Subversion Repositories shark

Compare Revisions

Ignore whitespace Rev 1065 → Rev 1064

/shark/trunk/ports/png/makefile
0,0 → 1,23
# The Frame Buffer Device
 
ifndef BASE
BASE=../..
endif
 
include $(BASE)/config/config.mk
 
LIBRARY = png
 
OBJS_PATH = $(BASE)/ports/png
 
PNG = png.o pngerror.o pnggccrd.o pngget.o pngmem.o\
pngread.o pngpread.o pngrio.o pngrtran.o pngrutil.o\
pngset.o pngtest.o pngtrans.o pngvcrd.o pngwio.o\
pngwrite.o pngwtran.o pngwutil.o
 
OBJS = $(PNG)
 
C_OPT += -I../../../drivers/linuxc26/include -I./include -I. -I../zlib/include
 
include $(BASE)/config/lib.mk
 
/shark/trunk/ports/png/include/pngconf.h
0,0 → 1,1348
/* pngconf.h - machine configurable file for libpng
*
* libpng 1.2.5 - October 3, 2002
* For conditions of distribution and use, see copyright notice in png.h
* Copyright (c) 1998-2002 Glenn Randers-Pehrson
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
*/
 
/* Any machine specific code is near the front of this file, so if you
* are configuring libpng for a machine, you may want to read the section
* starting here down to where it starts to typedef png_color, png_text,
* and png_info.
*/
 
#ifndef PNGCONF_H
#define PNGCONF_H
 
/* This is the size of the compression buffer, and thus the size of
* an IDAT chunk. Make this whatever size you feel is best for your
* machine. One of these will be allocated per png_struct. When this
* is full, it writes the data to the disk, and does some other
* calculations. Making this an extremely small size will slow
* the library down, but you may want to experiment to determine
* where it becomes significant, if you are concerned with memory
* usage. Note that zlib allocates at least 32Kb also. For readers,
* this describes the size of the buffer available to read the data in.
* Unless this gets smaller than the size of a row (compressed),
* it should not make much difference how big this is.
*/
 
#ifndef PNG_ZBUF_SIZE
# define PNG_ZBUF_SIZE 8192
#endif
 
/* Enable if you want a write-only libpng */
 
#ifndef PNG_NO_READ_SUPPORTED
# define PNG_READ_SUPPORTED
#endif
 
/* Enable if you want a read-only libpng */
 
#ifndef PNG_NO_WRITE_SUPPORTED
# define PNG_WRITE_SUPPORTED
#endif
 
/* Enabled by default in 1.2.0. You can disable this if you don't need to
support PNGs that are embedded in MNG datastreams */
#if !defined(PNG_1_0_X) && !defined(PNG_NO_MNG_FEATURES)
# ifndef PNG_MNG_FEATURES_SUPPORTED
# define PNG_MNG_FEATURES_SUPPORTED
# endif
#endif
 
#ifndef PNG_NO_FLOATING_POINT_SUPPORTED
# ifndef PNG_FLOATING_POINT_SUPPORTED
# define PNG_FLOATING_POINT_SUPPORTED
# endif
#endif
 
/* If you are running on a machine where you cannot allocate more
* than 64K of memory at once, uncomment this. While libpng will not
* normally need that much memory in a chunk (unless you load up a very
* large file), zlib needs to know how big of a chunk it can use, and
* libpng thus makes sure to check any memory allocation to verify it
* will fit into memory.
#define PNG_MAX_MALLOC_64K
*/
#if defined(MAXSEG_64K) && !defined(PNG_MAX_MALLOC_64K)
# define PNG_MAX_MALLOC_64K
#endif
 
/* Special munging to support doing things the 'cygwin' way:
* 'Normal' png-on-win32 defines/defaults:
* PNG_BUILD_DLL -- building dll
* PNG_USE_DLL -- building an application, linking to dll
* (no define) -- building static library, or building an
* application and linking to the static lib
* 'Cygwin' defines/defaults:
* PNG_BUILD_DLL -- (ignored) building the dll
* (no define) -- (ignored) building an application, linking to the dll
* PNG_STATIC -- (ignored) building the static lib, or building an
* application that links to the static lib.
* ALL_STATIC -- (ignored) building various static libs, or building an
* application that links to the static libs.
* Thus,
* a cygwin user should define either PNG_BUILD_DLL or PNG_STATIC, and
* this bit of #ifdefs will define the 'correct' config variables based on
* that. If a cygwin user *wants* to define 'PNG_USE_DLL' that's okay, but
* unnecessary.
*
* Also, the precedence order is:
* ALL_STATIC (since we can't #undef something outside our namespace)
* PNG_BUILD_DLL
* PNG_STATIC
* (nothing) == PNG_USE_DLL
*
* CYGWIN (2002-01-20): The preceding is now obsolete. With the advent
* of auto-import in binutils, we no longer need to worry about
* __declspec(dllexport) / __declspec(dllimport) and friends. Therefore,
* we don't need to worry about PNG_STATIC or ALL_STATIC when it comes
* to __declspec() stuff. However, we DO need to worry about
* PNG_BUILD_DLL and PNG_STATIC because those change some defaults
* such as CONSOLE_IO and whether GLOBAL_ARRAYS are allowed.
*/
#if defined(__CYGWIN__)
# if defined(ALL_STATIC)
# if defined(PNG_BUILD_DLL)
# undef PNG_BUILD_DLL
# endif
# if defined(PNG_USE_DLL)
# undef PNG_USE_DLL
# endif
# if defined(PNG_DLL)
# undef PNG_DLL
# endif
# if !defined(PNG_STATIC)
# define PNG_STATIC
# endif
# else
# if defined (PNG_BUILD_DLL)
# if defined(PNG_STATIC)
# undef PNG_STATIC
# endif
# if defined(PNG_USE_DLL)
# undef PNG_USE_DLL
# endif
# if !defined(PNG_DLL)
# define PNG_DLL
# endif
# else
# if defined(PNG_STATIC)
# if defined(PNG_USE_DLL)
# undef PNG_USE_DLL
# endif
# if defined(PNG_DLL)
# undef PNG_DLL
# endif
# else
# if !defined(PNG_USE_DLL)
# define PNG_USE_DLL
# endif
# if !defined(PNG_DLL)
# define PNG_DLL
# endif
# endif
# endif
# endif
#endif
 
/* This protects us against compilers that run on a windowing system
* and thus don't have or would rather us not use the stdio types:
* stdin, stdout, and stderr. The only one currently used is stderr
* in png_error() and png_warning(). #defining PNG_NO_CONSOLE_IO will
* prevent these from being compiled and used. #defining PNG_NO_STDIO
* will also prevent these, plus will prevent the entire set of stdio
* macros and functions (FILE *, printf, etc.) from being compiled and used,
* unless (PNG_DEBUG > 0) has been #defined.
*
* #define PNG_NO_CONSOLE_IO
* #define PNG_NO_STDIO
*/
 
#if defined(_WIN32_WCE)
# include <windows.h>
/* Console I/O functions are not supported on WindowsCE */
# define PNG_NO_CONSOLE_IO
# ifdef PNG_DEBUG
# undef PNG_DEBUG
# endif
#endif
 
#ifdef PNG_BUILD_DLL
# ifndef PNG_CONSOLE_IO_SUPPORTED
# ifndef PNG_NO_CONSOLE_IO
# define PNG_NO_CONSOLE_IO
# endif
# endif
#endif
 
# ifdef PNG_NO_STDIO
# ifndef PNG_NO_CONSOLE_IO
# define PNG_NO_CONSOLE_IO
# endif
# ifdef PNG_DEBUG
# if (PNG_DEBUG > 0)
# include <stdio.h>
# endif
# endif
# else
# if !defined(_WIN32_WCE)
/* "stdio.h" functions are not supported on WindowsCE */
# include <stdio.h>
# endif
# endif
 
/* This macro protects us against machines that don't have function
* prototypes (ie K&R style headers). If your compiler does not handle
* function prototypes, define this macro and use the included ansi2knr.
* I've always been able to use _NO_PROTO as the indicator, but you may
* need to drag the empty declaration out in front of here, or change the
* ifdef to suit your own needs.
*/
#ifndef PNGARG
 
#ifdef OF /* zlib prototype munger */
# define PNGARG(arglist) OF(arglist)
#else
 
#ifdef _NO_PROTO
# define PNGARG(arglist) ()
# ifndef PNG_TYPECAST_NULL
# define PNG_TYPECAST_NULL
# endif
#else
# define PNGARG(arglist) arglist
#endif /* _NO_PROTO */
 
#endif /* OF */
 
#endif /* PNGARG */
 
/* Try to determine if we are compiling on a Mac. Note that testing for
* just __MWERKS__ is not good enough, because the Codewarrior is now used
* on non-Mac platforms.
*/
#ifndef MACOS
# if (defined(__MWERKS__) && defined(macintosh)) || defined(applec) || \
defined(THINK_C) || defined(__SC__) || defined(TARGET_OS_MAC)
# define MACOS
# endif
#endif
 
/* enough people need this for various reasons to include it here */
#if !defined(MACOS) && !defined(RISCOS) && !defined(_WIN32_WCE)
# include <sys/types.h>
#endif
 
#if !defined(PNG_SETJMP_NOT_SUPPORTED) && !defined(PNG_NO_SETJMP_SUPPORTED)
//# define PNG_SETJMP_SUPPORTED
#endif
 
#ifdef PNG_SETJMP_SUPPORTED
/* This is an attempt to force a single setjmp behaviour on Linux. If
* the X config stuff didn't define _BSD_SOURCE we wouldn't need this.
*/
 
# ifdef __linux__
# ifdef _BSD_SOURCE
# define PNG_SAVE_BSD_SOURCE
# undef _BSD_SOURCE
# endif
# ifdef _SETJMP_H
__png.h__ already includes setjmp.h;
__dont__ include it again.;
# endif
# endif /* __linux__ */
 
/* include setjmp.h for error handling */
//# include <setjmp.h>
 
# ifdef __linux__
# ifdef PNG_SAVE_BSD_SOURCE
# define _BSD_SOURCE
# undef PNG_SAVE_BSD_SOURCE
# endif
# endif /* __linux__ */
#endif /* PNG_SETJMP_SUPPORTED */
 
#ifdef BSD
# include <strings.h>
#else
# include <string.h>
#endif
 
/* Other defines for things like memory and the like can go here. */
#ifdef PNG_INTERNAL
 
#include <stdlib.h>
 
/* The functions exported by PNG_EXTERN are PNG_INTERNAL functions, which
* aren't usually used outside the library (as far as I know), so it is
* debatable if they should be exported at all. In the future, when it is
* possible to have run-time registry of chunk-handling functions, some of
* these will be made available again.
#define PNG_EXTERN extern
*/
#define PNG_EXTERN
 
/* Other defines specific to compilers can go here. Try to keep
* them inside an appropriate ifdef/endif pair for portability.
*/
 
#if defined(PNG_FLOATING_POINT_SUPPORTED)
# if defined(MACOS)
/* We need to check that <math.h> hasn't already been included earlier
* as it seems it doesn't agree with <fp.h>, yet we should really use
* <fp.h> if possible.
*/
# if !defined(__MATH_H__) && !defined(__MATH_H) && !defined(__cmath__)
# include <fp.h>
# endif
# else
# include <math.h>
# endif
# if defined(_AMIGA) && defined(__SASC) && defined(_M68881)
/* Amiga SAS/C: We must include builtin FPU functions when compiling using
* MATH=68881
*/
# include <m68881.h>
# endif
#endif
 
/* Codewarrior on NT has linking problems without this. */
#if (defined(__MWERKS__) && defined(WIN32)) || defined(__STDC__)
# define PNG_ALWAYS_EXTERN
#endif
 
/* For some reason, Borland C++ defines memcmp, etc. in mem.h, not
* stdlib.h like it should (I think). Or perhaps this is a C++
* "feature"?
*/
#ifdef __TURBOC__
# include <mem.h>
# include "alloc.h"
#endif
 
#if defined(_MSC_VER) && (defined(WIN32) || defined(_Windows) || \
defined(_WINDOWS) || defined(_WIN32) || defined(__WIN32__))
# include <malloc.h>
#endif
 
/* This controls how fine the dithering gets. As this allocates
* a largish chunk of memory (32K), those who are not as concerned
* with dithering quality can decrease some or all of these.
*/
#ifndef PNG_DITHER_RED_BITS
# define PNG_DITHER_RED_BITS 5
#endif
#ifndef PNG_DITHER_GREEN_BITS
# define PNG_DITHER_GREEN_BITS 5
#endif
#ifndef PNG_DITHER_BLUE_BITS
# define PNG_DITHER_BLUE_BITS 5
#endif
 
/* This controls how fine the gamma correction becomes when you
* are only interested in 8 bits anyway. Increasing this value
* results in more memory being used, and more pow() functions
* being called to fill in the gamma tables. Don't set this value
* less then 8, and even that may not work (I haven't tested it).
*/
 
#ifndef PNG_MAX_GAMMA_8
# define PNG_MAX_GAMMA_8 11
#endif
 
/* This controls how much a difference in gamma we can tolerate before
* we actually start doing gamma conversion.
*/
#ifndef PNG_GAMMA_THRESHOLD
# define PNG_GAMMA_THRESHOLD 0.05
#endif
 
#endif /* PNG_INTERNAL */
 
/* The following uses const char * instead of char * for error
* and warning message functions, so some compilers won't complain.
* If you do not want to use const, define PNG_NO_CONST here.
*/
 
#ifndef PNG_NO_CONST
# define PNG_CONST const
#else
# define PNG_CONST
#endif
 
/* The following defines give you the ability to remove code from the
* library that you will not be using. I wish I could figure out how to
* automate this, but I can't do that without making it seriously hard
* on the users. So if you are not using an ability, change the #define
* to and #undef, and that part of the library will not be compiled. If
* your linker can't find a function, you may want to make sure the
* ability is defined here. Some of these depend upon some others being
* defined. I haven't figured out all the interactions here, so you may
* have to experiment awhile to get everything to compile. If you are
* creating or using a shared library, you probably shouldn't touch this,
* as it will affect the size of the structures, and this will cause bad
* things to happen if the library and/or application ever change.
*/
 
/* Any features you will not be using can be undef'ed here */
 
/* GR-P, 0.96a: Set "*TRANSFORMS_SUPPORTED as default but allow user
* to turn it off with "*TRANSFORMS_NOT_SUPPORTED" or *PNG_NO_*_TRANSFORMS
* on the compile line, then pick and choose which ones to define without
* having to edit this file. It is safe to use the *TRANSFORMS_NOT_SUPPORTED
* if you only want to have a png-compliant reader/writer but don't need
* any of the extra transformations. This saves about 80 kbytes in a
* typical installation of the library. (PNG_NO_* form added in version
* 1.0.1c, for consistency)
*/
 
/* The size of the png_text structure changed in libpng-1.0.6 when
* iTXt is supported. It is turned off by default, to support old apps
* that malloc the png_text structure instead of calling png_set_text()
* and letting libpng malloc it. It will be turned on by default in
* libpng-1.3.0.
*/
 
#ifndef PNG_iTXt_SUPPORTED
# if !defined(PNG_READ_iTXt_SUPPORTED) && !defined(PNG_NO_READ_iTXt)
# define PNG_NO_READ_iTXt
# endif
# if !defined(PNG_WRITE_iTXt_SUPPORTED) && !defined(PNG_NO_WRITE_iTXt)
# define PNG_NO_WRITE_iTXt
# endif
#endif
 
/* The following support, added after version 1.0.0, can be turned off here en
* masse by defining PNG_LEGACY_SUPPORTED in case you need binary compatibility
* with old applications that require the length of png_struct and png_info
* to remain unchanged.
*/
 
#ifdef PNG_LEGACY_SUPPORTED
# define PNG_NO_FREE_ME
# define PNG_NO_READ_UNKNOWN_CHUNKS
# define PNG_NO_WRITE_UNKNOWN_CHUNKS
# define PNG_NO_READ_USER_CHUNKS
# define PNG_NO_READ_iCCP
# define PNG_NO_WRITE_iCCP
# define PNG_NO_READ_iTXt
# define PNG_NO_WRITE_iTXt
# define PNG_NO_READ_sCAL
# define PNG_NO_WRITE_sCAL
# define PNG_NO_READ_sPLT
# define PNG_NO_WRITE_sPLT
# define PNG_NO_INFO_IMAGE
# define PNG_NO_READ_RGB_TO_GRAY
# define PNG_NO_READ_USER_TRANSFORM
# define PNG_NO_WRITE_USER_TRANSFORM
# define PNG_NO_USER_MEM
# define PNG_NO_READ_EMPTY_PLTE
# define PNG_NO_MNG_FEATURES
# define PNG_NO_FIXED_POINT_SUPPORTED
#endif
 
/* Ignore attempt to turn off both floating and fixed point support */
#if !defined(PNG_FLOATING_POINT_SUPPORTED) || \
!defined(PNG_NO_FIXED_POINT_SUPPORTED)
# define PNG_FIXED_POINT_SUPPORTED
#endif
 
#ifndef PNG_NO_FREE_ME
# define PNG_FREE_ME_SUPPORTED
#endif
 
#if defined(PNG_READ_SUPPORTED)
 
#if !defined(PNG_READ_TRANSFORMS_NOT_SUPPORTED) && \
!defined(PNG_NO_READ_TRANSFORMS)
# define PNG_READ_TRANSFORMS_SUPPORTED
#endif
 
#ifdef PNG_READ_TRANSFORMS_SUPPORTED
# ifndef PNG_NO_READ_EXPAND
# define PNG_READ_EXPAND_SUPPORTED
# endif
# ifndef PNG_NO_READ_SHIFT
# define PNG_READ_SHIFT_SUPPORTED
# endif
# ifndef PNG_NO_READ_PACK
# define PNG_READ_PACK_SUPPORTED
# endif
# ifndef PNG_NO_READ_BGR
# define PNG_READ_BGR_SUPPORTED
# endif
# ifndef PNG_NO_READ_SWAP
# define PNG_READ_SWAP_SUPPORTED
# endif
# ifndef PNG_NO_READ_PACKSWAP
# define PNG_READ_PACKSWAP_SUPPORTED
# endif
# ifndef PNG_NO_READ_INVERT
# define PNG_READ_INVERT_SUPPORTED
# endif
# ifndef PNG_NO_READ_DITHER
# define PNG_READ_DITHER_SUPPORTED
# endif
# ifndef PNG_NO_READ_BACKGROUND
# define PNG_READ_BACKGROUND_SUPPORTED
# endif
# ifndef PNG_NO_READ_16_TO_8
# define PNG_READ_16_TO_8_SUPPORTED
# endif
# ifndef PNG_NO_READ_FILLER
# define PNG_READ_FILLER_SUPPORTED
# endif
# ifndef PNG_NO_READ_GAMMA
# define PNG_READ_GAMMA_SUPPORTED
# endif
# ifndef PNG_NO_READ_GRAY_TO_RGB
# define PNG_READ_GRAY_TO_RGB_SUPPORTED
# endif
# ifndef PNG_NO_READ_SWAP_ALPHA
# define PNG_READ_SWAP_ALPHA_SUPPORTED
# endif
# ifndef PNG_NO_READ_INVERT_ALPHA
# define PNG_READ_INVERT_ALPHA_SUPPORTED
# endif
# ifndef PNG_NO_READ_STRIP_ALPHA
# define PNG_READ_STRIP_ALPHA_SUPPORTED
# endif
# ifndef PNG_NO_READ_USER_TRANSFORM
# define PNG_READ_USER_TRANSFORM_SUPPORTED
# endif
# ifndef PNG_NO_READ_RGB_TO_GRAY
# define PNG_READ_RGB_TO_GRAY_SUPPORTED
# endif
#endif /* PNG_READ_TRANSFORMS_SUPPORTED */
 
#if !defined(PNG_NO_PROGRESSIVE_READ) && \
!defined(PNG_PROGRESSIVE_READ_NOT_SUPPORTED) /* if you don't do progressive */
# define PNG_PROGRESSIVE_READ_SUPPORTED /* reading. This is not talking */
#endif /* about interlacing capability! You'll */
/* still have interlacing unless you change the following line: */
 
#define PNG_READ_INTERLACING_SUPPORTED /* required for PNG-compliant decoders */
 
#ifndef PNG_NO_READ_COMPOSITE_NODIV
# ifndef PNG_NO_READ_COMPOSITED_NODIV /* libpng-1.0.x misspelling */
# define PNG_READ_COMPOSITE_NODIV_SUPPORTED /* well tested on Intel, SGI */
# endif
#endif
 
/* Deprecated, will be removed from version 2.0.0.
Use PNG_MNG_FEATURES_SUPPORTED instead. */
#ifndef PNG_NO_READ_EMPTY_PLTE
# define PNG_READ_EMPTY_PLTE_SUPPORTED
#endif
 
#endif /* PNG_READ_SUPPORTED */
 
#if defined(PNG_WRITE_SUPPORTED)
 
# if !defined(PNG_WRITE_TRANSFORMS_NOT_SUPPORTED) && \
!defined(PNG_NO_WRITE_TRANSFORMS)
# define PNG_WRITE_TRANSFORMS_SUPPORTED
#endif
 
#ifdef PNG_WRITE_TRANSFORMS_SUPPORTED
# ifndef PNG_NO_WRITE_SHIFT
# define PNG_WRITE_SHIFT_SUPPORTED
# endif
# ifndef PNG_NO_WRITE_PACK
# define PNG_WRITE_PACK_SUPPORTED
# endif
# ifndef PNG_NO_WRITE_BGR
# define PNG_WRITE_BGR_SUPPORTED
# endif
# ifndef PNG_NO_WRITE_SWAP
# define PNG_WRITE_SWAP_SUPPORTED
# endif
# ifndef PNG_NO_WRITE_PACKSWAP
# define PNG_WRITE_PACKSWAP_SUPPORTED
# endif
# ifndef PNG_NO_WRITE_INVERT
# define PNG_WRITE_INVERT_SUPPORTED
# endif
# ifndef PNG_NO_WRITE_FILLER
# define PNG_WRITE_FILLER_SUPPORTED /* same as WRITE_STRIP_ALPHA */
# endif
# ifndef PNG_NO_WRITE_SWAP_ALPHA
# define PNG_WRITE_SWAP_ALPHA_SUPPORTED
# endif
# ifndef PNG_NO_WRITE_INVERT_ALPHA
# define PNG_WRITE_INVERT_ALPHA_SUPPORTED
# endif
# ifndef PNG_NO_WRITE_USER_TRANSFORM
# define PNG_WRITE_USER_TRANSFORM_SUPPORTED
# endif
#endif /* PNG_WRITE_TRANSFORMS_SUPPORTED */
 
#if defined(PNG_READ_USER_TRANSFORM_SUPPORTED) || \
defined(PNG_WRITE_USER_TRANSFORM_SUPPORTED)
# ifndef PNG_NO_USER_TRANSFORM_PTR
# define PNG_USER_TRANSFORM_PTR_SUPPORTED
# endif
#endif
 
#define PNG_WRITE_INTERLACING_SUPPORTED /* not required for PNG-compliant
encoders, but can cause trouble
if left undefined */
 
#if !defined(PNG_NO_WRITE_WEIGHTED_FILTER) && \
defined(PNG_FLOATING_POINT_SUPPORTED)
# define PNG_WRITE_WEIGHTED_FILTER_SUPPORTED
#endif
 
#ifndef PNG_1_0_X
#ifndef PNG_NO_ERROR_NUMBERS
#define PNG_ERROR_NUMBERS_SUPPORTED
#endif
#endif /* PNG_1_0_X */
 
#ifndef PNG_NO_WRITE_FLUSH
# define PNG_WRITE_FLUSH_SUPPORTED
#endif
 
/* Deprecated, see PNG_MNG_FEATURES_SUPPORTED, above */
#ifndef PNG_NO_WRITE_EMPTY_PLTE
# define PNG_WRITE_EMPTY_PLTE_SUPPORTED
#endif
 
#endif /* PNG_WRITE_SUPPORTED */
 
#ifndef PNG_NO_STDIO
# define PNG_TIME_RFC1123_SUPPORTED
#endif
 
/* This adds extra functions in pngget.c for accessing data from the
* info pointer (added in version 0.99)
* png_get_image_width()
* png_get_image_height()
* png_get_bit_depth()
* png_get_color_type()
* png_get_compression_type()
* png_get_filter_type()
* png_get_interlace_type()
* png_get_pixel_aspect_ratio()
* png_get_pixels_per_meter()
* png_get_x_offset_pixels()
* png_get_y_offset_pixels()
* png_get_x_offset_microns()
* png_get_y_offset_microns()
*/
#if !defined(PNG_NO_EASY_ACCESS) && !defined(PNG_EASY_ACCESS_SUPPORTED)
# define PNG_EASY_ACCESS_SUPPORTED
#endif
 
/* PNG_ASSEMBLER_CODE was enabled by default in version 1.2.0
even when PNG_USE_PNGVCRD or PNG_USE_PNGGCCRD is not defined */
#if defined(PNG_READ_SUPPORTED) && !defined(PNG_NO_ASSEMBLER_CODE)
# ifndef PNG_ASSEMBLER_CODE_SUPPORTED
# define PNG_ASSEMBLER_CODE_SUPPORTED
# endif
# if !defined(PNG_MMX_CODE_SUPPORTED) && !defined(PNG_NO_MMX_CODE)
# define PNG_MMX_CODE_SUPPORTED
# endif
#endif
 
/* If you are sure that you don't need thread safety and you are compiling
with PNG_USE_PNGCCRD for an MMX application, you can define this for
faster execution. See pnggccrd.c.
#define PNG_THREAD_UNSAFE_OK
*/
 
#if !defined(PNG_1_0_X)
#if !defined(PNG_NO_USER_MEM) && !defined(PNG_USER_MEM_SUPPORTED)
# define PNG_USER_MEM_SUPPORTED
#endif
#endif /* PNG_1_0_X */
 
/* These are currently experimental features, define them if you want */
 
/* very little testing */
/*
#ifdef PNG_READ_SUPPORTED
# ifndef PNG_READ_16_TO_8_ACCURATE_SCALE_SUPPORTED
# define PNG_READ_16_TO_8_ACCURATE_SCALE_SUPPORTED
# endif
#endif
*/
 
/* This is only for PowerPC big-endian and 680x0 systems */
/* some testing */
/*
#ifdef PNG_READ_SUPPORTED
# ifndef PNG_PNG_READ_BIG_ENDIAN_SUPPORTED
# define PNG_READ_BIG_ENDIAN_SUPPORTED
# endif
#endif
*/
 
/* Buggy compilers (e.g., gcc 2.7.2.2) need this */
/*
#define PNG_NO_POINTER_INDEXING
*/
 
/* These functions are turned off by default, as they will be phased out. */
/*
#define PNG_USELESS_TESTS_SUPPORTED
#define PNG_CORRECT_PALETTE_SUPPORTED
*/
 
/* Any chunks you are not interested in, you can undef here. The
* ones that allocate memory may be expecially important (hIST,
* tEXt, zTXt, tRNS, pCAL). Others will just save time and make png_info
* a bit smaller.
*/
 
#if defined(PNG_READ_SUPPORTED) && \
!defined(PNG_READ_ANCILLARY_CHUNKS_NOT_SUPPORTED) && \
!defined(PNG_NO_READ_ANCILLARY_CHUNKS)
# define PNG_READ_ANCILLARY_CHUNKS_SUPPORTED
#endif
 
#if defined(PNG_WRITE_SUPPORTED) && \
!defined(PNG_WRITE_ANCILLARY_CHUNKS_NOT_SUPPORTED) && \
!defined(PNG_NO_WRITE_ANCILLARY_CHUNKS)
# define PNG_WRITE_ANCILLARY_CHUNKS_SUPPORTED
#endif
 
#ifdef PNG_READ_ANCILLARY_CHUNKS_SUPPORTED
 
#ifdef PNG_NO_READ_TEXT
# define PNG_NO_READ_iTXt
# define PNG_NO_READ_tEXt
# define PNG_NO_READ_zTXt
#endif
#ifndef PNG_NO_READ_bKGD
# define PNG_READ_bKGD_SUPPORTED
# define PNG_bKGD_SUPPORTED
#endif
#ifndef PNG_NO_READ_cHRM
# define PNG_READ_cHRM_SUPPORTED
# define PNG_cHRM_SUPPORTED
#endif
#ifndef PNG_NO_READ_gAMA
# define PNG_READ_gAMA_SUPPORTED
# define PNG_gAMA_SUPPORTED
#endif
#ifndef PNG_NO_READ_hIST
# define PNG_READ_hIST_SUPPORTED
# define PNG_hIST_SUPPORTED
#endif
#ifndef PNG_NO_READ_iCCP
# define PNG_READ_iCCP_SUPPORTED
# define PNG_iCCP_SUPPORTED
#endif
#ifndef PNG_NO_READ_iTXt
# ifndef PNG_READ_iTXt_SUPPORTED
# define PNG_READ_iTXt_SUPPORTED
# endif
# ifndef PNG_iTXt_SUPPORTED
# define PNG_iTXt_SUPPORTED
# endif
#endif
#ifndef PNG_NO_READ_oFFs
# define PNG_READ_oFFs_SUPPORTED
# define PNG_oFFs_SUPPORTED
#endif
#ifndef PNG_NO_READ_pCAL
# define PNG_READ_pCAL_SUPPORTED
# define PNG_pCAL_SUPPORTED
#endif
#ifndef PNG_NO_READ_sCAL
# define PNG_READ_sCAL_SUPPORTED
# define PNG_sCAL_SUPPORTED
#endif
#ifndef PNG_NO_READ_pHYs
# define PNG_READ_pHYs_SUPPORTED
# define PNG_pHYs_SUPPORTED
#endif
#ifndef PNG_NO_READ_sBIT
# define PNG_READ_sBIT_SUPPORTED
# define PNG_sBIT_SUPPORTED
#endif
#ifndef PNG_NO_READ_sPLT
# define PNG_READ_sPLT_SUPPORTED
# define PNG_sPLT_SUPPORTED
#endif
#ifndef PNG_NO_READ_sRGB
# define PNG_READ_sRGB_SUPPORTED
# define PNG_sRGB_SUPPORTED
#endif
#ifndef PNG_NO_READ_tEXt
# define PNG_READ_tEXt_SUPPORTED
# define PNG_tEXt_SUPPORTED
#endif
#ifndef PNG_NO_READ_tIME
# define PNG_READ_tIME_SUPPORTED
# define PNG_tIME_SUPPORTED
#endif
#ifndef PNG_NO_READ_tRNS
# define PNG_READ_tRNS_SUPPORTED
# define PNG_tRNS_SUPPORTED
#endif
#ifndef PNG_NO_READ_zTXt
# define PNG_READ_zTXt_SUPPORTED
# define PNG_zTXt_SUPPORTED
#endif
#ifndef PNG_NO_READ_UNKNOWN_CHUNKS
# define PNG_READ_UNKNOWN_CHUNKS_SUPPORTED
# ifndef PNG_UNKNOWN_CHUNKS_SUPPORTED
# define PNG_UNKNOWN_CHUNKS_SUPPORTED
# endif
# ifndef PNG_NO_HANDLE_AS_UNKNOWN
# define PNG_HANDLE_AS_UNKNOWN_SUPPORTED
# endif
#endif
#if !defined(PNG_NO_READ_USER_CHUNKS) && \
defined(PNG_READ_UNKNOWN_CHUNKS_SUPPORTED)
# define PNG_READ_USER_CHUNKS_SUPPORTED
# define PNG_USER_CHUNKS_SUPPORTED
# ifdef PNG_NO_READ_UNKNOWN_CHUNKS
# undef PNG_NO_READ_UNKNOWN_CHUNKS
# endif
# ifdef PNG_NO_HANDLE_AS_UNKNOWN
# undef PNG_NO_HANDLE_AS_UNKNOWN
# endif
#endif
#ifndef PNG_NO_READ_OPT_PLTE
# define PNG_READ_OPT_PLTE_SUPPORTED /* only affects support of the */
#endif /* optional PLTE chunk in RGB and RGBA images */
#if defined(PNG_READ_iTXt_SUPPORTED) || defined(PNG_READ_tEXt_SUPPORTED) || \
defined(PNG_READ_zTXt_SUPPORTED)
# define PNG_READ_TEXT_SUPPORTED
# define PNG_TEXT_SUPPORTED
#endif
 
#endif /* PNG_READ_ANCILLARY_CHUNKS_SUPPORTED */
 
#ifdef PNG_WRITE_ANCILLARY_CHUNKS_SUPPORTED
 
#ifdef PNG_NO_WRITE_TEXT
# define PNG_NO_WRITE_iTXt
# define PNG_NO_WRITE_tEXt
# define PNG_NO_WRITE_zTXt
#endif
#ifndef PNG_NO_WRITE_bKGD
# define PNG_WRITE_bKGD_SUPPORTED
# ifndef PNG_bKGD_SUPPORTED
# define PNG_bKGD_SUPPORTED
# endif
#endif
#ifndef PNG_NO_WRITE_cHRM
# define PNG_WRITE_cHRM_SUPPORTED
# ifndef PNG_cHRM_SUPPORTED
# define PNG_cHRM_SUPPORTED
# endif
#endif
#ifndef PNG_NO_WRITE_gAMA
# define PNG_WRITE_gAMA_SUPPORTED
# ifndef PNG_gAMA_SUPPORTED
# define PNG_gAMA_SUPPORTED
# endif
#endif
#ifndef PNG_NO_WRITE_hIST
# define PNG_WRITE_hIST_SUPPORTED
# ifndef PNG_hIST_SUPPORTED
# define PNG_hIST_SUPPORTED
# endif
#endif
#ifndef PNG_NO_WRITE_iCCP
# define PNG_WRITE_iCCP_SUPPORTED
# ifndef PNG_iCCP_SUPPORTED
# define PNG_iCCP_SUPPORTED
# endif
#endif
#ifndef PNG_NO_WRITE_iTXt
# ifndef PNG_WRITE_iTXt_SUPPORTED
# define PNG_WRITE_iTXt_SUPPORTED
# endif
# ifndef PNG_iTXt_SUPPORTED
# define PNG_iTXt_SUPPORTED
# endif
#endif
#ifndef PNG_NO_WRITE_oFFs
# define PNG_WRITE_oFFs_SUPPORTED
# ifndef PNG_oFFs_SUPPORTED
# define PNG_oFFs_SUPPORTED
# endif
#endif
#ifndef PNG_NO_WRITE_pCAL
# define PNG_WRITE_pCAL_SUPPORTED
# ifndef PNG_pCAL_SUPPORTED
# define PNG_pCAL_SUPPORTED
# endif
#endif
#ifndef PNG_NO_WRITE_sCAL
# define PNG_WRITE_sCAL_SUPPORTED
# ifndef PNG_sCAL_SUPPORTED
# define PNG_sCAL_SUPPORTED
# endif
#endif
#ifndef PNG_NO_WRITE_pHYs
# define PNG_WRITE_pHYs_SUPPORTED
# ifndef PNG_pHYs_SUPPORTED
# define PNG_pHYs_SUPPORTED
# endif
#endif
#ifndef PNG_NO_WRITE_sBIT
# define PNG_WRITE_sBIT_SUPPORTED
# ifndef PNG_sBIT_SUPPORTED
# define PNG_sBIT_SUPPORTED
# endif
#endif
#ifndef PNG_NO_WRITE_sPLT
# define PNG_WRITE_sPLT_SUPPORTED
# ifndef PNG_sPLT_SUPPORTED
# define PNG_sPLT_SUPPORTED
# endif
#endif
#ifndef PNG_NO_WRITE_sRGB
# define PNG_WRITE_sRGB_SUPPORTED
# ifndef PNG_sRGB_SUPPORTED
# define PNG_sRGB_SUPPORTED
# endif
#endif
#ifndef PNG_NO_WRITE_tEXt
# define PNG_WRITE_tEXt_SUPPORTED
# ifndef PNG_tEXt_SUPPORTED
# define PNG_tEXt_SUPPORTED
# endif
#endif
#ifndef PNG_NO_WRITE_tIME
//# define PNG_WRITE_tIME_SUPPORTED
# ifndef PNG_tIME_SUPPORTED
//# define PNG_tIME_SUPPORTED
# endif
#endif
#ifndef PNG_NO_WRITE_tRNS
# define PNG_WRITE_tRNS_SUPPORTED
# ifndef PNG_tRNS_SUPPORTED
# define PNG_tRNS_SUPPORTED
# endif
#endif
#ifndef PNG_NO_WRITE_zTXt
# define PNG_WRITE_zTXt_SUPPORTED
# ifndef PNG_zTXt_SUPPORTED
# define PNG_zTXt_SUPPORTED
# endif
#endif
#ifndef PNG_NO_WRITE_UNKNOWN_CHUNKS
# define PNG_WRITE_UNKNOWN_CHUNKS_SUPPORTED
# ifndef PNG_UNKNOWN_CHUNKS_SUPPORTED
# define PNG_UNKNOWN_CHUNKS_SUPPORTED
# endif
# ifndef PNG_NO_HANDLE_AS_UNKNOWN
# ifndef PNG_HANDLE_AS_UNKNOWN_SUPPORTED
# define PNG_HANDLE_AS_UNKNOWN_SUPPORTED
# endif
# endif
#endif
#if defined(PNG_WRITE_iTXt_SUPPORTED) || defined(PNG_WRITE_tEXt_SUPPORTED) || \
defined(PNG_WRITE_zTXt_SUPPORTED)
# define PNG_WRITE_TEXT_SUPPORTED
# ifndef PNG_TEXT_SUPPORTED
# define PNG_TEXT_SUPPORTED
# endif
#endif
 
#endif /* PNG_WRITE_ANCILLARY_CHUNKS_SUPPORTED */
 
/* Turn this off to disable png_read_png() and
* png_write_png() and leave the row_pointers member
* out of the info structure.
*/
#ifndef PNG_NO_INFO_IMAGE
# define PNG_INFO_IMAGE_SUPPORTED
#endif
 
/* need the time information for reading tIME chunks */
#if defined(PNG_tIME_SUPPORTED)
# if !defined(_WIN32_WCE)
/* "time.h" functions are not supported on WindowsCE */
# include <time.h>
# endif
#endif
 
/* Some typedefs to get us started. These should be safe on most of the
* common platforms. The typedefs should be at least as large as the
* numbers suggest (a png_uint_32 must be at least 32 bits long), but they
* don't have to be exactly that size. Some compilers dislike passing
* unsigned shorts as function parameters, so you may be better off using
* unsigned int for png_uint_16. Likewise, for 64-bit systems, you may
* want to have unsigned int for png_uint_32 instead of unsigned long.
*/
 
typedef unsigned long png_uint_32;
typedef long png_int_32;
typedef unsigned short png_uint_16;
typedef short png_int_16;
typedef unsigned char png_byte;
 
/* This is usually size_t. It is typedef'ed just in case you need it to
change (I'm not sure if you will or not, so I thought I'd be safe) */
typedef size_t png_size_t;
 
/* The following is needed for medium model support. It cannot be in the
* PNG_INTERNAL section. Needs modification for other compilers besides
* MSC. Model independent support declares all arrays and pointers to be
* large using the far keyword. The zlib version used must also support
* model independent data. As of version zlib 1.0.4, the necessary changes
* have been made in zlib. The USE_FAR_KEYWORD define triggers other
* changes that are needed. (Tim Wegner)
*/
 
/* Separate compiler dependencies (problem here is that zlib.h always
defines FAR. (SJT) */
#ifdef __BORLANDC__
# if defined(__LARGE__) || defined(__HUGE__) || defined(__COMPACT__)
# define LDATA 1
# else
# define LDATA 0
# endif
/* GRR: why is Cygwin in here? Cygwin is not Borland C... */
# if !defined(__WIN32__) && !defined(__FLAT__) && !defined(__CYGWIN__)
# define PNG_MAX_MALLOC_64K
# if (LDATA != 1)
# ifndef FAR
# define FAR __far
# endif
# define USE_FAR_KEYWORD
# endif /* LDATA != 1 */
/* Possibly useful for moving data out of default segment.
* Uncomment it if you want. Could also define FARDATA as
* const if your compiler supports it. (SJT)
# define FARDATA FAR
*/
# endif /* __WIN32__, __FLAT__, __CYGWIN__ */
#endif /* __BORLANDC__ */
 
 
/* Suggest testing for specific compiler first before testing for
* FAR. The Watcom compiler defines both __MEDIUM__ and M_I86MM,
* making reliance oncertain keywords suspect. (SJT)
*/
 
/* MSC Medium model */
#if defined(FAR)
# if defined(M_I86MM)
# define USE_FAR_KEYWORD
# define FARDATA FAR
# include <dos.h>
# endif
#endif
 
/* SJT: default case */
#ifndef FAR
# define FAR
#endif
 
/* At this point FAR is always defined */
#ifndef FARDATA
# define FARDATA
#endif
 
/* Typedef for floating-point numbers that are converted
to fixed-point with a multiple of 100,000, e.g., int_gamma */
typedef png_int_32 png_fixed_point;
 
/* Add typedefs for pointers */
typedef void FAR * png_voidp;
typedef png_byte FAR * png_bytep;
typedef png_uint_32 FAR * png_uint_32p;
typedef png_int_32 FAR * png_int_32p;
typedef png_uint_16 FAR * png_uint_16p;
typedef png_int_16 FAR * png_int_16p;
typedef PNG_CONST char FAR * png_const_charp;
typedef char FAR * png_charp;
typedef png_fixed_point FAR * png_fixed_point_p;
 
#ifndef PNG_NO_STDIO
#if defined(_WIN32_WCE)
typedef HANDLE png_FILE_p;
#else
typedef FILE * png_FILE_p;
#endif
#endif
 
