
{
const GLuint stride = from_vec->stride;
GLfloat *from = from_vec->start;
GLfloat (*to)[4] = (GLfloat (*)[4])to_vec->start;
GLuint count = from_vec->count;
const GLfloat m0 = m[0], m1 = m[1], m4 = m[4], m5 = m[5];
const GLfloat m12 = m[12], m13 = m[13];
GLuint i;
STRIDE_LOOP {
const GLfloat ox = from[0], oy = from[1];
to[i][0] = m0 * ox + m4 * oy + m12;
to[i][1] = m1 * ox + m5 * oy + m13;
}
to_vec->size = 2;
to_vec->flags |= VEC_SIZE_2;
to_vec->count = from_vec->count;
}
 
static void _XFORMAPI
TAG(transform_points2_2d_no_rot)( GLvector4f *to_vec,
const GLfloat m[16],
const GLvector4f *from_vec )
{
const GLuint stride = from_vec->stride;
GLfloat *from = from_vec->start;
GLfloat (*to)[4] = (GLfloat (*)[4])to_vec->start;
GLuint count = from_vec->count;
const GLfloat m0 = m[0], m5 = m[5], m12 = m[12], m13 = m[13];
GLuint i;
STRIDE_LOOP {
const GLfloat ox = from[0], oy = from[1];
to[i][0] = m0 * ox + m12;
to[i][1] = m5 * oy + m13;
}
to_vec->size = 2;
to_vec->flags |= VEC_SIZE_2;
to_vec->count = from_vec->count;
}
 
static void _XFORMAPI
TAG(transform_points2_3d)( GLvector4f *to_vec,
const GLfloat m[16],
const GLvector4f *from_vec )
{
const GLuint stride = from_vec->stride;
GLfloat *from = from_vec->start;
GLfloat (*to)[4] = (GLfloat (*)[4])to_vec->start;
GLuint count = from_vec->count;
const GLfloat m0 = m[0], m1 = m[1], m2 = m[2], m4 = m[4], m5 = m[5];
const GLfloat m6 = m[6], m12 = m[12], m13 = m[13], m14 = m[14];
GLuint i;
STRIDE_LOOP {
const GLfloat ox = from[0], oy = from[1];
to[i][0] = m0 * ox + m4 * oy + m12;
to[i][1] = m1 * ox + m5 * oy + m13;
to[i][2] = m2 * ox + m6 * oy + m14;
}
to_vec->size = 3;
to_vec->flags |= VEC_SIZE_3;
to_vec->count = from_vec->count;
}
 
 
/* I would actually say this was a fairly important function, from
* a texture transformation point of view.
*/
static void _XFORMAPI
TAG(transform_points2_3d_no_rot)( GLvector4f *to_vec,
const GLfloat m[16],
const GLvector4f *from_vec )
{
const GLuint stride = from_vec->stride;
GLfloat *from = from_vec->start;
GLfloat (*to)[4] = (GLfloat (*)[4])to_vec->start;
GLuint count = from_vec->count;
const GLfloat m0 = m[0], m5 = m[5];
const GLfloat m12 = m[12], m13 = m[13], m14 = m[14];
GLuint i;
STRIDE_LOOP {
const GLfloat ox = from[0], oy = from[1];
to[i][0] = m0 * ox + m12;
to[i][1] = m5 * oy + m13;
to[i][2] = m14;
}
if (m14 == 0) {
to_vec->size = 2;
to_vec->flags |= VEC_SIZE_2;
} else {
to_vec->size = 3;
to_vec->flags |= VEC_SIZE_3;
}
to_vec->count = from_vec->count;
}
 
 
static void _XFORMAPI
TAG(transform_points2_perspective)( GLvector4f *to_vec,
const GLfloat m[16],
const GLvector4f *from_vec )
{
const GLuint stride = from_vec->stride;
GLfloat *from = from_vec->start;
GLfloat (*to)[4] = (GLfloat (*)[4])to_vec->start;
GLuint count = from_vec->count;
const GLfloat m0 = m[0], m5 = m[5], m14 = m[14];
GLuint i;
STRIDE_LOOP {
const GLfloat ox = from[0], oy = from[1];
to[i][0] = m0 * ox ;
to[i][1] = m5 * oy ;
to[i][2] = m14;
to[i][3] = 0;
}
to_vec->size = 4;
to_vec->flags |= VEC_SIZE_4;
to_vec->count = from_vec->count;
}
 