#ifdef PNG_FLOATING_POINT_SUPPORTED
typedef double FAR * png_doublep;
#endif
 
/* Pointers to pointers; i.e. arrays */
typedef png_byte FAR * FAR * png_bytepp;
typedef png_uint_32 FAR * FAR * png_uint_32pp;
typedef png_int_32 FAR * FAR * png_int_32pp;
typedef png_uint_16 FAR * FAR * png_uint_16pp;
typedef png_int_16 FAR * FAR * png_int_16pp;
typedef PNG_CONST char FAR * FAR * png_const_charpp;
typedef char FAR * FAR * png_charpp;
typedef png_fixed_point FAR * FAR * png_fixed_point_pp;
#ifdef PNG_FLOATING_POINT_SUPPORTED
typedef double FAR * FAR * png_doublepp;
#endif
 
/* Pointers to pointers to pointers; i.e., pointer to array */
typedef char FAR * FAR * FAR * png_charppp;
 
/* libpng typedefs for types in zlib. If zlib changes
* or another compression library is used, then change these.
* Eliminates need to change all the source files.
*/
typedef charf * png_zcharp;
typedef charf * FAR * png_zcharpp;
typedef z_stream FAR * png_zstreamp;
 
/*
* Define PNG_BUILD_DLL if the module being built is a Windows
* LIBPNG DLL.
*
* Define PNG_USE_DLL if you want to *link* to the Windows LIBPNG DLL.
* It is equivalent to Microsoft predefined macro _DLL that is
* automatically defined when you compile using the share
* version of the CRT (C Run-Time library)
*
* The cygwin mods make this behavior a little different:
* Define PNG_BUILD_DLL if you are building a dll for use with cygwin
* Define PNG_STATIC if you are building a static library for use with cygwin,
* -or- if you are building an application that you want to link to the
* static library.
* PNG_USE_DLL is defined by default (no user action needed) unless one of
* the other flags is defined.
*/
 
#if !defined(PNG_DLL) && (defined(PNG_BUILD_DLL) || defined(PNG_USE_DLL))
# define PNG_DLL
#endif
/* If CYGWIN, then disallow GLOBAL ARRAYS unless building a static lib.
* When building a static lib, default to no GLOBAL ARRAYS, but allow
* command-line override
*/
#if defined(__CYGWIN__)
# if !defined(PNG_STATIC)
# if defined(PNG_USE_GLOBAL_ARRAYS)
# undef PNG_USE_GLOBAL_ARRAYS
# endif
# if !defined(PNG_USE_LOCAL_ARRAYS)
# define PNG_USE_LOCAL_ARRAYS
# endif
# else
# if defined(PNG_USE_LOCAL_ARRAYS) || defined(PNG_NO_GLOBAL_ARRAYS)
# if defined(PNG_USE_GLOBAL_ARRAYS)
# undef PNG_USE_GLOBAL_ARRAYS
# endif
# endif
# endif
# if !defined(PNG_USE_LOCAL_ARRAYS) && !defined(PNG_USE_GLOBAL_ARRAYS)
# define PNG_USE_LOCAL_ARRAYS
# endif
#endif
 
/* Do not use global arrays (helps with building DLL's)
* They are no longer used in libpng itself, since version 1.0.5c,
* but might be required for some pre-1.0.5c applications.
*/
#if !defined(PNG_USE_LOCAL_ARRAYS) && !defined(PNG_USE_GLOBAL_ARRAYS)
# if defined(PNG_NO_GLOBAL_ARRAYS) || (defined(__GNUC__) && defined(PNG_DLL))
# define PNG_USE_LOCAL_ARRAYS
# else
# define PNG_USE_GLOBAL_ARRAYS
# endif
#endif
 
#if defined(__CYGWIN__)
# undef PNGAPI
# define PNGAPI __cdecl
# undef PNG_IMPEXP
# define PNG_IMPEXP
#endif
 
/* If you define PNGAPI, e.g., with compiler option "-DPNGAPI=__stdcall",
* you may get warnings regarding the linkage of png_zalloc and png_zfree.
* Don't ignore those warnings; you must also reset the default calling
* convention in your compiler to match your PNGAPI, and you must build
* zlib and your applications the same way you build libpng.
*/
 
#ifndef PNGAPI
 
#if defined(__MINGW32__) && !defined(PNG_MODULEDEF)
# ifndef PNG_NO_MODULEDEF
# define PNG_NO_MODULEDEF
# endif
#endif
 
#if !defined(PNG_IMPEXP) && defined(PNG_BUILD_DLL) && !defined(PNG_NO_MODULEDEF)
# define PNG_IMPEXP
#endif
 
#if defined(PNG_DLL) || defined(_DLL) || defined(__DLL__ ) || \
(( defined(_Windows) || defined(_WINDOWS) || \
defined(WIN32) || defined(_WIN32) || defined(__WIN32__) ))
 
# if defined(__GNUC__) || (defined (_MSC_VER) && (_MSC_VER >= 800))
# define PNGAPI __cdecl
# else
# define PNGAPI _cdecl
# endif
 
# if !defined(PNG_IMPEXP) && (!defined(PNG_DLL) || \
0 /* WINCOMPILER_WITH_NO_SUPPORT_FOR_DECLIMPEXP */)
# define PNG_IMPEXP
# endif
 
# if !defined(PNG_IMPEXP)
 
# define PNG_EXPORT_TYPE1(type,symbol) PNG_IMPEXP type PNGAPI symbol
# define PNG_EXPORT_TYPE2(type,symbol) type PNG_IMPEXP PNGAPI symbol
 
/* Borland/Microsoft */
# if defined(_MSC_VER) || defined(__BORLANDC__)
# if (_MSC_VER >= 800) || (__BORLANDC__ >= 0x500)
# define PNG_EXPORT PNG_EXPORT_TYPE1
# else
# define PNG_EXPORT PNG_EXPORT_TYPE2
# if defined(PNG_BUILD_DLL)
# define PNG_IMPEXP __export
# else
# define PNG_IMPEXP /*__import */ /* doesn't exist AFAIK in
VC++ */
# endif /* Exists in Borland C++ for
C++ classes (== huge) */
# endif
# endif
 
# if !defined(PNG_IMPEXP)
# if defined(PNG_BUILD_DLL)
# define PNG_IMPEXP __declspec(dllexport)
# else
# define PNG_IMPEXP __declspec(dllimport)
# endif
# endif
# endif /* PNG_IMPEXP */
#else /* !(DLL || non-cygwin WINDOWS) */
# if (defined(__IBMC__) || defined(IBMCPP__)) && defined(__OS2__)
# define PNGAPI _System
# define PNG_IMPEXP
# else
# if 0 /* ... other platforms, with other meanings */
# else
# define PNGAPI
# define PNG_IMPEXP
# endif
# endif
#endif
#endif
 
#ifndef PNGAPI
# define PNGAPI
#endif
#ifndef PNG_IMPEXP
# define PNG_IMPEXP
#endif
 
#ifndef PNG_EXPORT
# define PNG_EXPORT(type,symbol) PNG_IMPEXP type PNGAPI symbol
#endif
 
#ifdef PNG_USE_GLOBAL_ARRAYS
# ifndef PNG_EXPORT_VAR
# define PNG_EXPORT_VAR(type) extern PNG_IMPEXP type
# endif
#endif
 
/* User may want to use these so they are not in PNG_INTERNAL. Any library
* functions that are passed far data must be model independent.
*/
 
#ifndef PNG_ABORT
# define PNG_ABORT() abort()
#endif
 
#ifdef PNG_SETJMP_SUPPORTED
# define png_jmpbuf(png_ptr) ((png_ptr)->jmpbuf)
#else
# define png_jmpbuf(png_ptr) \
(LIBPNG_WAS_COMPILED_WITH__PNG_SETJMP_NOT_SUPPORTED)
#endif
 
#if defined(USE_FAR_KEYWORD) /* memory model independent fns */
/* use this to make far-to-near assignments */
# define CHECK 1
# define NOCHECK 0
# define CVT_PTR(ptr) (png_far_to_near(png_ptr,ptr,CHECK))
# define CVT_PTR_NOCHECK(ptr) (png_far_to_near(png_ptr,ptr,NOCHECK))
# define png_strcpy _fstrcpy
# define png_strlen _fstrlen
# define png_memcmp _fmemcmp /* SJT: added */
# define png_memcpy _fmemcpy
# define png_memset _fmemset
#else /* use the usual functions */
# define CVT_PTR(ptr) (ptr)
# define CVT_PTR_NOCHECK(ptr) (ptr)
# define png_strcpy strcpy
# define png_strlen strlen
# define png_memcmp memcmp /* SJT: added */
# define png_memcpy memcpy
# define png_memset memset
#endif
/* End of memory model independent support */
 
/* Just a little check that someone hasn't tried to define something
* contradictory.
*/
#if (PNG_ZBUF_SIZE > 65536) && defined(PNG_MAX_MALLOC_64K)
# undef PNG_ZBUF_SIZE
# define PNG_ZBUF_SIZE 65536
#endif
 
#ifdef PNG_READ_SUPPORTED
/* Prior to libpng-1.0.9, this block was in pngasmrd.h */
#if defined(PNG_INTERNAL)
 
/* These are the default thresholds before the MMX code kicks in; if either
* rowbytes or bitdepth is below the threshold, plain C code is used. These
* can be overridden at runtime via the png_set_mmx_thresholds() call in
* libpng 1.2.0 and later. The values below were chosen by Intel.
*/
 
#ifndef PNG_MMX_ROWBYTES_THRESHOLD_DEFAULT
# define PNG_MMX_ROWBYTES_THRESHOLD_DEFAULT 128 /* >= */
#endif
#ifndef PNG_MMX_BITDEPTH_THRESHOLD_DEFAULT
# define PNG_MMX_BITDEPTH_THRESHOLD_DEFAULT 9 /* >= */
#endif
 
/* Set this in the makefile for VC++ on Pentium, not here. */
/* Platform must be Pentium. Makefile must assemble and load pngvcrd.c .
* MMX will be detected at run time and used if present.
*/
#ifdef PNG_USE_PNGVCRD
# define PNG_HAVE_ASSEMBLER_COMBINE_ROW
# define PNG_HAVE_ASSEMBLER_READ_INTERLACE
# define PNG_HAVE_ASSEMBLER_READ_FILTER_ROW
#endif
 
/* Set this in the makefile for gcc/as on Pentium, not here. */
/* Platform must be Pentium. Makefile must assemble and load pnggccrd.c .
* MMX will be detected at run time and used if present.
*/
#ifdef PNG_USE_PNGGCCRD
# define PNG_HAVE_ASSEMBLER_COMBINE_ROW
# define PNG_HAVE_ASSEMBLER_READ_INTERLACE
# define PNG_HAVE_ASSEMBLER_READ_FILTER_ROW
#endif
/* - see pnggccrd.c for info about what is currently enabled */
 
#endif /* PNG_INTERNAL */
#endif /* PNG_READ_SUPPORTED */
 
#endif /* PNGCONF_H */
 
/shark/trunk/ports/png/include/png.h
0,0 → 1,3283
/* png.h - header file for PNG reference library
*
* libpng version 1.2.5 - October 3, 2002
* Copyright (c) 1998-2002 Glenn Randers-Pehrson
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
*
* Authors and maintainers:
* libpng versions 0.71, May 1995, through 0.88, January 1996: Guy Schalnat
* libpng versions 0.89c, June 1996, through 0.96, May 1997: Andreas Dilger
* libpng versions 0.97, January 1998, through 1.2.5 - October 3, 2002: Glenn
* See also "Contributing Authors", below.
*
* Note about libpng version numbers:
*
* Due to various miscommunications, unforeseen code incompatibilities
* and occasional factors outside the authors' control, version numbering
* on the library has not always been consistent and straightforward.
* The following table summarizes matters since version 0.89c, which was
* the first widely used release:
*
* source png.h png.h shared-lib
* version string int version
* ------- ------ ----- ----------
* 0.89c "1.0 beta 3" 0.89 89 1.0.89
* 0.90 "1.0 beta 4" 0.90 90 0.90 [should have been 2.0.90]
* 0.95 "1.0 beta 5" 0.95 95 0.95 [should have been 2.0.95]
* 0.96 "1.0 beta 6" 0.96 96 0.96 [should have been 2.0.96]
* 0.97b "1.00.97 beta 7" 1.00.97 97 1.0.1 [should have been 2.0.97]
* 0.97c 0.97 97 2.0.97
* 0.98 0.98 98 2.0.98
* 0.99 0.99 98 2.0.99
* 0.99a-m 0.99 99 2.0.99
* 1.00 1.00 100 2.1.0 [100 should be 10000]
* 1.0.0 (from here on, the 100 2.1.0 [100 should be 10000]
* 1.0.1 png.h string is 10001 2.1.0
* 1.0.1a-e identical to the 10002 from here on, the shared library
* 1.0.2 source version) 10002 is 2.V where V is the source code
* 1.0.2a-b 10003 version, except as noted.
* 1.0.3 10003
* 1.0.3a-d 10004
* 1.0.4 10004
* 1.0.4a-f 10005
* 1.0.5 (+ 2 patches) 10005
* 1.0.5a-d 10006
* 1.0.5e-r 10100 (not source compatible)
* 1.0.5s-v 10006 (not binary compatible)
* 1.0.6 (+ 3 patches) 10006 (still binary incompatible)
* 1.0.6d-f 10007 (still binary incompatible)
* 1.0.6g 10007
* 1.0.6h 10007 10.6h (testing xy.z so-numbering)
* 1.0.6i 10007 10.6i
* 1.0.6j 10007 2.1.0.6j (incompatible with 1.0.0)
* 1.0.7beta11-14 DLLNUM 10007 2.1.0.7beta11-14 (binary compatible)
* 1.0.7beta15-18 1 10007 2.1.0.7beta15-18 (binary compatible)
* 1.0.7rc1-2 1 10007 2.1.0.7rc1-2 (binary compatible)
* 1.0.7 1 10007 (still compatible)
* 1.0.8beta1-4 1 10008 2.1.0.8beta1-4
* 1.0.8rc1 1 10008 2.1.0.8rc1
* 1.0.8 1 10008 2.1.0.8
* 1.0.9beta1-6 1 10009 2.1.0.9beta1-6
* 1.0.9rc1 1 10009 2.1.0.9rc1
* 1.0.9beta7-10 1 10009 2.1.0.9beta7-10
* 1.0.9rc2 1 10009 2.1.0.9rc2
* 1.0.9 1 10009 2.1.0.9
* 1.0.10beta1 1 10010 2.1.0.10beta1
* 1.0.10rc1 1 10010 2.1.0.10rc1
* 1.0.10 1 10010 2.1.0.10
* 1.0.11beta1-3 1 10011 2.1.0.11beta1-3
* 1.0.11rc1 1 10011 2.1.0.11rc1
* 1.0.11 1 10011 2.1.0.11
* 1.0.12beta1-2 2 10012 2.1.0.12beta1-2
* 1.0.12rc1 2 10012 2.1.0.12rc1
* 1.0.12 2 10012 2.1.0.12
* 1.1.0a-f - 10100 2.1.1.0a-f (branch abandoned)
* 1.2.0beta1-2 2 10200 2.1.2.0beta1-2
* 1.2.0beta3-5 3 10200 3.1.2.0beta3-5
* 1.2.0rc1 3 10200 3.1.2.0rc1
* 1.2.0 3 10200 3.1.2.0
* 1.2.1beta1-4 3 10201 3.1.2.1beta1-4
* 1.2.1rc1-2 3 10201 3.1.2.1rc1-2
* 1.2.1 3 10201 3.1.2.1
* 1.2.2beta1-6 12 10202 12.so.0.1.2.2beta1-6
* 1.0.13beta1 10 10013 10.so.0.1.0.13beta1
* 1.0.13rc1 10 10013 10.so.0.1.0.13rc1
* 1.2.2rc1 12 10202 12.so.0.1.2.2rc1
* 1.0.13 10 10013 10.so.0.1.0.13
* 1.2.2 12 10202 12.so.0.1.2.2
* 1.2.3rc1-6 12 10203 12.so.0.1.2.3rc1-6
* 1.2.3 12 10203 12.so.0.1.2.3
* 1.2.4beta1-3 13 10204 12.so.0.1.2.4beta1-3
* 1.0.14rc1 13 10014 10.so.0.1.0.14rc1
* 1.2.4rc1 13 10204 12.so.0.1.2.4rc1
* 1.0.14 10 10014 10.so.0.1.0.14
* 1.2.4 13 10204 12.so.0.1.2.4
* 1.2.5beta1-2 13 10205 12.so.0.1.2.5beta1-2
* 1.0.15rc1-3 10 10015 10.so.0.1.0.15rc1-3
* 1.2.5rc1-3 13 10205 12.so.0.1.2.5rc1-3
* 1.0.15 10 10015 10.so.0.1.0.15
* 1.2.5 13 10205 12.so.0.1.2.5
*
* Henceforth the source version will match the shared-library major
* and minor numbers; the shared-library major version number will be
* used for changes in backward compatibility, as it is intended. The
* PNG_LIBPNG_VER macro, which is not used within libpng but is available
* for applications, is an unsigned integer of the form xyyzz corresponding
* to the source version x.y.z (leading zeros in y and z). Beta versions
* were given the previous public release number plus a letter, until
* version 1.0.6j; from then on they were given the upcoming public
* release number plus "betaNN" or "rcN".
*
* Binary incompatibility exists only when applications make direct access
* to the info_ptr or png_ptr members through png.h, and the compiled
* application is loaded with a different version of the library.
*
* DLLNUM will change each time there are forward or backward changes
* in binary compatibility (e.g., when a new feature is added).
*
* See libpng.txt or libpng.3 for more information. The PNG specification
* is available as RFC 2083 <ftp://ftp.uu.net/graphics/png/documents/>
* and as a W3C Recommendation <http://www.w3.org/TR/REC.png.html>
*/
 
/*
* COPYRIGHT NOTICE, DISCLAIMER, and LICENSE:
*
* If you modify libpng you may insert additional notices immediately following
* this sentence.
*
* libpng versions 1.0.7, July 1, 2000, through 1.2.5, October 3, 2002, are
* Copyright (c) 2000-2002 Glenn Randers-Pehrson, and are
* distributed according to the same disclaimer and license as libpng-1.0.6
* with the following individuals added to the list of Contributing Authors
*
* Simon-Pierre Cadieux
* Eric S. Raymond
* Gilles Vollant
*
* and with the following additions to the disclaimer:
*
* There is no warranty against interference with your enjoyment of the
* library or against infringement. There is no warranty that our
* efforts or the library will fulfill any of your particular purposes
* or needs. This library is provided with all faults, and the entire
* risk of satisfactory quality, performance, accuracy, and effort is with
* the user.
*
* libpng versions 0.97, January 1998, through 1.0.6, March 20, 2000, are
* Copyright (c) 1998, 1999, 2000 Glenn Randers-Pehrson
* Distributed according to the same disclaimer and license as libpng-0.96,
* with the following individuals added to the list of Contributing Authors:
*
* Tom Lane
* Glenn Randers-Pehrson
* Willem van Schaik
*
* libpng versions 0.89, June 1996, through 0.96, May 1997, are
* Copyright (c) 1996, 1997 Andreas Dilger
* Distributed according to the same disclaimer and license as libpng-0.88,
* with the following individuals added to the list of Contributing Authors:
*
* John Bowler
* Kevin Bracey
* Sam Bushell
* Magnus Holmgren
* Greg Roelofs
* Tom Tanner
*
* libpng versions 0.5, May 1995, through 0.88, January 1996, are
* Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.
*
* For the purposes of this copyright and license, "Contributing Authors"
* is defined as the following set of individuals:
*
* Andreas Dilger
* Dave Martindale
* Guy Eric Schalnat
* Paul Schmidt
* Tim Wegner
*
* The PNG Reference Library is supplied "AS IS". The Contributing Authors
* and Group 42, Inc. disclaim all warranties, expressed or implied,
* including, without limitation, the warranties of merchantability and of
* fitness for any purpose. The Contributing Authors and Group 42, Inc.
* assume no liability for direct, indirect, incidental, special, exemplary,
* or consequential damages, which may result from the use of the PNG
* Reference Library, even if advised of the possibility of such damage.
*
* Permission is hereby granted to use, copy, modify, and distribute this
* source code, or portions hereof, for any purpose, without fee, subject
* to the following restrictions:
*
* 1. The origin of this source code must not be misrepresented.
*
* 2. Altered versions must be plainly marked as such and
* must not be misrepresented as being the original source.
*
* 3. This Copyright notice may not be removed or altered from
* any source or altered source distribution.
*
* The Contributing Authors and Group 42, Inc. specifically permit, without
* fee, and encourage the use of this source code as a component to
* supporting the PNG file format in commercial products. If you use this
* source code in a product, acknowledgment is not required but would be
* appreciated.
*/
 
/*
* A "png_get_copyright" function is available, for convenient use in "about"
* boxes and the like:
*
* printf("%s",png_get_copyright(NULL));
*
* Also, the PNG logo (in PNG format, of course) is supplied in the
* files "pngbar.png" and "pngbar.jpg (88x31) and "pngnow.png" (98x31).
*/
 
/*
* Libpng is OSI Certified Open Source Software. OSI Certified is a
* certification mark of the Open Source Initiative.
*/
 
/*
* The contributing authors would like to thank all those who helped
* with testing, bug fixes, and patience. This wouldn't have been
* possible without all of you.
*
* Thanks to Frank J. T. Wojcik for helping with the documentation.
*/
 
/*
* Y2K compliance in libpng:
* =========================
*
* October 3, 2002
*
* Since the PNG Development group is an ad-hoc body, we can't make
* an official declaration.
*
* This is your unofficial assurance that libpng from version 0.71 and
* upward through 1.2.5 are Y2K compliant. It is my belief that earlier
* versions were also Y2K compliant.
*
* Libpng only has three year fields. One is a 2-byte unsigned integer
* that will hold years up to 65535. The other two hold the date in text
* format, and will hold years up to 9999.
*
* The integer is
* "png_uint_16 year" in png_time_struct.
*
* The strings are
* "png_charp time_buffer" in png_struct and
* "near_time_buffer", which is a local character string in png.c.
*
* There are seven time-related functions:
* png.c: png_convert_to_rfc_1123() in png.c
* (formerly png_convert_to_rfc_1152() in error)
* png_convert_from_struct_tm() in pngwrite.c, called in pngwrite.c
* png_convert_from_time_t() in pngwrite.c
* png_get_tIME() in pngget.c
* png_handle_tIME() in pngrutil.c, called in pngread.c
* png_set_tIME() in pngset.c
* png_write_tIME() in pngwutil.c, called in pngwrite.c
*
* All handle dates properly in a Y2K environment. The
* png_convert_from_time_t() function calls gmtime() to convert from system
* clock time, which returns (year - 1900), which we properly convert to
* the full 4-digit year. There is a possibility that applications using
* libpng are not passing 4-digit years into the png_convert_to_rfc_1123()
* function, or that they are incorrectly passing only a 2-digit year
* instead of "year - 1900" into the png_convert_from_struct_tm() function,
* but this is not under our control. The libpng documentation has always
* stated that it works with 4-digit years, and the APIs have been
* documented as such.
*
* The tIME chunk itself is also Y2K compliant. It uses a 2-byte unsigned
* integer to hold the year, and can hold years as large as 65535.
*
* zlib, upon which libpng depends, is also Y2K compliant. It contains
* no date-related code.
*
* Glenn Randers-Pehrson
* libpng maintainer
* PNG Development Group
*/
 
#ifndef PNG_H
#define PNG_H
 
/* This is not the place to learn how to use libpng. The file libpng.txt
* describes how to use libpng, and the file example.c summarizes it
* with some code on which to build. This file is useful for looking
* at the actual function definitions and structure components.
*/
 
/* Version information for png.h - this should match the version in png.c */
#define PNG_LIBPNG_VER_STRING "1.2.5"
 
#define PNG_LIBPNG_VER_SONUM 0
#define PNG_LIBPNG_VER_DLLNUM %DLLNUM%
 
/* These should match the first 3 components of PNG_LIBPNG_VER_STRING: */
#define PNG_LIBPNG_VER_MAJOR 1
#define PNG_LIBPNG_VER_MINOR 2
#define PNG_LIBPNG_VER_RELEASE 5
/* This should match the numeric part of the final component of
* PNG_LIBPNG_VER_STRING, omitting any leading zero: */
 
#define PNG_LIBPNG_VER_BUILD 0
 
#define PNG_LIBPNG_BUILD_ALPHA 1
#define PNG_LIBPNG_BUILD_BETA 2
#define PNG_LIBPNG_BUILD_RC 3
#define PNG_LIBPNG_BUILD_STABLE 4
#define PNG_LIBPNG_BUILD_TYPEMASK 7
#define PNG_LIBPNG_BUILD_PATCH 8 /* Can be OR'ed with STABLE only */
#define PNG_LIBPNG_BUILD_TYPE 4
 
/* Careful here. At one time, Guy wanted to use 082, but that would be octal.
* We must not include leading zeros.
* Versions 0.7 through 1.0.0 were in the range 0 to 100 here (only
* version 1.0.0 was mis-numbered 100 instead of 10000). From
* version 1.0.1 it's xxyyzz, where x=major, y=minor, z=release */
#define PNG_LIBPNG_VER 10205 /* 1.2.5 */
 
#ifndef PNG_VERSION_INFO_ONLY
 
/* include the compression library's header */
#include "zlib.h"
 
/* include all user configurable info, including optional assembler routines */
#include "pngconf.h"
 
/* Inhibit C++ name-mangling for libpng functions but not for system calls. */
#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */
 
/* This file is arranged in several sections. The first section contains
* structure and type definitions. The second section contains the external
* library functions, while the third has the internal library functions,
* which applications aren't expected to use directly.
*/
 
#ifndef PNG_NO_TYPECAST_NULL
#define int_p_NULL (int *)NULL
#define png_bytep_NULL (png_bytep)NULL
#define png_bytepp_NULL (png_bytepp)NULL
#define png_doublep_NULL (png_doublep)NULL
#define png_error_ptr_NULL (png_error_ptr)NULL
#define png_flush_ptr_NULL (png_flush_ptr)NULL
#define png_free_ptr_NULL (png_free_ptr)NULL
#define png_infopp_NULL (png_infopp)NULL
#define png_malloc_ptr_NULL (png_malloc_ptr)NULL
#define png_read_status_ptr_NULL (png_read_status_ptr)NULL
#define png_rw_ptr_NULL (png_rw_ptr)NULL
#define png_structp_NULL (png_structp)NULL
#define png_uint_16p_NULL (png_uint_16p)NULL
#define png_voidp_NULL (png_voidp)NULL
#define png_write_status_ptr_NULL (png_write_status_ptr)NULL
#else
#define int_p_NULL NULL
#define png_bytep_NULL NULL
#define png_bytepp_NULL NULL
#define png_doublep_NULL NULL
#define png_error_ptr_NULL NULL
#define png_flush_ptr_NULL NULL
#define png_free_ptr_NULL NULL
#define png_infopp_NULL NULL
#define png_malloc_ptr_NULL NULL
#define png_read_status_ptr_NULL NULL
#define png_rw_ptr_NULL NULL
#define png_structp_NULL NULL
#define png_uint_16p_NULL NULL
#define png_voidp_NULL NULL
#define png_write_status_ptr_NULL NULL
#endif
 
/* variables declared in png.c - only it needs to define PNG_NO_EXTERN */
#if !defined(PNG_NO_EXTERN) || defined(PNG_ALWAYS_EXTERN)
/* Version information for C files, stored in png.c. This had better match
* the version above.
*/
#ifdef PNG_USE_GLOBAL_ARRAYS
PNG_EXPORT_VAR (const char) png_libpng_ver[18];
/* need room for 99.99.99beta99z */
#else
#define png_libpng_ver png_get_header_ver(NULL)
#endif
 
#ifdef PNG_USE_GLOBAL_ARRAYS
/* This was removed in version 1.0.5c */
/* Structures to facilitate easy interlacing. See png.c for more details */
PNG_EXPORT_VAR (const int FARDATA) png_pass_start[7];
PNG_EXPORT_VAR (const int FARDATA) png_pass_inc[7];
PNG_EXPORT_VAR (const int FARDATA) png_pass_ystart[7];
PNG_EXPORT_VAR (const int FARDATA) png_pass_yinc[7];
PNG_EXPORT_VAR (const int FARDATA) png_pass_mask[7];
PNG_EXPORT_VAR (const int FARDATA) png_pass_dsp_mask[7];
#ifdef PNG_HAVE_ASSEMBLER_COMBINE_ROW
PNG_EXPORT_VAR (const int FARDATA) png_pass_width[7];
#endif
/* This isn't currently used. If you need it, see png.c for more details.
PNG_EXPORT_VAR (const int FARDATA) png_pass_height[7];
*/
#endif
 
#endif /* PNG_NO_EXTERN */
 
/* Three color definitions. The order of the red, green, and blue, (and the
* exact size) is not important, although the size of the fields need to
* be png_byte or png_uint_16 (as defined below).
*/
typedef struct png_color_struct
{
png_byte red;
png_byte green;
png_byte blue;
} png_color;
typedef png_color FAR * png_colorp;
typedef png_color FAR * FAR * png_colorpp;
 
typedef struct png_color_16_struct
{
png_byte index; /* used for palette files */
png_uint_16 red; /* for use in red green blue files */
png_uint_16 green;
png_uint_16 blue;
png_uint_16 gray; /* for use in grayscale files */
} png_color_16;
typedef png_color_16 FAR * png_color_16p;
typedef png_color_16 FAR * FAR * png_color_16pp;
 
typedef struct png_color_8_struct
{
png_byte red; /* for use in red green blue files */
png_byte green;
png_byte blue;
png_byte gray; /* for use in grayscale files */
png_byte alpha; /* for alpha channel files */
} png_color_8;
typedef png_color_8 FAR * png_color_8p;
typedef png_color_8 FAR * FAR * png_color_8pp;
 
/*
* The following two structures are used for the in-core representation
* of sPLT chunks.
*/
typedef struct png_sPLT_entry_struct
{
png_uint_16 red;
png_uint_16 green;
png_uint_16 blue;
png_uint_16 alpha;
png_uint_16 frequency;
} png_sPLT_entry;
typedef png_sPLT_entry FAR * png_sPLT_entryp;
typedef png_sPLT_entry FAR * FAR * png_sPLT_entrypp;
 
/* When the depth of the sPLT palette is 8 bits, the color and alpha samples
* occupy the LSB of their respective members, and the MSB of each member
* is zero-filled. The frequency member always occupies the full 16 bits.
*/
 
typedef struct png_sPLT_struct
{
png_charp name; /* palette name */
png_byte depth; /* depth of palette samples */
png_sPLT_entryp entries; /* palette entries */
png_int_32 nentries; /* number of palette entries */
} png_sPLT_t;
typedef png_sPLT_t FAR * png_sPLT_tp;
typedef png_sPLT_t FAR * FAR * png_sPLT_tpp;
 
#ifdef PNG_TEXT_SUPPORTED
/* png_text holds the contents of a text/ztxt/itxt chunk in a PNG file,
* and whether that contents is compressed or not. The "key" field
* points to a regular zero-terminated C string. The "text", "lang", and
* "lang_key" fields can be regular C strings, empty strings, or NULL pointers.
* However, the * structure returned by png_get_text() will always contain
* regular zero-terminated C strings (possibly empty), never NULL pointers,
* so they can be safely used in printf() and other string-handling functions.
*/
typedef struct png_text_struct
{
int compression; /* compression value:
-1: tEXt, none
0: zTXt, deflate
1: iTXt, none
2: iTXt, deflate */
png_charp key; /* keyword, 1-79 character description of "text" */
png_charp text; /* comment, may be an empty string (ie "")
or a NULL pointer */
png_size_t text_length; /* length of the text string */
#ifdef PNG_iTXt_SUPPORTED
png_size_t itxt_length; /* length of the itxt string */
png_charp lang; /* language code, 0-79 characters
or a NULL pointer */
png_charp lang_key; /* keyword translated UTF-8 string, 0 or more
chars or a NULL pointer */
#endif
} png_text;
typedef png_text FAR * png_textp;
typedef png_text FAR * FAR * png_textpp;
#endif
 
/* Supported compression types for text in PNG files (tEXt, and zTXt).
* The values of the PNG_TEXT_COMPRESSION_ defines should NOT be changed. */
#define PNG_TEXT_COMPRESSION_NONE_WR -3
#define PNG_TEXT_COMPRESSION_zTXt_WR -2
#define PNG_TEXT_COMPRESSION_NONE -1
#define PNG_TEXT_COMPRESSION_zTXt 0
#define PNG_ITXT_COMPRESSION_NONE 1
#define PNG_ITXT_COMPRESSION_zTXt 2
#define PNG_TEXT_COMPRESSION_LAST 3 /* Not a valid value */
 
/* png_time is a way to hold the time in an machine independent way.
* Two conversions are provided, both from time_t and struct tm. There
* is no portable way to convert to either of these structures, as far
* as I know. If you know of a portable way, send it to me. As a side
* note - PNG has always been Year 2000 compliant!
*/
typedef struct png_time_struct
{
png_uint_16 year; /* full year, as in, 1995 */
png_byte month; /* month of year, 1 - 12 */
png_byte day; /* day of month, 1 - 31 */
png_byte hour; /* hour of day, 0 - 23 */
png_byte minute; /* minute of hour, 0 - 59 */
png_byte second; /* second of minute, 0 - 60 (for leap seconds) */
} png_time;
typedef png_time FAR * png_timep;
typedef png_time FAR * FAR * png_timepp;
 
#if defined(PNG_UNKNOWN_CHUNKS_SUPPORTED)
/* png_unknown_chunk is a structure to hold queued chunks for which there is
* no specific support. The idea is that we can use this to queue
* up private chunks for output even though the library doesn't actually
* know about their semantics.
*/
typedef struct png_unknown_chunk_t
{
png_byte name[5];
png_byte *data;
png_size_t size;
 
/* libpng-using applications should NOT directly modify this byte. */
png_byte location; /* mode of operation at read time */
}
png_unknown_chunk;
typedef png_unknown_chunk FAR * png_unknown_chunkp;
typedef png_unknown_chunk FAR * FAR * png_unknown_chunkpp;
#endif
 
/* png_info is a structure that holds the information in a PNG file so
* that the application can find out the characteristics of the image.
* If you are reading the file, this structure will tell you what is
* in the PNG file. If you are writing the file, fill in the information
* you want to put into the PNG file, then call png_write_info().
* The names chosen should be very close to the PNG specification, so
* consult that document for information about the meaning of each field.
*
* With libpng < 0.95, it was only possible to directly set and read the
* the values in the png_info_struct, which meant that the contents and
* order of the values had to remain fixed. With libpng 0.95 and later,
* however, there are now functions that abstract the contents of
* png_info_struct from the application, so this makes it easier to use
* libpng with dynamic libraries, and even makes it possible to use
* libraries that don't have all of the libpng ancillary chunk-handing
* functionality.
*
* In any case, the order of the parameters in png_info_struct should NOT
* be changed for as long as possible to keep compatibility with applications
* that use the old direct-access method with png_info_struct.
*
* The following members may have allocated storage attached that should be
* cleaned up before the structure is discarded: palette, trans, text,
* pcal_purpose, pcal_units, pcal_params, hist, iccp_name, iccp_profile,
* splt_palettes, scal_unit, row_pointers, and unknowns. By default, these
* are automatically freed when the info structure is deallocated, if they were
* allocated internally by libpng. This behavior can be changed by means
* of the png_data_freer() function.
*
* More allocation details: all the chunk-reading functions that
* change these members go through the corresponding png_set_*
* functions. A function to clear these members is available: see
* png_free_data(). The png_set_* functions do not depend on being
* able to point info structure members to any of the storage they are
* passed (they make their own copies), EXCEPT that the png_set_text
* functions use the same storage passed to them in the text_ptr or
* itxt_ptr structure argument, and the png_set_rows and png_set_unknowns
* functions do not make their own copies.
*/
typedef struct png_info_struct
{
/* the following are necessary for every PNG file */
png_uint_32 width; /* width of image in pixels (from IHDR) */
png_uint_32 height; /* height of image in pixels (from IHDR) */
png_uint_32 valid; /* valid chunk data (see PNG_INFO_ below) */
png_uint_32 rowbytes; /* bytes needed to hold an untransformed row */
png_colorp palette; /* array of color values (valid & PNG_INFO_PLTE) */
png_uint_16 num_palette; /* number of color entries in "palette" (PLTE) */
png_uint_16 num_trans; /* number of transparent palette color (tRNS) */
png_byte bit_depth; /* 1, 2, 4, 8, or 16 bits/channel (from IHDR) */
png_byte color_type; /* see PNG_COLOR_TYPE_ below (from IHDR) */
/* The following three should have been named *_method not *_type */
png_byte compression_type; /* must be PNG_COMPRESSION_TYPE_BASE (IHDR) */
png_byte filter_type; /* must be PNG_FILTER_TYPE_BASE (from IHDR) */
png_byte interlace_type; /* One of PNG_INTERLACE_NONE, PNG_INTERLACE_ADAM7 */
 
/* The following is informational only on read, and not used on writes. */
png_byte channels; /* number of data channels per pixel (1, 2, 3, 4) */
png_byte pixel_depth; /* number of bits per pixel */
png_byte spare_byte; /* to align the data, and for future use */
png_byte signature[8]; /* magic bytes read by libpng from start of file */
 
/* The rest of the data is optional. If you are reading, check the
* valid field to see if the information in these are valid. If you
* are writing, set the valid field to those chunks you want written,
* and initialize the appropriate fields below.
*/
 
#if defined(PNG_gAMA_SUPPORTED) && defined(PNG_FLOATING_POINT_SUPPORTED)
/* The gAMA chunk describes the gamma characteristics of the system
* on which the image was created, normally in the range [1.0, 2.5].
* Data is valid if (valid & PNG_INFO_gAMA) is non-zero.
*/
float gamma; /* gamma value of image, if (valid & PNG_INFO_gAMA) */
#endif
 
#if defined(PNG_sRGB_SUPPORTED)
/* GR-P, 0.96a */
/* Data valid if (valid & PNG_INFO_sRGB) non-zero. */
png_byte srgb_intent; /* sRGB rendering intent [0, 1, 2, or 3] */
#endif
 
#if defined(PNG_TEXT_SUPPORTED)
/* The tEXt, and zTXt chunks contain human-readable textual data in
* uncompressed, compressed, and optionally compressed forms, respectively.
* The data in "text" is an array of pointers to uncompressed,
* null-terminated C strings. Each chunk has a keyword that describes the
* textual data contained in that chunk. Keywords are not required to be
* unique, and the text string may be empty. Any number of text chunks may
* be in an image.
*/
int num_text; /* number of comments read/to write */
int max_text; /* current size of text array */
png_textp text; /* array of comments read/to write */
#endif /* PNG_TEXT_SUPPORTED */
 
#if defined(PNG_tIME_SUPPORTED)
/* The tIME chunk holds the last time the displayed image data was
* modified. See the png_time struct for the contents of this struct.
*/
png_time mod_time;
#endif
 
#if defined(PNG_sBIT_SUPPORTED)
/* The sBIT chunk specifies the number of significant high-order bits
* in the pixel data. Values are in the range [1, bit_depth], and are
* only specified for the channels in the pixel data. The contents of
* the low-order bits is not specified. Data is valid if
* (valid & PNG_INFO_sBIT) is non-zero.
*/
png_color_8 sig_bit; /* significant bits in color channels */
#endif
 
#if defined(PNG_tRNS_SUPPORTED) || defined(PNG_READ_EXPAND_SUPPORTED) || \
defined(PNG_READ_BACKGROUND_SUPPORTED)
/* The tRNS chunk supplies transparency data for paletted images and
* other image types that don't need a full alpha channel. There are
* "num_trans" transparency values for a paletted image, stored in the
* same order as the palette colors, starting from index 0. Values
* for the data are in the range [0, 255], ranging from fully transparent
* to fully opaque, respectively. For non-paletted images, there is a
* single color specified that should be treated as fully transparent.
* Data is valid if (valid & PNG_INFO_tRNS) is non-zero.
*/
png_bytep trans; /* transparent values for paletted image */
png_color_16 trans_values; /* transparent color for non-palette image */
#endif
 
#if defined(PNG_bKGD_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED)
/* The bKGD chunk gives the suggested image background color if the
* display program does not have its own background color and the image
* is needs to composited onto a background before display. The colors
* in "background" are normally in the same color space/depth as the
* pixel data. Data is valid if (valid & PNG_INFO_bKGD) is non-zero.
*/
png_color_16 background;
#endif
 
#if defined(PNG_oFFs_SUPPORTED)
/* The oFFs chunk gives the offset in "offset_unit_type" units rightwards
* and downwards from the top-left corner of the display, page, or other
* application-specific co-ordinate space. See the PNG_OFFSET_ defines
* below for the unit types. Valid if (valid & PNG_INFO_oFFs) non-zero.
*/
png_int_32 x_offset; /* x offset on page */
png_int_32 y_offset; /* y offset on page */
png_byte offset_unit_type; /* offset units type */
#endif
 
#if defined(PNG_pHYs_SUPPORTED)
/* The pHYs chunk gives the physical pixel density of the image for
* display or printing in "phys_unit_type" units (see PNG_RESOLUTION_
* defines below). Data is valid if (valid & PNG_INFO_pHYs) is non-zero.
*/
png_uint_32 x_pixels_per_unit; /* horizontal pixel density */
png_uint_32 y_pixels_per_unit; /* vertical pixel density */
png_byte phys_unit_type; /* resolution type (see PNG_RESOLUTION_ below) */
#endif
 
#if defined(PNG_hIST_SUPPORTED)
/* The hIST chunk contains the relative frequency or importance of the
* various palette entries, so that a viewer can intelligently select a
* reduced-color palette, if required. Data is an array of "num_palette"
* values in the range [0,65535]. Data valid if (valid & PNG_INFO_hIST)
* is non-zero.
*/
png_uint_16p hist;
#endif
 