 
 
static void _XFORMAPI
TAG(transform_points3_general)( GLvector4f *to_vec,
const GLfloat m[16],
const GLvector4f *from_vec )
{
const GLuint stride = from_vec->stride;
GLfloat *from = from_vec->start;
GLfloat (*to)[4] = (GLfloat (*)[4])to_vec->start;
GLuint count = from_vec->count;
const GLfloat m0 = m[0], m4 = m[4], m8 = m[8], m12 = m[12];
const GLfloat m1 = m[1], m5 = m[5], m9 = m[9], m13 = m[13];
const GLfloat m2 = m[2], m6 = m[6], m10 = m[10], m14 = m[14];
const GLfloat m3 = m[3], m7 = m[7], m11 = m[11], m15 = m[15];
GLuint i;
STRIDE_LOOP {
const GLfloat ox = from[0], oy = from[1], oz = from[2];
to[i][0] = m0 * ox + m4 * oy + m8 * oz + m12;
to[i][1] = m1 * ox + m5 * oy + m9 * oz + m13;
to[i][2] = m2 * ox + m6 * oy + m10 * oz + m14;
to[i][3] = m3 * ox + m7 * oy + m11 * oz + m15;
}
to_vec->size = 4;
to_vec->flags |= VEC_SIZE_4;
to_vec->count = from_vec->count;
}
 
static void _XFORMAPI
TAG(transform_points3_identity)( GLvector4f *to_vec,
const GLfloat m[16],
const GLvector4f *from_vec )
{
const GLuint stride = from_vec->stride;
GLfloat *from = from_vec->start;
GLfloat (*to)[4] = (GLfloat (*)[4])to_vec->start;
GLuint count = from_vec->count;
GLuint i;
if (to_vec == from_vec) return;
STRIDE_LOOP {
to[i][0] = from[0];
to[i][1] = from[1];
to[i][2] = from[2];
}
to_vec->size = 3;
to_vec->flags |= VEC_SIZE_3;
to_vec->count = from_vec->count;
}
 
static void _XFORMAPI
TAG(transform_points3_2d)( GLvector4f *to_vec,
const GLfloat m[16],
const GLvector4f *from_vec )
{
const GLuint stride = from_vec->stride;
GLfloat *from = from_vec->start;
GLfloat (*to)[4] = (GLfloat (*)[4])to_vec->start;
GLuint count = from_vec->count;
const GLfloat m0 = m[0], m1 = m[1], m4 = m[4], m5 = m[5];
const GLfloat m12 = m[12], m13 = m[13];
GLuint i;
STRIDE_LOOP {
const GLfloat ox = from[0], oy = from[1], oz = from[2];
to[i][0] = m0 * ox + m4 * oy + m12 ;
to[i][1] = m1 * ox + m5 * oy + m13 ;
to[i][2] = + oz ;
}
to_vec->size = 3;
to_vec->flags |= VEC_SIZE_3;
to_vec->count = from_vec->count;
}
 
static void _XFORMAPI
TAG(transform_points3_2d_no_rot)( GLvector4f *to_vec,
const GLfloat m[16],
const GLvector4f *from_vec )
{
const GLuint stride = from_vec->stride;
GLfloat *from = from_vec->start;
GLfloat (*to)[4] = (GLfloat (*)[4])to_vec->start;
GLuint count = from_vec->count;
const GLfloat m0 = m[0], m5 = m[5], m12 = m[12], m13 = m[13];
GLuint i;
STRIDE_LOOP {
const GLfloat ox = from[0], oy = from[1], oz = from[2];
to[i][0] = m0 * ox + m12 ;
to[i][1] = m5 * oy + m13 ;
to[i][2] = + oz ;
}
to_vec->size = 3;
to_vec->flags |= VEC_SIZE_3;
to_vec->count = from_vec->count;
}
 
static void _XFORMAPI
TAG(transform_points3_3d)( GLvector4f *to_vec,
const GLfloat m[16],
const GLvector4f *from_vec )
{
const GLuint stride = from_vec->stride;
GLfloat *from = from_vec->start;
GLfloat (*to)[4] = (GLfloat (*)[4])to_vec->start;
GLuint count = from_vec->count;
const GLfloat m0 = m[0], m1 = m[1], m2 = m[2], m4 = m[4], m5 = m[5];
const GLfloat m6 = m[6], m8 = m[8], m9 = m[9], m10 = m[10];
const GLfloat m12 = m[12], m13 = m[13], m14 = m[14];
GLuint i;
STRIDE_LOOP {
const GLfloat ox = from[0], oy = from[1], oz = from[2];
to[i][0] = m0 * ox + m4 * oy + m8 * oz + m12 ;
to[i][1] = m1 * ox + m5 * oy + m9 * oz + m13 ;
to[i][2] = m2 * ox + m6 * oy + m10 * oz + m14 ;
}
to_vec->size = 3;
to_vec->flags |= VEC_SIZE_3;
to_vec->count = from_vec->count;
}
 
/* previously known as ortho...
*/
static void _XFORMAPI
TAG(transform_points3_3d_no_rot)( GLvector4f *to_vec,
const GLfloat m[16],
const GLvector4f *from_vec )
{
const GLuint stride = from_vec->stride;
GLfloat *from = from_vec->start;
GLfloat (*to)[4] = (GLfloat (*)[4])to_vec->start;
GLuint count = from_vec->count;
const GLfloat m0 = m[0], m5 = m[5];
const GLfloat m10 = m[10], m12 = m[12], m13 = m[13], m14 = m[14];
GLuint i;
STRIDE_LOOP {
const GLfloat ox = from[0], oy = from[1], oz = from[2];
to[i][0] = m0 * ox + m12 ;
to[i][1] = m5 * oy + m13 ;
to[i][2] = m10 * oz + m14 ;
}
to_vec->size = 3;
to_vec->flags |= VEC_SIZE_3;
to_vec->count = from_vec->count;
}
 
static void _XFORMAPI
TAG(transform_points3_perspective)( GLvector4f *to_vec,
const GLfloat m[16],
const GLvector4f *from_vec )
{
const GLuint stride = from_vec->stride;
GLfloat *from = from_vec->start;
GLfloat (*to)[4] = (GLfloat (*)[4])to_vec->start;
GLuint count = from_vec->count;
const GLfloat m0 = m[0], m5 = m[5], m8 = m[8], m9 = m[9];
const GLfloat m10 = m[10], m14 = m[14];
GLuint i;
STRIDE_LOOP {
const GLfloat ox = from[0], oy = from[1], oz = from[2];
to[i][0] = m0 * ox + m8 * oz ;
to[i][1] = m5 * oy + m9 * oz ;
to[i][2] = m10 * oz + m14 ;
to[i][3] = -oz ;
}
to_vec->size = 4;
to_vec->flags |= VEC_SIZE_4;
to_vec->count = from_vec->count;
}
 
 
 
static void _XFORMAPI
TAG(transform_points4_general)( GLvector4f *to_vec,
const GLfloat m[16],
const GLvector4f *from_vec )
{
const GLuint stride = from_vec->stride;
GLfloat *from = from_vec->start;
GLfloat (*to)[4] = (GLfloat (*)[4])to_vec->start;
GLuint count = from_vec->count;
const GLfloat m0 = m[0], m4 = m[4], m8 = m[8], m12 = m[12];
const GLfloat m1 = m[1], m5 = m[5], m9 = m[9], m13 = m[13];
const GLfloat m2 = m[2], m6 = m[6], m10 = m[10], m14 = m[14];
const GLfloat m3 = m[3], m7 = m[7], m11 = m[11], m15 = m[15];
GLuint i;
STRIDE_LOOP {
const GLfloat ox = from[0], oy = from[1], oz = from[2], ow = from[3];
to[i][0] = m0 * ox + m4 * oy + m8 * oz + m12 * ow;
to[i][1] = m1 * ox + m5 * oy + m9 * oz + m13 * ow;
to[i][2] = m2 * ox + m6 * oy + m10 * oz + m14 * ow;
to[i][3] = m3 * ox + m7 * oy + m11 * oz + m15 * ow;
}
to_vec->size = 4;
to_vec->flags |= VEC_SIZE_4;
to_vec->count = from_vec->count;
}
 
static void _XFORMAPI
TAG(transform_points4_identity)( GLvector4f *to_vec,
const GLfloat m[16],
const GLvector4f *from_vec )
{
const GLuint stride = from_vec->stride;
GLfloat *from = from_vec->start;
GLfloat (*to)[4] = (GLfloat (*)[4])to_vec->start;
GLuint count = from_vec->count;
GLuint i;
if (to_vec == from_vec) return;
STRIDE_LOOP {
to[i][0] = from[0];
to[i][1] = from[1];
to[i][2] = from[2];
to[i][3] = from[3];
}
to_vec->size = 4;
to_vec->flags |= VEC_SIZE_4;
to_vec->count = from_vec->count;
}
 