#ifdef PNG_cHRM_SUPPORTED
/* The cHRM chunk describes the CIE color characteristics of the monitor
* on which the PNG was created. This data allows the viewer to do gamut
* mapping of the input image to ensure that the viewer sees the same
* colors in the image as the creator. Values are in the range
* [0.0, 0.8]. Data valid if (valid & PNG_INFO_cHRM) non-zero.
*/
#ifdef PNG_FLOATING_POINT_SUPPORTED
float x_white;
float y_white;
float x_red;
float y_red;
float x_green;
float y_green;
float x_blue;
float y_blue;
#endif
#endif
 
#if defined(PNG_pCAL_SUPPORTED)
/* The pCAL chunk describes a transformation between the stored pixel
* values and original physical data values used to create the image.
* The integer range [0, 2^bit_depth - 1] maps to the floating-point
* range given by [pcal_X0, pcal_X1], and are further transformed by a
* (possibly non-linear) transformation function given by "pcal_type"
* and "pcal_params" into "pcal_units". Please see the PNG_EQUATION_
* defines below, and the PNG-Group's PNG extensions document for a
* complete description of the transformations and how they should be
* implemented, and for a description of the ASCII parameter strings.
* Data values are valid if (valid & PNG_INFO_pCAL) non-zero.
*/
png_charp pcal_purpose; /* pCAL chunk description string */
png_int_32 pcal_X0; /* minimum value */
png_int_32 pcal_X1; /* maximum value */
png_charp pcal_units; /* Latin-1 string giving physical units */
png_charpp pcal_params; /* ASCII strings containing parameter values */
png_byte pcal_type; /* equation type (see PNG_EQUATION_ below) */
png_byte pcal_nparams; /* number of parameters given in pcal_params */
#endif
 
/* New members added in libpng-1.0.6 */
#ifdef PNG_FREE_ME_SUPPORTED
png_uint_32 free_me; /* flags items libpng is responsible for freeing */
#endif
 
#if defined(PNG_UNKNOWN_CHUNKS_SUPPORTED)
/* storage for unknown chunks that the library doesn't recognize. */
png_unknown_chunkp unknown_chunks;
png_size_t unknown_chunks_num;
#endif
 
#if defined(PNG_iCCP_SUPPORTED)
/* iCCP chunk data. */
png_charp iccp_name; /* profile name */
png_charp iccp_profile; /* International Color Consortium profile data */
/* Note to maintainer: should be png_bytep */
png_uint_32 iccp_proflen; /* ICC profile data length */
png_byte iccp_compression; /* Always zero */
#endif
 
#if defined(PNG_sPLT_SUPPORTED)
/* data on sPLT chunks (there may be more than one). */
png_sPLT_tp splt_palettes;
png_uint_32 splt_palettes_num;
#endif
 
#if defined(PNG_sCAL_SUPPORTED)
/* The sCAL chunk describes the actual physical dimensions of the
* subject matter of the graphic. The chunk contains a unit specification
* a byte value, and two ASCII strings representing floating-point
* values. The values are width and height corresponsing to one pixel
* in the image. This external representation is converted to double
* here. Data values are valid if (valid & PNG_INFO_sCAL) is non-zero.
*/
png_byte scal_unit; /* unit of physical scale */
#ifdef PNG_FLOATING_POINT_SUPPORTED
double scal_pixel_width; /* width of one pixel */
double scal_pixel_height; /* height of one pixel */
#endif
#ifdef PNG_FIXED_POINT_SUPPORTED
png_charp scal_s_width; /* string containing height */
png_charp scal_s_height; /* string containing width */
#endif
#endif
 
#if defined(PNG_INFO_IMAGE_SUPPORTED)
/* Memory has been allocated if (valid & PNG_ALLOCATED_INFO_ROWS) non-zero */
/* Data valid if (valid & PNG_INFO_IDAT) non-zero */
png_bytepp row_pointers; /* the image bits */
#endif
 
#if defined(PNG_FIXED_POINT_SUPPORTED) && defined(PNG_gAMA_SUPPORTED)
png_fixed_point int_gamma; /* gamma of image, if (valid & PNG_INFO_gAMA) */
#endif
 
#if defined(PNG_cHRM_SUPPORTED) && defined(PNG_FIXED_POINT_SUPPORTED)
png_fixed_point int_x_white;
png_fixed_point int_y_white;
png_fixed_point int_x_red;
png_fixed_point int_y_red;
png_fixed_point int_x_green;
png_fixed_point int_y_green;
png_fixed_point int_x_blue;
png_fixed_point int_y_blue;
#endif
 
} png_info;
 
typedef png_info FAR * png_infop;
typedef png_info FAR * FAR * png_infopp;
 
/* Maximum positive integer used in PNG is (2^31)-1 */
#define PNG_MAX_UINT ((png_uint_32)0x7fffffffL)
 
/* These describe the color_type field in png_info. */
/* color type masks */
#define PNG_COLOR_MASK_PALETTE 1
#define PNG_COLOR_MASK_COLOR 2
#define PNG_COLOR_MASK_ALPHA 4
 
/* color types. Note that not all combinations are legal */
#define PNG_COLOR_TYPE_GRAY 0
#define PNG_COLOR_TYPE_PALETTE (PNG_COLOR_MASK_COLOR | PNG_COLOR_MASK_PALETTE)
#define PNG_COLOR_TYPE_RGB (PNG_COLOR_MASK_COLOR)
#define PNG_COLOR_TYPE_RGB_ALPHA (PNG_COLOR_MASK_COLOR | PNG_COLOR_MASK_ALPHA)
#define PNG_COLOR_TYPE_GRAY_ALPHA (PNG_COLOR_MASK_ALPHA)
/* aliases */
#define PNG_COLOR_TYPE_RGBA PNG_COLOR_TYPE_RGB_ALPHA
#define PNG_COLOR_TYPE_GA PNG_COLOR_TYPE_GRAY_ALPHA
 
/* This is for compression type. PNG 1.0-1.2 only define the single type. */
#define PNG_COMPRESSION_TYPE_BASE 0 /* Deflate method 8, 32K window */
#define PNG_COMPRESSION_TYPE_DEFAULT PNG_COMPRESSION_TYPE_BASE
 
/* This is for filter type. PNG 1.0-1.2 only define the single type. */
#define PNG_FILTER_TYPE_BASE 0 /* Single row per-byte filtering */
#define PNG_INTRAPIXEL_DIFFERENCING 64 /* Used only in MNG datastreams */
#define PNG_FILTER_TYPE_DEFAULT PNG_FILTER_TYPE_BASE
 
/* These are for the interlacing type. These values should NOT be changed. */
#define PNG_INTERLACE_NONE 0 /* Non-interlaced image */
#define PNG_INTERLACE_ADAM7 1 /* Adam7 interlacing */
#define PNG_INTERLACE_LAST 2 /* Not a valid value */
 
/* These are for the oFFs chunk. These values should NOT be changed. */
#define PNG_OFFSET_PIXEL 0 /* Offset in pixels */
#define PNG_OFFSET_MICROMETER 1 /* Offset in micrometers (1/10^6 meter) */
#define PNG_OFFSET_LAST 2 /* Not a valid value */
 
/* These are for the pCAL chunk. These values should NOT be changed. */
#define PNG_EQUATION_LINEAR 0 /* Linear transformation */
#define PNG_EQUATION_BASE_E 1 /* Exponential base e transform */
#define PNG_EQUATION_ARBITRARY 2 /* Arbitrary base exponential transform */
#define PNG_EQUATION_HYPERBOLIC 3 /* Hyperbolic sine transformation */
#define PNG_EQUATION_LAST 4 /* Not a valid value */
 
/* These are for the sCAL chunk. These values should NOT be changed. */
#define PNG_SCALE_UNKNOWN 0 /* unknown unit (image scale) */
#define PNG_SCALE_METER 1 /* meters per pixel */
#define PNG_SCALE_RADIAN 2 /* radians per pixel */
#define PNG_SCALE_LAST 3 /* Not a valid value */
 
/* These are for the pHYs chunk. These values should NOT be changed. */
#define PNG_RESOLUTION_UNKNOWN 0 /* pixels/unknown unit (aspect ratio) */
#define PNG_RESOLUTION_METER 1 /* pixels/meter */
#define PNG_RESOLUTION_LAST 2 /* Not a valid value */
 
/* These are for the sRGB chunk. These values should NOT be changed. */
#define PNG_sRGB_INTENT_PERCEPTUAL 0
#define PNG_sRGB_INTENT_RELATIVE 1
#define PNG_sRGB_INTENT_SATURATION 2
#define PNG_sRGB_INTENT_ABSOLUTE 3
#define PNG_sRGB_INTENT_LAST 4 /* Not a valid value */
 
/* This is for text chunks */
#define PNG_KEYWORD_MAX_LENGTH 79
 
/* Maximum number of entries in PLTE/sPLT/tRNS arrays */
#define PNG_MAX_PALETTE_LENGTH 256
 
/* These determine if an ancillary chunk's data has been successfully read
* from the PNG header, or if the application has filled in the corresponding
* data in the info_struct to be written into the output file. The values
* of the PNG_INFO_<chunk> defines should NOT be changed.
*/
#define PNG_INFO_gAMA 0x0001
#define PNG_INFO_sBIT 0x0002
#define PNG_INFO_cHRM 0x0004
#define PNG_INFO_PLTE 0x0008
#define PNG_INFO_tRNS 0x0010
#define PNG_INFO_bKGD 0x0020
#define PNG_INFO_hIST 0x0040
#define PNG_INFO_pHYs 0x0080
#define PNG_INFO_oFFs 0x0100
#define PNG_INFO_tIME 0x0200
#define PNG_INFO_pCAL 0x0400
#define PNG_INFO_sRGB 0x0800 /* GR-P, 0.96a */
#define PNG_INFO_iCCP 0x1000 /* ESR, 1.0.6 */
#define PNG_INFO_sPLT 0x2000 /* ESR, 1.0.6 */
#define PNG_INFO_sCAL 0x4000 /* ESR, 1.0.6 */
#define PNG_INFO_IDAT 0x8000L /* ESR, 1.0.6 */
 
/* This is used for the transformation routines, as some of them
* change these values for the row. It also should enable using
* the routines for other purposes.
*/
typedef struct png_row_info_struct
{
png_uint_32 width; /* width of row */
png_uint_32 rowbytes; /* number of bytes in row */
png_byte color_type; /* color type of row */
png_byte bit_depth; /* bit depth of row */
png_byte channels; /* number of channels (1, 2, 3, or 4) */
png_byte pixel_depth; /* bits per pixel (depth * channels) */
} png_row_info;
 
typedef png_row_info FAR * png_row_infop;
typedef png_row_info FAR * FAR * png_row_infopp;
 
/* These are the function types for the I/O functions and for the functions
* that allow the user to override the default I/O functions with his or her
* own. The png_error_ptr type should match that of user-supplied warning
* and error functions, while the png_rw_ptr type should match that of the
* user read/write data functions.
*/
typedef struct png_struct_def png_struct;
typedef png_struct FAR * png_structp;
 
typedef void (PNGAPI *png_error_ptr) PNGARG((png_structp, png_const_charp));
typedef void (PNGAPI *png_rw_ptr) PNGARG((png_structp, png_bytep, png_size_t));
typedef void (PNGAPI *png_flush_ptr) PNGARG((png_structp));
typedef void (PNGAPI *png_read_status_ptr) PNGARG((png_structp, png_uint_32,
int));
typedef void (PNGAPI *png_write_status_ptr) PNGARG((png_structp, png_uint_32,
int));
 
#ifdef PNG_PROGRESSIVE_READ_SUPPORTED
typedef void (PNGAPI *png_progressive_info_ptr) PNGARG((png_structp, png_infop));
typedef void (PNGAPI *png_progressive_end_ptr) PNGARG((png_structp, png_infop));
typedef void (PNGAPI *png_progressive_row_ptr) PNGARG((png_structp, png_bytep,
png_uint_32, int));
#endif
 
#if defined(PNG_READ_USER_TRANSFORM_SUPPORTED) || \
defined(PNG_WRITE_USER_TRANSFORM_SUPPORTED) || \
defined(PNG_LEGACY_SUPPORTED)
typedef void (PNGAPI *png_user_transform_ptr) PNGARG((png_structp,
png_row_infop, png_bytep));
#endif
 
#if defined(PNG_USER_CHUNKS_SUPPORTED)
typedef int (PNGAPI *png_user_chunk_ptr) PNGARG((png_structp, png_unknown_chunkp));
#endif
#if defined(PNG_UNKNOWN_CHUNKS_SUPPORTED)
typedef void (PNGAPI *png_unknown_chunk_ptr) PNGARG((png_structp));
#endif
 
/* Transform masks for the high-level interface */
#define PNG_TRANSFORM_IDENTITY 0x0000 /* read and write */
#define PNG_TRANSFORM_STRIP_16 0x0001 /* read only */
#define PNG_TRANSFORM_STRIP_ALPHA 0x0002 /* read only */
#define PNG_TRANSFORM_PACKING 0x0004 /* read and write */
#define PNG_TRANSFORM_PACKSWAP 0x0008 /* read and write */
#define PNG_TRANSFORM_EXPAND 0x0010 /* read only */
#define PNG_TRANSFORM_INVERT_MONO 0x0020 /* read and write */
#define PNG_TRANSFORM_SHIFT 0x0040 /* read and write */
#define PNG_TRANSFORM_BGR 0x0080 /* read and write */
#define PNG_TRANSFORM_SWAP_ALPHA 0x0100 /* read and write */
#define PNG_TRANSFORM_SWAP_ENDIAN 0x0200 /* read and write */
#define PNG_TRANSFORM_INVERT_ALPHA 0x0400 /* read and write */
#define PNG_TRANSFORM_STRIP_FILLER 0x0800 /* WRITE only */
 
/* Flags for MNG supported features */
#define PNG_FLAG_MNG_EMPTY_PLTE 0x01
#define PNG_FLAG_MNG_FILTER_64 0x04
#define PNG_ALL_MNG_FEATURES 0x05
 
typedef png_voidp (*png_malloc_ptr) PNGARG((png_structp, png_size_t));
typedef void (*png_free_ptr) PNGARG((png_structp, png_voidp));
 
/* The structure that holds the information to read and write PNG files.
* The only people who need to care about what is inside of this are the
* people who will be modifying the library for their own special needs.
* It should NOT be accessed directly by an application, except to store
* the jmp_buf.
*/
 
struct png_struct_def
{
#ifdef PNG_SETJMP_SUPPORTED
jmp_buf jmpbuf; /* used in png_error */
#endif
png_error_ptr error_fn; /* function for printing errors and aborting */
png_error_ptr warning_fn; /* function for printing warnings */
png_voidp error_ptr; /* user supplied struct for error functions */
png_rw_ptr write_data_fn; /* function for writing output data */
png_rw_ptr read_data_fn; /* function for reading input data */
png_voidp io_ptr; /* ptr to application struct for I/O functions */
 
#if defined(PNG_READ_USER_TRANSFORM_SUPPORTED)
png_user_transform_ptr read_user_transform_fn; /* user read transform */
#endif
 
#if defined(PNG_WRITE_USER_TRANSFORM_SUPPORTED)
png_user_transform_ptr write_user_transform_fn; /* user write transform */
#endif
 
/* These were added in libpng-1.0.2 */
#if defined(PNG_USER_TRANSFORM_PTR_SUPPORTED)
#if defined(PNG_READ_USER_TRANSFORM_SUPPORTED) || \
defined(PNG_WRITE_USER_TRANSFORM_SUPPORTED)
png_voidp user_transform_ptr; /* user supplied struct for user transform */
png_byte user_transform_depth; /* bit depth of user transformed pixels */
png_byte user_transform_channels; /* channels in user transformed pixels */
#endif
#endif
 
png_uint_32 mode; /* tells us where we are in the PNG file */
png_uint_32 flags; /* flags indicating various things to libpng */
png_uint_32 transformations; /* which transformations to perform */
 
z_stream zstream; /* pointer to decompression structure (below) */
png_bytep zbuf; /* buffer for zlib */
png_size_t zbuf_size; /* size of zbuf */
int zlib_level; /* holds zlib compression level */
int zlib_method; /* holds zlib compression method */
int zlib_window_bits; /* holds zlib compression window bits */
int zlib_mem_level; /* holds zlib compression memory level */
int zlib_strategy; /* holds zlib compression strategy */
 
png_uint_32 width; /* width of image in pixels */
png_uint_32 height; /* height of image in pixels */
png_uint_32 num_rows; /* number of rows in current pass */
png_uint_32 usr_width; /* width of row at start of write */
png_uint_32 rowbytes; /* size of row in bytes */
png_uint_32 irowbytes; /* size of current interlaced row in bytes */
png_uint_32 iwidth; /* width of current interlaced row in pixels */
png_uint_32 row_number; /* current row in interlace pass */
png_bytep prev_row; /* buffer to save previous (unfiltered) row */
png_bytep row_buf; /* buffer to save current (unfiltered) row */
png_bytep sub_row; /* buffer to save "sub" row when filtering */
png_bytep up_row; /* buffer to save "up" row when filtering */
png_bytep avg_row; /* buffer to save "avg" row when filtering */
png_bytep paeth_row; /* buffer to save "Paeth" row when filtering */
png_row_info row_info; /* used for transformation routines */
 
png_uint_32 idat_size; /* current IDAT size for read */
png_uint_32 crc; /* current chunk CRC value */
png_colorp palette; /* palette from the input file */
png_uint_16 num_palette; /* number of color entries in palette */
png_uint_16 num_trans; /* number of transparency values */
png_byte chunk_name[5]; /* null-terminated name of current chunk */
png_byte compression; /* file compression type (always 0) */
png_byte filter; /* file filter type (always 0) */
png_byte interlaced; /* PNG_INTERLACE_NONE, PNG_INTERLACE_ADAM7 */
png_byte pass; /* current interlace pass (0 - 6) */
png_byte do_filter; /* row filter flags (see PNG_FILTER_ below ) */
png_byte color_type; /* color type of file */
png_byte bit_depth; /* bit depth of file */
png_byte usr_bit_depth; /* bit depth of users row */
png_byte pixel_depth; /* number of bits per pixel */
png_byte channels; /* number of channels in file */
png_byte usr_channels; /* channels at start of write */
png_byte sig_bytes; /* magic bytes read/written from start of file */
 
#if defined(PNG_READ_FILLER_SUPPORTED) || defined(PNG_WRITE_FILLER_SUPPORTED)
#ifdef PNG_LEGACY_SUPPORTED
png_byte filler; /* filler byte for pixel expansion */
#else
png_uint_16 filler; /* filler bytes for pixel expansion */
#endif
#endif
 
#if defined(PNG_bKGD_SUPPORTED)
png_byte background_gamma_type;
# ifdef PNG_FLOATING_POINT_SUPPORTED
float background_gamma;
# endif
png_color_16 background; /* background color in screen gamma space */
#if defined(PNG_READ_GAMMA_SUPPORTED)
png_color_16 background_1; /* background normalized to gamma 1.0 */
#endif
#endif /* PNG_bKGD_SUPPORTED */
 
#if defined(PNG_WRITE_FLUSH_SUPPORTED)
png_flush_ptr output_flush_fn;/* Function for flushing output */
png_uint_32 flush_dist; /* how many rows apart to flush, 0 - no flush */
png_uint_32 flush_rows; /* number of rows written since last flush */
#endif
 
#if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED)
int gamma_shift; /* number of "insignificant" bits 16-bit gamma */
#ifdef PNG_FLOATING_POINT_SUPPORTED
float gamma; /* file gamma value */
float screen_gamma; /* screen gamma value (display_exponent) */
#endif
#endif
 
#if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED)
png_bytep gamma_table; /* gamma table for 8-bit depth files */
png_bytep gamma_from_1; /* converts from 1.0 to screen */
png_bytep gamma_to_1; /* converts from file to 1.0 */
png_uint_16pp gamma_16_table; /* gamma table for 16-bit depth files */
png_uint_16pp gamma_16_from_1; /* converts from 1.0 to screen */
png_uint_16pp gamma_16_to_1; /* converts from file to 1.0 */
#endif
 
#if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_sBIT_SUPPORTED)
png_color_8 sig_bit; /* significant bits in each available channel */
#endif
 
#if defined(PNG_READ_SHIFT_SUPPORTED) || defined(PNG_WRITE_SHIFT_SUPPORTED)
png_color_8 shift; /* shift for significant bit tranformation */
#endif
 
#if defined(PNG_tRNS_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED) \
|| defined(PNG_READ_EXPAND_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED)
png_bytep trans; /* transparency values for paletted files */
png_color_16 trans_values; /* transparency values for non-paletted files */
#endif
 
png_read_status_ptr read_row_fn; /* called after each row is decoded */
png_write_status_ptr write_row_fn; /* called after each row is encoded */
#ifdef PNG_PROGRESSIVE_READ_SUPPORTED
png_progressive_info_ptr info_fn; /* called after header data fully read */
png_progressive_row_ptr row_fn; /* called after each prog. row is decoded */
png_progressive_end_ptr end_fn; /* called after image is complete */
png_bytep save_buffer_ptr; /* current location in save_buffer */
png_bytep save_buffer; /* buffer for previously read data */
png_bytep current_buffer_ptr; /* current location in current_buffer */
png_bytep current_buffer; /* buffer for recently used data */
png_uint_32 push_length; /* size of current input chunk */
png_uint_32 skip_length; /* bytes to skip in input data */
png_size_t save_buffer_size; /* amount of data now in save_buffer */
png_size_t save_buffer_max; /* total size of save_buffer */
png_size_t buffer_size; /* total amount of available input data */
png_size_t current_buffer_size; /* amount of data now in current_buffer */
int process_mode; /* what push library is currently doing */
int cur_palette; /* current push library palette index */
 
# if defined(PNG_TEXT_SUPPORTED)
png_size_t current_text_size; /* current size of text input data */
png_size_t current_text_left; /* how much text left to read in input */
png_charp current_text; /* current text chunk buffer */
png_charp current_text_ptr; /* current location in current_text */
# endif /* PNG_PROGRESSIVE_READ_SUPPORTED && PNG_TEXT_SUPPORTED */
 
#endif /* PNG_PROGRESSIVE_READ_SUPPORTED */
 
#if defined(__TURBOC__) && !defined(_Windows) && !defined(__FLAT__)
/* for the Borland special 64K segment handler */
png_bytepp offset_table_ptr;
png_bytep offset_table;
png_uint_16 offset_table_number;
png_uint_16 offset_table_count;
png_uint_16 offset_table_count_free;
#endif
 
#if defined(PNG_READ_DITHER_SUPPORTED)
png_bytep palette_lookup; /* lookup table for dithering */
png_bytep dither_index; /* index translation for palette files */
#endif
 
#if defined(PNG_READ_DITHER_SUPPORTED) || defined(PNG_hIST_SUPPORTED)
png_uint_16p hist; /* histogram */
#endif
 
#if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED)
png_byte heuristic_method; /* heuristic for row filter selection */
png_byte num_prev_filters; /* number of weights for previous rows */
png_bytep prev_filters; /* filter type(s) of previous row(s) */
png_uint_16p filter_weights; /* weight(s) for previous line(s) */
png_uint_16p inv_filter_weights; /* 1/weight(s) for previous line(s) */
png_uint_16p filter_costs; /* relative filter calculation cost */
png_uint_16p inv_filter_costs; /* 1/relative filter calculation cost */
#endif
 
#if defined(PNG_TIME_RFC1123_SUPPORTED)
png_charp time_buffer; /* String to hold RFC 1123 time text */
#endif
 
/* New members added in libpng-1.0.6 */
 
#ifdef PNG_FREE_ME_SUPPORTED
png_uint_32 free_me; /* flags items libpng is responsible for freeing */
#endif
 
#if defined(PNG_USER_CHUNKS_SUPPORTED)
png_voidp user_chunk_ptr;
png_user_chunk_ptr read_user_chunk_fn; /* user read chunk handler */
#endif
 
#if defined(PNG_UNKNOWN_CHUNKS_SUPPORTED)
int num_chunk_list;
png_bytep chunk_list;
#endif
 
/* New members added in libpng-1.0.3 */
#if defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
png_byte rgb_to_gray_status;
/* These were changed from png_byte in libpng-1.0.6 */
png_uint_16 rgb_to_gray_red_coeff;
png_uint_16 rgb_to_gray_green_coeff;
png_uint_16 rgb_to_gray_blue_coeff;
#endif
 
/* New member added in libpng-1.0.4 (renamed in 1.0.9) */
#if defined(PNG_MNG_FEATURES_SUPPORTED) || \
defined(PNG_READ_EMPTY_PLTE_SUPPORTED) || \
defined(PNG_WRITE_EMPTY_PLTE_SUPPORTED)
/* changed from png_byte to png_uint_32 at version 1.2.0 */
#ifdef PNG_1_0_X
png_byte mng_features_permitted;
#else
png_uint_32 mng_features_permitted;
#endif /* PNG_1_0_X */
#endif
 
/* New member added in libpng-1.0.7 */
#if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED)
png_fixed_point int_gamma;
#endif
 
/* New member added in libpng-1.0.9, ifdef'ed out in 1.0.12, enabled in 1.2.0 */
#if defined(PNG_MNG_FEATURES_SUPPORTED)
png_byte filter_type;
#endif
 
#if defined(PNG_1_0_X) || (defined(PNG_DEBUG) && defined(PNG_USE_PNGGCCRD))
/* New member added in libpng-1.0.10, ifdef'ed out in 1.2.0 */
png_uint_32 row_buf_size;
#endif
 
/* New members added in libpng-1.2.0 */
#if !defined(PNG_1_0_X) && defined(PNG_ASSEMBLER_CODE_SUPPORTED)
png_byte mmx_bitdepth_threshold;
png_uint_32 mmx_rowbytes_threshold;
png_uint_32 asm_flags;
#endif
 
/* New members added in libpng-1.0.2 but first enabled by default in 1.2.0 */
#ifdef PNG_USER_MEM_SUPPORTED
png_voidp mem_ptr; /* user supplied struct for mem functions */
png_malloc_ptr malloc_fn; /* function for allocating memory */
png_free_ptr free_fn; /* function for freeing memory */
#endif
 
/* New member added in libpng-1.0.13 and 1.2.0 */
png_bytep big_row_buf; /* buffer to save current (unfiltered) row */
 
#if defined(PNG_READ_DITHER_SUPPORTED)
/* The following three members were added at version 1.0.14 and 1.2.4 */
png_bytep dither_sort; /* working sort array */
png_bytep index_to_palette; /* where the original index currently is */
/* in the palette */
png_bytep palette_to_index; /* which original index points to this */
/* palette color */
#endif
 
};
 
 
/* This prevents a compiler error in png.c if png.c and png.h are both at
version 1.2.5
*/
typedef png_structp version_1_2_5;
 
typedef png_struct FAR * FAR * png_structpp;
 
/* Here are the function definitions most commonly used. This is not
* the place to find out how to use libpng. See libpng.txt for the
* full explanation, see example.c for the summary. This just provides
* a simple one line description of the use of each function.
*/
 
/* Returns the version number of the library */
extern PNG_EXPORT(png_uint_32,png_access_version_number) PNGARG((void));
 
/* Tell lib we have already handled the first <num_bytes> magic bytes.
* Handling more than 8 bytes from the beginning of the file is an error.
*/
extern PNG_EXPORT(void,png_set_sig_bytes) PNGARG((png_structp png_ptr,
int num_bytes));
 
/* Check sig[start] through sig[start + num_to_check - 1] to see if it's a
* PNG file. Returns zero if the supplied bytes match the 8-byte PNG
* signature, and non-zero otherwise. Having num_to_check == 0 or
* start > 7 will always fail (ie return non-zero).
*/
extern PNG_EXPORT(int,png_sig_cmp) PNGARG((png_bytep sig, png_size_t start,
png_size_t num_to_check));
 
/* Simple signature checking function. This is the same as calling
* png_check_sig(sig, n) := !png_sig_cmp(sig, 0, n).
*/
extern PNG_EXPORT(int,png_check_sig) PNGARG((png_bytep sig, int num));
 
/* Allocate and initialize png_ptr struct for reading, and any other memory. */
extern PNG_EXPORT(png_structp,png_create_read_struct)
PNGARG((png_const_charp user_png_ver, png_voidp error_ptr,
png_error_ptr error_fn, png_error_ptr warn_fn));
 
/* Allocate and initialize png_ptr struct for writing, and any other memory */
extern PNG_EXPORT(png_structp,png_create_write_struct)
PNGARG((png_const_charp user_png_ver, png_voidp error_ptr,
png_error_ptr error_fn, png_error_ptr warn_fn));
 
extern PNG_EXPORT(png_uint_32,png_get_compression_buffer_size)
PNGARG((png_structp png_ptr));
 
extern PNG_EXPORT(void,png_set_compression_buffer_size)
PNGARG((png_structp png_ptr, png_uint_32 size));
 
/* Reset the compression stream */
extern PNG_EXPORT(int,png_reset_zstream) PNGARG((png_structp png_ptr));
 
/* New functions added in libpng-1.0.2 (not enabled by default until 1.2.0) */
#ifdef PNG_USER_MEM_SUPPORTED
extern PNG_EXPORT(png_structp,png_create_read_struct_2)
PNGARG((png_const_charp user_png_ver, png_voidp error_ptr,
png_error_ptr error_fn, png_error_ptr warn_fn, png_voidp mem_ptr,
png_malloc_ptr malloc_fn, png_free_ptr free_fn));
extern PNG_EXPORT(png_structp,png_create_write_struct_2)
PNGARG((png_const_charp user_png_ver, png_voidp error_ptr,
png_error_ptr error_fn, png_error_ptr warn_fn, png_voidp mem_ptr,
png_malloc_ptr malloc_fn, png_free_ptr free_fn));
#endif
 
/* Write a PNG chunk - size, type, (optional) data, CRC. */
extern PNG_EXPORT(void,png_write_chunk) PNGARG((png_structp png_ptr,
png_bytep chunk_name, png_bytep data, png_size_t length));
 
/* Write the start of a PNG chunk - length and chunk name. */
extern PNG_EXPORT(void,png_write_chunk_start) PNGARG((png_structp png_ptr,
png_bytep chunk_name, png_uint_32 length));
 
/* Write the data of a PNG chunk started with png_write_chunk_start(). */
extern PNG_EXPORT(void,png_write_chunk_data) PNGARG((png_structp png_ptr,
png_bytep data, png_size_t length));
 
/* Finish a chunk started with png_write_chunk_start() (includes CRC). */
extern PNG_EXPORT(void,png_write_chunk_end) PNGARG((png_structp png_ptr));
 
/* Allocate and initialize the info structure */
extern PNG_EXPORT(png_infop,png_create_info_struct)
PNGARG((png_structp png_ptr));
 
/* Initialize the info structure (old interface - DEPRECATED) */
extern PNG_EXPORT(void,png_info_init) PNGARG((png_infop info_ptr));
#undef png_info_init
#define png_info_init(info_ptr) png_info_init_3(&info_ptr, sizeof(png_info));
extern PNG_EXPORT(void,png_info_init_3) PNGARG((png_infopp info_ptr,
png_size_t png_info_struct_size));
 
/* Writes all the PNG information before the image. */
extern PNG_EXPORT(void,png_write_info_before_PLTE) PNGARG((png_structp png_ptr,
png_infop info_ptr));
extern PNG_EXPORT(void,png_write_info) PNGARG((png_structp png_ptr,
png_infop info_ptr));
 
/* read the information before the actual image data. */
extern PNG_EXPORT(void,png_read_info) PNGARG((png_structp png_ptr,
png_infop info_ptr));
 
#if defined(PNG_TIME_RFC1123_SUPPORTED)
extern PNG_EXPORT(png_charp,png_convert_to_rfc1123)
PNGARG((png_structp png_ptr, png_timep ptime));
#endif
 
#if !defined(_WIN32_WCE)
/* "time.h" functions are not supported on WindowsCE */
#if defined(PNG_WRITE_tIME_SUPPORTED)
/* convert from a struct tm to png_time */
extern PNG_EXPORT(void,png_convert_from_struct_tm) PNGARG((png_timep ptime,
struct tm FAR * ttime));
 
/* convert from time_t to png_time. Uses gmtime() */
extern PNG_EXPORT(void,png_convert_from_time_t) PNGARG((png_timep ptime,
time_t ttime));
#endif /* PNG_WRITE_tIME_SUPPORTED */
#endif /* _WIN32_WCE */
 
#if defined(PNG_READ_EXPAND_SUPPORTED)
/* Expand data to 24-bit RGB, or 8-bit grayscale, with alpha if available. */
extern PNG_EXPORT(void,png_set_expand) PNGARG((png_structp png_ptr));
extern PNG_EXPORT(void,png_set_gray_1_2_4_to_8) PNGARG((png_structp png_ptr));
extern PNG_EXPORT(void,png_set_palette_to_rgb) PNGARG((png_structp png_ptr));
extern PNG_EXPORT(void,png_set_tRNS_to_alpha) PNGARG((png_structp png_ptr));
#endif
 
#if defined(PNG_READ_BGR_SUPPORTED) || defined(PNG_WRITE_BGR_SUPPORTED)
/* Use blue, green, red order for pixels. */
extern PNG_EXPORT(void,png_set_bgr) PNGARG((png_structp png_ptr));
#endif
 
#if defined(PNG_READ_GRAY_TO_RGB_SUPPORTED)
/* Expand the grayscale to 24-bit RGB if necessary. */
extern PNG_EXPORT(void,png_set_gray_to_rgb) PNGARG((png_structp png_ptr));
#endif
 
#if defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
/* Reduce RGB to grayscale. */
#ifdef PNG_FLOATING_POINT_SUPPORTED
extern PNG_EXPORT(void,png_set_rgb_to_gray) PNGARG((png_structp png_ptr,
int error_action, double red, double green ));
#endif
extern PNG_EXPORT(void,png_set_rgb_to_gray_fixed) PNGARG((png_structp png_ptr,
int error_action, png_fixed_point red, png_fixed_point green ));
extern PNG_EXPORT(png_byte,png_get_rgb_to_gray_status) PNGARG((png_structp
png_ptr));
#endif
 
extern PNG_EXPORT(void,png_build_grayscale_palette) PNGARG((int bit_depth,
png_colorp palette));
 
#if defined(PNG_READ_STRIP_ALPHA_SUPPORTED)
extern PNG_EXPORT(void,png_set_strip_alpha) PNGARG((png_structp png_ptr));
#endif
 
#if defined(PNG_READ_SWAP_ALPHA_SUPPORTED) || \
defined(PNG_WRITE_SWAP_ALPHA_SUPPORTED)
extern PNG_EXPORT(void,png_set_swap_alpha) PNGARG((png_structp png_ptr));
#endif
 
#if defined(PNG_READ_INVERT_ALPHA_SUPPORTED) || \
defined(PNG_WRITE_INVERT_ALPHA_SUPPORTED)
extern PNG_EXPORT(void,png_set_invert_alpha) PNGARG((png_structp png_ptr));
#endif
 
#if defined(PNG_READ_FILLER_SUPPORTED) || defined(PNG_WRITE_FILLER_SUPPORTED)
/* Add a filler byte to 24-bit RGB images. */
extern PNG_EXPORT(void,png_set_filler) PNGARG((png_structp png_ptr,
png_uint_32 filler, int flags));
/* The values of the PNG_FILLER_ defines should NOT be changed */
#define PNG_FILLER_BEFORE 0
#define PNG_FILLER_AFTER 1
#endif /* PNG_READ_FILLER_SUPPORTED || PNG_WRITE_FILLER_SUPPORTED */
 
#if defined(PNG_READ_SWAP_SUPPORTED) || defined(PNG_WRITE_SWAP_SUPPORTED)
/* Swap bytes in 16-bit depth files. */
extern PNG_EXPORT(void,png_set_swap) PNGARG((png_structp png_ptr));
#endif
 
#if defined(PNG_READ_PACK_SUPPORTED) || defined(PNG_WRITE_PACK_SUPPORTED)
/* Use 1 byte per pixel in 1, 2, or 4-bit depth files. */
extern PNG_EXPORT(void,png_set_packing) PNGARG((png_structp png_ptr));
#endif
 
#if defined(PNG_READ_PACKSWAP_SUPPORTED) || defined(PNG_WRITE_PACKSWAP_SUPPORTED)
/* Swap packing order of pixels in bytes. */
extern PNG_EXPORT(void,png_set_packswap) PNGARG((png_structp png_ptr));
#endif
 
#if defined(PNG_READ_SHIFT_SUPPORTED) || defined(PNG_WRITE_SHIFT_SUPPORTED)
/* Converts files to legal bit depths. */
extern PNG_EXPORT(void,png_set_shift) PNGARG((png_structp png_ptr,
png_color_8p true_bits));
#endif
 
#if defined(PNG_READ_INTERLACING_SUPPORTED) || \
defined(PNG_WRITE_INTERLACING_SUPPORTED)
/* Have the code handle the interlacing. Returns the number of passes. */
extern PNG_EXPORT(int,png_set_interlace_handling) PNGARG((png_structp png_ptr));
#endif
 
#if defined(PNG_READ_INVERT_SUPPORTED) || defined(PNG_WRITE_INVERT_SUPPORTED)
/* Invert monochrome files */
extern PNG_EXPORT(void,png_set_invert_mono) PNGARG((png_structp png_ptr));
#endif
 
#if defined(PNG_READ_BACKGROUND_SUPPORTED)
/* Handle alpha and tRNS by replacing with a background color. */
#ifdef PNG_FLOATING_POINT_SUPPORTED
extern PNG_EXPORT(void,png_set_background) PNGARG((png_structp png_ptr,
png_color_16p background_color, int background_gamma_code,
int need_expand, double background_gamma));
#endif
#define PNG_BACKGROUND_GAMMA_UNKNOWN 0
#define PNG_BACKGROUND_GAMMA_SCREEN 1
#define PNG_BACKGROUND_GAMMA_FILE 2
#define PNG_BACKGROUND_GAMMA_UNIQUE 3
#endif
 
#if defined(PNG_READ_16_TO_8_SUPPORTED)
/* strip the second byte of information from a 16-bit depth file. */
extern PNG_EXPORT(void,png_set_strip_16) PNGARG((png_structp png_ptr));
#endif
 
#if defined(PNG_READ_DITHER_SUPPORTED)
/* Turn on dithering, and reduce the palette to the number of colors available. */
extern PNG_EXPORT(void,png_set_dither) PNGARG((png_structp png_ptr,
png_colorp palette, int num_palette, int maximum_colors,
png_uint_16p histogram, int full_dither));
#endif
 
#if defined(PNG_READ_GAMMA_SUPPORTED)
/* Handle gamma correction. Screen_gamma=(display_exponent) */
#ifdef PNG_FLOATING_POINT_SUPPORTED
extern PNG_EXPORT(void,png_set_gamma) PNGARG((png_structp png_ptr,
double screen_gamma, double default_file_gamma));
#endif
#endif
 
#if defined(PNG_READ_EMPTY_PLTE_SUPPORTED) || \
defined(PNG_WRITE_EMPTY_PLTE_SUPPORTED)
/* Permit or disallow empty PLTE (0: not permitted, 1: permitted) */
/* Deprecated and will be removed. Use png_permit_mng_features() instead. */
extern PNG_EXPORT(void,png_permit_empty_plte) PNGARG((png_structp png_ptr,
int empty_plte_permitted));
#endif
 
#if defined(PNG_WRITE_FLUSH_SUPPORTED)
/* Set how many lines between output flushes - 0 for no flushing */
extern PNG_EXPORT(void,png_set_flush) PNGARG((png_structp png_ptr, int nrows));
/* Flush the current PNG output buffer */
extern PNG_EXPORT(void,png_write_flush) PNGARG((png_structp png_ptr));
#endif
 
/* optional update palette with requested transformations */
extern PNG_EXPORT(void,png_start_read_image) PNGARG((png_structp png_ptr));
 
/* optional call to update the users info structure */
extern PNG_EXPORT(void,png_read_update_info) PNGARG((png_structp png_ptr,
png_infop info_ptr));
 
/* read one or more rows of image data. */
extern PNG_EXPORT(void,png_read_rows) PNGARG((png_structp png_ptr,
png_bytepp row, png_bytepp display_row, png_uint_32 num_rows));
 
/* read a row of data. */
extern PNG_EXPORT(void,png_read_row) PNGARG((png_structp png_ptr,
png_bytep row,
png_bytep display_row));
 
/* read the whole image into memory at once. */
extern PNG_EXPORT(void,png_read_image) PNGARG((png_structp png_ptr,
png_bytepp image));
 
/* write a row of image data */
extern PNG_EXPORT(void,png_write_row) PNGARG((png_structp png_ptr,
png_bytep row));
 
/* write a few rows of image data */
extern PNG_EXPORT(void,png_write_rows) PNGARG((png_structp png_ptr,
png_bytepp row, png_uint_32 num_rows));
 
/* write the image data */
extern PNG_EXPORT(void,png_write_image) PNGARG((png_structp png_ptr,
png_bytepp image));
 
/* writes the end of the PNG file. */
extern PNG_EXPORT(void,png_write_end) PNGARG((png_structp png_ptr,
png_infop info_ptr));
 
/* read the end of the PNG file. */
extern PNG_EXPORT(void,png_read_end) PNGARG((png_structp png_ptr,
png_infop info_ptr));
 
/* free any memory associated with the png_info_struct */
extern PNG_EXPORT(void,png_destroy_info_struct) PNGARG((png_structp png_ptr,
png_infopp info_ptr_ptr));
 
/* free any memory associated with the png_struct and the png_info_structs */
extern PNG_EXPORT(void,png_destroy_read_struct) PNGARG((png_structpp
png_ptr_ptr, png_infopp info_ptr_ptr, png_infopp end_info_ptr_ptr));
 