static void _XFORMAPI
TAG(transform_points4_2d)( GLvector4f *to_vec,
const GLfloat m[16],
const GLvector4f *from_vec )
{
const GLuint stride = from_vec->stride;
GLfloat *from = from_vec->start;
GLfloat (*to)[4] = (GLfloat (*)[4])to_vec->start;
GLuint count = from_vec->count;
const GLfloat m0 = m[0], m1 = m[1], m4 = m[4], m5 = m[5];
const GLfloat m12 = m[12], m13 = m[13];
GLuint i;
STRIDE_LOOP {
const GLfloat ox = from[0], oy = from[1], oz = from[2], ow = from[3];
to[i][0] = m0 * ox + m4 * oy + m12 * ow;
to[i][1] = m1 * ox + m5 * oy + m13 * ow;
to[i][2] = + oz ;
to[i][3] = ow;
}
to_vec->size = 4;
to_vec->flags |= VEC_SIZE_4;
to_vec->count = from_vec->count;
}
 
static void _XFORMAPI
TAG(transform_points4_2d_no_rot)( GLvector4f *to_vec,
const GLfloat m[16],
const GLvector4f *from_vec )
{
const GLuint stride = from_vec->stride;
GLfloat *from = from_vec->start;
GLfloat (*to)[4] = (GLfloat (*)[4])to_vec->start;
GLuint count = from_vec->count;
const GLfloat m0 = m[0], m5 = m[5], m12 = m[12], m13 = m[13];
GLuint i;
STRIDE_LOOP {
const GLfloat ox = from[0], oy = from[1], oz = from[2], ow = from[3];
to[i][0] = m0 * ox + m12 * ow;
to[i][1] = m5 * oy + m13 * ow;
to[i][2] = + oz ;
to[i][3] = ow;
}
to_vec->size = 4;
to_vec->flags |= VEC_SIZE_4;
to_vec->count = from_vec->count;
}
 
static void _XFORMAPI
TAG(transform_points4_3d)( GLvector4f *to_vec,
const GLfloat m[16],
const GLvector4f *from_vec )
{
const GLuint stride = from_vec->stride;
GLfloat *from = from_vec->start;
GLfloat (*to)[4] = (GLfloat (*)[4])to_vec->start;
GLuint count = from_vec->count;
const GLfloat m0 = m[0], m1 = m[1], m2 = m[2], m4 = m[4], m5 = m[5];
const GLfloat m6 = m[6], m8 = m[8], m9 = m[9], m10 = m[10];
const GLfloat m12 = m[12], m13 = m[13], m14 = m[14];
GLuint i;
STRIDE_LOOP {
const GLfloat ox = from[0], oy = from[1], oz = from[2], ow = from[3];
to[i][0] = m0 * ox + m4 * oy + m8 * oz + m12 * ow;
to[i][1] = m1 * ox + m5 * oy + m9 * oz + m13 * ow;
to[i][2] = m2 * ox + m6 * oy + m10 * oz + m14 * ow;
to[i][3] = ow;
}
to_vec->size = 4;
to_vec->flags |= VEC_SIZE_4;
to_vec->count = from_vec->count;
}
 
static void _XFORMAPI
TAG(transform_points4_3d_no_rot)( GLvector4f *to_vec,
const GLfloat m[16],
const GLvector4f *from_vec )
{
const GLuint stride = from_vec->stride;
GLfloat *from = from_vec->start;
GLfloat (*to)[4] = (GLfloat (*)[4])to_vec->start;
GLuint count = from_vec->count;
const GLfloat m0 = m[0], m5 = m[5];
const GLfloat m10 = m[10], m12 = m[12], m13 = m[13], m14 = m[14];
GLuint i;
STRIDE_LOOP {
const GLfloat ox = from[0], oy = from[1], oz = from[2], ow = from[3];
to[i][0] = m0 * ox + m12 * ow;
to[i][1] = m5 * oy + m13 * ow;
to[i][2] = m10 * oz + m14 * ow;
to[i][3] = ow;
}
to_vec->size = 4;
to_vec->flags |= VEC_SIZE_4;
to_vec->count = from_vec->count;
}
 
static void _XFORMAPI
TAG(transform_points4_perspective)( GLvector4f *to_vec,
const GLfloat m[16],
const GLvector4f *from_vec )
{
const GLuint stride = from_vec->stride;
GLfloat *from = from_vec->start;
GLfloat (*to)[4] = (GLfloat (*)[4])to_vec->start;
GLuint count = from_vec->count;
const GLfloat m0 = m[0], m5 = m[5], m8 = m[8], m9 = m[9];
const GLfloat m10 = m[10], m14 = m[14];
GLuint i;
STRIDE_LOOP {
const GLfloat ox = from[0], oy = from[1], oz = from[2], ow = from[3];
to[i][0] = m0 * ox + m8 * oz ;
to[i][1] = m5 * oy + m9 * oz ;
to[i][2] = m10 * oz + m14 * ow ;
to[i][3] = -oz ;
}
to_vec->size = 4;
to_vec->flags |= VEC_SIZE_4;
to_vec->count = from_vec->count;
}
 
static transform_func _XFORMAPI TAG(transform_tab_1)[7];
static transform_func _XFORMAPI TAG(transform_tab_2)[7];
static transform_func _XFORMAPI TAG(transform_tab_3)[7];
static transform_func _XFORMAPI TAG(transform_tab_4)[7];
 
/* Similar functions could be called several times, with more highly
* optimized routines overwriting the arrays. This only occurs during
* startup.
*/
static void _XFORMAPI TAG(init_c_transformations)( void )
{
#define TAG_TAB _mesa_transform_tab
#define TAG_TAB_1 TAG(transform_tab_1)
#define TAG_TAB_2 TAG(transform_tab_2)
#define TAG_TAB_3 TAG(transform_tab_3)
#define TAG_TAB_4 TAG(transform_tab_4)
 
TAG_TAB[1] = TAG_TAB_1;
TAG_TAB[2] = TAG_TAB_2;
TAG_TAB[3] = TAG_TAB_3;
TAG_TAB[4] = TAG_TAB_4;
 
/* 1-D points (ie texcoords) */
TAG_TAB_1[MATRIX_GENERAL] = TAG(transform_points1_general);
TAG_TAB_1[MATRIX_IDENTITY] = TAG(transform_points1_identity);
TAG_TAB_1[MATRIX_3D_NO_ROT] = TAG(transform_points1_3d_no_rot);
TAG_TAB_1[MATRIX_PERSPECTIVE] = TAG(transform_points1_perspective);
TAG_TAB_1[MATRIX_2D] = TAG(transform_points1_2d);
TAG_TAB_1[MATRIX_2D_NO_ROT] = TAG(transform_points1_2d_no_rot);
TAG_TAB_1[MATRIX_3D] = TAG(transform_points1_3d);
 
/* 2-D points */
TAG_TAB_2[MATRIX_GENERAL] = TAG(transform_points2_general);
TAG_TAB_2[MATRIX_IDENTITY] = TAG(transform_points2_identity);
TAG_TAB_2[MATRIX_3D_NO_ROT] = TAG(transform_points2_3d_no_rot);
TAG_TAB_2[MATRIX_PERSPECTIVE] = TAG(transform_points2_perspective);
TAG_TAB_2[MATRIX_2D] = TAG(transform_points2_2d);
TAG_TAB_2[MATRIX_2D_NO_ROT] = TAG(transform_points2_2d_no_rot);
TAG_TAB_2[MATRIX_3D] = TAG(transform_points2_3d);
 
/* 3-D points */
TAG_TAB_3[MATRIX_GENERAL] = TAG(transform_points3_general);
TAG_TAB_3[MATRIX_IDENTITY] = TAG(transform_points3_identity);
TAG_TAB_3[MATRIX_3D_NO_ROT] = TAG(transform_points3_3d_no_rot);
TAG_TAB_3[MATRIX_PERSPECTIVE] = TAG(transform_points3_perspective);
TAG_TAB_3[MATRIX_2D] = TAG(transform_points3_2d);
TAG_TAB_3[MATRIX_2D_NO_ROT] = TAG(transform_points3_2d_no_rot);
TAG_TAB_3[MATRIX_3D] = TAG(transform_points3_3d);
 