/* free all memory used by the read (old method - NOT DLL EXPORTED) */
extern void png_read_destroy PNGARG((png_structp png_ptr, png_infop info_ptr,
png_infop end_info_ptr));
 
/* free any memory associated with the png_struct and the png_info_structs */
extern PNG_EXPORT(void,png_destroy_write_struct)
PNGARG((png_structpp png_ptr_ptr, png_infopp info_ptr_ptr));
 
/* free any memory used in png_ptr struct (old method - NOT DLL EXPORTED) */
extern void png_write_destroy PNGARG((png_structp png_ptr));
 
/* set the libpng method of handling chunk CRC errors */
extern PNG_EXPORT(void,png_set_crc_action) PNGARG((png_structp png_ptr,
int crit_action, int ancil_action));
 
/* Values for png_set_crc_action() to say how to handle CRC errors in
* ancillary and critical chunks, and whether to use the data contained
* therein. Note that it is impossible to "discard" data in a critical
* chunk. For versions prior to 0.90, the action was always error/quit,
* whereas in version 0.90 and later, the action for CRC errors in ancillary
* chunks is warn/discard. These values should NOT be changed.
*
* value action:critical action:ancillary
*/
#define PNG_CRC_DEFAULT 0 /* error/quit warn/discard data */
#define PNG_CRC_ERROR_QUIT 1 /* error/quit error/quit */
#define PNG_CRC_WARN_DISCARD 2 /* (INVALID) warn/discard data */
#define PNG_CRC_WARN_USE 3 /* warn/use data warn/use data */
#define PNG_CRC_QUIET_USE 4 /* quiet/use data quiet/use data */
#define PNG_CRC_NO_CHANGE 5 /* use current value use current value */
 
/* These functions give the user control over the scan-line filtering in
* libpng and the compression methods used by zlib. These functions are
* mainly useful for testing, as the defaults should work with most users.
* Those users who are tight on memory or want faster performance at the
* expense of compression can modify them. See the compression library
* header file (zlib.h) for an explination of the compression functions.
*/
 
/* set the filtering method(s) used by libpng. Currently, the only valid
* value for "method" is 0.
*/
extern PNG_EXPORT(void,png_set_filter) PNGARG((png_structp png_ptr, int method,
int filters));
 
/* Flags for png_set_filter() to say which filters to use. The flags
* are chosen so that they don't conflict with real filter types
* below, in case they are supplied instead of the #defined constants.
* These values should NOT be changed.
*/
#define PNG_NO_FILTERS 0x00
#define PNG_FILTER_NONE 0x08
#define PNG_FILTER_SUB 0x10
#define PNG_FILTER_UP 0x20
#define PNG_FILTER_AVG 0x40
#define PNG_FILTER_PAETH 0x80
#define PNG_ALL_FILTERS (PNG_FILTER_NONE | PNG_FILTER_SUB | PNG_FILTER_UP | \
PNG_FILTER_AVG | PNG_FILTER_PAETH)
 
/* Filter values (not flags) - used in pngwrite.c, pngwutil.c for now.
* These defines should NOT be changed.
*/
#define PNG_FILTER_VALUE_NONE 0
#define PNG_FILTER_VALUE_SUB 1
#define PNG_FILTER_VALUE_UP 2
#define PNG_FILTER_VALUE_AVG 3
#define PNG_FILTER_VALUE_PAETH 4
#define PNG_FILTER_VALUE_LAST 5
 
#if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED) /* EXPERIMENTAL */
/* The "heuristic_method" is given by one of the PNG_FILTER_HEURISTIC_
* defines, either the default (minimum-sum-of-absolute-differences), or
* the experimental method (weighted-minimum-sum-of-absolute-differences).
*
* Weights are factors >= 1.0, indicating how important it is to keep the
* filter type consistent between rows. Larger numbers mean the current
* filter is that many times as likely to be the same as the "num_weights"
* previous filters. This is cumulative for each previous row with a weight.
* There needs to be "num_weights" values in "filter_weights", or it can be
* NULL if the weights aren't being specified. Weights have no influence on
* the selection of the first row filter. Well chosen weights can (in theory)
* improve the compression for a given image.
*
* Costs are factors >= 1.0 indicating the relative decoding costs of a
* filter type. Higher costs indicate more decoding expense, and are
* therefore less likely to be selected over a filter with lower computational
* costs. There needs to be a value in "filter_costs" for each valid filter
* type (given by PNG_FILTER_VALUE_LAST), or it can be NULL if you aren't
* setting the costs. Costs try to improve the speed of decompression without
* unduly increasing the compressed image size.
*
* A negative weight or cost indicates the default value is to be used, and
* values in the range [0.0, 1.0) indicate the value is to remain unchanged.
* The default values for both weights and costs are currently 1.0, but may
* change if good general weighting/cost heuristics can be found. If both
* the weights and costs are set to 1.0, this degenerates the WEIGHTED method
* to the UNWEIGHTED method, but with added encoding time/computation.
*/
#ifdef PNG_FLOATING_POINT_SUPPORTED
extern PNG_EXPORT(void,png_set_filter_heuristics) PNGARG((png_structp png_ptr,
int heuristic_method, int num_weights, png_doublep filter_weights,
png_doublep filter_costs));
#endif
#endif /* PNG_WRITE_WEIGHTED_FILTER_SUPPORTED */
 
/* Heuristic used for row filter selection. These defines should NOT be
* changed.
*/
#define PNG_FILTER_HEURISTIC_DEFAULT 0 /* Currently "UNWEIGHTED" */
#define PNG_FILTER_HEURISTIC_UNWEIGHTED 1 /* Used by libpng < 0.95 */
#define PNG_FILTER_HEURISTIC_WEIGHTED 2 /* Experimental feature */
#define PNG_FILTER_HEURISTIC_LAST 3 /* Not a valid value */
 
/* Set the library compression level. Currently, valid values range from
* 0 - 9, corresponding directly to the zlib compression levels 0 - 9
* (0 - no compression, 9 - "maximal" compression). Note that tests have
* shown that zlib compression levels 3-6 usually perform as well as level 9
* for PNG images, and do considerably fewer caclulations. In the future,
* these values may not correspond directly to the zlib compression levels.
*/
extern PNG_EXPORT(void,png_set_compression_level) PNGARG((png_structp png_ptr,
int level));
 
extern PNG_EXPORT(void,png_set_compression_mem_level)
PNGARG((png_structp png_ptr, int mem_level));
 
extern PNG_EXPORT(void,png_set_compression_strategy)
PNGARG((png_structp png_ptr, int strategy));
 
extern PNG_EXPORT(void,png_set_compression_window_bits)
PNGARG((png_structp png_ptr, int window_bits));
 
extern PNG_EXPORT(void,png_set_compression_method) PNGARG((png_structp png_ptr,
int method));
 
/* These next functions are called for input/output, memory, and error
* handling. They are in the file pngrio.c, pngwio.c, and pngerror.c,
* and call standard C I/O routines such as fread(), fwrite(), and
* fprintf(). These functions can be made to use other I/O routines
* at run time for those applications that need to handle I/O in a
* different manner by calling png_set_???_fn(). See libpng.txt for
* more information.
*/
 
#if !defined(PNG_NO_STDIO)
/* Initialize the input/output for the PNG file to the default functions. */
extern PNG_EXPORT(void,png_init_io) PNGARG((png_structp png_ptr, png_FILE_p fp));
#endif
 
/* Replace the (error and abort), and warning functions with user
* supplied functions. If no messages are to be printed you must still
* write and use replacement functions. The replacement error_fn should
* still do a longjmp to the last setjmp location if you are using this
* method of error handling. If error_fn or warning_fn is NULL, the
* default function will be used.
*/
 
extern PNG_EXPORT(void,png_set_error_fn) PNGARG((png_structp png_ptr,
png_voidp error_ptr, png_error_ptr error_fn, png_error_ptr warning_fn));
 
/* Return the user pointer associated with the error functions */
extern PNG_EXPORT(png_voidp,png_get_error_ptr) PNGARG((png_structp png_ptr));
 
/* Replace the default data output functions with a user supplied one(s).
* If buffered output is not used, then output_flush_fn can be set to NULL.
* If PNG_WRITE_FLUSH_SUPPORTED is not defined at libpng compile time
* output_flush_fn will be ignored (and thus can be NULL).
*/
extern PNG_EXPORT(void,png_set_write_fn) PNGARG((png_structp png_ptr,
png_voidp io_ptr, png_rw_ptr write_data_fn, png_flush_ptr output_flush_fn));
 
/* Replace the default data input function with a user supplied one. */
extern PNG_EXPORT(void,png_set_read_fn) PNGARG((png_structp png_ptr,
png_voidp io_ptr, png_rw_ptr read_data_fn));
 
/* Return the user pointer associated with the I/O functions */
extern PNG_EXPORT(png_voidp,png_get_io_ptr) PNGARG((png_structp png_ptr));
 
extern PNG_EXPORT(void,png_set_read_status_fn) PNGARG((png_structp png_ptr,
png_read_status_ptr read_row_fn));
 
extern PNG_EXPORT(void,png_set_write_status_fn) PNGARG((png_structp png_ptr,
png_write_status_ptr write_row_fn));
 
#ifdef PNG_USER_MEM_SUPPORTED
/* Replace the default memory allocation functions with user supplied one(s). */
extern PNG_EXPORT(void,png_set_mem_fn) PNGARG((png_structp png_ptr,
png_voidp mem_ptr, png_malloc_ptr malloc_fn, png_free_ptr free_fn));
/* Return the user pointer associated with the memory functions */
extern PNG_EXPORT(png_voidp,png_get_mem_ptr) PNGARG((png_structp png_ptr));
#endif
 
#if defined(PNG_READ_USER_TRANSFORM_SUPPORTED) || \
defined(PNG_LEGACY_SUPPORTED)
extern PNG_EXPORT(void,png_set_read_user_transform_fn) PNGARG((png_structp
png_ptr, png_user_transform_ptr read_user_transform_fn));
#endif
 
#if defined(PNG_WRITE_USER_TRANSFORM_SUPPORTED) || \
defined(PNG_LEGACY_SUPPORTED)
extern PNG_EXPORT(void,png_set_write_user_transform_fn) PNGARG((png_structp
png_ptr, png_user_transform_ptr write_user_transform_fn));
#endif
 
#if defined(PNG_READ_USER_TRANSFORM_SUPPORTED) || \
defined(PNG_WRITE_USER_TRANSFORM_SUPPORTED) || \
defined(PNG_LEGACY_SUPPORTED)
extern PNG_EXPORT(void,png_set_user_transform_info) PNGARG((png_structp
png_ptr, png_voidp user_transform_ptr, int user_transform_depth,
int user_transform_channels));
/* Return the user pointer associated with the user transform functions */
extern PNG_EXPORT(png_voidp,png_get_user_transform_ptr)
PNGARG((png_structp png_ptr));
#endif
 
#ifdef PNG_USER_CHUNKS_SUPPORTED
extern PNG_EXPORT(void,png_set_read_user_chunk_fn) PNGARG((png_structp png_ptr,
png_voidp user_chunk_ptr, png_user_chunk_ptr read_user_chunk_fn));
extern PNG_EXPORT(png_voidp,png_get_user_chunk_ptr) PNGARG((png_structp
png_ptr));
#endif
 
#ifdef PNG_PROGRESSIVE_READ_SUPPORTED
/* Sets the function callbacks for the push reader, and a pointer to a
* user-defined structure available to the callback functions.
*/
extern PNG_EXPORT(void,png_set_progressive_read_fn) PNGARG((png_structp png_ptr,
png_voidp progressive_ptr,
png_progressive_info_ptr info_fn, png_progressive_row_ptr row_fn,
png_progressive_end_ptr end_fn));
 
/* returns the user pointer associated with the push read functions */
extern PNG_EXPORT(png_voidp,png_get_progressive_ptr)
PNGARG((png_structp png_ptr));
 
/* function to be called when data becomes available */
extern PNG_EXPORT(void,png_process_data) PNGARG((png_structp png_ptr,
png_infop info_ptr, png_bytep buffer, png_size_t buffer_size));
 
/* function that combines rows. Not very much different than the
* png_combine_row() call. Is this even used?????
*/
extern PNG_EXPORT(void,png_progressive_combine_row) PNGARG((png_structp png_ptr,
png_bytep old_row, png_bytep new_row));
#endif /* PNG_PROGRESSIVE_READ_SUPPORTED */
 
extern PNG_EXPORT(png_voidp,png_malloc) PNGARG((png_structp png_ptr,
png_uint_32 size));
 
#if defined(PNG_1_0_X)
# define png_malloc_warn png_malloc
#else
/* Added at libpng version 1.2.4 */
extern PNG_EXPORT(png_voidp,png_malloc_warn) PNGARG((png_structp png_ptr,
png_uint_32 size));
#endif
 
/* frees a pointer allocated by png_malloc() */
extern PNG_EXPORT(void,png_free) PNGARG((png_structp png_ptr, png_voidp ptr));
 
#if defined(PNG_1_0_X)
/* Function to allocate memory for zlib. */
extern PNG_EXPORT(voidpf,png_zalloc) PNGARG((voidpf png_ptr, uInt items,
uInt size));
 
/* Function to free memory for zlib */
extern PNG_EXPORT(void,png_zfree) PNGARG((voidpf png_ptr, voidpf ptr));
#endif
 
/* Free data that was allocated internally */
extern PNG_EXPORT(void,png_free_data) PNGARG((png_structp png_ptr,
png_infop info_ptr, png_uint_32 free_me, int num));
#ifdef PNG_FREE_ME_SUPPORTED
/* Reassign responsibility for freeing existing data, whether allocated
* by libpng or by the application */
extern PNG_EXPORT(void,png_data_freer) PNGARG((png_structp png_ptr,
png_infop info_ptr, int freer, png_uint_32 mask));
#endif
/* assignments for png_data_freer */
#define PNG_DESTROY_WILL_FREE_DATA 1
#define PNG_SET_WILL_FREE_DATA 1
#define PNG_USER_WILL_FREE_DATA 2
/* Flags for png_ptr->free_me and info_ptr->free_me */
#define PNG_FREE_HIST 0x0008
#define PNG_FREE_ICCP 0x0010
#define PNG_FREE_SPLT 0x0020
#define PNG_FREE_ROWS 0x0040
#define PNG_FREE_PCAL 0x0080
#define PNG_FREE_SCAL 0x0100
#define PNG_FREE_UNKN 0x0200
#define PNG_FREE_LIST 0x0400
#define PNG_FREE_PLTE 0x1000
#define PNG_FREE_TRNS 0x2000
#define PNG_FREE_TEXT 0x4000
#define PNG_FREE_ALL 0x7fff
#define PNG_FREE_MUL 0x4220 /* PNG_FREE_SPLT|PNG_FREE_TEXT|PNG_FREE_UNKN */
 
#ifdef PNG_USER_MEM_SUPPORTED
extern PNG_EXPORT(png_voidp,png_malloc_default) PNGARG((png_structp png_ptr,
png_uint_32 size));
extern PNG_EXPORT(void,png_free_default) PNGARG((png_structp png_ptr,
png_voidp ptr));
#endif
 
extern PNG_EXPORT(png_voidp,png_memcpy_check) PNGARG((png_structp png_ptr,
png_voidp s1, png_voidp s2, png_uint_32 size));
 
extern PNG_EXPORT(png_voidp,png_memset_check) PNGARG((png_structp png_ptr,
png_voidp s1, int value, png_uint_32 size));
 
#if defined(USE_FAR_KEYWORD) /* memory model conversion function */
extern void *png_far_to_near PNGARG((png_structp png_ptr,png_voidp ptr,
int check));
#endif /* USE_FAR_KEYWORD */
 
/* Fatal error in PNG image of libpng - can't continue */
extern PNG_EXPORT(void,png_error) PNGARG((png_structp png_ptr,
png_const_charp error_message));
 
/* The same, but the chunk name is prepended to the error string. */
extern PNG_EXPORT(void,png_chunk_error) PNGARG((png_structp png_ptr,
png_const_charp error_message));
 
/* Non-fatal error in libpng. Can continue, but may have a problem. */
extern PNG_EXPORT(void,png_warning) PNGARG((png_structp png_ptr,
png_const_charp warning_message));
 
/* Non-fatal error in libpng, chunk name is prepended to message. */
extern PNG_EXPORT(void,png_chunk_warning) PNGARG((png_structp png_ptr,
png_const_charp warning_message));
 
/* The png_set_<chunk> functions are for storing values in the png_info_struct.
* Similarly, the png_get_<chunk> calls are used to read values from the
* png_info_struct, either storing the parameters in the passed variables, or
* setting pointers into the png_info_struct where the data is stored. The
* png_get_<chunk> functions return a non-zero value if the data was available
* in info_ptr, or return zero and do not change any of the parameters if the
* data was not available.
*
* These functions should be used instead of directly accessing png_info
* to avoid problems with future changes in the size and internal layout of
* png_info_struct.
*/
/* Returns "flag" if chunk data is valid in info_ptr. */
extern PNG_EXPORT(png_uint_32,png_get_valid) PNGARG((png_structp png_ptr,
png_infop info_ptr, png_uint_32 flag));
 
/* Returns number of bytes needed to hold a transformed row. */
extern PNG_EXPORT(png_uint_32,png_get_rowbytes) PNGARG((png_structp png_ptr,
png_infop info_ptr));
 
#if defined(PNG_INFO_IMAGE_SUPPORTED)
/* Returns row_pointers, which is an array of pointers to scanlines that was
returned from png_read_png(). */
extern PNG_EXPORT(png_bytepp,png_get_rows) PNGARG((png_structp png_ptr,
png_infop info_ptr));
/* Set row_pointers, which is an array of pointers to scanlines for use
by png_write_png(). */
extern PNG_EXPORT(void,png_set_rows) PNGARG((png_structp png_ptr,
png_infop info_ptr, png_bytepp row_pointers));
#endif
 
/* Returns number of color channels in image. */
extern PNG_EXPORT(png_byte,png_get_channels) PNGARG((png_structp png_ptr,
png_infop info_ptr));
 
#ifdef PNG_EASY_ACCESS_SUPPORTED
/* Returns image width in pixels. */
extern PNG_EXPORT(png_uint_32, png_get_image_width) PNGARG((png_structp
png_ptr, png_infop info_ptr));
 
/* Returns image height in pixels. */
extern PNG_EXPORT(png_uint_32, png_get_image_height) PNGARG((png_structp
png_ptr, png_infop info_ptr));
 
/* Returns image bit_depth. */
extern PNG_EXPORT(png_byte, png_get_bit_depth) PNGARG((png_structp
png_ptr, png_infop info_ptr));
 
/* Returns image color_type. */
extern PNG_EXPORT(png_byte, png_get_color_type) PNGARG((png_structp
png_ptr, png_infop info_ptr));
 
/* Returns image filter_type. */
extern PNG_EXPORT(png_byte, png_get_filter_type) PNGARG((png_structp
png_ptr, png_infop info_ptr));
 
/* Returns image interlace_type. */
extern PNG_EXPORT(png_byte, png_get_interlace_type) PNGARG((png_structp
png_ptr, png_infop info_ptr));
 
/* Returns image compression_type. */
extern PNG_EXPORT(png_byte, png_get_compression_type) PNGARG((png_structp
png_ptr, png_infop info_ptr));
 
/* Returns image resolution in pixels per meter, from pHYs chunk data. */
extern PNG_EXPORT(png_uint_32, png_get_pixels_per_meter) PNGARG((png_structp
png_ptr, png_infop info_ptr));
extern PNG_EXPORT(png_uint_32, png_get_x_pixels_per_meter) PNGARG((png_structp
png_ptr, png_infop info_ptr));
extern PNG_EXPORT(png_uint_32, png_get_y_pixels_per_meter) PNGARG((png_structp
png_ptr, png_infop info_ptr));
 
/* Returns pixel aspect ratio, computed from pHYs chunk data. */
#ifdef PNG_FLOATING_POINT_SUPPORTED
extern PNG_EXPORT(float, png_get_pixel_aspect_ratio) PNGARG((png_structp
png_ptr, png_infop info_ptr));
#endif
 
/* Returns image x, y offset in pixels or microns, from oFFs chunk data. */
extern PNG_EXPORT(png_int_32, png_get_x_offset_pixels) PNGARG((png_structp
png_ptr, png_infop info_ptr));
extern PNG_EXPORT(png_int_32, png_get_y_offset_pixels) PNGARG((png_structp
png_ptr, png_infop info_ptr));
extern PNG_EXPORT(png_int_32, png_get_x_offset_microns) PNGARG((png_structp
png_ptr, png_infop info_ptr));
extern PNG_EXPORT(png_int_32, png_get_y_offset_microns) PNGARG((png_structp
png_ptr, png_infop info_ptr));
 
#endif /* PNG_EASY_ACCESS_SUPPORTED */
 
/* Returns pointer to signature string read from PNG header */
extern PNG_EXPORT(png_bytep,png_get_signature) PNGARG((png_structp png_ptr,
png_infop info_ptr));
 
#if defined(PNG_bKGD_SUPPORTED)
extern PNG_EXPORT(png_uint_32,png_get_bKGD) PNGARG((png_structp png_ptr,
png_infop info_ptr, png_color_16p *background));
#endif
 
#if defined(PNG_bKGD_SUPPORTED)
extern PNG_EXPORT(void,png_set_bKGD) PNGARG((png_structp png_ptr,
png_infop info_ptr, png_color_16p background));
#endif
 
#if defined(PNG_cHRM_SUPPORTED)
#ifdef PNG_FLOATING_POINT_SUPPORTED
extern PNG_EXPORT(png_uint_32,png_get_cHRM) PNGARG((png_structp png_ptr,
png_infop info_ptr, double *white_x, double *white_y, double *red_x,
double *red_y, double *green_x, double *green_y, double *blue_x,
double *blue_y));
#endif
#ifdef PNG_FIXED_POINT_SUPPORTED
extern PNG_EXPORT(png_uint_32,png_get_cHRM_fixed) PNGARG((png_structp png_ptr,
png_infop info_ptr, png_fixed_point *int_white_x, png_fixed_point
*int_white_y, png_fixed_point *int_red_x, png_fixed_point *int_red_y,
png_fixed_point *int_green_x, png_fixed_point *int_green_y, png_fixed_point
*int_blue_x, png_fixed_point *int_blue_y));
#endif
#endif
 
#if defined(PNG_cHRM_SUPPORTED)
#ifdef PNG_FLOATING_POINT_SUPPORTED
extern PNG_EXPORT(void,png_set_cHRM) PNGARG((png_structp png_ptr,
png_infop info_ptr, double white_x, double white_y, double red_x,
double red_y, double green_x, double green_y, double blue_x, double blue_y));
#endif
#ifdef PNG_FIXED_POINT_SUPPORTED
extern PNG_EXPORT(void,png_set_cHRM_fixed) PNGARG((png_structp png_ptr,
png_infop info_ptr, png_fixed_point int_white_x, png_fixed_point int_white_y,
png_fixed_point int_red_x, png_fixed_point int_red_y, png_fixed_point
int_green_x, png_fixed_point int_green_y, png_fixed_point int_blue_x,
png_fixed_point int_blue_y));
#endif
#endif
 
#if defined(PNG_gAMA_SUPPORTED)
#ifdef PNG_FLOATING_POINT_SUPPORTED
extern PNG_EXPORT(png_uint_32,png_get_gAMA) PNGARG((png_structp png_ptr,
png_infop info_ptr, double *file_gamma));
#endif
extern PNG_EXPORT(png_uint_32,png_get_gAMA_fixed) PNGARG((png_structp png_ptr,
png_infop info_ptr, png_fixed_point *int_file_gamma));
#endif
 
#if defined(PNG_gAMA_SUPPORTED)
#ifdef PNG_FLOATING_POINT_SUPPORTED
extern PNG_EXPORT(void,png_set_gAMA) PNGARG((png_structp png_ptr,
png_infop info_ptr, double file_gamma));
#endif
extern PNG_EXPORT(void,png_set_gAMA_fixed) PNGARG((png_structp png_ptr,
png_infop info_ptr, png_fixed_point int_file_gamma));
#endif
 
#if defined(PNG_hIST_SUPPORTED)
extern PNG_EXPORT(png_uint_32,png_get_hIST) PNGARG((png_structp png_ptr,
png_infop info_ptr, png_uint_16p *hist));
#endif
 
#if defined(PNG_hIST_SUPPORTED)
extern PNG_EXPORT(void,png_set_hIST) PNGARG((png_structp png_ptr,
png_infop info_ptr, png_uint_16p hist));
#endif
 
extern PNG_EXPORT(png_uint_32,png_get_IHDR) PNGARG((png_structp png_ptr,
png_infop info_ptr, png_uint_32 *width, png_uint_32 *height,
int *bit_depth, int *color_type, int *interlace_method,
int *compression_method, int *filter_method));
 
extern PNG_EXPORT(void,png_set_IHDR) PNGARG((png_structp png_ptr,
png_infop info_ptr, png_uint_32 width, png_uint_32 height, int bit_depth,
int color_type, int interlace_method, int compression_method,
int filter_method));
 
#if defined(PNG_oFFs_SUPPORTED)
extern PNG_EXPORT(png_uint_32,png_get_oFFs) PNGARG((png_structp png_ptr,
png_infop info_ptr, png_int_32 *offset_x, png_int_32 *offset_y,
int *unit_type));
#endif
 
#if defined(PNG_oFFs_SUPPORTED)
extern PNG_EXPORT(void,png_set_oFFs) PNGARG((png_structp png_ptr,
png_infop info_ptr, png_int_32 offset_x, png_int_32 offset_y,
int unit_type));
#endif
 
#if defined(PNG_pCAL_SUPPORTED)
extern PNG_EXPORT(png_uint_32,png_get_pCAL) PNGARG((png_structp png_ptr,
png_infop info_ptr, png_charp *purpose, png_int_32 *X0, png_int_32 *X1,
int *type, int *nparams, png_charp *units, png_charpp *params));
#endif
 
#if defined(PNG_pCAL_SUPPORTED)
extern PNG_EXPORT(void,png_set_pCAL) PNGARG((png_structp png_ptr,
png_infop info_ptr, png_charp purpose, png_int_32 X0, png_int_32 X1,
int type, int nparams, png_charp units, png_charpp params));
#endif
 
#if defined(PNG_pHYs_SUPPORTED)
extern PNG_EXPORT(png_uint_32,png_get_pHYs) PNGARG((png_structp png_ptr,
png_infop info_ptr, png_uint_32 *res_x, png_uint_32 *res_y, int *unit_type));
#endif
 
#if defined(PNG_pHYs_SUPPORTED)
extern PNG_EXPORT(void,png_set_pHYs) PNGARG((png_structp png_ptr,
png_infop info_ptr, png_uint_32 res_x, png_uint_32 res_y, int unit_type));
#endif
 
extern PNG_EXPORT(png_uint_32,png_get_PLTE) PNGARG((png_structp png_ptr,
png_infop info_ptr, png_colorp *palette, int *num_palette));
 
extern PNG_EXPORT(void,png_set_PLTE) PNGARG((png_structp png_ptr,
png_infop info_ptr, png_colorp palette, int num_palette));
 
#if defined(PNG_sBIT_SUPPORTED)
extern PNG_EXPORT(png_uint_32,png_get_sBIT) PNGARG((png_structp png_ptr,
png_infop info_ptr, png_color_8p *sig_bit));
#endif
 
#if defined(PNG_sBIT_SUPPORTED)
extern PNG_EXPORT(void,png_set_sBIT) PNGARG((png_structp png_ptr,
png_infop info_ptr, png_color_8p sig_bit));
#endif
 
#if defined(PNG_sRGB_SUPPORTED)
extern PNG_EXPORT(png_uint_32,png_get_sRGB) PNGARG((png_structp png_ptr,
png_infop info_ptr, int *intent));
#endif
 
#if defined(PNG_sRGB_SUPPORTED)
extern PNG_EXPORT(void,png_set_sRGB) PNGARG((png_structp png_ptr,
png_infop info_ptr, int intent));
extern PNG_EXPORT(void,png_set_sRGB_gAMA_and_cHRM) PNGARG((png_structp png_ptr,
png_infop info_ptr, int intent));
#endif
 
#if defined(PNG_iCCP_SUPPORTED)
extern PNG_EXPORT(png_uint_32,png_get_iCCP) PNGARG((png_structp png_ptr,
png_infop info_ptr, png_charpp name, int *compression_type,
png_charpp profile, png_uint_32 *proflen));
/* Note to maintainer: profile should be png_bytepp */
#endif
 
#if defined(PNG_iCCP_SUPPORTED)
extern PNG_EXPORT(void,png_set_iCCP) PNGARG((png_structp png_ptr,
png_infop info_ptr, png_charp name, int compression_type,
png_charp profile, png_uint_32 proflen));
/* Note to maintainer: profile should be png_bytep */
#endif
 
#if defined(PNG_sPLT_SUPPORTED)
extern PNG_EXPORT(png_uint_32,png_get_sPLT) PNGARG((png_structp png_ptr,
png_infop info_ptr, png_sPLT_tpp entries));
#endif
 
#if defined(PNG_sPLT_SUPPORTED)
extern PNG_EXPORT(void,png_set_sPLT) PNGARG((png_structp png_ptr,
png_infop info_ptr, png_sPLT_tp entries, int nentries));
#endif
 
#if defined(PNG_TEXT_SUPPORTED)
/* png_get_text also returns the number of text chunks in *num_text */
extern PNG_EXPORT(png_uint_32,png_get_text) PNGARG((png_structp png_ptr,
png_infop info_ptr, png_textp *text_ptr, int *num_text));
#endif
 
/*
* Note while png_set_text() will accept a structure whose text,
* language, and translated keywords are NULL pointers, the structure
* returned by png_get_text will always contain regular
* zero-terminated C strings. They might be empty strings but
* they will never be NULL pointers.
*/
 
#if defined(PNG_TEXT_SUPPORTED)
extern PNG_EXPORT(void,png_set_text) PNGARG((png_structp png_ptr,
png_infop info_ptr, png_textp text_ptr, int num_text));
#endif
 
#if defined(PNG_tIME_SUPPORTED)
extern PNG_EXPORT(png_uint_32,png_get_tIME) PNGARG((png_structp png_ptr,
png_infop info_ptr, png_timep *mod_time));
#endif
 
#if defined(PNG_tIME_SUPPORTED)
extern PNG_EXPORT(void,png_set_tIME) PNGARG((png_structp png_ptr,
png_infop info_ptr, png_timep mod_time));
#endif
 
#if defined(PNG_tRNS_SUPPORTED)
extern PNG_EXPORT(png_uint_32,png_get_tRNS) PNGARG((png_structp png_ptr,
png_infop info_ptr, png_bytep *trans, int *num_trans,
png_color_16p *trans_values));
#endif
 
#if defined(PNG_tRNS_SUPPORTED)
extern PNG_EXPORT(void,png_set_tRNS) PNGARG((png_structp png_ptr,
png_infop info_ptr, png_bytep trans, int num_trans,
png_color_16p trans_values));
#endif
 
#if defined(PNG_tRNS_SUPPORTED)
#endif
 
#if defined(PNG_sCAL_SUPPORTED)
#ifdef PNG_FLOATING_POINT_SUPPORTED
extern PNG_EXPORT(png_uint_32,png_get_sCAL) PNGARG((png_structp png_ptr,
png_infop info_ptr, int *unit, double *width, double *height));
#else
#ifdef PNG_FIXED_POINT_SUPPORTED
extern PNG_EXPORT(png_uint_32,png_get_sCAL_s) PNGARG((png_structp png_ptr,
png_infop info_ptr, int *unit, png_charpp swidth, png_charpp sheight));
#endif
#endif
#endif /* PNG_sCAL_SUPPORTED */
 
#if defined(PNG_sCAL_SUPPORTED)
#ifdef PNG_FLOATING_POINT_SUPPORTED
extern PNG_EXPORT(void,png_set_sCAL) PNGARG((png_structp png_ptr,
png_infop info_ptr, int unit, double width, double height));
#endif
#ifdef PNG_FIXED_POINT_SUPPORTED
extern PNG_EXPORT(void,png_set_sCAL_s) PNGARG((png_structp png_ptr,
png_infop info_ptr, int unit, png_charp swidth, png_charp sheight));
#endif
#endif /* PNG_sCAL_SUPPORTED || PNG_WRITE_sCAL_SUPPORTED */
 
#if defined(PNG_UNKNOWN_CHUNKS_SUPPORTED)
/* provide a list of chunks and how they are to be handled, if the built-in
handling or default unknown chunk handling is not desired. Any chunks not
listed will be handled in the default manner. The IHDR and IEND chunks
must not be listed.
keep = 0: follow default behavour
= 1: do not keep
= 2: keep only if safe-to-copy
= 3: keep even if unsafe-to-copy
*/
extern PNG_EXPORT(void, png_set_keep_unknown_chunks) PNGARG((png_structp
png_ptr, int keep, png_bytep chunk_list, int num_chunks));
extern PNG_EXPORT(void, png_set_unknown_chunks) PNGARG((png_structp png_ptr,
png_infop info_ptr, png_unknown_chunkp unknowns, int num_unknowns));
extern PNG_EXPORT(void, png_set_unknown_chunk_location)
PNGARG((png_structp png_ptr, png_infop info_ptr, int chunk, int location));
extern PNG_EXPORT(png_uint_32,png_get_unknown_chunks) PNGARG((png_structp
png_ptr, png_infop info_ptr, png_unknown_chunkpp entries));
#endif
#ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED
PNG_EXPORT(int,png_handle_as_unknown) PNGARG((png_structp png_ptr, png_bytep
chunk_name));
#endif
 
/* Png_free_data() will turn off the "valid" flag for anything it frees.
If you need to turn it off for a chunk that your application has freed,
you can use png_set_invalid(png_ptr, info_ptr, PNG_INFO_CHNK); */
extern PNG_EXPORT(void, png_set_invalid) PNGARG((png_structp png_ptr,
png_infop info_ptr, int mask));
 
#if defined(PNG_INFO_IMAGE_SUPPORTED)
/* The "params" pointer is currently not used and is for future expansion. */
extern PNG_EXPORT(void, png_read_png) PNGARG((png_structp png_ptr,
png_infop info_ptr,
int transforms,
png_voidp params));
extern PNG_EXPORT(void, png_write_png) PNGARG((png_structp png_ptr,
png_infop info_ptr,
int transforms,
png_voidp params));
#endif
 
/* Define PNG_DEBUG at compile time for debugging information. Higher
* numbers for PNG_DEBUG mean more debugging information. This has
* only been added since version 0.95 so it is not implemented throughout
* libpng yet, but more support will be added as needed.
*/
#ifdef PNG_DEBUG
#if (PNG_DEBUG > 0)
#if !defined(PNG_DEBUG_FILE) && defined(_MSC_VER)
#include <crtdbg.h>
#if (PNG_DEBUG > 1)
#define png_debug(l,m) _RPT0(_CRT_WARN,m)
#define png_debug1(l,m,p1) _RPT1(_CRT_WARN,m,p1)
#define png_debug2(l,m,p1,p2) _RPT2(_CRT_WARN,m,p1,p2)
#endif
#else /* PNG_DEBUG_FILE || !_MSC_VER */
#ifndef PNG_DEBUG_FILE
#define PNG_DEBUG_FILE stderr
#endif /* PNG_DEBUG_FILE */
#if (PNG_DEBUG > 1)
#define png_debug(l,m) \
{ \
int num_tabs=l; \
fprintf(PNG_DEBUG_FILE,"%s"m,(num_tabs==1 ? "\t" : \
(num_tabs==2 ? "\t\t":(num_tabs>2 ? "\t\t\t":"")))); \
}
#define png_debug1(l,m,p1) \
{ \
int num_tabs=l; \
fprintf(PNG_DEBUG_FILE,"%s"m,(num_tabs==1 ? "\t" : \
(num_tabs==2 ? "\t\t":(num_tabs>2 ? "\t\t\t":""))),p1); \
}
#define png_debug2(l,m,p1,p2) \
{ \
int num_tabs=l; \
fprintf(PNG_DEBUG_FILE,"%s"m,(num_tabs==1 ? "\t" : \
(num_tabs==2 ? "\t\t":(num_tabs>2 ? "\t\t\t":""))),p1,p2); \
}
#endif /* (PNG_DEBUG > 1) */
#endif /* _MSC_VER */
#endif /* (PNG_DEBUG > 0) */
#endif /* PNG_DEBUG */
#ifndef png_debug
#define png_debug(l, m)
#endif
#ifndef png_debug1
#define png_debug1(l, m, p1)
#endif
#ifndef png_debug2
#define png_debug2(l, m, p1, p2)
#endif
 
extern PNG_EXPORT(png_bytep,png_sig_bytes) PNGARG((void));
 
extern PNG_EXPORT(png_charp,png_get_copyright) PNGARG((png_structp png_ptr));
extern PNG_EXPORT(png_charp,png_get_header_ver) PNGARG((png_structp png_ptr));
extern PNG_EXPORT(png_charp,png_get_header_version) PNGARG((png_structp png_ptr));
extern PNG_EXPORT(png_charp,png_get_libpng_ver) PNGARG((png_structp png_ptr));
 
#ifdef PNG_MNG_FEATURES_SUPPORTED
extern PNG_EXPORT(png_uint_32,png_permit_mng_features) PNGARG((png_structp
png_ptr, png_uint_32 mng_features_permitted));
#endif
 
/* Added to version 1.2.0 */
#if defined(PNG_ASSEMBLER_CODE_SUPPORTED)
#define PNG_ASM_FLAG_MMX_SUPPORT_COMPILED 0x01 /* not user-settable */
#define PNG_ASM_FLAG_MMX_SUPPORT_IN_CPU 0x02 /* not user-settable */
#define PNG_ASM_FLAG_MMX_READ_COMBINE_ROW 0x04
#define PNG_ASM_FLAG_MMX_READ_INTERLACE 0x08
#define PNG_ASM_FLAG_MMX_READ_FILTER_SUB 0x10
#define PNG_ASM_FLAG_MMX_READ_FILTER_UP 0x20
#define PNG_ASM_FLAG_MMX_READ_FILTER_AVG 0x40
#define PNG_ASM_FLAG_MMX_READ_FILTER_PAETH 0x80
#define PNG_ASM_FLAGS_INITIALIZED 0x80000000 /* not user-settable */
 
#define PNG_MMX_READ_FLAGS ( PNG_ASM_FLAG_MMX_READ_COMBINE_ROW \
| PNG_ASM_FLAG_MMX_READ_INTERLACE \
| PNG_ASM_FLAG_MMX_READ_FILTER_SUB \
| PNG_ASM_FLAG_MMX_READ_FILTER_UP \
| PNG_ASM_FLAG_MMX_READ_FILTER_AVG \
| PNG_ASM_FLAG_MMX_READ_FILTER_PAETH )
#define PNG_MMX_WRITE_FLAGS ( 0 )
 
#define PNG_MMX_FLAGS ( PNG_ASM_FLAG_MMX_SUPPORT_COMPILED \
| PNG_ASM_FLAG_MMX_SUPPORT_IN_CPU \
| PNG_MMX_READ_FLAGS \
| PNG_MMX_WRITE_FLAGS )
 
#define PNG_SELECT_READ 1
#define PNG_SELECT_WRITE 2
 
 
#if !defined(PNG_1_0_X)
/* pngget.c */
extern PNG_EXPORT(png_uint_32,png_get_mmx_flagmask)
PNGARG((int flag_select, int *compilerID));
 
/* pngget.c */
extern PNG_EXPORT(png_uint_32,png_get_asm_flagmask)
PNGARG((int flag_select));
 
/* pngget.c */
extern PNG_EXPORT(png_uint_32,png_get_asm_flags)
PNGARG((png_structp png_ptr));
 
/* pngget.c */
extern PNG_EXPORT(png_byte,png_get_mmx_bitdepth_threshold)
PNGARG((png_structp png_ptr));
 
/* pngget.c */
extern PNG_EXPORT(png_uint_32,png_get_mmx_rowbytes_threshold)
PNGARG((png_structp png_ptr));
 
/* pngset.c */
extern PNG_EXPORT(void,png_set_asm_flags)
PNGARG((png_structp png_ptr, png_uint_32 asm_flags));
 
/* pngset.c */
extern PNG_EXPORT(void,png_set_mmx_thresholds)
PNGARG((png_structp png_ptr, png_byte mmx_bitdepth_threshold,
png_uint_32 mmx_rowbytes_threshold));
 
#endif /* PNG_1_0_X */
#endif /* PNG_ASSEMBLER_CODE_SUPPORTED */
 
#if !defined(PNG_1_0_X)
/* png.c, pnggccrd.c, or pngvcrd.c */
extern PNG_EXPORT(int,png_mmx_support) PNGARG((void));
 
/* Strip the prepended error numbers ("#nnn ") from error and warning
* messages before passing them to the error or warning handler. */
#ifdef PNG_ERROR_NUMBERS_SUPPORTED
extern PNG_EXPORT(void,png_set_strip_error_numbers) PNGARG((png_structp
png_ptr, png_uint_32 strip_mode));
#endif
#endif /* PNG_1_0_X */
 
/* Maintainer: Put new public prototypes here ^, in libpng.3, and project defs */
 
#define PNG_HEADER_VERSION_STRING \
" libpng version 1.2.5 - October 3, 2002 (header)\n"
 
#ifdef PNG_READ_COMPOSITE_NODIV_SUPPORTED
/* With these routines we avoid an integer divide, which will be slower on
* most machines. However, it does take more operations than the corresponding
* divide method, so it may be slower on a few RISC systems. There are two
* shifts (by 8 or 16 bits) and an addition, versus a single integer divide.
*
* Note that the rounding factors are NOT supposed to be the same! 128 and
* 32768 are correct for the NODIV code; 127 and 32767 are correct for the
* standard method.
*
* [Optimized code by Greg Roelofs and Mark Adler...blame us for bugs. :-) ]
*/
 