/* 4-D points */
TAG_TAB_4[MATRIX_GENERAL] = TAG(transform_points4_general);
TAG_TAB_4[MATRIX_IDENTITY] = TAG(transform_points4_identity);
TAG_TAB_4[MATRIX_3D_NO_ROT] = TAG(transform_points4_3d_no_rot);
TAG_TAB_4[MATRIX_PERSPECTIVE] = TAG(transform_points4_perspective);
TAG_TAB_4[MATRIX_2D] = TAG(transform_points4_2d);
TAG_TAB_4[MATRIX_2D_NO_ROT] = TAG(transform_points4_2d_no_rot);
TAG_TAB_4[MATRIX_3D] = TAG(transform_points4_3d);
 
#undef TAG_TAB
#undef TAG_TAB_1
#undef TAG_TAB_2
#undef TAG_TAB_3
#undef TAG_TAB_4
}
/shark/trunk/ports/mesa/src/math/m_norm_debug.c
0,0 → 1,381
/* $Id: m_norm_debug.c,v 1.1 2003-04-24 13:37:47 giacomo Exp $ */
 
/*
* Mesa 3-D graphics library
* Version: 4.1
*
* Copyright (C) 1999-2002 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* Authors:
* Gareth Hughes
*/
 
#include "glheader.h"
#include "context.h"
#include "macros.h"
#include "imports.h"
#include "mmath.h"
 
#include "m_matrix.h"
#include "m_xform.h"
 
#include "m_debug.h"
#include "m_debug_util.h"
 
 
#ifdef DEBUG /* This code only used for debugging */
 
 
static int m_norm_identity[16] = {
ONE, NIL, NIL, NIL,
NIL, ONE, NIL, NIL,
NIL, NIL, ONE, NIL,
NIL, NIL, NIL, NIL
};
static int m_norm_general[16] = {
VAR, VAR, VAR, NIL,
VAR, VAR, VAR, NIL,
VAR, VAR, VAR, NIL,
NIL, NIL, NIL, NIL
};
static int m_norm_no_rot[16] = {
VAR, NIL, NIL, NIL,
NIL, VAR, NIL, NIL,
NIL, NIL, VAR, NIL,
NIL, NIL, NIL, NIL
};
static int *norm_templates[8] = {
m_norm_no_rot,
m_norm_no_rot,
m_norm_no_rot,
m_norm_general,
m_norm_general,
m_norm_general,
m_norm_identity,
m_norm_identity
};
static int norm_types[8] = {
NORM_TRANSFORM_NO_ROT,
NORM_TRANSFORM_NO_ROT | NORM_RESCALE,
NORM_TRANSFORM_NO_ROT | NORM_NORMALIZE,
NORM_TRANSFORM,
NORM_TRANSFORM | NORM_RESCALE,
NORM_TRANSFORM | NORM_NORMALIZE,
NORM_RESCALE,
NORM_NORMALIZE
};
static int norm_scale_types[8] = { /* rescale factor */
NIL, /* NIL disables rescaling */
VAR,
NIL,
NIL,
VAR,
NIL,
VAR,
NIL
};
static int norm_normalize_types[8] = { /* normalizing ?? (no = 0) */
0,
0,
1,
0,
0,
1,
0,
1
};
static char *norm_strings[8] = {
"NORM_TRANSFORM_NO_ROT",
"NORM_TRANSFORM_NO_ROT | NORM_RESCALE",
"NORM_TRANSFORM_NO_ROT | NORM_NORMALIZE",
"NORM_TRANSFORM",
"NORM_TRANSFORM | NORM_RESCALE",
"NORM_TRANSFORM | NORM_NORMALIZE",
"NORM_RESCALE",
"NORM_NORMALIZE"
};
 
 
/* =============================================================
* Reference transformations
*/
 
static void ref_norm_transform_rescale( const GLmatrix *mat,
GLfloat scale,
const GLvector4f *in,
const GLfloat *lengths,
GLvector4f *dest )
{
GLuint i;
const GLfloat *s = in->start;
const GLfloat *m = mat->inv;
GLfloat (*out)[4] = (GLfloat (*)[4]) dest->start;
 
(void) lengths;
 
for ( i = 0 ; i < in->count ; i++ ) {
GLfloat t[3];
 
TRANSFORM_NORMAL( t, s, m );
SCALE_SCALAR_3V( out[i], scale, t );
 
s = (GLfloat *)((char *)s + in->stride);
}
}
 
static void ref_norm_transform_normalize( const GLmatrix *mat,
GLfloat scale,
const GLvector4f *in,
const GLfloat *lengths,
GLvector4f *dest )
{
GLuint i;
const GLfloat *s = in->start;
const GLfloat *m = mat->inv;
GLfloat (*out)[4] = (GLfloat (*)[4]) dest->start;
 
for ( i = 0 ; i < in->count ; i++ ) {
GLfloat t[3];
 