/* fg and bg should be in `gamma 1.0' space; alpha is the opacity */
 
# define png_composite(composite, fg, alpha, bg) \
{ png_uint_16 temp = (png_uint_16)((png_uint_16)(fg) * (png_uint_16)(alpha) \
+ (png_uint_16)(bg)*(png_uint_16)(255 - \
(png_uint_16)(alpha)) + (png_uint_16)128); \
(composite) = (png_byte)((temp + (temp >> 8)) >> 8); }
 
# define png_composite_16(composite, fg, alpha, bg) \
{ png_uint_32 temp = (png_uint_32)((png_uint_32)(fg) * (png_uint_32)(alpha) \
+ (png_uint_32)(bg)*(png_uint_32)(65535L - \
(png_uint_32)(alpha)) + (png_uint_32)32768L); \
(composite) = (png_uint_16)((temp + (temp >> 16)) >> 16); }
 
#else /* standard method using integer division */
 
# define png_composite(composite, fg, alpha, bg) \
(composite) = (png_byte)(((png_uint_16)(fg) * (png_uint_16)(alpha) + \
(png_uint_16)(bg) * (png_uint_16)(255 - (png_uint_16)(alpha)) + \
(png_uint_16)127) / 255)
 
# define png_composite_16(composite, fg, alpha, bg) \
(composite) = (png_uint_16)(((png_uint_32)(fg) * (png_uint_32)(alpha) + \
(png_uint_32)(bg)*(png_uint_32)(65535L - (png_uint_32)(alpha)) + \
(png_uint_32)32767) / (png_uint_32)65535L)
 
#endif /* PNG_READ_COMPOSITE_NODIV_SUPPORTED */
 
/* These next functions are used internally in the code. They generally
* shouldn't be used unless you are writing code to add or replace some
* functionality in libpng. More information about most functions can
* be found in the files where the functions are located.
*/
 
#if defined(PNG_INTERNAL)
 
/* Various modes of operation. Note that after an init, mode is set to
* zero automatically when the structure is created.
*/
#define PNG_HAVE_IHDR 0x01
#define PNG_HAVE_PLTE 0x02
#define PNG_HAVE_IDAT 0x04
#define PNG_AFTER_IDAT 0x08
#define PNG_HAVE_IEND 0x10
#define PNG_HAVE_gAMA 0x20
#define PNG_HAVE_cHRM 0x40
#define PNG_HAVE_sRGB 0x80
#define PNG_HAVE_CHUNK_HEADER 0x100
#define PNG_WROTE_tIME 0x200
#define PNG_WROTE_INFO_BEFORE_PLTE 0x400
#define PNG_BACKGROUND_IS_GRAY 0x800
#define PNG_HAVE_PNG_SIGNATURE 0x1000
 
/* flags for the transformations the PNG library does on the image data */
#define PNG_BGR 0x0001
#define PNG_INTERLACE 0x0002
#define PNG_PACK 0x0004
#define PNG_SHIFT 0x0008
#define PNG_SWAP_BYTES 0x0010
#define PNG_INVERT_MONO 0x0020
#define PNG_DITHER 0x0040
#define PNG_BACKGROUND 0x0080
#define PNG_BACKGROUND_EXPAND 0x0100
/* 0x0200 unused */
#define PNG_16_TO_8 0x0400
#define PNG_RGBA 0x0800
#define PNG_EXPAND 0x1000
#define PNG_GAMMA 0x2000
#define PNG_GRAY_TO_RGB 0x4000
#define PNG_FILLER 0x8000L
#define PNG_PACKSWAP 0x10000L
#define PNG_SWAP_ALPHA 0x20000L
#define PNG_STRIP_ALPHA 0x40000L
#define PNG_INVERT_ALPHA 0x80000L
#define PNG_USER_TRANSFORM 0x100000L
#define PNG_RGB_TO_GRAY_ERR 0x200000L
#define PNG_RGB_TO_GRAY_WARN 0x400000L
#define PNG_RGB_TO_GRAY 0x600000L /* two bits, RGB_TO_GRAY_ERR|WARN */
 
/* flags for png_create_struct */
#define PNG_STRUCT_PNG 0x0001
#define PNG_STRUCT_INFO 0x0002
 
/* Scaling factor for filter heuristic weighting calculations */
#define PNG_WEIGHT_SHIFT 8
#define PNG_WEIGHT_FACTOR (1<<(PNG_WEIGHT_SHIFT))
#define PNG_COST_SHIFT 3
#define PNG_COST_FACTOR (1<<(PNG_COST_SHIFT))
 
/* flags for the png_ptr->flags rather than declaring a byte for each one */
#define PNG_FLAG_ZLIB_CUSTOM_STRATEGY 0x0001
#define PNG_FLAG_ZLIB_CUSTOM_LEVEL 0x0002
#define PNG_FLAG_ZLIB_CUSTOM_MEM_LEVEL 0x0004
#define PNG_FLAG_ZLIB_CUSTOM_WINDOW_BITS 0x0008
#define PNG_FLAG_ZLIB_CUSTOM_METHOD 0x0010
#define PNG_FLAG_ZLIB_FINISHED 0x0020
#define PNG_FLAG_ROW_INIT 0x0040
#define PNG_FLAG_FILLER_AFTER 0x0080
#define PNG_FLAG_CRC_ANCILLARY_USE 0x0100
#define PNG_FLAG_CRC_ANCILLARY_NOWARN 0x0200
#define PNG_FLAG_CRC_CRITICAL_USE 0x0400
#define PNG_FLAG_CRC_CRITICAL_IGNORE 0x0800
#define PNG_FLAG_FREE_PLTE 0x1000
#define PNG_FLAG_FREE_TRNS 0x2000
#define PNG_FLAG_FREE_HIST 0x4000
#define PNG_FLAG_KEEP_UNKNOWN_CHUNKS 0x8000L
#define PNG_FLAG_KEEP_UNSAFE_CHUNKS 0x10000L
#define PNG_FLAG_LIBRARY_MISMATCH 0x20000L
#define PNG_FLAG_STRIP_ERROR_NUMBERS 0x40000L
#define PNG_FLAG_STRIP_ERROR_TEXT 0x80000L
#define PNG_FLAG_MALLOC_NULL_MEM_OK 0x100000L
 
/* For use in png_set_keep_unknown, png_handle_as_unknown */
#define HANDLE_CHUNK_AS_DEFAULT 0
#define HANDLE_CHUNK_NEVER 1
#define HANDLE_CHUNK_IF_SAFE 2
#define HANDLE_CHUNK_ALWAYS 3
 
#define PNG_FLAG_CRC_ANCILLARY_MASK (PNG_FLAG_CRC_ANCILLARY_USE | \
PNG_FLAG_CRC_ANCILLARY_NOWARN)
 
#define PNG_FLAG_CRC_CRITICAL_MASK (PNG_FLAG_CRC_CRITICAL_USE | \
PNG_FLAG_CRC_CRITICAL_IGNORE)
 
#define PNG_FLAG_CRC_MASK (PNG_FLAG_CRC_ANCILLARY_MASK | \
PNG_FLAG_CRC_CRITICAL_MASK)
 
/* save typing and make code easier to understand */
#define PNG_COLOR_DIST(c1, c2) (abs((int)((c1).red) - (int)((c2).red)) + \
abs((int)((c1).green) - (int)((c2).green)) + \
abs((int)((c1).blue) - (int)((c2).blue)))
 
/* variables declared in png.c - only it needs to define PNG_NO_EXTERN */
#if !defined(PNG_NO_EXTERN) || defined(PNG_ALWAYS_EXTERN)
/* place to hold the signature string for a PNG file. */
#ifdef PNG_USE_GLOBAL_ARRAYS
PNG_EXPORT_VAR (const png_byte FARDATA) png_sig[8];
#else
#define png_sig png_sig_bytes(NULL)
#endif
#endif /* PNG_NO_EXTERN */
 
/* Constant strings for known chunk types. If you need to add a chunk,
* define the name here, and add an invocation of the macro in png.c and
* wherever it's needed.
*/
#define PNG_IHDR const png_byte png_IHDR[5] = { 73, 72, 68, 82, '\0'}
#define PNG_IDAT const png_byte png_IDAT[5] = { 73, 68, 65, 84, '\0'}
#define PNG_IEND const png_byte png_IEND[5] = { 73, 69, 78, 68, '\0'}
#define PNG_PLTE const png_byte png_PLTE[5] = { 80, 76, 84, 69, '\0'}
#define PNG_bKGD const png_byte png_bKGD[5] = { 98, 75, 71, 68, '\0'}
#define PNG_cHRM const png_byte png_cHRM[5] = { 99, 72, 82, 77, '\0'}
#define PNG_gAMA const png_byte png_gAMA[5] = {103, 65, 77, 65, '\0'}
#define PNG_hIST const png_byte png_hIST[5] = {104, 73, 83, 84, '\0'}
#define PNG_iCCP const png_byte png_iCCP[5] = {105, 67, 67, 80, '\0'}
#define PNG_iTXt const png_byte png_iTXt[5] = {105, 84, 88, 116, '\0'}
#define PNG_oFFs const png_byte png_oFFs[5] = {111, 70, 70, 115, '\0'}
#define PNG_pCAL const png_byte png_pCAL[5] = {112, 67, 65, 76, '\0'}
#define PNG_sCAL const png_byte png_sCAL[5] = {115, 67, 65, 76, '\0'}
#define PNG_pHYs const png_byte png_pHYs[5] = {112, 72, 89, 115, '\0'}
#define PNG_sBIT const png_byte png_sBIT[5] = {115, 66, 73, 84, '\0'}
#define PNG_sPLT const png_byte png_sPLT[5] = {115, 80, 76, 84, '\0'}
#define PNG_sRGB const png_byte png_sRGB[5] = {115, 82, 71, 66, '\0'}
#define PNG_tEXt const png_byte png_tEXt[5] = {116, 69, 88, 116, '\0'}
#define PNG_tIME const png_byte png_tIME[5] = {116, 73, 77, 69, '\0'}
#define PNG_tRNS const png_byte png_tRNS[5] = {116, 82, 78, 83, '\0'}
#define PNG_zTXt const png_byte png_zTXt[5] = {122, 84, 88, 116, '\0'}
 
#ifdef PNG_USE_GLOBAL_ARRAYS
PNG_EXPORT_VAR (const png_byte FARDATA) png_IHDR[5];
PNG_EXPORT_VAR (const png_byte FARDATA) png_IDAT[5];
PNG_EXPORT_VAR (const png_byte FARDATA) png_IEND[5];
PNG_EXPORT_VAR (const png_byte FARDATA) png_PLTE[5];
PNG_EXPORT_VAR (const png_byte FARDATA) png_bKGD[5];
PNG_EXPORT_VAR (const png_byte FARDATA) png_cHRM[5];
PNG_EXPORT_VAR (const png_byte FARDATA) png_gAMA[5];
PNG_EXPORT_VAR (const png_byte FARDATA) png_hIST[5];
PNG_EXPORT_VAR (const png_byte FARDATA) png_iCCP[5];
PNG_EXPORT_VAR (const png_byte FARDATA) png_iTXt[5];
PNG_EXPORT_VAR (const png_byte FARDATA) png_oFFs[5];
PNG_EXPORT_VAR (const png_byte FARDATA) png_pCAL[5];
PNG_EXPORT_VAR (const png_byte FARDATA) png_sCAL[5];
PNG_EXPORT_VAR (const png_byte FARDATA) png_pHYs[5];
PNG_EXPORT_VAR (const png_byte FARDATA) png_sBIT[5];
PNG_EXPORT_VAR (const png_byte FARDATA) png_sPLT[5];
PNG_EXPORT_VAR (const png_byte FARDATA) png_sRGB[5];
PNG_EXPORT_VAR (const png_byte FARDATA) png_tEXt[5];
PNG_EXPORT_VAR (const png_byte FARDATA) png_tIME[5];
PNG_EXPORT_VAR (const png_byte FARDATA) png_tRNS[5];
PNG_EXPORT_VAR (const png_byte FARDATA) png_zTXt[5];
#endif /* PNG_USE_GLOBAL_ARRAYS */
 
 
/* Inline macros to do direct reads of bytes from the input buffer. These
* require that you are using an architecture that uses PNG byte ordering
* (MSB first) and supports unaligned data storage. I think that PowerPC
* in big-endian mode and 680x0 are the only ones that will support this.
* The x86 line of processors definitely do not. The png_get_int_32()
* routine also assumes we are using two's complement format for negative
* values, which is almost certainly true.
*/
#if defined(PNG_READ_BIG_ENDIAN_SUPPORTED)
# if defined(PNG_pCAL_SUPPORTED) || defined(PNG_oFFs_SUPPORTED)
# define png_get_int_32(buf) ( *((png_int_32p) (buf)))
# endif
# define png_get_uint_32(buf) ( *((png_uint_32p) (buf)))
# define png_get_uint_16(buf) ( *((png_uint_16p) (buf)))
#else
# if defined(PNG_pCAL_SUPPORTED) || defined(PNG_oFFs_SUPPORTED)
PNG_EXTERN png_int_32 png_get_int_32 PNGARG((png_bytep buf));
# endif
PNG_EXTERN png_uint_32 png_get_uint_32 PNGARG((png_bytep buf));
PNG_EXTERN png_uint_16 png_get_uint_16 PNGARG((png_bytep buf));
#endif /* !PNG_READ_BIG_ENDIAN_SUPPORTED */
 
/* Initialize png_ptr struct for reading, and allocate any other memory.
* (old interface - DEPRECATED - use png_create_read_struct instead).
*/
extern PNG_EXPORT(void,png_read_init) PNGARG((png_structp png_ptr));
#undef png_read_init
#define png_read_init(png_ptr) png_read_init_3(&png_ptr, \
PNG_LIBPNG_VER_STRING, sizeof(png_struct));
extern PNG_EXPORT(void,png_read_init_3) PNGARG((png_structpp ptr_ptr,
png_const_charp user_png_ver, png_size_t png_struct_size));
extern PNG_EXPORT(void,png_read_init_2) PNGARG((png_structp png_ptr,
png_const_charp user_png_ver, png_size_t png_struct_size, png_size_t
png_info_size));
 
/* Initialize png_ptr struct for writing, and allocate any other memory.
* (old interface - DEPRECATED - use png_create_write_struct instead).
*/
extern PNG_EXPORT(void,png_write_init) PNGARG((png_structp png_ptr));
#undef png_write_init
#define png_write_init(png_ptr) png_write_init_3(&png_ptr, \
PNG_LIBPNG_VER_STRING, sizeof(png_struct));
extern PNG_EXPORT(void,png_write_init_3) PNGARG((png_structpp ptr_ptr,
png_const_charp user_png_ver, png_size_t png_struct_size));
extern PNG_EXPORT(void,png_write_init_2) PNGARG((png_structp png_ptr,
png_const_charp user_png_ver, png_size_t png_struct_size, png_size_t
png_info_size));
 
/* Allocate memory for an internal libpng struct */
PNG_EXTERN png_voidp png_create_struct PNGARG((int type));
 
/* Free memory from internal libpng struct */
PNG_EXTERN void png_destroy_struct PNGARG((png_voidp struct_ptr));
 
PNG_EXTERN png_voidp png_create_struct_2 PNGARG((int type, png_malloc_ptr
malloc_fn, png_voidp mem_ptr));
PNG_EXTERN void png_destroy_struct_2 PNGARG((png_voidp struct_ptr,
png_free_ptr free_fn, png_voidp mem_ptr));
 
/* Free any memory that info_ptr points to and reset struct. */
PNG_EXTERN void png_info_destroy PNGARG((png_structp png_ptr,
png_infop info_ptr));
 
#ifndef PNG_1_0_X
/* Function to allocate memory for zlib. */
PNG_EXTERN voidpf png_zalloc PNGARG((voidpf png_ptr, uInt items, uInt size));
 
/* Function to free memory for zlib */
PNG_EXTERN void png_zfree PNGARG((voidpf png_ptr, voidpf ptr));
 
/* Next four functions are used internally as callbacks. PNGAPI is required
* but not PNG_EXPORT. PNGAPI added at libpng version 1.2.3. */
 
PNG_EXTERN void PNGAPI png_default_read_data PNGARG((png_structp png_ptr,
png_bytep data, png_size_t length));
 
#ifdef PNG_PROGRESSIVE_READ_SUPPORTED
PNG_EXTERN void PNGAPI png_push_fill_buffer PNGARG((png_structp png_ptr,
png_bytep buffer, png_size_t length));
#endif
 
PNG_EXTERN void PNGAPI png_default_write_data PNGARG((png_structp png_ptr,
png_bytep data, png_size_t length));
 
#if defined(PNG_WRITE_FLUSH_SUPPORTED)
#if !defined(PNG_NO_STDIO)
PNG_EXTERN void PNGAPI png_default_flush PNGARG((png_structp png_ptr));
#endif
#endif
#else /* PNG_1_0_X */
#ifdef PNG_PROGRESSIVE_READ_SUPPORTED
PNG_EXTERN void png_push_fill_buffer PNGARG((png_structp png_ptr,
png_bytep buffer, png_size_t length));
#endif
#endif /* PNG_1_0_X */
 
/* Reset the CRC variable */
PNG_EXTERN void png_reset_crc PNGARG((png_structp png_ptr));
 
/* Write the "data" buffer to whatever output you are using. */
PNG_EXTERN void png_write_data PNGARG((png_structp png_ptr, png_bytep data,
png_size_t length));
 
/* Read data from whatever input you are using into the "data" buffer */
PNG_EXTERN void png_read_data PNGARG((png_structp png_ptr, png_bytep data,
png_size_t length));
 
/* Read bytes into buf, and update png_ptr->crc */
PNG_EXTERN void png_crc_read PNGARG((png_structp png_ptr, png_bytep buf,
png_size_t length));
 
/* Decompress data in a chunk that uses compression */
#if defined(PNG_zTXt_SUPPORTED) || defined(PNG_iTXt_SUPPORTED) || \
defined(PNG_iCCP_SUPPORTED) || defined(PNG_sPLT_SUPPORTED)
PNG_EXTERN png_charp png_decompress_chunk PNGARG((png_structp png_ptr,
int comp_type, png_charp chunkdata, png_size_t chunklength,
png_size_t prefix_length, png_size_t *data_length));
#endif
 
/* Read "skip" bytes, read the file crc, and (optionally) verify png_ptr->crc */
PNG_EXTERN int png_crc_finish PNGARG((png_structp png_ptr, png_uint_32 skip));
 
/* Read the CRC from the file and compare it to the libpng calculated CRC */
PNG_EXTERN int png_crc_error PNGARG((png_structp png_ptr));
 
/* Calculate the CRC over a section of data. Note that we are only
* passing a maximum of 64K on systems that have this as a memory limit,
* since this is the maximum buffer size we can specify.
*/
PNG_EXTERN void png_calculate_crc PNGARG((png_structp png_ptr, png_bytep ptr,
png_size_t length));
 
#if defined(PNG_WRITE_FLUSH_SUPPORTED)
PNG_EXTERN void png_flush PNGARG((png_structp png_ptr));
#endif
 
 
/* Place a 32-bit number into a buffer in PNG byte order (big-endian).
* The only currently known PNG chunks that use signed numbers are
* the ancillary extension chunks, oFFs and pCAL.
*/
PNG_EXTERN void png_save_uint_32 PNGARG((png_bytep buf, png_uint_32 i));
 
#if defined(PNG_WRITE_pCAL_SUPPORTED) || defined(PNG_WRITE_oFFs_SUPPORTED)
PNG_EXTERN void png_save_int_32 PNGARG((png_bytep buf, png_int_32 i));
#endif
 
/* Place a 16-bit number into a buffer in PNG byte order.
* The parameter is declared unsigned int, not png_uint_16,
* just to avoid potential problems on pre-ANSI C compilers.
*/
PNG_EXTERN void png_save_uint_16 PNGARG((png_bytep buf, unsigned int i));
 
/* simple function to write the signature */
PNG_EXTERN void png_write_sig PNGARG((png_structp png_ptr));
 
/* write various chunks */
 
/* Write the IHDR chunk, and update the png_struct with the necessary
* information.
*/
PNG_EXTERN void png_write_IHDR PNGARG((png_structp png_ptr, png_uint_32 width,
png_uint_32 height,
int bit_depth, int color_type, int compression_method, int filter_method,
int interlace_method));
 
PNG_EXTERN void png_write_PLTE PNGARG((png_structp png_ptr, png_colorp palette,
png_uint_32 num_pal));
 
PNG_EXTERN void png_write_IDAT PNGARG((png_structp png_ptr, png_bytep data,
png_size_t length));
 
PNG_EXTERN void png_write_IEND PNGARG((png_structp png_ptr));
 
#if defined(PNG_WRITE_gAMA_SUPPORTED)
#ifdef PNG_FLOATING_POINT_SUPPORTED
PNG_EXTERN void png_write_gAMA PNGARG((png_structp png_ptr, double file_gamma));
#endif
#ifdef PNG_FIXED_POINT_SUPPORTED
PNG_EXTERN void png_write_gAMA_fixed PNGARG((png_structp png_ptr, png_fixed_point
file_gamma));
#endif
#endif
 
#if defined(PNG_WRITE_sBIT_SUPPORTED)
PNG_EXTERN void png_write_sBIT PNGARG((png_structp png_ptr, png_color_8p sbit,
int color_type));
#endif
 
#if defined(PNG_WRITE_cHRM_SUPPORTED)
#ifdef PNG_FLOATING_POINT_SUPPORTED
PNG_EXTERN void png_write_cHRM PNGARG((png_structp png_ptr,
double white_x, double white_y,
double red_x, double red_y, double green_x, double green_y,
double blue_x, double blue_y));
#endif
#ifdef PNG_FIXED_POINT_SUPPORTED
PNG_EXTERN void png_write_cHRM_fixed PNGARG((png_structp png_ptr,
png_fixed_point int_white_x, png_fixed_point int_white_y,
png_fixed_point int_red_x, png_fixed_point int_red_y, png_fixed_point
int_green_x, png_fixed_point int_green_y, png_fixed_point int_blue_x,
png_fixed_point int_blue_y));
#endif
#endif
 
#if defined(PNG_WRITE_sRGB_SUPPORTED)
PNG_EXTERN void png_write_sRGB PNGARG((png_structp png_ptr,
int intent));
#endif
 
#if defined(PNG_WRITE_iCCP_SUPPORTED)
PNG_EXTERN void png_write_iCCP PNGARG((png_structp png_ptr,
png_charp name, int compression_type,
png_charp profile, int proflen));
/* Note to maintainer: profile should be png_bytep */
#endif
 
#if defined(PNG_WRITE_sPLT_SUPPORTED)
PNG_EXTERN void png_write_sPLT PNGARG((png_structp png_ptr,
png_sPLT_tp palette));
#endif
 
#if defined(PNG_WRITE_tRNS_SUPPORTED)
PNG_EXTERN void png_write_tRNS PNGARG((png_structp png_ptr, png_bytep trans,
png_color_16p values, int number, int color_type));
#endif
 
#if defined(PNG_WRITE_bKGD_SUPPORTED)
PNG_EXTERN void png_write_bKGD PNGARG((png_structp png_ptr,
png_color_16p values, int color_type));
#endif
 
#if defined(PNG_WRITE_hIST_SUPPORTED)
PNG_EXTERN void png_write_hIST PNGARG((png_structp png_ptr, png_uint_16p hist,
int num_hist));
#endif
 
#if defined(PNG_WRITE_TEXT_SUPPORTED) || defined(PNG_WRITE_pCAL_SUPPORTED) || \
defined(PNG_WRITE_iCCP_SUPPORTED) || defined(PNG_WRITE_sPLT_SUPPORTED)
PNG_EXTERN png_size_t png_check_keyword PNGARG((png_structp png_ptr,
png_charp key, png_charpp new_key));
#endif
 
#if defined(PNG_WRITE_tEXt_SUPPORTED)
PNG_EXTERN void png_write_tEXt PNGARG((png_structp png_ptr, png_charp key,
png_charp text, png_size_t text_len));
#endif
 
#if defined(PNG_WRITE_zTXt_SUPPORTED)
PNG_EXTERN void png_write_zTXt PNGARG((png_structp png_ptr, png_charp key,
png_charp text, png_size_t text_len, int compression));
#endif
 
#if defined(PNG_WRITE_iTXt_SUPPORTED)
PNG_EXTERN void png_write_iTXt PNGARG((png_structp png_ptr,
int compression, png_charp key, png_charp lang, png_charp lang_key,
png_charp text));
#endif
 
#if defined(PNG_TEXT_SUPPORTED) /* Added at version 1.0.14 and 1.2.4 */
PNG_EXTERN int png_set_text_2 PNGARG((png_structp png_ptr,
png_infop info_ptr, png_textp text_ptr, int num_text));
#endif
 
#if defined(PNG_WRITE_oFFs_SUPPORTED)
PNG_EXTERN void png_write_oFFs PNGARG((png_structp png_ptr,
png_int_32 x_offset, png_int_32 y_offset, int unit_type));
#endif
 
#if defined(PNG_WRITE_pCAL_SUPPORTED)
PNG_EXTERN void png_write_pCAL PNGARG((png_structp png_ptr, png_charp purpose,
png_int_32 X0, png_int_32 X1, int type, int nparams,
png_charp units, png_charpp params));
#endif
 
#if defined(PNG_WRITE_pHYs_SUPPORTED)
PNG_EXTERN void png_write_pHYs PNGARG((png_structp png_ptr,
png_uint_32 x_pixels_per_unit, png_uint_32 y_pixels_per_unit,
int unit_type));
#endif
 
#if defined(PNG_WRITE_tIME_SUPPORTED)
PNG_EXTERN void png_write_tIME PNGARG((png_structp png_ptr,
png_timep mod_time));
#endif
 
#if defined(PNG_WRITE_sCAL_SUPPORTED)
#if defined(PNG_FLOATING_POINT_SUPPORTED) && !defined(PNG_NO_STDIO)
PNG_EXTERN void png_write_sCAL PNGARG((png_structp png_ptr,
int unit, double width, double height));
#else
#ifdef PNG_FIXED_POINT_SUPPORTED
PNG_EXTERN void png_write_sCAL_s PNGARG((png_structp png_ptr,
int unit, png_charp width, png_charp height));
#endif
#endif
#endif
 
/* Called when finished processing a row of data */
PNG_EXTERN void png_write_finish_row PNGARG((png_structp png_ptr));
 
/* Internal use only. Called before first row of data */
PNG_EXTERN void png_write_start_row PNGARG((png_structp png_ptr));
 
#if defined(PNG_READ_GAMMA_SUPPORTED)
PNG_EXTERN void png_build_gamma_table PNGARG((png_structp png_ptr));
#endif
 
/* combine a row of data, dealing with alpha, etc. if requested */
PNG_EXTERN void png_combine_row PNGARG((png_structp png_ptr, png_bytep row,
int mask));
 
#if defined(PNG_READ_INTERLACING_SUPPORTED)
/* expand an interlaced row */
/* OLD pre-1.0.9 interface:
PNG_EXTERN void png_do_read_interlace PNGARG((png_row_infop row_info,
png_bytep row, int pass, png_uint_32 transformations));
*/
PNG_EXTERN void png_do_read_interlace PNGARG((png_structp png_ptr));
#endif
 
/* GRR TO DO (2.0 or whenever): simplify other internal calling interfaces */
 
#if defined(PNG_WRITE_INTERLACING_SUPPORTED)
/* grab pixels out of a row for an interlaced pass */
PNG_EXTERN void png_do_write_interlace PNGARG((png_row_infop row_info,
png_bytep row, int pass));
#endif
 
/* unfilter a row */
PNG_EXTERN void png_read_filter_row PNGARG((png_structp png_ptr,
png_row_infop row_info, png_bytep row, png_bytep prev_row, int filter));
 
/* Choose the best filter to use and filter the row data */
PNG_EXTERN void png_write_find_filter PNGARG((png_structp png_ptr,
png_row_infop row_info));
 
/* Write out the filtered row. */
PNG_EXTERN void png_write_filtered_row PNGARG((png_structp png_ptr,
png_bytep filtered_row));
/* finish a row while reading, dealing with interlacing passes, etc. */
PNG_EXTERN void png_read_finish_row PNGARG((png_structp png_ptr));
 
/* initialize the row buffers, etc. */
PNG_EXTERN void png_read_start_row PNGARG((png_structp png_ptr));
/* optional call to update the users info structure */
PNG_EXTERN void png_read_transform_info PNGARG((png_structp png_ptr,
png_infop info_ptr));
 
/* these are the functions that do the transformations */
#if defined(PNG_READ_FILLER_SUPPORTED)
PNG_EXTERN void png_do_read_filler PNGARG((png_row_infop row_info,
png_bytep row, png_uint_32 filler, png_uint_32 flags));
#endif
 
#if defined(PNG_READ_SWAP_ALPHA_SUPPORTED)
PNG_EXTERN void png_do_read_swap_alpha PNGARG((png_row_infop row_info,
png_bytep row));
#endif
 
#if defined(PNG_WRITE_SWAP_ALPHA_SUPPORTED)
PNG_EXTERN void png_do_write_swap_alpha PNGARG((png_row_infop row_info,
png_bytep row));
#endif
 
#if defined(PNG_READ_INVERT_ALPHA_SUPPORTED)
PNG_EXTERN void png_do_read_invert_alpha PNGARG((png_row_infop row_info,
png_bytep row));
#endif
 
#if defined(PNG_WRITE_INVERT_ALPHA_SUPPORTED)
PNG_EXTERN void png_do_write_invert_alpha PNGARG((png_row_infop row_info,
png_bytep row));
#endif
 
#if defined(PNG_WRITE_FILLER_SUPPORTED) || \
defined(PNG_READ_STRIP_ALPHA_SUPPORTED)
PNG_EXTERN void png_do_strip_filler PNGARG((png_row_infop row_info,
png_bytep row, png_uint_32 flags));
#endif
 
#if defined(PNG_READ_SWAP_SUPPORTED) || defined(PNG_WRITE_SWAP_SUPPORTED)
PNG_EXTERN void png_do_swap PNGARG((png_row_infop row_info, png_bytep row));
#endif
 
#if defined(PNG_READ_PACKSWAP_SUPPORTED) || defined(PNG_WRITE_PACKSWAP_SUPPORTED)
PNG_EXTERN void png_do_packswap PNGARG((png_row_infop row_info, png_bytep row));
#endif
 
#if defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
PNG_EXTERN int png_do_rgb_to_gray PNGARG((png_structp png_ptr, png_row_infop
row_info, png_bytep row));
#endif
 
#if defined(PNG_READ_GRAY_TO_RGB_SUPPORTED)
PNG_EXTERN void png_do_gray_to_rgb PNGARG((png_row_infop row_info,
png_bytep row));
#endif
 
#if defined(PNG_READ_PACK_SUPPORTED)
PNG_EXTERN void png_do_unpack PNGARG((png_row_infop row_info, png_bytep row));
#endif
 
#if defined(PNG_READ_SHIFT_SUPPORTED)
PNG_EXTERN void png_do_unshift PNGARG((png_row_infop row_info, png_bytep row,
png_color_8p sig_bits));
#endif
 
#if defined(PNG_READ_INVERT_SUPPORTED) || defined(PNG_WRITE_INVERT_SUPPORTED)
PNG_EXTERN void png_do_invert PNGARG((png_row_infop row_info, png_bytep row));
#endif
 
#if defined(PNG_READ_16_TO_8_SUPPORTED)
PNG_EXTERN void png_do_chop PNGARG((png_row_infop row_info, png_bytep row));
#endif
 
#if defined(PNG_READ_DITHER_SUPPORTED)
PNG_EXTERN void png_do_dither PNGARG((png_row_infop row_info,
png_bytep row, png_bytep palette_lookup, png_bytep dither_lookup));
 
# if defined(PNG_CORRECT_PALETTE_SUPPORTED)
PNG_EXTERN void png_correct_palette PNGARG((png_structp png_ptr,
png_colorp palette, int num_palette));
# endif
#endif
 
#if defined(PNG_READ_BGR_SUPPORTED) || defined(PNG_WRITE_BGR_SUPPORTED)
PNG_EXTERN void png_do_bgr PNGARG((png_row_infop row_info, png_bytep row));
#endif
 
#if defined(PNG_WRITE_PACK_SUPPORTED)
PNG_EXTERN void png_do_pack PNGARG((png_row_infop row_info,
png_bytep row, png_uint_32 bit_depth));
#endif
 
#if defined(PNG_WRITE_SHIFT_SUPPORTED)
PNG_EXTERN void png_do_shift PNGARG((png_row_infop row_info, png_bytep row,
png_color_8p bit_depth));
#endif
 
#if defined(PNG_READ_BACKGROUND_SUPPORTED)
#if defined(PNG_READ_GAMMA_SUPPORTED)
PNG_EXTERN void png_do_background PNGARG((png_row_infop row_info, png_bytep row,
png_color_16p trans_values, png_color_16p background,
png_color_16p background_1,
png_bytep gamma_table, png_bytep gamma_from_1, png_bytep gamma_to_1,
png_uint_16pp gamma_16, png_uint_16pp gamma_16_from_1,
png_uint_16pp gamma_16_to_1, int gamma_shift));
#else
PNG_EXTERN void png_do_background PNGARG((png_row_infop row_info, png_bytep row,
png_color_16p trans_values, png_color_16p background));
#endif
#endif
 
#if defined(PNG_READ_GAMMA_SUPPORTED)
PNG_EXTERN void png_do_gamma PNGARG((png_row_infop row_info, png_bytep row,
png_bytep gamma_table, png_uint_16pp gamma_16_table,
int gamma_shift));
#endif
 
#if defined(PNG_READ_EXPAND_SUPPORTED)
PNG_EXTERN void png_do_expand_palette PNGARG((png_row_infop row_info,
png_bytep row, png_colorp palette, png_bytep trans, int num_trans));
PNG_EXTERN void png_do_expand PNGARG((png_row_infop row_info,
png_bytep row, png_color_16p trans_value));
#endif
 
/* The following decodes the appropriate chunks, and does error correction,
* then calls the appropriate callback for the chunk if it is valid.
*/
 
/* decode the IHDR chunk */
PNG_EXTERN void png_handle_IHDR PNGARG((png_structp png_ptr, png_infop info_ptr,
png_uint_32 length));
PNG_EXTERN void png_handle_PLTE PNGARG((png_structp png_ptr, png_infop info_ptr,
png_uint_32 length));
PNG_EXTERN void png_handle_IEND PNGARG((png_structp png_ptr, png_infop info_ptr,
png_uint_32 length));
 
#if defined(PNG_READ_bKGD_SUPPORTED)
PNG_EXTERN void png_handle_bKGD PNGARG((png_structp png_ptr, png_infop info_ptr,
png_uint_32 length));
#endif
 
#if defined(PNG_READ_cHRM_SUPPORTED)
PNG_EXTERN void png_handle_cHRM PNGARG((png_structp png_ptr, png_infop info_ptr,
png_uint_32 length));
#endif
 
#if defined(PNG_READ_gAMA_SUPPORTED)
PNG_EXTERN void png_handle_gAMA PNGARG((png_structp png_ptr, png_infop info_ptr,
png_uint_32 length));
#endif
 
#if defined(PNG_READ_hIST_SUPPORTED)
PNG_EXTERN void png_handle_hIST PNGARG((png_structp png_ptr, png_infop info_ptr,
png_uint_32 length));
#endif
 
#if defined(PNG_READ_iCCP_SUPPORTED)
extern void png_handle_iCCP PNGARG((png_structp png_ptr, png_infop info_ptr,
png_uint_32 length));
#endif /* PNG_READ_iCCP_SUPPORTED */
 
#if defined(PNG_READ_iTXt_SUPPORTED)
PNG_EXTERN void png_handle_iTXt PNGARG((png_structp png_ptr, png_infop info_ptr,
png_uint_32 length));
#endif
 
#if defined(PNG_READ_oFFs_SUPPORTED)
PNG_EXTERN void png_handle_oFFs PNGARG((png_structp png_ptr, png_infop info_ptr,
png_uint_32 length));
#endif
 
#if defined(PNG_READ_pCAL_SUPPORTED)
PNG_EXTERN void png_handle_pCAL PNGARG((png_structp png_ptr, png_infop info_ptr,
png_uint_32 length));
#endif
 
#if defined(PNG_READ_pHYs_SUPPORTED)
PNG_EXTERN void png_handle_pHYs PNGARG((png_structp png_ptr, png_infop info_ptr,
png_uint_32 length));
#endif
 
#if defined(PNG_READ_sBIT_SUPPORTED)
PNG_EXTERN void png_handle_sBIT PNGARG((png_structp png_ptr, png_infop info_ptr,
png_uint_32 length));
#endif
 
#if defined(PNG_READ_sCAL_SUPPORTED)
PNG_EXTERN void png_handle_sCAL PNGARG((png_structp png_ptr, png_infop info_ptr,
png_uint_32 length));
#endif
 
#if defined(PNG_READ_sPLT_SUPPORTED)
extern void png_handle_sPLT PNGARG((png_structp png_ptr, png_infop info_ptr,
png_uint_32 length));
#endif /* PNG_READ_sPLT_SUPPORTED */
 
#if defined(PNG_READ_sRGB_SUPPORTED)
PNG_EXTERN void png_handle_sRGB PNGARG((png_structp png_ptr, png_infop info_ptr,
png_uint_32 length));
#endif
 
#if defined(PNG_READ_tEXt_SUPPORTED)
PNG_EXTERN void png_handle_tEXt PNGARG((png_structp png_ptr, png_infop info_ptr,
png_uint_32 length));
#endif
 
#if defined(PNG_READ_tIME_SUPPORTED)
PNG_EXTERN void png_handle_tIME PNGARG((png_structp png_ptr, png_infop info_ptr,
png_uint_32 length));
#endif
 
#if defined(PNG_READ_tRNS_SUPPORTED)
PNG_EXTERN void png_handle_tRNS PNGARG((png_structp png_ptr, png_infop info_ptr,
png_uint_32 length));
#endif
 
#if defined(PNG_READ_zTXt_SUPPORTED)
PNG_EXTERN void png_handle_zTXt PNGARG((png_structp png_ptr, png_infop info_ptr,
png_uint_32 length));
#endif
 
PNG_EXTERN void png_handle_unknown PNGARG((png_structp png_ptr,
png_infop info_ptr, png_uint_32 length));
 
PNG_EXTERN void png_check_chunk_name PNGARG((png_structp png_ptr,
png_bytep chunk_name));
 
/* handle the transformations for reading and writing */
PNG_EXTERN void png_do_read_transformations PNGARG((png_structp png_ptr));
PNG_EXTERN void png_do_write_transformations PNGARG((png_structp png_ptr));
 
PNG_EXTERN void png_init_read_transformations PNGARG((png_structp png_ptr));
 
#ifdef PNG_PROGRESSIVE_READ_SUPPORTED
PNG_EXTERN void png_push_read_chunk PNGARG((png_structp png_ptr,
png_infop info_ptr));
PNG_EXTERN void png_push_read_sig PNGARG((png_structp png_ptr,
png_infop info_ptr));
PNG_EXTERN void png_push_check_crc PNGARG((png_structp png_ptr));
PNG_EXTERN void png_push_crc_skip PNGARG((png_structp png_ptr,
png_uint_32 length));
PNG_EXTERN void png_push_crc_finish PNGARG((png_structp png_ptr));
PNG_EXTERN void png_push_save_buffer PNGARG((png_structp png_ptr));
PNG_EXTERN void png_push_restore_buffer PNGARG((png_structp png_ptr,
png_bytep buffer, png_size_t buffer_length));
PNG_EXTERN void png_push_read_IDAT PNGARG((png_structp png_ptr));
PNG_EXTERN void png_process_IDAT_data PNGARG((png_structp png_ptr,
png_bytep buffer, png_size_t buffer_length));
PNG_EXTERN void png_push_process_row PNGARG((png_structp png_ptr));
PNG_EXTERN void png_push_handle_unknown PNGARG((png_structp png_ptr,
png_infop info_ptr, png_uint_32 length));
PNG_EXTERN void png_push_have_info PNGARG((png_structp png_ptr,
png_infop info_ptr));
PNG_EXTERN void png_push_have_end PNGARG((png_structp png_ptr,
png_infop info_ptr));
PNG_EXTERN void png_push_have_row PNGARG((png_structp png_ptr, png_bytep row));
PNG_EXTERN void png_push_read_end PNGARG((png_structp png_ptr,
png_infop info_ptr));
PNG_EXTERN void png_process_some_data PNGARG((png_structp png_ptr,
png_infop info_ptr));
PNG_EXTERN void png_read_push_finish_row PNGARG((png_structp png_ptr));
#if defined(PNG_READ_tEXt_SUPPORTED)
PNG_EXTERN void png_push_handle_tEXt PNGARG((png_structp png_ptr,
png_infop info_ptr, png_uint_32 length));
PNG_EXTERN void png_push_read_tEXt PNGARG((png_structp png_ptr,
png_infop info_ptr));
#endif
#if defined(PNG_READ_zTXt_SUPPORTED)
PNG_EXTERN void png_push_handle_zTXt PNGARG((png_structp png_ptr,
png_infop info_ptr, png_uint_32 length));
PNG_EXTERN void png_push_read_zTXt PNGARG((png_structp png_ptr,
png_infop info_ptr));
#endif
#if defined(PNG_READ_iTXt_SUPPORTED)
PNG_EXTERN void png_push_handle_iTXt PNGARG((png_structp png_ptr,
png_infop info_ptr, png_uint_32 length));
PNG_EXTERN void png_push_read_iTXt PNGARG((png_structp png_ptr,
png_infop info_ptr));
#endif
 
#endif /* PNG_PROGRESSIVE_READ_SUPPORTED */
 
#ifdef PNG_MNG_FEATURES_SUPPORTED
PNG_EXTERN void png_do_read_intrapixel PNGARG((png_row_infop row_info,
png_bytep row));
PNG_EXTERN void png_do_write_intrapixel PNGARG((png_row_infop row_info,
png_bytep row));
#endif
 
#if defined(PNG_ASSEMBLER_CODE_SUPPORTED)
/* png.c */ /* PRIVATE */
PNG_EXTERN void png_init_mmx_flags PNGARG((png_structp png_ptr));
#endif
/* Maintainer: Put new private prototypes here ^ and in libpngpf.3 */
 
#endif /* PNG_INTERNAL */
 
#ifdef __cplusplus
}
#endif
 
#endif /* PNG_VERSION_INFO_ONLY */
/* do not put anything past this line */
#endif /* PNG_H */
/shark/trunk/ports/png/pngerror.c
0,0 → 1,291
 
/* pngerror.c - stub functions for i/o and memory allocation
*
* libpng 1.2.5 - October 3, 2002
* For conditions of distribution and use, see copyright notice in png.h
* Copyright (c) 1998-2002 Glenn Randers-Pehrson
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
*
* This file provides a location for all error handling. Users who
* need special error handling are expected to write replacement functions
* and use png_set_error_fn() to use those functions. See the instructions
* at each function.
*/
 
#define PNG_INTERNAL
#include "png.h"
 
static void /* PRIVATE */
png_default_error PNGARG((png_structp png_ptr,
png_const_charp error_message));
static void /* PRIVATE */
png_default_warning PNGARG((png_structp png_ptr,
png_const_charp warning_message));
 
/* This function is called whenever there is a fatal error. This function
* should not be changed. If there is a need to handle errors differently,
* you should supply a replacement error function and use png_set_error_fn()
* to replace the error function at run-time.
*/
void PNGAPI
png_error(png_structp png_ptr, png_const_charp error_message)
{
#ifdef PNG_ERROR_NUMBERS_SUPPORTED
char msg[16];
if (png_ptr->flags&(PNG_FLAG_STRIP_ERROR_NUMBERS|PNG_FLAG_STRIP_ERROR_TEXT))
{
int offset = 0;
if (*error_message == '#')
{
for (offset=1; offset<15; offset++)
if (*(error_message+offset) == ' ')
break;
if (png_ptr->flags&PNG_FLAG_STRIP_ERROR_TEXT)
{
int i;
for (i=0; i<offset-1; i++)
msg[i]=error_message[i+1];
msg[i]='\0';
error_message=msg;
}
else
error_message+=offset;
}
else
{
if (png_ptr->flags&PNG_FLAG_STRIP_ERROR_TEXT)
{
msg[0]='0';
msg[1]='\0';
error_message=msg;
}
}
}
#endif
if (png_ptr->error_fn != NULL)
(*(png_ptr->error_fn))(png_ptr, error_message);
 
/* if the following returns or doesn't exist, use the default function,
which will not return */
png_default_error(png_ptr, error_message);
}
 
/* This function is called whenever there is a non-fatal error. This function
* should not be changed. If there is a need to handle warnings differently,
* you should supply a replacement warning function and use
* png_set_error_fn() to replace the warning function at run-time.
*/
void PNGAPI
png_warning(png_structp png_ptr, png_const_charp warning_message)
{
int offset = 0;
#ifdef PNG_ERROR_NUMBERS_SUPPORTED
if (png_ptr->flags&(PNG_FLAG_STRIP_ERROR_NUMBERS|PNG_FLAG_STRIP_ERROR_TEXT))
#endif
{
if (*warning_message == '#')
{
for (offset=1; offset<15; offset++)
if (*(warning_message+offset) == ' ')
break;
}
}
if (png_ptr->warning_fn != NULL)
(*(png_ptr->warning_fn))(png_ptr,
(png_const_charp)(warning_message+offset));
else
png_default_warning(png_ptr, (png_const_charp)(warning_message+offset));
}
 
/* These utilities are used internally to build an error message that relates
* to the current chunk. The chunk name comes from png_ptr->chunk_name,
* this is used to prefix the message. The message is limited in length
* to 63 bytes, the name characters are output as hex digits wrapped in []
* if the character is invalid.
*/
#define isnonalpha(c) ((c) < 41 || (c) > 122 || ((c) > 90 && (c) < 97))
static PNG_CONST char png_digit[16] = {
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E',
'F' };
 
static void /* PRIVATE */
png_format_buffer(png_structp png_ptr, png_charp buffer, png_const_charp
error_message)
{
int iout = 0, iin = 0;
 
while (iin < 4)
{
int c = png_ptr->chunk_name[iin++];
if (isnonalpha(c))
{
buffer[iout++] = '[';
buffer[iout++] = png_digit[(c & 0xf0) >> 4];
buffer[iout++] = png_digit[c & 0x0f];
buffer[iout++] = ']';
}
else
{
buffer[iout++] = (png_byte)c;
}
}
 
if (error_message == NULL)
buffer[iout] = 0;
else
{
buffer[iout++] = ':';
buffer[iout++] = ' ';
png_memcpy(buffer+iout, error_message, 64);
buffer[iout+63] = 0;
}
}
 
void PNGAPI
png_chunk_error(png_structp png_ptr, png_const_charp error_message)
{
char msg[18+64];
png_format_buffer(png_ptr, msg, error_message);
png_error(png_ptr, msg);
}
 
void PNGAPI
png_chunk_warning(png_structp png_ptr, png_const_charp warning_message)
{
char msg[18+64];
png_format_buffer(png_ptr, msg, warning_message);
png_warning(png_ptr, msg);
}
 
/* This is the default error handling function. Note that replacements for
* this function MUST NOT RETURN, or the program will likely crash. This
* function is used by default, or if the program supplies NULL for the
* error function pointer in png_set_error_fn().
*/
static void /* PRIVATE */
png_default_error(png_structp png_ptr, png_const_charp error_message)
{
#ifndef PNG_NO_CONSOLE_IO
#ifdef PNG_ERROR_NUMBERS_SUPPORTED
if (*error_message == '#')
{
int offset;
char error_number[16];
for (offset=0; offset<15; offset++)
{
error_number[offset] = *(error_message+offset+1);
if (*(error_message+offset) == ' ')
break;
}
if((offset > 1) && (offset < 15))
{
error_number[offset-1]='\0';
cprintf("libpng error no. %s: %s\n", error_number,
error_message+offset);
}
else
cprintf("libpng error: %s, offset=%d\n", error_message,offset);
}
else
#endif
cprintf("libpng error: %s\n", error_message);
#else
if (error_message)
/* make compiler happy */ ;
#endif
 
#ifdef PNG_SETJMP_SUPPORTED
# ifdef USE_FAR_KEYWORD
{
jmp_buf jmpbuf;
png_memcpy(jmpbuf,png_ptr->jmpbuf,sizeof(jmp_buf));
longjmp(jmpbuf, 1);
}
# else
longjmp(png_ptr->jmpbuf, 1);
# endif
#else
if (png_ptr)
/* make compiler happy */ ;
PNG_ABORT();
#endif
}
 
/* This function is called when there is a warning, but the library thinks
* it can continue anyway. Replacement functions don't have to do anything
* here if you don't want them to. In the default configuration, png_ptr is
* not used, but it is passed in case it may be useful.
*/
static void /* PRIVATE */
png_default_warning(png_structp png_ptr, png_const_charp warning_message)
{
#ifndef PNG_NO_CONSOLE_IO
# ifdef PNG_ERROR_NUMBERS_SUPPORTED
if (*warning_message == '#')
{
int offset;
char warning_number[16];
for (offset=0; offset<15; offset++)
{
warning_number[offset]=*(warning_message+offset+1);
if (*(warning_message+offset) == ' ')
break;
}
if((offset > 1) && (offset < 15))
{
warning_number[offset-1]='\0';
cprintf("libpng warning no. %s: %s\n", warning_number,
warning_message+offset);
}
else
cprintf("libpng warning: %s\n", warning_message);
}
else
# endif
cprintf("libpng warning: %s\n", warning_message);
#else
if (warning_message)
/* appease compiler */ ;
#endif
if (png_ptr)
return;
}
 
/* This function is called when the application wants to use another method
* of handling errors and warnings. Note that the error function MUST NOT
* return to the calling routine or serious problems will occur. The return
* method used in the default routine calls longjmp(png_ptr->jmpbuf, 1)
*/
void PNGAPI
png_set_error_fn(png_structp png_ptr, png_voidp error_ptr,
png_error_ptr error_fn, png_error_ptr warning_fn)
{
png_ptr->error_ptr = error_ptr;
png_ptr->error_fn = error_fn;
png_ptr->warning_fn = warning_fn;
}
 
 
/* This function returns a pointer to the error_ptr associated with the user
* functions. The application should free any memory associated with this
* pointer before png_write_destroy and png_read_destroy are called.
*/
png_voidp PNGAPI
png_get_error_ptr(png_structp png_ptr)
{
return ((png_voidp)png_ptr->error_ptr);
}
 
 
#ifdef PNG_ERROR_NUMBERS_SUPPORTED
void PNGAPI
png_set_strip_error_numbers(png_structp png_ptr, png_uint_32 strip_mode)
{
if(png_ptr != NULL)
{
png_ptr->flags &=
((~(PNG_FLAG_STRIP_ERROR_NUMBERS|PNG_FLAG_STRIP_ERROR_TEXT))&strip_mode);
}
}
#endif
/shark/trunk/ports/png/pngwtran.c
0,0 → 1,563
 
/* pngwtran.c - transforms the data in a row for PNG writers
*
* libpng 1.2.5 - October 3, 2002
* For conditions of distribution and use, see copyright notice in png.h
* Copyright (c) 1998-2002 Glenn Randers-Pehrson
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
*/
 
#define PNG_INTERNAL
#include "png.h"
#ifdef PNG_WRITE_SUPPORTED
 
/* Transform the data according to the user's wishes. The order of
* transformations is significant.
*/
void /* PRIVATE */
png_do_write_transformations(png_structp png_ptr)
{
png_debug(1, "in png_do_write_transformations\n");
 
if (png_ptr == NULL)
return;
 
#if defined(PNG_WRITE_USER_TRANSFORM_SUPPORTED)
if (png_ptr->transformations & PNG_USER_TRANSFORM)
if(png_ptr->write_user_transform_fn != NULL)
(*(png_ptr->write_user_transform_fn)) /* user write transform function */
(png_ptr, /* png_ptr */
&(png_ptr->row_info), /* row_info: */
/* png_uint_32 width; width of row */
/* png_uint_32 rowbytes; number of bytes in row */
/* png_byte color_type; color type of pixels */
/* png_byte bit_depth; bit depth of samples */
/* png_byte channels; number of channels (1-4) */
/* png_byte pixel_depth; bits per pixel (depth*channels) */
png_ptr->row_buf + 1); /* start of pixel data for row */
#endif
#if defined(PNG_WRITE_FILLER_SUPPORTED)
if (png_ptr->transformations & PNG_FILLER)
png_do_strip_filler(&(png_ptr->row_info), png_ptr->row_buf + 1,
png_ptr->flags);
#endif
#if defined(PNG_WRITE_PACKSWAP_SUPPORTED)
if (png_ptr->transformations & PNG_PACKSWAP)
png_do_packswap(&(png_ptr->row_info), png_ptr->row_buf + 1);
#endif
#if defined(PNG_WRITE_PACK_SUPPORTED)
if (png_ptr->transformations & PNG_PACK)
png_do_pack(&(png_ptr->row_info), png_ptr->row_buf + 1,
(png_uint_32)png_ptr->bit_depth);
#endif
#if defined(PNG_WRITE_SWAP_SUPPORTED)
if (png_ptr->transformations & PNG_SWAP_BYTES)
png_do_swap(&(png_ptr->row_info), png_ptr->row_buf + 1);
#endif
#if defined(PNG_WRITE_SHIFT_SUPPORTED)
if (png_ptr->transformations & PNG_SHIFT)
png_do_shift(&(png_ptr->row_info), png_ptr->row_buf + 1,
&(png_ptr->shift));
#endif
#if defined(PNG_WRITE_INVERT_ALPHA_SUPPORTED)
if (png_ptr->transformations & PNG_INVERT_ALPHA)
png_do_write_invert_alpha(&(png_ptr->row_info), png_ptr->row_buf + 1);
#endif
#if defined(PNG_WRITE_SWAP_ALPHA_SUPPORTED)
if (png_ptr->transformations & PNG_SWAP_ALPHA)
png_do_write_swap_alpha(&(png_ptr->row_info), png_ptr->row_buf + 1);
#endif
#if defined(PNG_WRITE_BGR_SUPPORTED)
if (png_ptr->transformations & PNG_BGR)
png_do_bgr(&(png_ptr->row_info), png_ptr->row_buf + 1);
#endif
#if defined(PNG_WRITE_INVERT_SUPPORTED)
if (png_ptr->transformations & PNG_INVERT_MONO)
png_do_invert(&(png_ptr->row_info), png_ptr->row_buf + 1);
#endif
}
 
#if defined(PNG_WRITE_PACK_SUPPORTED)
/* Pack pixels into bytes. Pass the true bit depth in bit_depth. The
* row_info bit depth should be 8 (one pixel per byte). The channels
* should be 1 (this only happens on grayscale and paletted images).
*/
void /* PRIVATE */
png_do_pack(png_row_infop row_info, png_bytep row, png_uint_32 bit_depth)
{
png_debug(1, "in png_do_pack\n");
if (row_info->bit_depth == 8 &&
#if defined(PNG_USELESS_TESTS_SUPPORTED)
row != NULL && row_info != NULL &&
#endif
row_info->channels == 1)
{
switch ((int)bit_depth)
{
case 1:
{
png_bytep sp, dp;
int mask, v;
png_uint_32 i;
png_uint_32 row_width = row_info->width;
 
sp = row;
dp = row;
mask = 0x80;
v = 0;
 
for (i = 0; i < row_width; i++)
{
if (*sp != 0)
v |= mask;
sp++;
if (mask > 1)
mask >>= 1;
else
{
mask = 0x80;
*dp = (png_byte)v;
dp++;
v = 0;
}
}
if (mask != 0x80)
*dp = (png_byte)v;
break;
}
case 2:
{
png_bytep sp, dp;
int shift, v;
png_uint_32 i;
png_uint_32 row_width = row_info->width;
 
sp = row;
dp = row;
shift = 6;
v = 0;
for (i = 0; i < row_width; i++)
{
png_byte value;
 
value = (png_byte)(*sp & 0x03);
v |= (value << shift);
if (shift == 0)
{
shift = 6;
*dp = (png_byte)v;
dp++;
v = 0;
}
else
shift -= 2;
sp++;
}
if (shift != 6)
*dp = (png_byte)v;
break;
}
case 4:
{
png_bytep sp, dp;
int shift, v;
png_uint_32 i;
png_uint_32 row_width = row_info->width;
 
sp = row;
dp = row;
shift = 4;
v = 0;
for (i = 0; i < row_width; i++)
{
png_byte value;
 
value = (png_byte)(*sp & 0x0f);
v |= (value << shift);
 
if (shift == 0)
{
shift = 4;
*dp = (png_byte)v;
dp++;
v = 0;
}
else
shift -= 4;
 
sp++;
}
if (shift != 4)
*dp = (png_byte)v;
break;
}
}
row_info->bit_depth = (png_byte)bit_depth;
row_info->pixel_depth = (png_byte)(bit_depth * row_info->channels);
row_info->rowbytes =
((row_info->width * row_info->pixel_depth + 7) >> 3);
}
}
#endif
 
#if defined(PNG_WRITE_SHIFT_SUPPORTED)
/* Shift pixel values to take advantage of whole range. Pass the
* true number of bits in bit_depth. The row should be packed
* according to row_info->bit_depth. Thus, if you had a row of
* bit depth 4, but the pixels only had values from 0 to 7, you
* would pass 3 as bit_depth, and this routine would translate the
* data to 0 to 15.
*/
void /* PRIVATE */
png_do_shift(png_row_infop row_info, png_bytep row, png_color_8p bit_depth)
{
png_debug(1, "in png_do_shift\n");
#if defined(PNG_USELESS_TESTS_SUPPORTED)
if (row != NULL && row_info != NULL &&
#else
if (
#endif
row_info->color_type != PNG_COLOR_TYPE_PALETTE)
{
int shift_start[4], shift_dec[4];
int channels = 0;
 
if (row_info->color_type & PNG_COLOR_MASK_COLOR)
{
shift_start[channels] = row_info->bit_depth - bit_depth->red;
shift_dec[channels] = bit_depth->red;
channels++;
shift_start[channels] = row_info->bit_depth - bit_depth->green;
shift_dec[channels] = bit_depth->green;
channels++;
shift_start[channels] = row_info->bit_depth - bit_depth->blue;
shift_dec[channels] = bit_depth->blue;
channels++;
}
else
{
shift_start[channels] = row_info->bit_depth - bit_depth->gray;
shift_dec[channels] = bit_depth->gray;
channels++;
}
if (row_info->color_type & PNG_COLOR_MASK_ALPHA)
{
shift_start[channels] = row_info->bit_depth - bit_depth->alpha;
shift_dec[channels] = bit_depth->alpha;
channels++;
}
 
/* with low row depths, could only be grayscale, so one channel */
if (row_info->bit_depth < 8)
{
png_bytep bp = row;
png_uint_32 i;
png_byte mask;
png_uint_32 row_bytes = row_info->rowbytes;
 
if (bit_depth->gray == 1 && row_info->bit_depth == 2)
mask = 0x55;
else if (row_info->bit_depth == 4 && bit_depth->gray == 3)
mask = 0x11;
else
mask = 0xff;
 
for (i = 0; i < row_bytes; i++, bp++)
{
png_uint_16 v;
int j;
 
v = *bp;
*bp = 0;
for (j = shift_start[0]; j > -shift_dec[0]; j -= shift_dec[0])
{
if (j > 0)
*bp |= (png_byte)((v << j) & 0xff);
else
*bp |= (png_byte)((v >> (-j)) & mask);
}
}
}
else if (row_info->bit_depth == 8)
{
png_bytep bp = row;
png_uint_32 i;
png_uint_32 istop = channels * row_info->width;
 
for (i = 0; i < istop; i++, bp++)
{
 
png_uint_16 v;
int j;
int c = (int)(i%channels);
 
v = *bp;
*bp = 0;
for (j = shift_start[c]; j > -shift_dec[c]; j -= shift_dec[c])
{
if (j > 0)
*bp |= (png_byte)((v << j) & 0xff);
else
*bp |= (png_byte)((v >> (-j)) & 0xff);
}
}
}
else
{
png_bytep bp;
png_uint_32 i;
png_uint_32 istop = channels * row_info->width;
 
for (bp = row, i = 0; i < istop; i++)
{
int c = (int)(i%channels);
png_uint_16 value, v;
int j;
 
v = (png_uint_16)(((png_uint_16)(*bp) << 8) + *(bp + 1));
value = 0;
for (j = shift_start[c]; j > -shift_dec[c]; j -= shift_dec[c])
{
if (j > 0)
value |= (png_uint_16)((v << j) & (png_uint_16)0xffff);
else
value |= (png_uint_16)((v >> (-j)) & (png_uint_16)0xffff);
}
*bp++ = (png_byte)(value >> 8);
*bp++ = (png_byte)(value & 0xff);
}
}
}
}
#endif
 
#if defined(PNG_WRITE_SWAP_ALPHA_SUPPORTED)
void /* PRIVATE */
png_do_write_swap_alpha(png_row_infop row_info, png_bytep row)
{
png_debug(1, "in png_do_write_swap_alpha\n");
#if defined(PNG_USELESS_TESTS_SUPPORTED)
if (row != NULL && row_info != NULL)
#endif
{
if (row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA)
{
/* This converts from ARGB to RGBA */
if (row_info->bit_depth == 8)
{
png_bytep sp, dp;
png_uint_32 i;
png_uint_32 row_width = row_info->width;
for (i = 0, sp = dp = row; i < row_width; i++)
{
png_byte save = *(sp++);
*(dp++) = *(sp++);
*(dp++) = *(sp++);
*(dp++) = *(sp++);
*(dp++) = save;
}
}
/* This converts from AARRGGBB to RRGGBBAA */
else
{
png_bytep sp, dp;
png_uint_32 i;
png_uint_32 row_width = row_info->width;
 
for (i = 0, sp = dp = row; i < row_width; i++)
{
png_byte save[2];
save[0] = *(sp++);
save[1] = *(sp++);
*(dp++) = *(sp++);
*(dp++) = *(sp++);
*(dp++) = *(sp++);
*(dp++) = *(sp++);
*(dp++) = *(sp++);
*(dp++) = *(sp++);
*(dp++) = save[0];
*(dp++) = save[1];
}
}
}
else if (row_info->color_type == PNG_COLOR_TYPE_GRAY_ALPHA)
{
/* This converts from AG to GA */
if (row_info->bit_depth == 8)
{
png_bytep sp, dp;
png_uint_32 i;
png_uint_32 row_width = row_info->width;
 
for (i = 0, sp = dp = row; i < row_width; i++)
{
png_byte save = *(sp++);
*(dp++) = *(sp++);
*(dp++) = save;
}
}
/* This converts from AAGG to GGAA */
else
{
png_bytep sp, dp;
png_uint_32 i;
png_uint_32 row_width = row_info->width;
 
for (i = 0, sp = dp = row; i < row_width; i++)
{
png_byte save[2];
save[0] = *(sp++);
save[1] = *(sp++);
*(dp++) = *(sp++);
*(dp++) = *(sp++);
*(dp++) = save[0];
*(dp++) = save[1];
}
}
}
}
}
#endif
 
#if defined(PNG_WRITE_INVERT_ALPHA_SUPPORTED)
void /* PRIVATE */
png_do_write_invert_alpha(png_row_infop row_info, png_bytep row)
{
png_debug(1, "in png_do_write_invert_alpha\n");
#if defined(PNG_USELESS_TESTS_SUPPORTED)
if (row != NULL && row_info != NULL)
#endif
{
if (row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA)
{
/* This inverts the alpha channel in RGBA */
if (row_info->bit_depth == 8)
{
png_bytep sp, dp;
png_uint_32 i;
png_uint_32 row_width = row_info->width;
for (i = 0, sp = dp = row; i < row_width; i++)
{
*(dp++) = *(sp++);
*(dp++) = *(sp++);
*(dp++) = *(sp++);
*(dp++) = (png_byte)(255 - *(sp++));
}
}
/* This inverts the alpha channel in RRGGBBAA */
else
{
png_bytep sp, dp;
png_uint_32 i;
png_uint_32 row_width = row_info->width;
 
for (i = 0, sp = dp = row; i < row_width; i++)
{
*(dp++) = *(sp++);
*(dp++) = *(sp++);
*(dp++) = *(sp++);
*(dp++) = *(sp++);
*(dp++) = *(sp++);
*(dp++) = *(sp++);
*(dp++) = (png_byte)(255 - *(sp++));
*(dp++) = (png_byte)(255 - *(sp++));
}
}
}
else if (row_info->color_type == PNG_COLOR_TYPE_GRAY_ALPHA)
{
/* This inverts the alpha channel in GA */
if (row_info->bit_depth == 8)
{
png_bytep sp, dp;
png_uint_32 i;
png_uint_32 row_width = row_info->width;
 
for (i = 0, sp = dp = row; i < row_width; i++)
{
*(dp++) = *(sp++);
*(dp++) = (png_byte)(255 - *(sp++));
}
}
/* This inverts the alpha channel in GGAA */
else
{
png_bytep sp, dp;
png_uint_32 i;
png_uint_32 row_width = row_info->width;
 
for (i = 0, sp = dp = row; i < row_width; i++)
{
*(dp++) = *(sp++);
*(dp++) = *(sp++);
*(dp++) = (png_byte)(255 - *(sp++));
*(dp++) = (png_byte)(255 - *(sp++));
}
}
}
}
}
#endif
 
#if defined(PNG_MNG_FEATURES_SUPPORTED)
/* undoes intrapixel differencing */
void /* PRIVATE */
png_do_write_intrapixel(png_row_infop row_info, png_bytep row)
{
png_debug(1, "in png_do_write_intrapixel\n");
if (
#if defined(PNG_USELESS_TESTS_SUPPORTED)
row != NULL && row_info != NULL &&
#endif
(row_info->color_type & PNG_COLOR_MASK_COLOR))
{
int bytes_per_pixel;
png_uint_32 row_width = row_info->width;
if (row_info->bit_depth == 8)
{
png_bytep rp;
png_uint_32 i;
 
if (row_info->color_type == PNG_COLOR_TYPE_RGB)
bytes_per_pixel = 3;
else if (row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA)
bytes_per_pixel = 4;
else
return;
 
for (i = 0, rp = row; i < row_width; i++, rp += bytes_per_pixel)
{
*(rp) = (png_byte)((*rp - *(rp+1))&0xff);
*(rp+2) = (png_byte)((*(rp+2) - *(rp+1))&0xff);
}
}
else if (row_info->bit_depth == 16)
{
png_bytep rp;
png_uint_32 i;
 
if (row_info->color_type == PNG_COLOR_TYPE_RGB)
bytes_per_pixel = 6;
else if (row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA)
bytes_per_pixel = 8;
else
return;
 
for (i = 0, rp = row; i < row_width; i++, rp += bytes_per_pixel)
{
png_uint_32 s0=*(rp )<<8 | *(rp+1);
png_uint_32 s1=*(rp+2)<<8 | *(rp+3);
png_uint_32 s2=*(rp+4)<<8 | *(rp+5);
png_uint_32 red=(s0-s1)&0xffff;
png_uint_32 blue=(s2-s1)&0xffff;
*(rp ) = (png_byte)((red>>8)&0xff);
*(rp+1) = (png_byte)(red&0xff);
*(rp+4) = (png_byte)((blue>>8)&0xff);
*(rp+5) = (png_byte)(blue&0xff);
}
}
}
}
#endif /* PNG_MNG_FEATURES_SUPPORTED */
#endif /* PNG_WRITE_SUPPORTED */
/shark/trunk/ports/png/pngvcrd.c
0,0 → 1,3845
/* pngvcrd.c - mixed C/assembler version of utilities to read a PNG file
*
* For Intel x86 CPU and Microsoft Visual C++ compiler
*
* libpng version 1.2.5 - October 3, 2002
* For conditions of distribution and use, see copyright notice in png.h
* Copyright (c) 1998-2002 Glenn Randers-Pehrson
* Copyright (c) 1998, Intel Corporation
*
* Contributed by Nirav Chhatrapati, Intel Corporation, 1998
* Interface to libpng contributed by Gilles Vollant, 1999
*
*
* In png_do_read_interlace() in libpng versions 1.0.3a through 1.0.4d,
* a sign error in the post-MMX cleanup code for each pixel_depth resulted
* in bad pixels at the beginning of some rows of some images, and also
* (due to out-of-range memory reads and writes) caused heap corruption
* when compiled with MSVC 6.0. The error was fixed in version 1.0.4e.
*
* [png_read_filter_row_mmx_avg() bpp == 2 bugfix, GRR 20000916]
*
* [runtime MMX configuration, GRR 20010102]
*
*/
 
#define PNG_INTERNAL
#include "png.h"
 
#if defined(PNG_ASSEMBLER_CODE_SUPPORTED) && defined(PNG_USE_PNGVCRD)
 
static int mmx_supported=2;
 
 
int PNGAPI
png_mmx_support(void)
{
int mmx_supported_local = 0;
_asm {
push ebx //CPUID will trash these
push ecx
push edx
 
pushfd //Save Eflag to stack
pop eax //Get Eflag from stack into eax
mov ecx, eax //Make another copy of Eflag in ecx
xor eax, 0x200000 //Toggle ID bit in Eflag [i.e. bit(21)]
push eax //Save modified Eflag back to stack
 
popfd //Restored modified value back to Eflag reg
pushfd //Save Eflag to stack
pop eax //Get Eflag from stack
push ecx // save original Eflag to stack
popfd // restore original Eflag
xor eax, ecx //Compare the new Eflag with the original Eflag
jz NOT_SUPPORTED //If the same, CPUID instruction is not supported,
//skip following instructions and jump to
//NOT_SUPPORTED label
 
xor eax, eax //Set eax to zero
 
_asm _emit 0x0f //CPUID instruction (two bytes opcode)
_asm _emit 0xa2
 
cmp eax, 1 //make sure eax return non-zero value
jl NOT_SUPPORTED //If eax is zero, mmx not supported
 
xor eax, eax //set eax to zero
inc eax //Now increment eax to 1. This instruction is
//faster than the instruction "mov eax, 1"
 
_asm _emit 0x0f //CPUID instruction
_asm _emit 0xa2
 
and edx, 0x00800000 //mask out all bits but mmx bit(24)
cmp edx, 0 // 0 = mmx not supported
jz NOT_SUPPORTED // non-zero = Yes, mmx IS supported
 
mov mmx_supported_local, 1 //set return value to 1
 
NOT_SUPPORTED:
mov eax, mmx_supported_local //move return value to eax
pop edx //CPUID trashed these
pop ecx
pop ebx
}
 
//mmx_supported_local=0; // test code for force don't support MMX
//printf("MMX : %u (1=MMX supported)\n",mmx_supported_local);
 
mmx_supported = mmx_supported_local;
return mmx_supported_local;
}
 
/* Combines the row recently read in with the previous row.
This routine takes care of alpha and transparency if requested.
This routine also handles the two methods of progressive display
of interlaced images, depending on the mask value.
The mask value describes which pixels are to be combined with
the row. The pattern always repeats every 8 pixels, so just 8
bits are needed. A one indicates the pixel is to be combined; a
zero indicates the pixel is to be skipped. This is in addition
to any alpha or transparency value associated with the pixel. If
you want all pixels to be combined, pass 0xff (255) in mask. */
 
/* Use this routine for x86 platform - uses faster MMX routine if machine
supports MMX */
 
void /* PRIVATE */
png_combine_row(png_structp png_ptr, png_bytep row, int mask)
{
#ifdef PNG_USE_LOCAL_ARRAYS
const int png_pass_inc[7] = {8, 8, 4, 4, 2, 2, 1};
#endif
 
png_debug(1,"in png_combine_row_asm\n");
 
if (mmx_supported == 2) {
/* this should have happened in png_init_mmx_flags() already */
png_warning(png_ptr, "asm_flags may not have been initialized");
png_mmx_support();
}
 
if (mask == 0xff)
{
png_memcpy(row, png_ptr->row_buf + 1,
(png_size_t)((png_ptr->width * png_ptr->row_info.pixel_depth + 7) >> 3));
}
/* GRR: add "else if (mask == 0)" case?
* or does png_combine_row() not even get called in that case? */
else
{
switch (png_ptr->row_info.pixel_depth)
{
case 1:
{
png_bytep sp;
png_bytep dp;
int s_inc, s_start, s_end;
int m;
int shift;
png_uint_32 i;
 
sp = png_ptr->row_buf + 1;
dp = row;
m = 0x80;
#if defined(PNG_READ_PACKSWAP_SUPPORTED)
if (png_ptr->transformations & PNG_PACKSWAP)
{
s_start = 0;
s_end = 7;
s_inc = 1;
}
else
#endif
{
s_start = 7;
s_end = 0;
s_inc = -1;
}
 
shift = s_start;
 
for (i = 0; i < png_ptr->width; i++)
{
if (m & mask)
{
int value;
 
value = (*sp >> shift) & 0x1;
*dp &= (png_byte)((0x7f7f >> (7 - shift)) & 0xff);
*dp |= (png_byte)(value << shift);
}
 
if (shift == s_end)
{
shift = s_start;
sp++;
dp++;
}
else
shift += s_inc;
 
if (m == 1)
m = 0x80;
else
m >>= 1;
}
break;
}
 
case 2:
{
png_bytep sp;
png_bytep dp;
int s_start, s_end, s_inc;
int m;
int shift;
png_uint_32 i;
int value;
 
sp = png_ptr->row_buf + 1;
dp = row;
m = 0x80;
#if defined(PNG_READ_PACKSWAP_SUPPORTED)
if (png_ptr->transformations & PNG_PACKSWAP)
{
s_start = 0;
s_end = 6;
s_inc = 2;
}
else
#endif
{
s_start = 6;
s_end = 0;
s_inc = -2;
}
 
shift = s_start;
 
for (i = 0; i < png_ptr->width; i++)
{
if (m & mask)
{
value = (*sp >> shift) & 0x3;
*dp &= (png_byte)((0x3f3f >> (6 - shift)) & 0xff);
*dp |= (png_byte)(value << shift);
}
 
if (shift == s_end)
{
shift = s_start;
sp++;
dp++;
}
else
shift += s_inc;
if (m == 1)
m = 0x80;
else
m >>= 1;
}
break;
}
 
case 4:
{
png_bytep sp;
png_bytep dp;
int s_start, s_end, s_inc;
int m;
int shift;
png_uint_32 i;
int value;
 
sp = png_ptr->row_buf + 1;
dp = row;
m = 0x80;
#if defined(PNG_READ_PACKSWAP_SUPPORTED)
if (png_ptr->transformations & PNG_PACKSWAP)
{
s_start = 0;
s_end = 4;
s_inc = 4;
}
else
#endif
{
s_start = 4;
s_end = 0;
s_inc = -4;
}
shift = s_start;
 
for (i = 0; i < png_ptr->width; i++)
{
if (m & mask)
{
value = (*sp >> shift) & 0xf;
*dp &= (png_byte)((0xf0f >> (4 - shift)) & 0xff);
*dp |= (png_byte)(value << shift);
}
 
if (shift == s_end)
{
shift = s_start;
sp++;
dp++;
}
else
shift += s_inc;
if (m == 1)
m = 0x80;
else
m >>= 1;
}
break;
}
 
case 8:
{
png_bytep srcptr;
png_bytep dstptr;
png_uint_32 len;
int m;
int diff, unmask;
 
__int64 mask0=0x0102040810204080;
 
if ((png_ptr->asm_flags & PNG_ASM_FLAG_MMX_READ_COMBINE_ROW)
/* && mmx_supported */ )
{
srcptr = png_ptr->row_buf + 1;
dstptr = row;
m = 0x80;
unmask = ~mask;
len = png_ptr->width &~7; //reduce to multiple of 8
diff = png_ptr->width & 7; //amount lost
 
_asm
{
movd mm7, unmask //load bit pattern
psubb mm6,mm6 //zero mm6
punpcklbw mm7,mm7
punpcklwd mm7,mm7
punpckldq mm7,mm7 //fill register with 8 masks
 
movq mm0,mask0
 
pand mm0,mm7 //nonzero if keep byte
pcmpeqb mm0,mm6 //zeros->1s, v versa
 
mov ecx,len //load length of line (pixels)
mov esi,srcptr //load source
mov ebx,dstptr //load dest
cmp ecx,0 //lcr
je mainloop8end
 
mainloop8:
movq mm4,[esi]
pand mm4,mm0
movq mm6,mm0
pandn mm6,[ebx]
por mm4,mm6
movq [ebx],mm4
 
add esi,8 //inc by 8 bytes processed
add ebx,8
sub ecx,8 //dec by 8 pixels processed
 
ja mainloop8
mainloop8end:
 
mov ecx,diff
cmp ecx,0
jz end8
 
mov edx,mask
sal edx,24 //make low byte the high byte
 
secondloop8:
sal edx,1 //move high bit to CF
jnc skip8 //if CF = 0
mov al,[esi]
mov [ebx],al
skip8:
inc esi
inc ebx
 
dec ecx
jnz secondloop8
end8:
emms
}
}
else /* mmx not supported - use modified C routine */
{
register unsigned int incr1, initial_val, final_val;
png_size_t pixel_bytes;
png_uint_32 i;
register int disp = png_pass_inc[png_ptr->pass];
int offset_table[7] = {0, 4, 0, 2, 0, 1, 0};
 
pixel_bytes = (png_ptr->row_info.pixel_depth >> 3);
srcptr = png_ptr->row_buf + 1 + offset_table[png_ptr->pass]*
pixel_bytes;
dstptr = row + offset_table[png_ptr->pass]*pixel_bytes;
initial_val = offset_table[png_ptr->pass]*pixel_bytes;
final_val = png_ptr->width*pixel_bytes;
incr1 = (disp)*pixel_bytes;
for (i = initial_val; i < final_val; i += incr1)
{
png_memcpy(dstptr, srcptr, pixel_bytes);
srcptr += incr1;
dstptr += incr1;
}
} /* end of else */
 
break;
} // end 8 bpp
 
case 16:
{
png_bytep srcptr;
png_bytep dstptr;
png_uint_32 len;
int unmask, diff;
__int64 mask1=0x0101020204040808,
mask0=0x1010202040408080;
 
if ((png_ptr->asm_flags & PNG_ASM_FLAG_MMX_READ_COMBINE_ROW)
/* && mmx_supported */ )
{
srcptr = png_ptr->row_buf + 1;
dstptr = row;
 
unmask = ~mask;
len = (png_ptr->width)&~7;
diff = (png_ptr->width)&7;
_asm
{
movd mm7, unmask //load bit pattern
psubb mm6,mm6 //zero mm6
punpcklbw mm7,mm7
punpcklwd mm7,mm7
punpckldq mm7,mm7 //fill register with 8 masks
 
movq mm0,mask0
movq mm1,mask1
 
pand mm0,mm7
pand mm1,mm7
 
pcmpeqb mm0,mm6
pcmpeqb mm1,mm6
 
mov ecx,len //load length of line
mov esi,srcptr //load source
mov ebx,dstptr //load dest
cmp ecx,0 //lcr
jz mainloop16end
 
mainloop16:
movq mm4,[esi]
pand mm4,mm0
movq mm6,mm0
movq mm7,[ebx]
pandn mm6,mm7
por mm4,mm6
movq [ebx],mm4
 
movq mm5,[esi+8]
pand mm5,mm1
movq mm7,mm1
movq mm6,[ebx+8]
pandn mm7,mm6
por mm5,mm7
movq [ebx+8],mm5
 
add esi,16 //inc by 16 bytes processed
add ebx,16
sub ecx,8 //dec by 8 pixels processed
 
ja mainloop16
 
mainloop16end:
mov ecx,diff
cmp ecx,0
jz end16
 
mov edx,mask
sal edx,24 //make low byte the high byte
secondloop16:
sal edx,1 //move high bit to CF
jnc skip16 //if CF = 0
mov ax,[esi]
mov [ebx],ax
skip16:
add esi,2
add ebx,2
 
dec ecx
jnz secondloop16
end16:
emms
}
}
else /* mmx not supported - use modified C routine */
{
register unsigned int incr1, initial_val, final_val;
png_size_t pixel_bytes;
png_uint_32 i;
register int disp = png_pass_inc[png_ptr->pass];
int offset_table[7] = {0, 4, 0, 2, 0, 1, 0};
 
pixel_bytes = (png_ptr->row_info.pixel_depth >> 3);
srcptr = png_ptr->row_buf + 1 + offset_table[png_ptr->pass]*
pixel_bytes;
dstptr = row + offset_table[png_ptr->pass]*pixel_bytes;
initial_val = offset_table[png_ptr->pass]*pixel_bytes;
final_val = png_ptr->width*pixel_bytes;
incr1 = (disp)*pixel_bytes;
for (i = initial_val; i < final_val; i += incr1)
{
png_memcpy(dstptr, srcptr, pixel_bytes);
srcptr += incr1;
dstptr += incr1;
}
} /* end of else */
 
break;
} // end 16 bpp
 
case 24:
{
png_bytep srcptr;
png_bytep dstptr;
png_uint_32 len;
int unmask, diff;
 
__int64 mask2=0x0101010202020404, //24bpp
mask1=0x0408080810101020,
mask0=0x2020404040808080;
 
srcptr = png_ptr->row_buf + 1;
dstptr = row;
 
unmask = ~mask;
len = (png_ptr->width)&~7;
diff = (png_ptr->width)&7;
 
if ((png_ptr->asm_flags & PNG_ASM_FLAG_MMX_READ_COMBINE_ROW)
/* && mmx_supported */ )
{
_asm
{
movd mm7, unmask //load bit pattern
psubb mm6,mm6 //zero mm6
punpcklbw mm7,mm7
punpcklwd mm7,mm7
punpckldq mm7,mm7 //fill register with 8 masks
 
movq mm0,mask0
movq mm1,mask1
movq mm2,mask2
 
pand mm0,mm7
pand mm1,mm7
pand mm2,mm7
 
pcmpeqb mm0,mm6
pcmpeqb mm1,mm6
pcmpeqb mm2,mm6
 
mov ecx,len //load length of line
mov esi,srcptr //load source
mov ebx,dstptr //load dest
cmp ecx,0
jz mainloop24end
 
mainloop24:
movq mm4,[esi]
pand mm4,mm0
movq mm6,mm0
movq mm7,[ebx]
pandn mm6,mm7
por mm4,mm6
movq [ebx],mm4
 
 
movq mm5,[esi+8]
pand mm5,mm1
movq mm7,mm1
movq mm6,[ebx+8]
pandn mm7,mm6
por mm5,mm7
movq [ebx+8],mm5
 
movq mm6,[esi+16]
pand mm6,mm2
movq mm4,mm2
movq mm7,[ebx+16]
pandn mm4,mm7
por mm6,mm4
movq [ebx+16],mm6
 
add esi,24 //inc by 24 bytes processed
add ebx,24
sub ecx,8 //dec by 8 pixels processed
 
ja mainloop24
 
mainloop24end:
mov ecx,diff
cmp ecx,0
jz end24
 
mov edx,mask
sal edx,24 //make low byte the high byte
secondloop24:
sal edx,1 //move high bit to CF
jnc skip24 //if CF = 0
mov ax,[esi]
mov [ebx],ax
xor eax,eax
mov al,[esi+2]
mov [ebx+2],al
skip24:
add esi,3
add ebx,3
 
dec ecx
jnz secondloop24
 
end24:
emms
}
}
else /* mmx not supported - use modified C routine */
{
register unsigned int incr1, initial_val, final_val;
png_size_t pixel_bytes;
png_uint_32 i;
register int disp = png_pass_inc[png_ptr->pass];
int offset_table[7] = {0, 4, 0, 2, 0, 1, 0};
 
pixel_bytes = (png_ptr->row_info.pixel_depth >> 3);
srcptr = png_ptr->row_buf + 1 + offset_table[png_ptr->pass]*
pixel_bytes;
dstptr = row + offset_table[png_ptr->pass]*pixel_bytes;
initial_val = offset_table[png_ptr->pass]*pixel_bytes;
final_val = png_ptr->width*pixel_bytes;
incr1 = (disp)*pixel_bytes;
for (i = initial_val; i < final_val; i += incr1)
{
png_memcpy(dstptr, srcptr, pixel_bytes);
srcptr += incr1;
dstptr += incr1;
}
} /* end of else */
 
break;
} // end 24 bpp
 
case 32:
{
png_bytep srcptr;
png_bytep dstptr;
png_uint_32 len;
int unmask, diff;
 