TRANSFORM_NORMAL( t, s, m );
 
if ( !lengths ) {
GLfloat len = LEN_SQUARED_3FV( t );
if ( len > 1e-20 ) {
/* Hmmm, don't know how we could test the precalculated
* length case...
*/
scale = 1.0 / sqrt( len );
SCALE_SCALAR_3V( out[i], scale, t );
} else {
out[i][0] = out[i][1] = out[i][2] = 0;
}
} else {
scale = lengths[i];;
SCALE_SCALAR_3V( out[i], scale, t );
}
 
s = (GLfloat *)((char *)s + in->stride);
}
}
 
 
/* =============================================================
* Normal transformation tests
*/
 
static void init_matrix( GLfloat *m )
{
m[0] = 63.0; m[4] = 43.0; m[ 8] = 29.0; m[12] = 43.0;
m[1] = 55.0; m[5] = 17.0; m[ 9] = 31.0; m[13] = 7.0;
m[2] = 44.0; m[6] = 9.0; m[10] = 7.0; m[14] = 3.0;
m[3] = 11.0; m[7] = 23.0; m[11] = 91.0; m[15] = 9.0;
}
 
 
static int test_norm_function( normal_func func, int mtype, long *cycles )
{
GLvector4f source[1], dest[1], dest2[1], ref[1], ref2[1];
GLmatrix mat[1];
GLfloat s[TEST_COUNT][5], d[TEST_COUNT][4], r[TEST_COUNT][4];
GLfloat d2[TEST_COUNT][4], r2[TEST_COUNT][4], length[TEST_COUNT];
GLfloat scale;
GLfloat *m;
int i, j;
#ifdef RUN_DEBUG_BENCHMARK
int cycle_i; /* the counter for the benchmarks we run */
#endif
 
(void) cycles;
 
mat->m = (GLfloat *) ALIGN_MALLOC( 16 * sizeof(GLfloat), 16 );
mat->inv = m = mat->m;
 
init_matrix( m );
 
scale = 1.0F + rnd () * norm_scale_types[mtype];
 
for ( i = 0 ; i < 4 ; i++ ) {
for ( j = 0 ; j < 4 ; j++ ) {
switch ( norm_templates[mtype][i * 4 + j] ) {
case NIL:
m[j * 4 + i] = 0.0;
break;
case ONE:
m[j * 4 + i] = 1.0;
break;
case NEG:
m[j * 4 + i] = -1.0;
break;
case VAR:
break;
default:
abort();
}
}
}
 
for ( i = 0 ; i < TEST_COUNT ; i++ ) {
ASSIGN_3V( d[i], 0.0, 0.0, 0.0 );
ASSIGN_3V( s[i], 0.0, 0.0, 0.0 );
ASSIGN_3V( d2[i], 0.0, 0.0, 0.0 );
for ( j = 0 ; j < 3 ; j++ )
s[i][j] = rnd();
length[i] = 1 / sqrt( LEN_SQUARED_3FV( s[i] ) );
}
 
source->data = (GLfloat(*)[4]) s;
source->start = (GLfloat *) s;
source->count = TEST_COUNT;
source->stride = sizeof(s[0]);
source->flags = 0;
 
dest->data = d;
dest->start = (GLfloat *) d;
dest->count = TEST_COUNT;
dest->stride = sizeof(float[4]);
dest->flags = 0;
 
dest2->data = d2;
dest2->start = (GLfloat *) d2;
dest2->count = TEST_COUNT;
dest2->stride = sizeof(float[4]);
dest2->flags = 0;
 
ref->data = r;
ref->start = (GLfloat *) r;
ref->count = TEST_COUNT;
ref->stride = sizeof(float[4]);
ref->flags = 0;
 
ref2->data = r2;
ref2->start = (GLfloat *) r2;
ref2->count = TEST_COUNT;
ref2->stride = sizeof(float[4]);
ref2->flags = 0;
 
if ( norm_normalize_types[mtype] == 0 ) {
ref_norm_transform_rescale( mat, scale, source, NULL, ref );
} else {
ref_norm_transform_normalize( mat, scale, source, NULL, ref );
ref_norm_transform_normalize( mat, scale, source, length, ref2 );
}
 