__int64 mask3=0x0101010102020202, //32bpp
mask2=0x0404040408080808,
mask1=0x1010101020202020,
mask0=0x4040404080808080;
 
srcptr = png_ptr->row_buf + 1;
dstptr = row;
 
unmask = ~mask;
len = (png_ptr->width)&~7;
diff = (png_ptr->width)&7;
 
if ((png_ptr->asm_flags & PNG_ASM_FLAG_MMX_READ_COMBINE_ROW)
/* && mmx_supported */ )
{
_asm
{
movd mm7, unmask //load bit pattern
psubb mm6,mm6 //zero mm6
punpcklbw mm7,mm7
punpcklwd mm7,mm7
punpckldq mm7,mm7 //fill register with 8 masks
 
movq mm0,mask0
movq mm1,mask1
movq mm2,mask2
movq mm3,mask3
 
pand mm0,mm7
pand mm1,mm7
pand mm2,mm7
pand mm3,mm7
 
pcmpeqb mm0,mm6
pcmpeqb mm1,mm6
pcmpeqb mm2,mm6
pcmpeqb mm3,mm6
 
mov ecx,len //load length of line
mov esi,srcptr //load source
mov ebx,dstptr //load dest
 
cmp ecx,0 //lcr
jz mainloop32end
 
mainloop32:
movq mm4,[esi]
pand mm4,mm0
movq mm6,mm0
movq mm7,[ebx]
pandn mm6,mm7
por mm4,mm6
movq [ebx],mm4
 
movq mm5,[esi+8]
pand mm5,mm1
movq mm7,mm1
movq mm6,[ebx+8]
pandn mm7,mm6
por mm5,mm7
movq [ebx+8],mm5
 
movq mm6,[esi+16]
pand mm6,mm2
movq mm4,mm2
movq mm7,[ebx+16]
pandn mm4,mm7
por mm6,mm4
movq [ebx+16],mm6
 
movq mm7,[esi+24]
pand mm7,mm3
movq mm5,mm3
movq mm4,[ebx+24]
pandn mm5,mm4
por mm7,mm5
movq [ebx+24],mm7
 
add esi,32 //inc by 32 bytes processed
add ebx,32
sub ecx,8 //dec by 8 pixels processed
 
ja mainloop32
 
mainloop32end:
mov ecx,diff
cmp ecx,0
jz end32
 
mov edx,mask
sal edx,24 //make low byte the high byte
secondloop32:
sal edx,1 //move high bit to CF
jnc skip32 //if CF = 0
mov eax,[esi]
mov [ebx],eax
skip32:
add esi,4
add ebx,4
 
dec ecx
jnz secondloop32
 
end32:
emms
}
}
else /* mmx _not supported - Use modified C routine */
{
register unsigned int incr1, initial_val, final_val;
png_size_t pixel_bytes;
png_uint_32 i;
register int disp = png_pass_inc[png_ptr->pass];
int offset_table[7] = {0, 4, 0, 2, 0, 1, 0};
 
pixel_bytes = (png_ptr->row_info.pixel_depth >> 3);
srcptr = png_ptr->row_buf + 1 + offset_table[png_ptr->pass]*
pixel_bytes;
dstptr = row + offset_table[png_ptr->pass]*pixel_bytes;
initial_val = offset_table[png_ptr->pass]*pixel_bytes;
final_val = png_ptr->width*pixel_bytes;
incr1 = (disp)*pixel_bytes;
for (i = initial_val; i < final_val; i += incr1)
{
png_memcpy(dstptr, srcptr, pixel_bytes);
srcptr += incr1;
dstptr += incr1;
}
} /* end of else */
 
break;
} // end 32 bpp
 
case 48:
{
png_bytep srcptr;
png_bytep dstptr;
png_uint_32 len;
int unmask, diff;
 
__int64 mask5=0x0101010101010202,
mask4=0x0202020204040404,
mask3=0x0404080808080808,
mask2=0x1010101010102020,
mask1=0x2020202040404040,
mask0=0x4040808080808080;
 
if ((png_ptr->asm_flags & PNG_ASM_FLAG_MMX_READ_COMBINE_ROW)
/* && mmx_supported */ )
{
srcptr = png_ptr->row_buf + 1;
dstptr = row;
 
unmask = ~mask;
len = (png_ptr->width)&~7;
diff = (png_ptr->width)&7;
_asm
{
movd mm7, unmask //load bit pattern
psubb mm6,mm6 //zero mm6
punpcklbw mm7,mm7
punpcklwd mm7,mm7
punpckldq mm7,mm7 //fill register with 8 masks
 
movq mm0,mask0
movq mm1,mask1
movq mm2,mask2
movq mm3,mask3
movq mm4,mask4
movq mm5,mask5
 
pand mm0,mm7
pand mm1,mm7
pand mm2,mm7
pand mm3,mm7
pand mm4,mm7
pand mm5,mm7
 
pcmpeqb mm0,mm6
pcmpeqb mm1,mm6
pcmpeqb mm2,mm6
pcmpeqb mm3,mm6
pcmpeqb mm4,mm6
pcmpeqb mm5,mm6
 
mov ecx,len //load length of line
mov esi,srcptr //load source
mov ebx,dstptr //load dest
 
cmp ecx,0
jz mainloop48end
 
mainloop48:
movq mm7,[esi]
pand mm7,mm0
movq mm6,mm0
pandn mm6,[ebx]
por mm7,mm6
movq [ebx],mm7
 
movq mm6,[esi+8]
pand mm6,mm1
movq mm7,mm1
pandn mm7,[ebx+8]
por mm6,mm7
movq [ebx+8],mm6
 
movq mm6,[esi+16]
pand mm6,mm2
movq mm7,mm2
pandn mm7,[ebx+16]
por mm6,mm7
movq [ebx+16],mm6
 
movq mm7,[esi+24]
pand mm7,mm3
movq mm6,mm3
pandn mm6,[ebx+24]
por mm7,mm6
movq [ebx+24],mm7
 
movq mm6,[esi+32]
pand mm6,mm4
movq mm7,mm4
pandn mm7,[ebx+32]
por mm6,mm7
movq [ebx+32],mm6
 
movq mm7,[esi+40]
pand mm7,mm5
movq mm6,mm5
pandn mm6,[ebx+40]
por mm7,mm6
movq [ebx+40],mm7
 
add esi,48 //inc by 32 bytes processed
add ebx,48
sub ecx,8 //dec by 8 pixels processed
 
ja mainloop48
mainloop48end:
 
mov ecx,diff
cmp ecx,0
jz end48
 
mov edx,mask
sal edx,24 //make low byte the high byte
 
secondloop48:
sal edx,1 //move high bit to CF
jnc skip48 //if CF = 0
mov eax,[esi]
mov [ebx],eax
skip48:
add esi,4
add ebx,4
 
dec ecx
jnz secondloop48
 
end48:
emms
}
}
else /* mmx _not supported - Use modified C routine */
{
register unsigned int incr1, initial_val, final_val;
png_size_t pixel_bytes;
png_uint_32 i;
register int disp = png_pass_inc[png_ptr->pass];
int offset_table[7] = {0, 4, 0, 2, 0, 1, 0};
 
pixel_bytes = (png_ptr->row_info.pixel_depth >> 3);
srcptr = png_ptr->row_buf + 1 + offset_table[png_ptr->pass]*
pixel_bytes;
dstptr = row + offset_table[png_ptr->pass]*pixel_bytes;
initial_val = offset_table[png_ptr->pass]*pixel_bytes;
final_val = png_ptr->width*pixel_bytes;
incr1 = (disp)*pixel_bytes;
for (i = initial_val; i < final_val; i += incr1)
{
png_memcpy(dstptr, srcptr, pixel_bytes);
srcptr += incr1;
dstptr += incr1;
}
} /* end of else */
 
break;
} // end 48 bpp
 
default:
{
png_bytep sptr;
png_bytep dp;
png_size_t pixel_bytes;
int offset_table[7] = {0, 4, 0, 2, 0, 1, 0};
unsigned int i;
register int disp = png_pass_inc[png_ptr->pass]; // get the offset
register unsigned int incr1, initial_val, final_val;
 
pixel_bytes = (png_ptr->row_info.pixel_depth >> 3);
sptr = png_ptr->row_buf + 1 + offset_table[png_ptr->pass]*
pixel_bytes;
dp = row + offset_table[png_ptr->pass]*pixel_bytes;
initial_val = offset_table[png_ptr->pass]*pixel_bytes;
final_val = png_ptr->width*pixel_bytes;
incr1 = (disp)*pixel_bytes;
for (i = initial_val; i < final_val; i += incr1)
{
png_memcpy(dp, sptr, pixel_bytes);
sptr += incr1;
dp += incr1;
}
break;
}
} /* end switch (png_ptr->row_info.pixel_depth) */
} /* end if (non-trivial mask) */
 
} /* end png_combine_row() */
 
 
#if defined(PNG_READ_INTERLACING_SUPPORTED)
 
void /* PRIVATE */
png_do_read_interlace(png_structp png_ptr)
{
png_row_infop row_info = &(png_ptr->row_info);
png_bytep row = png_ptr->row_buf + 1;
int pass = png_ptr->pass;
png_uint_32 transformations = png_ptr->transformations;
#ifdef PNG_USE_LOCAL_ARRAYS
const int png_pass_inc[7] = {8, 8, 4, 4, 2, 2, 1};
#endif
 
png_debug(1,"in png_do_read_interlace\n");
 
if (mmx_supported == 2) {
/* this should have happened in png_init_mmx_flags() already */
png_warning(png_ptr, "asm_flags may not have been initialized");
png_mmx_support();
}
 
if (row != NULL && row_info != NULL)
{
png_uint_32 final_width;
 
final_width = row_info->width * png_pass_inc[pass];
 
switch (row_info->pixel_depth)
{
case 1:
{
png_bytep sp, dp;
int sshift, dshift;
int s_start, s_end, s_inc;
png_byte v;
png_uint_32 i;
int j;
 
sp = row + (png_size_t)((row_info->width - 1) >> 3);
dp = row + (png_size_t)((final_width - 1) >> 3);
#if defined(PNG_READ_PACKSWAP_SUPPORTED)
if (transformations & PNG_PACKSWAP)
{
sshift = (int)((row_info->width + 7) & 7);
dshift = (int)((final_width + 7) & 7);
s_start = 7;
s_end = 0;
s_inc = -1;
}
else
#endif
{
sshift = 7 - (int)((row_info->width + 7) & 7);
dshift = 7 - (int)((final_width + 7) & 7);
s_start = 0;
s_end = 7;
s_inc = 1;
}
 
for (i = row_info->width; i; i--)
{
v = (png_byte)((*sp >> sshift) & 0x1);
for (j = 0; j < png_pass_inc[pass]; j++)
{
*dp &= (png_byte)((0x7f7f >> (7 - dshift)) & 0xff);
*dp |= (png_byte)(v << dshift);
if (dshift == s_end)
{
dshift = s_start;
dp--;
}
else
dshift += s_inc;
}
if (sshift == s_end)
{
sshift = s_start;
sp--;
}
else
sshift += s_inc;
}
break;
}
 
case 2:
{
png_bytep sp, dp;
int sshift, dshift;
int s_start, s_end, s_inc;
png_uint_32 i;
 
sp = row + (png_size_t)((row_info->width - 1) >> 2);
dp = row + (png_size_t)((final_width - 1) >> 2);
#if defined(PNG_READ_PACKSWAP_SUPPORTED)
if (transformations & PNG_PACKSWAP)
{
sshift = (png_size_t)(((row_info->width + 3) & 3) << 1);
dshift = (png_size_t)(((final_width + 3) & 3) << 1);
s_start = 6;
s_end = 0;
s_inc = -2;
}
else
#endif
{
sshift = (png_size_t)((3 - ((row_info->width + 3) & 3)) << 1);
dshift = (png_size_t)((3 - ((final_width + 3) & 3)) << 1);
s_start = 0;
s_end = 6;
s_inc = 2;
}
 
for (i = row_info->width; i; i--)
{
png_byte v;
int j;
 
v = (png_byte)((*sp >> sshift) & 0x3);
for (j = 0; j < png_pass_inc[pass]; j++)
{
*dp &= (png_byte)((0x3f3f >> (6 - dshift)) & 0xff);
*dp |= (png_byte)(v << dshift);
if (dshift == s_end)
{
dshift = s_start;
dp--;
}
else
dshift += s_inc;
}
if (sshift == s_end)
{
sshift = s_start;
sp--;
}
else
sshift += s_inc;
}
break;
}
 
case 4:
{
png_bytep sp, dp;
int sshift, dshift;
int s_start, s_end, s_inc;
png_uint_32 i;
 
sp = row + (png_size_t)((row_info->width - 1) >> 1);
dp = row + (png_size_t)((final_width - 1) >> 1);
#if defined(PNG_READ_PACKSWAP_SUPPORTED)
if (transformations & PNG_PACKSWAP)
{
sshift = (png_size_t)(((row_info->width + 1) & 1) << 2);
dshift = (png_size_t)(((final_width + 1) & 1) << 2);
s_start = 4;
s_end = 0;
s_inc = -4;
}
else
#endif
{
sshift = (png_size_t)((1 - ((row_info->width + 1) & 1)) << 2);
dshift = (png_size_t)((1 - ((final_width + 1) & 1)) << 2);
s_start = 0;
s_end = 4;
s_inc = 4;
}
 
for (i = row_info->width; i; i--)
{
png_byte v;
int j;
 
v = (png_byte)((*sp >> sshift) & 0xf);
for (j = 0; j < png_pass_inc[pass]; j++)
{
*dp &= (png_byte)((0xf0f >> (4 - dshift)) & 0xff);
*dp |= (png_byte)(v << dshift);
if (dshift == s_end)
{
dshift = s_start;
dp--;
}
else
dshift += s_inc;
}
if (sshift == s_end)
{
sshift = s_start;
sp--;
}
else
sshift += s_inc;
}
break;
}
 
default: // This is the place where the routine is modified
{
__int64 const4 = 0x0000000000FFFFFF;
// __int64 const5 = 0x000000FFFFFF0000; // unused...
__int64 const6 = 0x00000000000000FF;
png_bytep sptr, dp;
png_uint_32 i;
png_size_t pixel_bytes;
int width = row_info->width;
 
pixel_bytes = (row_info->pixel_depth >> 3);
 
sptr = row + (width - 1) * pixel_bytes;
dp = row + (final_width - 1) * pixel_bytes;
// New code by Nirav Chhatrapati - Intel Corporation
// sign fix by GRR
// NOTE: there is NO MMX code for 48-bit and 64-bit images
 
// use MMX routine if machine supports it
if ((png_ptr->asm_flags & PNG_ASM_FLAG_MMX_READ_INTERLACE)
/* && mmx_supported */ )
{
if (pixel_bytes == 3)
{
if (((pass == 0) || (pass == 1)) && width)
{
_asm
{
mov esi, sptr
mov edi, dp
mov ecx, width
sub edi, 21 // (png_pass_inc[pass] - 1)*pixel_bytes
loop_pass0:
movd mm0, [esi] ; X X X X X v2 v1 v0
pand mm0, const4 ; 0 0 0 0 0 v2 v1 v0
movq mm1, mm0 ; 0 0 0 0 0 v2 v1 v0
psllq mm0, 16 ; 0 0 0 v2 v1 v0 0 0
movq mm2, mm0 ; 0 0 0 v2 v1 v0 0 0
psllq mm0, 24 ; v2 v1 v0 0 0 0 0 0
psrlq mm1, 8 ; 0 0 0 0 0 0 v2 v1
por mm0, mm2 ; v2 v1 v0 v2 v1 v0 0 0
por mm0, mm1 ; v2 v1 v0 v2 v1 v0 v2 v1
movq mm3, mm0 ; v2 v1 v0 v2 v1 v0 v2 v1
psllq mm0, 16 ; v0 v2 v1 v0 v2 v1 0 0
movq mm4, mm3 ; v2 v1 v0 v2 v1 v0 v2 v1
punpckhdq mm3, mm0 ; v0 v2 v1 v0 v2 v1 v0 v2
movq [edi+16] , mm4
psrlq mm0, 32 ; 0 0 0 0 v0 v2 v1 v0
movq [edi+8] , mm3
punpckldq mm0, mm4 ; v1 v0 v2 v1 v0 v2 v1 v0
sub esi, 3
movq [edi], mm0
sub edi, 24
//sub esi, 3
dec ecx
jnz loop_pass0
EMMS
}
}
else if (((pass == 2) || (pass == 3)) && width)
{
_asm
{
mov esi, sptr
mov edi, dp
mov ecx, width
sub edi, 9 // (png_pass_inc[pass] - 1)*pixel_bytes
loop_pass2:
movd mm0, [esi] ; X X X X X v2 v1 v0
pand mm0, const4 ; 0 0 0 0 0 v2 v1 v0
movq mm1, mm0 ; 0 0 0 0 0 v2 v1 v0
psllq mm0, 16 ; 0 0 0 v2 v1 v0 0 0
movq mm2, mm0 ; 0 0 0 v2 v1 v0 0 0
psllq mm0, 24 ; v2 v1 v0 0 0 0 0 0
psrlq mm1, 8 ; 0 0 0 0 0 0 v2 v1
por mm0, mm2 ; v2 v1 v0 v2 v1 v0 0 0
por mm0, mm1 ; v2 v1 v0 v2 v1 v0 v2 v1
movq [edi+4], mm0 ; move to memory
psrlq mm0, 16 ; 0 0 v2 v1 v0 v2 v1 v0
movd [edi], mm0 ; move to memory
sub esi, 3
sub edi, 12
dec ecx
jnz loop_pass2
EMMS
}
}
else if (width) /* && ((pass == 4) || (pass == 5)) */
{
int width_mmx = ((width >> 1) << 1) - 8;
if (width_mmx < 0)
width_mmx = 0;
width -= width_mmx; // 8 or 9 pix, 24 or 27 bytes
if (width_mmx)
{
_asm
{
mov esi, sptr
mov edi, dp
mov ecx, width_mmx
sub esi, 3
sub edi, 9
loop_pass4:
movq mm0, [esi] ; X X v2 v1 v0 v5 v4 v3
movq mm7, mm0 ; X X v2 v1 v0 v5 v4 v3
movq mm6, mm0 ; X X v2 v1 v0 v5 v4 v3
psllq mm0, 24 ; v1 v0 v5 v4 v3 0 0 0
pand mm7, const4 ; 0 0 0 0 0 v5 v4 v3
psrlq mm6, 24 ; 0 0 0 X X v2 v1 v0
por mm0, mm7 ; v1 v0 v5 v4 v3 v5 v4 v3
movq mm5, mm6 ; 0 0 0 X X v2 v1 v0
psllq mm6, 8 ; 0 0 X X v2 v1 v0 0
movq [edi], mm0 ; move quad to memory
psrlq mm5, 16 ; 0 0 0 0 0 X X v2
pand mm5, const6 ; 0 0 0 0 0 0 0 v2
por mm6, mm5 ; 0 0 X X v2 v1 v0 v2
movd [edi+8], mm6 ; move double to memory
sub esi, 6
sub edi, 12
sub ecx, 2
jnz loop_pass4
EMMS
}
}
 
sptr -= width_mmx*3;
dp -= width_mmx*6;
for (i = width; i; i--)
{
png_byte v[8];
int j;
 
png_memcpy(v, sptr, 3);
for (j = 0; j < png_pass_inc[pass]; j++)
{
png_memcpy(dp, v, 3);
dp -= 3;
}
sptr -= 3;
}
}
} /* end of pixel_bytes == 3 */
 
else if (pixel_bytes == 1)
{
if (((pass == 0) || (pass == 1)) && width)
{
int width_mmx = ((width >> 2) << 2);
width -= width_mmx;
if (width_mmx)
{
_asm
{
mov esi, sptr
mov edi, dp
mov ecx, width_mmx
sub edi, 31
sub esi, 3
loop1_pass0:
movd mm0, [esi] ; X X X X v0 v1 v2 v3
movq mm1, mm0 ; X X X X v0 v1 v2 v3
punpcklbw mm0, mm0 ; v0 v0 v1 v1 v2 v2 v3 v3
movq mm2, mm0 ; v0 v0 v1 v1 v2 v2 v3 v3
punpcklwd mm0, mm0 ; v2 v2 v2 v2 v3 v3 v3 v3
movq mm3, mm0 ; v2 v2 v2 v2 v3 v3 v3 v3
punpckldq mm0, mm0 ; v3 v3 v3 v3 v3 v3 v3 v3
punpckhdq mm3, mm3 ; v2 v2 v2 v2 v2 v2 v2 v2
movq [edi], mm0 ; move to memory v3
punpckhwd mm2, mm2 ; v0 v0 v0 v0 v1 v1 v1 v1
movq [edi+8], mm3 ; move to memory v2
movq mm4, mm2 ; v0 v0 v0 v0 v1 v1 v1 v1
punpckldq mm2, mm2 ; v1 v1 v1 v1 v1 v1 v1 v1
punpckhdq mm4, mm4 ; v0 v0 v0 v0 v0 v0 v0 v0
movq [edi+16], mm2 ; move to memory v1
movq [edi+24], mm4 ; move to memory v0
sub esi, 4
sub edi, 32
sub ecx, 4
jnz loop1_pass0
EMMS
}
}
 
sptr -= width_mmx;
dp -= width_mmx*8;
for (i = width; i; i--)
{
int j;
 
/* I simplified this part in version 1.0.4e
* here and in several other instances where
* pixel_bytes == 1 -- GR-P
*
* Original code:
*
* png_byte v[8];
* png_memcpy(v, sptr, pixel_bytes);
* for (j = 0; j < png_pass_inc[pass]; j++)
* {
* png_memcpy(dp, v, pixel_bytes);
* dp -= pixel_bytes;
* }
* sptr -= pixel_bytes;
*
* Replacement code is in the next three lines:
*/
 
for (j = 0; j < png_pass_inc[pass]; j++)
*dp-- = *sptr;
sptr--;
}
}
else if (((pass == 2) || (pass == 3)) && width)
{
int width_mmx = ((width >> 2) << 2);
width -= width_mmx;
if (width_mmx)
{
_asm
{
mov esi, sptr
mov edi, dp
mov ecx, width_mmx
sub edi, 15
sub esi, 3
loop1_pass2:
movd mm0, [esi] ; X X X X v0 v1 v2 v3
punpcklbw mm0, mm0 ; v0 v0 v1 v1 v2 v2 v3 v3
movq mm1, mm0 ; v0 v0 v1 v1 v2 v2 v3 v3
punpcklwd mm0, mm0 ; v2 v2 v2 v2 v3 v3 v3 v3
punpckhwd mm1, mm1 ; v0 v0 v0 v0 v1 v1 v1 v1
movq [edi], mm0 ; move to memory v2 and v3
sub esi, 4
movq [edi+8], mm1 ; move to memory v1 and v0
sub edi, 16
sub ecx, 4
jnz loop1_pass2
EMMS
}
}
 
sptr -= width_mmx;
dp -= width_mmx*4;
for (i = width; i; i--)
{
int j;
 
for (j = 0; j < png_pass_inc[pass]; j++)
{
*dp-- = *sptr;
}
sptr --;
}
}
else if (width) /* && ((pass == 4) || (pass == 5))) */
{
int width_mmx = ((width >> 3) << 3);
width -= width_mmx;
if (width_mmx)
{
_asm
{
mov esi, sptr
mov edi, dp
mov ecx, width_mmx
sub edi, 15
sub esi, 7
loop1_pass4:
movq mm0, [esi] ; v0 v1 v2 v3 v4 v5 v6 v7
movq mm1, mm0 ; v0 v1 v2 v3 v4 v5 v6 v7
punpcklbw mm0, mm0 ; v4 v4 v5 v5 v6 v6 v7 v7
//movq mm1, mm0 ; v0 v0 v1 v1 v2 v2 v3 v3
punpckhbw mm1, mm1 ;v0 v0 v1 v1 v2 v2 v3 v3
movq [edi+8], mm1 ; move to memory v0 v1 v2 and v3
sub esi, 8
movq [edi], mm0 ; move to memory v4 v5 v6 and v7
//sub esi, 4
sub edi, 16
sub ecx, 8
jnz loop1_pass4
EMMS
}
}
 
sptr -= width_mmx;
dp -= width_mmx*2;
for (i = width; i; i--)
{
int j;
 
for (j = 0; j < png_pass_inc[pass]; j++)
{
*dp-- = *sptr;
}
sptr --;
}
}
} /* end of pixel_bytes == 1 */
 
else if (pixel_bytes == 2)
{
if (((pass == 0) || (pass == 1)) && width)
{
int width_mmx = ((width >> 1) << 1);
width -= width_mmx;
if (width_mmx)
{
_asm
{
mov esi, sptr
mov edi, dp
mov ecx, width_mmx
sub esi, 2
sub edi, 30
loop2_pass0:
movd mm0, [esi] ; X X X X v1 v0 v3 v2
punpcklwd mm0, mm0 ; v1 v0 v1 v0 v3 v2 v3 v2
movq mm1, mm0 ; v1 v0 v1 v0 v3 v2 v3 v2
punpckldq mm0, mm0 ; v3 v2 v3 v2 v3 v2 v3 v2
punpckhdq mm1, mm1 ; v1 v0 v1 v0 v1 v0 v1 v0
movq [edi], mm0
movq [edi + 8], mm0
movq [edi + 16], mm1
movq [edi + 24], mm1
sub esi, 4
sub edi, 32
sub ecx, 2
jnz loop2_pass0
EMMS
}
}
 
sptr -= (width_mmx*2 - 2); // sign fixed
dp -= (width_mmx*16 - 2); // sign fixed
for (i = width; i; i--)
{
png_byte v[8];
int j;
sptr -= 2;
png_memcpy(v, sptr, 2);
for (j = 0; j < png_pass_inc[pass]; j++)
{
dp -= 2;
png_memcpy(dp, v, 2);
}
}
}
else if (((pass == 2) || (pass == 3)) && width)
{
int width_mmx = ((width >> 1) << 1) ;
width -= width_mmx;
if (width_mmx)
{
_asm
{
mov esi, sptr
mov edi, dp
mov ecx, width_mmx
sub esi, 2
sub edi, 14
loop2_pass2:
movd mm0, [esi] ; X X X X v1 v0 v3 v2
punpcklwd mm0, mm0 ; v1 v0 v1 v0 v3 v2 v3 v2
movq mm1, mm0 ; v1 v0 v1 v0 v3 v2 v3 v2
punpckldq mm0, mm0 ; v3 v2 v3 v2 v3 v2 v3 v2
punpckhdq mm1, mm1 ; v1 v0 v1 v0 v1 v0 v1 v0
movq [edi], mm0
sub esi, 4
movq [edi + 8], mm1
//sub esi, 4
sub edi, 16
sub ecx, 2
jnz loop2_pass2
EMMS
}
}
 
sptr -= (width_mmx*2 - 2); // sign fixed
dp -= (width_mmx*8 - 2); // sign fixed
for (i = width; i; i--)
{
png_byte v[8];
int j;
sptr -= 2;
png_memcpy(v, sptr, 2);
for (j = 0; j < png_pass_inc[pass]; j++)
{
dp -= 2;
png_memcpy(dp, v, 2);
}
}
}
else if (width) // pass == 4 or 5
{
int width_mmx = ((width >> 1) << 1) ;
width -= width_mmx;
if (width_mmx)
{
_asm
{
mov esi, sptr
mov edi, dp
mov ecx, width_mmx
sub esi, 2
sub edi, 6
loop2_pass4:
movd mm0, [esi] ; X X X X v1 v0 v3 v2
punpcklwd mm0, mm0 ; v1 v0 v1 v0 v3 v2 v3 v2
sub esi, 4
movq [edi], mm0
sub edi, 8
sub ecx, 2
jnz loop2_pass4
EMMS
}
}
 
sptr -= (width_mmx*2 - 2); // sign fixed
dp -= (width_mmx*4 - 2); // sign fixed
for (i = width; i; i--)
{
png_byte v[8];
int j;
sptr -= 2;
png_memcpy(v, sptr, 2);
for (j = 0; j < png_pass_inc[pass]; j++)
{
dp -= 2;
png_memcpy(dp, v, 2);
}
}
}
} /* end of pixel_bytes == 2 */
 
else if (pixel_bytes == 4)
{
if (((pass == 0) || (pass == 1)) && width)
{
int width_mmx = ((width >> 1) << 1) ;
width -= width_mmx;
if (width_mmx)
{
_asm
{
mov esi, sptr
mov edi, dp
mov ecx, width_mmx
sub esi, 4
sub edi, 60
loop4_pass0:
movq mm0, [esi] ; v3 v2 v1 v0 v7 v6 v5 v4
movq mm1, mm0 ; v3 v2 v1 v0 v7 v6 v5 v4
punpckldq mm0, mm0 ; v7 v6 v5 v4 v7 v6 v5 v4
punpckhdq mm1, mm1 ; v3 v2 v1 v0 v3 v2 v1 v0
movq [edi], mm0
movq [edi + 8], mm0
movq [edi + 16], mm0
movq [edi + 24], mm0
movq [edi+32], mm1
movq [edi + 40], mm1
movq [edi+ 48], mm1
sub esi, 8
movq [edi + 56], mm1
sub edi, 64
sub ecx, 2
jnz loop4_pass0
EMMS
}
}
 
sptr -= (width_mmx*4 - 4); // sign fixed
dp -= (width_mmx*32 - 4); // sign fixed
for (i = width; i; i--)
{
png_byte v[8];
int j;
sptr -= 4;
png_memcpy(v, sptr, 4);
for (j = 0; j < png_pass_inc[pass]; j++)
{
dp -= 4;
png_memcpy(dp, v, 4);
}
}
}
else if (((pass == 2) || (pass == 3)) && width)
{
int width_mmx = ((width >> 1) << 1) ;
width -= width_mmx;
if (width_mmx)
{
_asm
{
mov esi, sptr
mov edi, dp
mov ecx, width_mmx
sub esi, 4
sub edi, 28
loop4_pass2:
movq mm0, [esi] ; v3 v2 v1 v0 v7 v6 v5 v4
movq mm1, mm0 ; v3 v2 v1 v0 v7 v6 v5 v4
punpckldq mm0, mm0 ; v7 v6 v5 v4 v7 v6 v5 v4
punpckhdq mm1, mm1 ; v3 v2 v1 v0 v3 v2 v1 v0
movq [edi], mm0
movq [edi + 8], mm0
movq [edi+16], mm1
movq [edi + 24], mm1
sub esi, 8
sub edi, 32
sub ecx, 2
jnz loop4_pass2
EMMS
}
}
 
sptr -= (width_mmx*4 - 4); // sign fixed
dp -= (width_mmx*16 - 4); // sign fixed
for (i = width; i; i--)
{
png_byte v[8];
int j;
sptr -= 4;
png_memcpy(v, sptr, 4);
for (j = 0; j < png_pass_inc[pass]; j++)
{
dp -= 4;
png_memcpy(dp, v, 4);
}
}
}
else if (width) // pass == 4 or 5
{
int width_mmx = ((width >> 1) << 1) ;
width -= width_mmx;
if (width_mmx)
{
_asm
{
mov esi, sptr
mov edi, dp
mov ecx, width_mmx
sub esi, 4
sub edi, 12
loop4_pass4:
movq mm0, [esi] ; v3 v2 v1 v0 v7 v6 v5 v4
movq mm1, mm0 ; v3 v2 v1 v0 v7 v6 v5 v4
punpckldq mm0, mm0 ; v7 v6 v5 v4 v7 v6 v5 v4
punpckhdq mm1, mm1 ; v3 v2 v1 v0 v3 v2 v1 v0
movq [edi], mm0
sub esi, 8
movq [edi + 8], mm1
sub edi, 16
sub ecx, 2
jnz loop4_pass4
EMMS
}
}
 
sptr -= (width_mmx*4 - 4); // sign fixed
dp -= (width_mmx*8 - 4); // sign fixed
for (i = width; i; i--)
{
png_byte v[8];
int j;
sptr -= 4;
png_memcpy(v, sptr, 4);
for (j = 0; j < png_pass_inc[pass]; j++)
{
dp -= 4;
png_memcpy(dp, v, 4);
}
}
}
 
} /* end of pixel_bytes == 4 */
 
else if (pixel_bytes == 6)
{
for (i = width; i; i--)
{
png_byte v[8];
int j;
png_memcpy(v, sptr, 6);
for (j = 0; j < png_pass_inc[pass]; j++)
{
png_memcpy(dp, v, 6);
dp -= 6;
}
sptr -= 6;
}
} /* end of pixel_bytes == 6 */
 
else
{
for (i = width; i; i--)
{
png_byte v[8];
int j;
png_memcpy(v, sptr, pixel_bytes);
for (j = 0; j < png_pass_inc[pass]; j++)
{
png_memcpy(dp, v, pixel_bytes);
dp -= pixel_bytes;
}
sptr-= pixel_bytes;
}
}
} /* end of mmx_supported */
 
else /* MMX not supported: use modified C code - takes advantage
* of inlining of memcpy for a constant */
{
if (pixel_bytes == 1)
{
for (i = width; i; i--)
{
int j;
for (j = 0; j < png_pass_inc[pass]; j++)
*dp-- = *sptr;
sptr--;
}
}
else if (pixel_bytes == 3)
{
for (i = width; i; i--)
{
png_byte v[8];
int j;
png_memcpy(v, sptr, pixel_bytes);
for (j = 0; j < png_pass_inc[pass]; j++)
{
png_memcpy(dp, v, pixel_bytes);
dp -= pixel_bytes;
}
sptr -= pixel_bytes;
}
}
else if (pixel_bytes == 2)
{
for (i = width; i; i--)
{
png_byte v[8];
int j;
png_memcpy(v, sptr, pixel_bytes);
for (j = 0; j < png_pass_inc[pass]; j++)
{
png_memcpy(dp, v, pixel_bytes);
dp -= pixel_bytes;
}
sptr -= pixel_bytes;
}
}
else if (pixel_bytes == 4)
{
for (i = width; i; i--)
{
png_byte v[8];
int j;
png_memcpy(v, sptr, pixel_bytes);
for (j = 0; j < png_pass_inc[pass]; j++)
{
png_memcpy(dp, v, pixel_bytes);
dp -= pixel_bytes;
}
sptr -= pixel_bytes;
}
}
else if (pixel_bytes == 6)
{
for (i = width; i; i--)
{
png_byte v[8];
int j;
png_memcpy(v, sptr, pixel_bytes);
for (j = 0; j < png_pass_inc[pass]; j++)
{
png_memcpy(dp, v, pixel_bytes);
dp -= pixel_bytes;
}
sptr -= pixel_bytes;
}
}
else
{
for (i = width; i; i--)
{
png_byte v[8];
int j;
png_memcpy(v, sptr, pixel_bytes);
for (j = 0; j < png_pass_inc[pass]; j++)
{
png_memcpy(dp, v, pixel_bytes);
dp -= pixel_bytes;
}
sptr -= pixel_bytes;
}
}
 
} /* end of MMX not supported */
break;
}
} /* end switch (row_info->pixel_depth) */
 
row_info->width = final_width;
row_info->rowbytes = ((final_width *
(png_uint_32)row_info->pixel_depth + 7) >> 3);
}
 
}
 
#endif /* PNG_READ_INTERLACING_SUPPORTED */
 
 
// These variables are utilized in the functions below. They are declared
// globally here to ensure alignment on 8-byte boundaries.
 
union uAll {
__int64 use;
double align;
} LBCarryMask = {0x0101010101010101},
HBClearMask = {0x7f7f7f7f7f7f7f7f},
ActiveMask, ActiveMask2, ActiveMaskEnd, ShiftBpp, ShiftRem;
 
 
// Optimized code for PNG Average filter decoder
void /* PRIVATE */
png_read_filter_row_mmx_avg(png_row_infop row_info, png_bytep row
, png_bytep prev_row)
{
int bpp;
png_uint_32 FullLength;
png_uint_32 MMXLength;
//png_uint_32 len;
int diff;
 
bpp = (row_info->pixel_depth + 7) >> 3; // Get # bytes per pixel
FullLength = row_info->rowbytes; // # of bytes to filter
_asm {
// Init address pointers and offset
mov edi, row // edi ==> Avg(x)
xor ebx, ebx // ebx ==> x
mov edx, edi
mov esi, prev_row // esi ==> Prior(x)
sub edx, bpp // edx ==> Raw(x-bpp)
 
xor eax, eax
// Compute the Raw value for the first bpp bytes
// Raw(x) = Avg(x) + (Prior(x)/2)
davgrlp:
mov al, [esi + ebx] // Load al with Prior(x)
inc ebx
shr al, 1 // divide by 2
add al, [edi+ebx-1] // Add Avg(x); -1 to offset inc ebx
cmp ebx, bpp
mov [edi+ebx-1], al // Write back Raw(x);
// mov does not affect flags; -1 to offset inc ebx
jb davgrlp
// get # of bytes to alignment
mov diff, edi // take start of row
add diff, ebx // add bpp
add diff, 0xf // add 7 + 8 to incr past alignment boundary
and diff, 0xfffffff8 // mask to alignment boundary
sub diff, edi // subtract from start ==> value ebx at alignment
jz davggo
// fix alignment
// Compute the Raw value for the bytes upto the alignment boundary
// Raw(x) = Avg(x) + ((Raw(x-bpp) + Prior(x))/2)
xor ecx, ecx
davglp1:
xor eax, eax
mov cl, [esi + ebx] // load cl with Prior(x)
mov al, [edx + ebx] // load al with Raw(x-bpp)
add ax, cx
inc ebx
shr ax, 1 // divide by 2
add al, [edi+ebx-1] // Add Avg(x); -1 to offset inc ebx
cmp ebx, diff // Check if at alignment boundary
mov [edi+ebx-1], al // Write back Raw(x);
// mov does not affect flags; -1 to offset inc ebx
jb davglp1 // Repeat until at alignment boundary
davggo:
mov eax, FullLength
mov ecx, eax
sub eax, ebx // subtract alignment fix
and eax, 0x00000007 // calc bytes over mult of 8
sub ecx, eax // drop over bytes from original length
mov MMXLength, ecx
} // end _asm block
// Now do the math for the rest of the row
switch ( bpp )
{
case 3:
{
ActiveMask.use = 0x0000000000ffffff;
ShiftBpp.use = 24; // == 3 * 8
ShiftRem.use = 40; // == 64 - 24
_asm {
// Re-init address pointers and offset
movq mm7, ActiveMask
mov ebx, diff // ebx ==> x = offset to alignment boundary
movq mm5, LBCarryMask
mov edi, row // edi ==> Avg(x)
movq mm4, HBClearMask
mov esi, prev_row // esi ==> Prior(x)
// PRIME the pump (load the first Raw(x-bpp) data set
movq mm2, [edi + ebx - 8] // Load previous aligned 8 bytes
// (we correct position in loop below)
davg3lp:
movq mm0, [edi + ebx] // Load mm0 with Avg(x)
// Add (Prev_row/2) to Average
movq mm3, mm5
psrlq mm2, ShiftRem // Correct position Raw(x-bpp) data
movq mm1, [esi + ebx] // Load mm1 with Prior(x)
movq mm6, mm7
pand mm3, mm1 // get lsb for each prev_row byte
psrlq mm1, 1 // divide prev_row bytes by 2
pand mm1, mm4 // clear invalid bit 7 of each byte
paddb mm0, mm1 // add (Prev_row/2) to Avg for each byte
// Add 1st active group (Raw(x-bpp)/2) to Average with LBCarry
movq mm1, mm3 // now use mm1 for getting LBCarrys
pand mm1, mm2 // get LBCarrys for each byte where both
// lsb's were == 1 (Only valid for active group)
psrlq mm2, 1 // divide raw bytes by 2
pand mm2, mm4 // clear invalid bit 7 of each byte
paddb mm2, mm1 // add LBCarrys to (Raw(x-bpp)/2) for each byte
pand mm2, mm6 // Leave only Active Group 1 bytes to add to Avg
paddb mm0, mm2 // add (Raw/2) + LBCarrys to Avg for each Active
// byte
// Add 2nd active group (Raw(x-bpp)/2) to Average with LBCarry
psllq mm6, ShiftBpp // shift the mm6 mask to cover bytes 3-5
movq mm2, mm0 // mov updated Raws to mm2
psllq mm2, ShiftBpp // shift data to position correctly
movq mm1, mm3 // now use mm1 for getting LBCarrys
pand mm1, mm2 // get LBCarrys for each byte where both
// lsb's were == 1 (Only valid for active group)
psrlq mm2, 1 // divide raw bytes by 2
pand mm2, mm4 // clear invalid bit 7 of each byte
paddb mm2, mm1 // add LBCarrys to (Raw(x-bpp)/2) for each byte
pand mm2, mm6 // Leave only Active Group 2 bytes to add to Avg
paddb mm0, mm2 // add (Raw/2) + LBCarrys to Avg for each Active
// byte
 