if ( mesa_profile ) {
BEGIN_RACE( *cycles );
func( mat, scale, source, NULL, dest );
END_RACE( *cycles );
func( mat, scale, source, length, dest2 );
} else {
func( mat, scale, source, NULL, dest );
func( mat, scale, source, length, dest2 );
}
 
for ( i = 0 ; i < TEST_COUNT ; i++ ) {
for ( j = 0 ; j < 3 ; j++ ) {
if ( significand_match( d[i][j], r[i][j] ) < REQUIRED_PRECISION ) {
_mesa_printf(NULL, "-----------------------------\n" );
_mesa_printf(NULL, "(i = %i, j = %i)\n", i, j );
_mesa_printf(NULL, "%f \t %f \t [ratio = %e - %i bit missed]\n",
d[i][0], r[i][0], r[i][0]/d[i][0],
MAX_PRECISION - significand_match( d[i][0], r[i][0] ) );
_mesa_printf(NULL, "%f \t %f \t [ratio = %e - %i bit missed]\n",
d[i][1], r[i][1], r[i][1]/d[i][1],
MAX_PRECISION - significand_match( d[i][1], r[i][1] ) );
_mesa_printf(NULL, "%f \t %f \t [ratio = %e - %i bit missed]\n",
d[i][2], r[i][2], r[i][2]/d[i][2],
MAX_PRECISION - significand_match( d[i][2], r[i][2] ) );
return 0;
}
 
if ( norm_normalize_types[mtype] != 0 ) {
if ( significand_match( d2[i][j], r2[i][j] ) < REQUIRED_PRECISION ) {
_mesa_printf(NULL, "------------------- precalculated length case ------\n" );
_mesa_printf(NULL, "(i = %i, j = %i)\n", i, j );
_mesa_printf(NULL, "%f \t %f \t [ratio = %e - %i bit missed]\n",
d2[i][0], r2[i][0], r2[i][0]/d2[i][0],
MAX_PRECISION - significand_match( d2[i][0], r2[i][0] ) );
_mesa_printf(NULL, "%f \t %f \t [ratio = %e - %i bit missed]\n",
d2[i][1], r2[i][1], r2[i][1]/d2[i][1],
MAX_PRECISION - significand_match( d2[i][1], r2[i][1] ) );
_mesa_printf(NULL, "%f \t %f \t [ratio = %e - %i bit missed]\n",
d2[i][2], r2[i][2], r2[i][2]/d2[i][2],
MAX_PRECISION - significand_match( d2[i][2], r2[i][2] ) );
return 0;
}
}
}
}
 
ALIGN_FREE( mat->m );
return 1;
}
 
void _math_test_all_normal_transform_functions( char *description )
{
int mtype;
long benchmark_tab[0xf];
static int first_time = 1;
 
if ( first_time ) {
first_time = 0;
mesa_profile = getenv( "MESA_PROFILE" );
}
 
#ifdef RUN_DEBUG_BENCHMARK
if ( mesa_profile ) {
if ( !counter_overhead ) {
INIT_COUNTER();
_mesa_printf(NULL, "counter overhead: %ld cycles\n\n", counter_overhead );
}
_mesa_printf(NULL, "normal transform results after hooking in %s functions:\n",
description );
_mesa_printf(NULL, "\n-------------------------------------------------------\n" );
}
#endif
 
for ( mtype = 0 ; mtype < 8 ; mtype++ ) {
normal_func func = _mesa_normal_tab[norm_types[mtype]];
long *cycles = &benchmark_tab[mtype];
 
if ( test_norm_function( func, mtype, cycles ) == 0 ) {
char buf[100];
_mesa_sprintf(NULL, buf, "_mesa_normal_tab[0][%s] failed test (%s)",
norm_strings[mtype], description );
_mesa_problem( NULL, buf );
}
 
#ifdef RUN_DEBUG_BENCHMARK
if ( mesa_profile ) {
_mesa_printf(NULL, " %li\t", benchmark_tab[mtype] );
_mesa_printf(NULL, " | [%s]\n", norm_strings[mtype] );
}
#endif
}
#ifdef RUN_DEBUG_BENCHMARK
if ( mesa_profile ) {
_mesa_printf(NULL, "\n" );
fflush( stdout );
}
#endif
}
 
 
#endif /* DEBUG */