// Add 3rd active group (Raw(x-bpp)/2) to Average with LBCarry
psllq mm6, ShiftBpp // shift the mm6 mask to cover the last two
// bytes
movq mm2, mm0 // mov updated Raws to mm2
psllq mm2, ShiftBpp // shift data to position correctly
// Data only needs to be shifted once here to
// get the correct x-bpp offset.
movq mm1, mm3 // now use mm1 for getting LBCarrys
pand mm1, mm2 // get LBCarrys for each byte where both
// lsb's were == 1 (Only valid for active group)
psrlq mm2, 1 // divide raw bytes by 2
pand mm2, mm4 // clear invalid bit 7 of each byte
paddb mm2, mm1 // add LBCarrys to (Raw(x-bpp)/2) for each byte
pand mm2, mm6 // Leave only Active Group 2 bytes to add to Avg
add ebx, 8
paddb mm0, mm2 // add (Raw/2) + LBCarrys to Avg for each Active
// byte
 
// Now ready to write back to memory
movq [edi + ebx - 8], mm0
// Move updated Raw(x) to use as Raw(x-bpp) for next loop
cmp ebx, MMXLength
movq mm2, mm0 // mov updated Raw(x) to mm2
jb davg3lp
} // end _asm block
}
break;
 
case 6:
case 4:
case 7:
case 5:
{
ActiveMask.use = 0xffffffffffffffff; // use shift below to clear
// appropriate inactive bytes
ShiftBpp.use = bpp << 3;
ShiftRem.use = 64 - ShiftBpp.use;
_asm {
movq mm4, HBClearMask
// Re-init address pointers and offset
mov ebx, diff // ebx ==> x = offset to alignment boundary
// Load ActiveMask and clear all bytes except for 1st active group
movq mm7, ActiveMask
mov edi, row // edi ==> Avg(x)
psrlq mm7, ShiftRem
mov esi, prev_row // esi ==> Prior(x)
movq mm6, mm7
movq mm5, LBCarryMask
psllq mm6, ShiftBpp // Create mask for 2nd active group
// PRIME the pump (load the first Raw(x-bpp) data set
movq mm2, [edi + ebx - 8] // Load previous aligned 8 bytes
// (we correct position in loop below)
davg4lp:
movq mm0, [edi + ebx]
psrlq mm2, ShiftRem // shift data to position correctly
movq mm1, [esi + ebx]
// Add (Prev_row/2) to Average
movq mm3, mm5
pand mm3, mm1 // get lsb for each prev_row byte
psrlq mm1, 1 // divide prev_row bytes by 2
pand mm1, mm4 // clear invalid bit 7 of each byte
paddb mm0, mm1 // add (Prev_row/2) to Avg for each byte
// Add 1st active group (Raw(x-bpp)/2) to Average with LBCarry
movq mm1, mm3 // now use mm1 for getting LBCarrys
pand mm1, mm2 // get LBCarrys for each byte where both
// lsb's were == 1 (Only valid for active group)
psrlq mm2, 1 // divide raw bytes by 2
pand mm2, mm4 // clear invalid bit 7 of each byte
paddb mm2, mm1 // add LBCarrys to (Raw(x-bpp)/2) for each byte
pand mm2, mm7 // Leave only Active Group 1 bytes to add to Avg
paddb mm0, mm2 // add (Raw/2) + LBCarrys to Avg for each Active
// byte
// Add 2nd active group (Raw(x-bpp)/2) to Average with LBCarry
movq mm2, mm0 // mov updated Raws to mm2
psllq mm2, ShiftBpp // shift data to position correctly
add ebx, 8
movq mm1, mm3 // now use mm1 for getting LBCarrys
pand mm1, mm2 // get LBCarrys for each byte where both
// lsb's were == 1 (Only valid for active group)
psrlq mm2, 1 // divide raw bytes by 2
pand mm2, mm4 // clear invalid bit 7 of each byte
paddb mm2, mm1 // add LBCarrys to (Raw(x-bpp)/2) for each byte
pand mm2, mm6 // Leave only Active Group 2 bytes to add to Avg
paddb mm0, mm2 // add (Raw/2) + LBCarrys to Avg for each Active
// byte
cmp ebx, MMXLength
// Now ready to write back to memory
movq [edi + ebx - 8], mm0
// Prep Raw(x-bpp) for next loop
movq mm2, mm0 // mov updated Raws to mm2
jb davg4lp
} // end _asm block
}
break;
case 2:
{
ActiveMask.use = 0x000000000000ffff;
ShiftBpp.use = 16; // == 2 * 8 [BUGFIX]
ShiftRem.use = 48; // == 64 - 16 [BUGFIX]
_asm {
// Load ActiveMask
movq mm7, ActiveMask
// Re-init address pointers and offset
mov ebx, diff // ebx ==> x = offset to alignment boundary
movq mm5, LBCarryMask
mov edi, row // edi ==> Avg(x)
movq mm4, HBClearMask
mov esi, prev_row // esi ==> Prior(x)
// PRIME the pump (load the first Raw(x-bpp) data set
movq mm2, [edi + ebx - 8] // Load previous aligned 8 bytes
// (we correct position in loop below)
davg2lp:
movq mm0, [edi + ebx]
psrlq mm2, ShiftRem // shift data to position correctly [BUGFIX]
movq mm1, [esi + ebx]
// Add (Prev_row/2) to Average
movq mm3, mm5
pand mm3, mm1 // get lsb for each prev_row byte
psrlq mm1, 1 // divide prev_row bytes by 2
pand mm1, mm4 // clear invalid bit 7 of each byte
movq mm6, mm7
paddb mm0, mm1 // add (Prev_row/2) to Avg for each byte
// Add 1st active group (Raw(x-bpp)/2) to Average with LBCarry
movq mm1, mm3 // now use mm1 for getting LBCarrys
pand mm1, mm2 // get LBCarrys for each byte where both
// lsb's were == 1 (Only valid for active group)
psrlq mm2, 1 // divide raw bytes by 2
pand mm2, mm4 // clear invalid bit 7 of each byte
paddb mm2, mm1 // add LBCarrys to (Raw(x-bpp)/2) for each byte
pand mm2, mm6 // Leave only Active Group 1 bytes to add to Avg
paddb mm0, mm2 // add (Raw/2) + LBCarrys to Avg for each Active byte
// Add 2nd active group (Raw(x-bpp)/2) to Average with LBCarry
psllq mm6, ShiftBpp // shift the mm6 mask to cover bytes 2 & 3
movq mm2, mm0 // mov updated Raws to mm2
psllq mm2, ShiftBpp // shift data to position correctly
movq mm1, mm3 // now use mm1 for getting LBCarrys
pand mm1, mm2 // get LBCarrys for each byte where both
// lsb's were == 1 (Only valid for active group)
psrlq mm2, 1 // divide raw bytes by 2
pand mm2, mm4 // clear invalid bit 7 of each byte
paddb mm2, mm1 // add LBCarrys to (Raw(x-bpp)/2) for each byte
pand mm2, mm6 // Leave only Active Group 2 bytes to add to Avg
paddb mm0, mm2 // add (Raw/2) + LBCarrys to Avg for each Active byte
 
// Add rdd active group (Raw(x-bpp)/2) to Average with LBCarry
psllq mm6, ShiftBpp // shift the mm6 mask to cover bytes 4 & 5
movq mm2, mm0 // mov updated Raws to mm2
psllq mm2, ShiftBpp // shift data to position correctly
// Data only needs to be shifted once here to
// get the correct x-bpp offset.
movq mm1, mm3 // now use mm1 for getting LBCarrys
pand mm1, mm2 // get LBCarrys for each byte where both
// lsb's were == 1 (Only valid for active group)
psrlq mm2, 1 // divide raw bytes by 2
pand mm2, mm4 // clear invalid bit 7 of each byte
paddb mm2, mm1 // add LBCarrys to (Raw(x-bpp)/2) for each byte
pand mm2, mm6 // Leave only Active Group 2 bytes to add to Avg
paddb mm0, mm2 // add (Raw/2) + LBCarrys to Avg for each Active byte
 
// Add 4th active group (Raw(x-bpp)/2) to Average with LBCarry
psllq mm6, ShiftBpp // shift the mm6 mask to cover bytes 6 & 7
movq mm2, mm0 // mov updated Raws to mm2
psllq mm2, ShiftBpp // shift data to position correctly
// Data only needs to be shifted once here to
// get the correct x-bpp offset.
add ebx, 8
movq mm1, mm3 // now use mm1 for getting LBCarrys
pand mm1, mm2 // get LBCarrys for each byte where both
// lsb's were == 1 (Only valid for active group)
psrlq mm2, 1 // divide raw bytes by 2
pand mm2, mm4 // clear invalid bit 7 of each byte
paddb mm2, mm1 // add LBCarrys to (Raw(x-bpp)/2) for each byte
pand mm2, mm6 // Leave only Active Group 2 bytes to add to Avg
paddb mm0, mm2 // add (Raw/2) + LBCarrys to Avg for each Active byte
 
cmp ebx, MMXLength
// Now ready to write back to memory
movq [edi + ebx - 8], mm0
// Prep Raw(x-bpp) for next loop
movq mm2, mm0 // mov updated Raws to mm2
jb davg2lp
} // end _asm block
}
break;
 
case 1: // bpp == 1
{
_asm {
// Re-init address pointers and offset
mov ebx, diff // ebx ==> x = offset to alignment boundary
mov edi, row // edi ==> Avg(x)
cmp ebx, FullLength // Test if offset at end of array
jnb davg1end
// Do Paeth decode for remaining bytes
mov esi, prev_row // esi ==> Prior(x)
mov edx, edi
xor ecx, ecx // zero ecx before using cl & cx in loop below
sub edx, bpp // edx ==> Raw(x-bpp)
davg1lp:
// Raw(x) = Avg(x) + ((Raw(x-bpp) + Prior(x))/2)
xor eax, eax
mov cl, [esi + ebx] // load cl with Prior(x)
mov al, [edx + ebx] // load al with Raw(x-bpp)
add ax, cx
inc ebx
shr ax, 1 // divide by 2
add al, [edi+ebx-1] // Add Avg(x); -1 to offset inc ebx
cmp ebx, FullLength // Check if at end of array
mov [edi+ebx-1], al // Write back Raw(x);
// mov does not affect flags; -1 to offset inc ebx
jb davg1lp
davg1end:
} // end _asm block
}
return;
 
case 8: // bpp == 8
{
_asm {
// Re-init address pointers and offset
mov ebx, diff // ebx ==> x = offset to alignment boundary
movq mm5, LBCarryMask
mov edi, row // edi ==> Avg(x)
movq mm4, HBClearMask
mov esi, prev_row // esi ==> Prior(x)
// PRIME the pump (load the first Raw(x-bpp) data set
movq mm2, [edi + ebx - 8] // Load previous aligned 8 bytes
// (NO NEED to correct position in loop below)
davg8lp:
movq mm0, [edi + ebx]
movq mm3, mm5
movq mm1, [esi + ebx]
add ebx, 8
pand mm3, mm1 // get lsb for each prev_row byte
psrlq mm1, 1 // divide prev_row bytes by 2
pand mm3, mm2 // get LBCarrys for each byte where both
// lsb's were == 1
psrlq mm2, 1 // divide raw bytes by 2
pand mm1, mm4 // clear invalid bit 7 of each byte
paddb mm0, mm3 // add LBCarrys to Avg for each byte
pand mm2, mm4 // clear invalid bit 7 of each byte
paddb mm0, mm1 // add (Prev_row/2) to Avg for each byte
paddb mm0, mm2 // add (Raw/2) to Avg for each byte
cmp ebx, MMXLength
movq [edi + ebx - 8], mm0
movq mm2, mm0 // reuse as Raw(x-bpp)
jb davg8lp
} // end _asm block
}
break;
default: // bpp greater than 8
{
_asm {
movq mm5, LBCarryMask
// Re-init address pointers and offset
mov ebx, diff // ebx ==> x = offset to alignment boundary
mov edi, row // edi ==> Avg(x)
movq mm4, HBClearMask
mov edx, edi
mov esi, prev_row // esi ==> Prior(x)
sub edx, bpp // edx ==> Raw(x-bpp)
davgAlp:
movq mm0, [edi + ebx]
movq mm3, mm5
movq mm1, [esi + ebx]
pand mm3, mm1 // get lsb for each prev_row byte
movq mm2, [edx + ebx]
psrlq mm1, 1 // divide prev_row bytes by 2
pand mm3, mm2 // get LBCarrys for each byte where both
// lsb's were == 1
psrlq mm2, 1 // divide raw bytes by 2
pand mm1, mm4 // clear invalid bit 7 of each byte
paddb mm0, mm3 // add LBCarrys to Avg for each byte
pand mm2, mm4 // clear invalid bit 7 of each byte
paddb mm0, mm1 // add (Prev_row/2) to Avg for each byte
add ebx, 8
paddb mm0, mm2 // add (Raw/2) to Avg for each byte
cmp ebx, MMXLength
movq [edi + ebx - 8], mm0
jb davgAlp
} // end _asm block
}
break;
} // end switch ( bpp )
 
_asm {
// MMX acceleration complete now do clean-up
// Check if any remaining bytes left to decode
mov ebx, MMXLength // ebx ==> x = offset bytes remaining after MMX
mov edi, row // edi ==> Avg(x)
cmp ebx, FullLength // Test if offset at end of array
jnb davgend
// Do Paeth decode for remaining bytes
mov esi, prev_row // esi ==> Prior(x)
mov edx, edi
xor ecx, ecx // zero ecx before using cl & cx in loop below
sub edx, bpp // edx ==> Raw(x-bpp)
davglp2:
// Raw(x) = Avg(x) + ((Raw(x-bpp) + Prior(x))/2)
xor eax, eax
mov cl, [esi + ebx] // load cl with Prior(x)
mov al, [edx + ebx] // load al with Raw(x-bpp)
add ax, cx
inc ebx
shr ax, 1 // divide by 2
add al, [edi+ebx-1] // Add Avg(x); -1 to offset inc ebx
cmp ebx, FullLength // Check if at end of array
mov [edi+ebx-1], al // Write back Raw(x);
// mov does not affect flags; -1 to offset inc ebx
jb davglp2
davgend:
emms // End MMX instructions; prep for possible FP instrs.
} // end _asm block
}
 
// Optimized code for PNG Paeth filter decoder
void /* PRIVATE */
png_read_filter_row_mmx_paeth(png_row_infop row_info, png_bytep row,
png_bytep prev_row)
{
png_uint_32 FullLength;
png_uint_32 MMXLength;
//png_uint_32 len;
int bpp;
int diff;
//int ptemp;
int patemp, pbtemp, pctemp;
 
bpp = (row_info->pixel_depth + 7) >> 3; // Get # bytes per pixel
FullLength = row_info->rowbytes; // # of bytes to filter
_asm
{
xor ebx, ebx // ebx ==> x offset
mov edi, row
xor edx, edx // edx ==> x-bpp offset
mov esi, prev_row
xor eax, eax
 
// Compute the Raw value for the first bpp bytes
// Note: the formula works out to be always
// Paeth(x) = Raw(x) + Prior(x) where x < bpp
dpthrlp:
mov al, [edi + ebx]
add al, [esi + ebx]
inc ebx
cmp ebx, bpp
mov [edi + ebx - 1], al
jb dpthrlp
// get # of bytes to alignment
mov diff, edi // take start of row
add diff, ebx // add bpp
xor ecx, ecx
add diff, 0xf // add 7 + 8 to incr past alignment boundary
and diff, 0xfffffff8 // mask to alignment boundary
sub diff, edi // subtract from start ==> value ebx at alignment
jz dpthgo
// fix alignment
dpthlp1:
xor eax, eax
// pav = p - a = (a + b - c) - a = b - c
mov al, [esi + ebx] // load Prior(x) into al
mov cl, [esi + edx] // load Prior(x-bpp) into cl
sub eax, ecx // subtract Prior(x-bpp)
mov patemp, eax // Save pav for later use
xor eax, eax
// pbv = p - b = (a + b - c) - b = a - c
mov al, [edi + edx] // load Raw(x-bpp) into al
sub eax, ecx // subtract Prior(x-bpp)
mov ecx, eax
// pcv = p - c = (a + b - c) -c = (a - c) + (b - c) = pav + pbv
add eax, patemp // pcv = pav + pbv
// pc = abs(pcv)
test eax, 0x80000000
jz dpthpca
neg eax // reverse sign of neg values
dpthpca:
mov pctemp, eax // save pc for later use
// pb = abs(pbv)
test ecx, 0x80000000
jz dpthpba
neg ecx // reverse sign of neg values
dpthpba:
mov pbtemp, ecx // save pb for later use
// pa = abs(pav)
mov eax, patemp
test eax, 0x80000000
jz dpthpaa
neg eax // reverse sign of neg values
dpthpaa:
mov patemp, eax // save pa for later use
// test if pa <= pb
cmp eax, ecx
jna dpthabb
// pa > pb; now test if pb <= pc
cmp ecx, pctemp
jna dpthbbc
// pb > pc; Raw(x) = Paeth(x) + Prior(x-bpp)
mov cl, [esi + edx] // load Prior(x-bpp) into cl
jmp dpthpaeth
dpthbbc:
// pb <= pc; Raw(x) = Paeth(x) + Prior(x)
mov cl, [esi + ebx] // load Prior(x) into cl
jmp dpthpaeth
dpthabb:
// pa <= pb; now test if pa <= pc
cmp eax, pctemp
jna dpthabc
// pa > pc; Raw(x) = Paeth(x) + Prior(x-bpp)
mov cl, [esi + edx] // load Prior(x-bpp) into cl
jmp dpthpaeth
dpthabc:
// pa <= pc; Raw(x) = Paeth(x) + Raw(x-bpp)
mov cl, [edi + edx] // load Raw(x-bpp) into cl
dpthpaeth:
inc ebx
inc edx
// Raw(x) = (Paeth(x) + Paeth_Predictor( a, b, c )) mod 256
add [edi + ebx - 1], cl
cmp ebx, diff
jb dpthlp1
dpthgo:
mov ecx, FullLength
mov eax, ecx
sub eax, ebx // subtract alignment fix
and eax, 0x00000007 // calc bytes over mult of 8
sub ecx, eax // drop over bytes from original length
mov MMXLength, ecx
} // end _asm block
// Now do the math for the rest of the row
switch ( bpp )
{
case 3:
{
ActiveMask.use = 0x0000000000ffffff;
ActiveMaskEnd.use = 0xffff000000000000;
ShiftBpp.use = 24; // == bpp(3) * 8
ShiftRem.use = 40; // == 64 - 24
_asm
{
mov ebx, diff
mov edi, row
mov esi, prev_row
pxor mm0, mm0
// PRIME the pump (load the first Raw(x-bpp) data set
movq mm1, [edi+ebx-8]
dpth3lp:
psrlq mm1, ShiftRem // shift last 3 bytes to 1st 3 bytes
movq mm2, [esi + ebx] // load b=Prior(x)
punpcklbw mm1, mm0 // Unpack High bytes of a
movq mm3, [esi+ebx-8] // Prep c=Prior(x-bpp) bytes
punpcklbw mm2, mm0 // Unpack High bytes of b
psrlq mm3, ShiftRem // shift last 3 bytes to 1st 3 bytes
// pav = p - a = (a + b - c) - a = b - c
movq mm4, mm2
punpcklbw mm3, mm0 // Unpack High bytes of c
// pbv = p - b = (a + b - c) - b = a - c
movq mm5, mm1
psubw mm4, mm3
pxor mm7, mm7
// pcv = p - c = (a + b - c) -c = (a - c) + (b - c) = pav + pbv
movq mm6, mm4
psubw mm5, mm3
 
// pa = abs(p-a) = abs(pav)
// pb = abs(p-b) = abs(pbv)
// pc = abs(p-c) = abs(pcv)
pcmpgtw mm0, mm4 // Create mask pav bytes < 0
paddw mm6, mm5
pand mm0, mm4 // Only pav bytes < 0 in mm7
pcmpgtw mm7, mm5 // Create mask pbv bytes < 0
psubw mm4, mm0
pand mm7, mm5 // Only pbv bytes < 0 in mm0
psubw mm4, mm0
psubw mm5, mm7
pxor mm0, mm0
pcmpgtw mm0, mm6 // Create mask pcv bytes < 0
pand mm0, mm6 // Only pav bytes < 0 in mm7
psubw mm5, mm7
psubw mm6, mm0
// test pa <= pb
movq mm7, mm4
psubw mm6, mm0
pcmpgtw mm7, mm5 // pa > pb?
movq mm0, mm7
// use mm7 mask to merge pa & pb
pand mm5, mm7
// use mm0 mask copy to merge a & b
pand mm2, mm0
pandn mm7, mm4
pandn mm0, mm1
paddw mm7, mm5
paddw mm0, mm2
// test ((pa <= pb)? pa:pb) <= pc
pcmpgtw mm7, mm6 // pab > pc?
pxor mm1, mm1
pand mm3, mm7
pandn mm7, mm0
paddw mm7, mm3
pxor mm0, mm0
packuswb mm7, mm1
movq mm3, [esi + ebx] // load c=Prior(x-bpp)
pand mm7, ActiveMask
movq mm2, mm3 // load b=Prior(x) step 1
paddb mm7, [edi + ebx] // add Paeth predictor with Raw(x)
punpcklbw mm3, mm0 // Unpack High bytes of c
movq [edi + ebx], mm7 // write back updated value
movq mm1, mm7 // Now mm1 will be used as Raw(x-bpp)
// Now do Paeth for 2nd set of bytes (3-5)
psrlq mm2, ShiftBpp // load b=Prior(x) step 2
punpcklbw mm1, mm0 // Unpack High bytes of a
pxor mm7, mm7
punpcklbw mm2, mm0 // Unpack High bytes of b
// pbv = p - b = (a + b - c) - b = a - c
movq mm5, mm1
// pav = p - a = (a + b - c) - a = b - c
movq mm4, mm2
psubw mm5, mm3
psubw mm4, mm3
// pcv = p - c = (a + b - c) -c = (a - c) + (b - c) =
// pav + pbv = pbv + pav
movq mm6, mm5
paddw mm6, mm4
 
// pa = abs(p-a) = abs(pav)
// pb = abs(p-b) = abs(pbv)
// pc = abs(p-c) = abs(pcv)
pcmpgtw mm0, mm5 // Create mask pbv bytes < 0
pcmpgtw mm7, mm4 // Create mask pav bytes < 0
pand mm0, mm5 // Only pbv bytes < 0 in mm0
pand mm7, mm4 // Only pav bytes < 0 in mm7
psubw mm5, mm0
psubw mm4, mm7
psubw mm5, mm0
psubw mm4, mm7
pxor mm0, mm0
pcmpgtw mm0, mm6 // Create mask pcv bytes < 0
pand mm0, mm6 // Only pav bytes < 0 in mm7
psubw mm6, mm0
// test pa <= pb
movq mm7, mm4
psubw mm6, mm0
pcmpgtw mm7, mm5 // pa > pb?
movq mm0, mm7
// use mm7 mask to merge pa & pb
pand mm5, mm7
// use mm0 mask copy to merge a & b
pand mm2, mm0
pandn mm7, mm4
pandn mm0, mm1
paddw mm7, mm5
paddw mm0, mm2
// test ((pa <= pb)? pa:pb) <= pc
pcmpgtw mm7, mm6 // pab > pc?
movq mm2, [esi + ebx] // load b=Prior(x)
pand mm3, mm7
pandn mm7, mm0
pxor mm1, mm1
paddw mm7, mm3
pxor mm0, mm0
packuswb mm7, mm1
movq mm3, mm2 // load c=Prior(x-bpp) step 1
pand mm7, ActiveMask
punpckhbw mm2, mm0 // Unpack High bytes of b
psllq mm7, ShiftBpp // Shift bytes to 2nd group of 3 bytes
// pav = p - a = (a + b - c) - a = b - c
movq mm4, mm2
paddb mm7, [edi + ebx] // add Paeth predictor with Raw(x)
psllq mm3, ShiftBpp // load c=Prior(x-bpp) step 2
movq [edi + ebx], mm7 // write back updated value
movq mm1, mm7
punpckhbw mm3, mm0 // Unpack High bytes of c
psllq mm1, ShiftBpp // Shift bytes
// Now mm1 will be used as Raw(x-bpp)
// Now do Paeth for 3rd, and final, set of bytes (6-7)
pxor mm7, mm7
punpckhbw mm1, mm0 // Unpack High bytes of a
psubw mm4, mm3
// pbv = p - b = (a + b - c) - b = a - c
movq mm5, mm1
// pcv = p - c = (a + b - c) -c = (a - c) + (b - c) = pav + pbv
movq mm6, mm4
psubw mm5, mm3
pxor mm0, mm0
paddw mm6, mm5
 
// pa = abs(p-a) = abs(pav)
// pb = abs(p-b) = abs(pbv)
// pc = abs(p-c) = abs(pcv)
pcmpgtw mm0, mm4 // Create mask pav bytes < 0
pcmpgtw mm7, mm5 // Create mask pbv bytes < 0
pand mm0, mm4 // Only pav bytes < 0 in mm7
pand mm7, mm5 // Only pbv bytes < 0 in mm0
psubw mm4, mm0
psubw mm5, mm7
psubw mm4, mm0
psubw mm5, mm7
pxor mm0, mm0
pcmpgtw mm0, mm6 // Create mask pcv bytes < 0
pand mm0, mm6 // Only pav bytes < 0 in mm7
psubw mm6, mm0
// test pa <= pb
movq mm7, mm4
psubw mm6, mm0
pcmpgtw mm7, mm5 // pa > pb?
movq mm0, mm7
// use mm0 mask copy to merge a & b
pand mm2, mm0
// use mm7 mask to merge pa & pb
pand mm5, mm7
pandn mm0, mm1
pandn mm7, mm4
paddw mm0, mm2
paddw mm7, mm5
// test ((pa <= pb)? pa:pb) <= pc
pcmpgtw mm7, mm6 // pab > pc?
pand mm3, mm7
pandn mm7, mm0
paddw mm7, mm3
pxor mm1, mm1
packuswb mm1, mm7
// Step ebx to next set of 8 bytes and repeat loop til done
add ebx, 8
pand mm1, ActiveMaskEnd
paddb mm1, [edi + ebx - 8] // add Paeth predictor with Raw(x)
 
cmp ebx, MMXLength
pxor mm0, mm0 // pxor does not affect flags
movq [edi + ebx - 8], mm1 // write back updated value
// mm1 will be used as Raw(x-bpp) next loop
// mm3 ready to be used as Prior(x-bpp) next loop
jb dpth3lp
} // end _asm block
}
break;
 
case 6:
case 7:
case 5:
{
ActiveMask.use = 0x00000000ffffffff;
ActiveMask2.use = 0xffffffff00000000;
ShiftBpp.use = bpp << 3; // == bpp * 8
ShiftRem.use = 64 - ShiftBpp.use;
_asm
{
mov ebx, diff
mov edi, row
mov esi, prev_row
// PRIME the pump (load the first Raw(x-bpp) data set
movq mm1, [edi+ebx-8]
pxor mm0, mm0
dpth6lp:
// Must shift to position Raw(x-bpp) data
psrlq mm1, ShiftRem
// Do first set of 4 bytes
movq mm3, [esi+ebx-8] // read c=Prior(x-bpp) bytes
punpcklbw mm1, mm0 // Unpack Low bytes of a
movq mm2, [esi + ebx] // load b=Prior(x)
punpcklbw mm2, mm0 // Unpack Low bytes of b
// Must shift to position Prior(x-bpp) data
psrlq mm3, ShiftRem
// pav = p - a = (a + b - c) - a = b - c
movq mm4, mm2
punpcklbw mm3, mm0 // Unpack Low bytes of c
// pbv = p - b = (a + b - c) - b = a - c
movq mm5, mm1
psubw mm4, mm3
pxor mm7, mm7
// pcv = p - c = (a + b - c) -c = (a - c) + (b - c) = pav + pbv
movq mm6, mm4
psubw mm5, mm3
// pa = abs(p-a) = abs(pav)
// pb = abs(p-b) = abs(pbv)
// pc = abs(p-c) = abs(pcv)
pcmpgtw mm0, mm4 // Create mask pav bytes < 0
paddw mm6, mm5
pand mm0, mm4 // Only pav bytes < 0 in mm7
pcmpgtw mm7, mm5 // Create mask pbv bytes < 0
psubw mm4, mm0
pand mm7, mm5 // Only pbv bytes < 0 in mm0
psubw mm4, mm0
psubw mm5, mm7
pxor mm0, mm0
pcmpgtw mm0, mm6 // Create mask pcv bytes < 0
pand mm0, mm6 // Only pav bytes < 0 in mm7
psubw mm5, mm7
psubw mm6, mm0
// test pa <= pb
movq mm7, mm4
psubw mm6, mm0
pcmpgtw mm7, mm5 // pa > pb?
movq mm0, mm7
// use mm7 mask to merge pa & pb
pand mm5, mm7
// use mm0 mask copy to merge a & b
pand mm2, mm0
pandn mm7, mm4
pandn mm0, mm1
paddw mm7, mm5
paddw mm0, mm2
// test ((pa <= pb)? pa:pb) <= pc
pcmpgtw mm7, mm6 // pab > pc?
pxor mm1, mm1
pand mm3, mm7
pandn mm7, mm0
paddw mm7, mm3
pxor mm0, mm0
packuswb mm7, mm1
movq mm3, [esi + ebx - 8] // load c=Prior(x-bpp)
pand mm7, ActiveMask
psrlq mm3, ShiftRem
movq mm2, [esi + ebx] // load b=Prior(x) step 1
paddb mm7, [edi + ebx] // add Paeth predictor with Raw(x)
movq mm6, mm2
movq [edi + ebx], mm7 // write back updated value
movq mm1, [edi+ebx-8]
psllq mm6, ShiftBpp
movq mm5, mm7
psrlq mm1, ShiftRem
por mm3, mm6
psllq mm5, ShiftBpp
punpckhbw mm3, mm0 // Unpack High bytes of c
por mm1, mm5
// Do second set of 4 bytes
punpckhbw mm2, mm0 // Unpack High bytes of b
punpckhbw mm1, mm0 // Unpack High bytes of a
// pav = p - a = (a + b - c) - a = b - c
movq mm4, mm2
// pbv = p - b = (a + b - c) - b = a - c
movq mm5, mm1
psubw mm4, mm3
pxor mm7, mm7
// pcv = p - c = (a + b - c) -c = (a - c) + (b - c) = pav + pbv
movq mm6, mm4
psubw mm5, mm3
// pa = abs(p-a) = abs(pav)
// pb = abs(p-b) = abs(pbv)
// pc = abs(p-c) = abs(pcv)
pcmpgtw mm0, mm4 // Create mask pav bytes < 0
paddw mm6, mm5
pand mm0, mm4 // Only pav bytes < 0 in mm7
pcmpgtw mm7, mm5 // Create mask pbv bytes < 0
psubw mm4, mm0
pand mm7, mm5 // Only pbv bytes < 0 in mm0
psubw mm4, mm0
psubw mm5, mm7
pxor mm0, mm0
pcmpgtw mm0, mm6 // Create mask pcv bytes < 0
pand mm0, mm6 // Only pav bytes < 0 in mm7
psubw mm5, mm7
psubw mm6, mm0
// test pa <= pb
movq mm7, mm4
psubw mm6, mm0
pcmpgtw mm7, mm5 // pa > pb?
movq mm0, mm7
// use mm7 mask to merge pa & pb
pand mm5, mm7
// use mm0 mask copy to merge a & b
pand mm2, mm0
pandn mm7, mm4
pandn mm0, mm1
paddw mm7, mm5
paddw mm0, mm2
// test ((pa <= pb)? pa:pb) <= pc
pcmpgtw mm7, mm6 // pab > pc?
pxor mm1, mm1
pand mm3, mm7
pandn mm7, mm0
pxor mm1, mm1
paddw mm7, mm3
pxor mm0, mm0
// Step ex to next set of 8 bytes and repeat loop til done
add ebx, 8
packuswb mm1, mm7
paddb mm1, [edi + ebx - 8] // add Paeth predictor with Raw(x)
cmp ebx, MMXLength
movq [edi + ebx - 8], mm1 // write back updated value
// mm1 will be used as Raw(x-bpp) next loop
jb dpth6lp
} // end _asm block
}
break;
 
case 4:
{
ActiveMask.use = 0x00000000ffffffff;
_asm {
mov ebx, diff
mov edi, row
mov esi, prev_row
pxor mm0, mm0
// PRIME the pump (load the first Raw(x-bpp) data set
movq mm1, [edi+ebx-8] // Only time should need to read
// a=Raw(x-bpp) bytes
dpth4lp:
// Do first set of 4 bytes
movq mm3, [esi+ebx-8] // read c=Prior(x-bpp) bytes
punpckhbw mm1, mm0 // Unpack Low bytes of a
movq mm2, [esi + ebx] // load b=Prior(x)
punpcklbw mm2, mm0 // Unpack High bytes of b
// pav = p - a = (a + b - c) - a = b - c
movq mm4, mm2
punpckhbw mm3, mm0 // Unpack High bytes of c
// pbv = p - b = (a + b - c) - b = a - c
movq mm5, mm1
psubw mm4, mm3
pxor mm7, mm7
// pcv = p - c = (a + b - c) -c = (a - c) + (b - c) = pav + pbv
movq mm6, mm4
psubw mm5, mm3
// pa = abs(p-a) = abs(pav)
// pb = abs(p-b) = abs(pbv)
// pc = abs(p-c) = abs(pcv)
pcmpgtw mm0, mm4 // Create mask pav bytes < 0
paddw mm6, mm5
pand mm0, mm4 // Only pav bytes < 0 in mm7
pcmpgtw mm7, mm5 // Create mask pbv bytes < 0
psubw mm4, mm0
pand mm7, mm5 // Only pbv bytes < 0 in mm0
psubw mm4, mm0
psubw mm5, mm7
pxor mm0, mm0
pcmpgtw mm0, mm6 // Create mask pcv bytes < 0
pand mm0, mm6 // Only pav bytes < 0 in mm7
psubw mm5, mm7
psubw mm6, mm0
// test pa <= pb
movq mm7, mm4
psubw mm6, mm0
pcmpgtw mm7, mm5 // pa > pb?
movq mm0, mm7
// use mm7 mask to merge pa & pb
pand mm5, mm7
// use mm0 mask copy to merge a & b
pand mm2, mm0
pandn mm7, mm4
pandn mm0, mm1
paddw mm7, mm5
paddw mm0, mm2
// test ((pa <= pb)? pa:pb) <= pc
pcmpgtw mm7, mm6 // pab > pc?
pxor mm1, mm1
pand mm3, mm7
pandn mm7, mm0
paddw mm7, mm3
pxor mm0, mm0
packuswb mm7, mm1
movq mm3, [esi + ebx] // load c=Prior(x-bpp)
pand mm7, ActiveMask
movq mm2, mm3 // load b=Prior(x) step 1
paddb mm7, [edi + ebx] // add Paeth predictor with Raw(x)
punpcklbw mm3, mm0 // Unpack High bytes of c
movq [edi + ebx], mm7 // write back updated value
movq mm1, mm7 // Now mm1 will be used as Raw(x-bpp)
// Do second set of 4 bytes
punpckhbw mm2, mm0 // Unpack Low bytes of b
punpcklbw mm1, mm0 // Unpack Low bytes of a
// pav = p - a = (a + b - c) - a = b - c
movq mm4, mm2
// pbv = p - b = (a + b - c) - b = a - c
movq mm5, mm1
psubw mm4, mm3
pxor mm7, mm7
// pcv = p - c = (a + b - c) -c = (a - c) + (b - c) = pav + pbv
movq mm6, mm4
psubw mm5, mm3
// pa = abs(p-a) = abs(pav)
// pb = abs(p-b) = abs(pbv)
// pc = abs(p-c) = abs(pcv)
pcmpgtw mm0, mm4 // Create mask pav bytes < 0
paddw mm6, mm5
pand mm0, mm4 // Only pav bytes < 0 in mm7
pcmpgtw mm7, mm5 // Create mask pbv bytes < 0
psubw mm4, mm0
pand mm7, mm5 // Only pbv bytes < 0 in mm0
psubw mm4, mm0
psubw mm5, mm7
pxor mm0, mm0
pcmpgtw mm0, mm6 // Create mask pcv bytes < 0
pand mm0, mm6 // Only pav bytes < 0 in mm7
psubw mm5, mm7
psubw mm6, mm0
// test pa <= pb
movq mm7, mm4
psubw mm6, mm0
pcmpgtw mm7, mm5 // pa > pb?
movq mm0, mm7
// use mm7 mask to merge pa & pb
pand mm5, mm7
// use mm0 mask copy to merge a & b
pand mm2, mm0
pandn mm7, mm4
pandn mm0, mm1
paddw mm7, mm5
paddw mm0, mm2
// test ((pa <= pb)? pa:pb) <= pc
pcmpgtw mm7, mm6 // pab > pc?
pxor mm1, mm1
pand mm3, mm7
pandn mm7, mm0
pxor mm1, mm1
paddw mm7, mm3
pxor mm0, mm0
// Step ex to next set of 8 bytes and repeat loop til done
add ebx, 8
packuswb mm1, mm7
paddb mm1, [edi + ebx - 8] // add Paeth predictor with Raw(x)
cmp ebx, MMXLength
movq [edi + ebx - 8], mm1 // write back updated value
// mm1 will be used as Raw(x-bpp) next loop
jb dpth4lp
} // end _asm block
}
break;
case 8: // bpp == 8
{
ActiveMask.use = 0x00000000ffffffff;
_asm {
mov ebx, diff
mov edi, row
mov esi, prev_row
pxor mm0, mm0
// PRIME the pump (load the first Raw(x-bpp) data set
movq mm1, [edi+ebx-8] // Only time should need to read
// a=Raw(x-bpp) bytes
dpth8lp:
// Do first set of 4 bytes
movq mm3, [esi+ebx-8] // read c=Prior(x-bpp) bytes
punpcklbw mm1, mm0 // Unpack Low bytes of a
movq mm2, [esi + ebx] // load b=Prior(x)
punpcklbw mm2, mm0 // Unpack Low bytes of b
// pav = p - a = (a + b - c) - a = b - c
movq mm4, mm2
punpcklbw mm3, mm0 // Unpack Low bytes of c
// pbv = p - b = (a + b - c) - b = a - c
movq mm5, mm1
psubw mm4, mm3
pxor mm7, mm7
// pcv = p - c = (a + b - c) -c = (a - c) + (b - c) = pav + pbv
movq mm6, mm4
psubw mm5, mm3
// pa = abs(p-a) = abs(pav)
// pb = abs(p-b) = abs(pbv)
// pc = abs(p-c) = abs(pcv)
pcmpgtw mm0, mm4 // Create mask pav bytes < 0
paddw mm6, mm5
pand mm0, mm4 // Only pav bytes < 0 in mm7
pcmpgtw mm7, mm5 // Create mask pbv bytes < 0
psubw mm4, mm0
pand mm7, mm5 // Only pbv bytes < 0 in mm0
psubw mm4, mm0
psubw mm5, mm7
pxor mm0, mm0
pcmpgtw mm0, mm6 // Create mask pcv bytes < 0
pand mm0, mm6 // Only pav bytes < 0 in mm7
psubw mm5, mm7
psubw mm6, mm0
// test pa <= pb
movq mm7, mm4
psubw mm6, mm0
pcmpgtw mm7, mm5 // pa > pb?
movq mm0, mm7
// use mm7 mask to merge pa & pb
pand mm5, mm7
// use mm0 mask copy to merge a & b
pand mm2, mm0
pandn mm7, mm4
pandn mm0, mm1
paddw mm7, mm5
paddw mm0, mm2
// test ((pa <= pb)? pa:pb) <= pc
pcmpgtw mm7, mm6 // pab > pc?
pxor mm1, mm1
pand mm3, mm7
pandn mm7, mm0
paddw mm7, mm3
pxor mm0, mm0
packuswb mm7, mm1
movq mm3, [esi+ebx-8] // read c=Prior(x-bpp) bytes
pand mm7, ActiveMask
movq mm2, [esi + ebx] // load b=Prior(x)
paddb mm7, [edi + ebx] // add Paeth predictor with Raw(x)
punpckhbw mm3, mm0 // Unpack High bytes of c
movq [edi + ebx], mm7 // write back updated value
movq mm1, [edi+ebx-8] // read a=Raw(x-bpp) bytes
 
// Do second set of 4 bytes
punpckhbw mm2, mm0 // Unpack High bytes of b
punpckhbw mm1, mm0 // Unpack High bytes of a
// pav = p - a = (a + b - c) - a = b - c
movq mm4, mm2
// pbv = p - b = (a + b - c) - b = a - c
movq mm5, mm1
psubw mm4, mm3
pxor mm7, mm7
// pcv = p - c = (a + b - c) -c = (a - c) + (b - c) = pav + pbv
movq mm6, mm4
psubw mm5, mm3
// pa = abs(p-a) = abs(pav)
// pb = abs(p-b) = abs(pbv)
// pc = abs(p-c) = abs(pcv)
pcmpgtw mm0, mm4 // Create mask pav bytes < 0
paddw mm6, mm5
pand mm0, mm4 // Only pav bytes < 0 in mm7
pcmpgtw mm7, mm5 // Create mask pbv bytes < 0
psubw mm4, mm0
pand mm7, mm5 // Only pbv bytes < 0 in mm0
psubw mm4, mm0
psubw mm5, mm7
pxor mm0, mm0
pcmpgtw mm0, mm6 // Create mask pcv bytes < 0
pand mm0, mm6 // Only pav bytes < 0 in mm7
psubw mm5, mm7
psubw mm6, mm0
// test pa <= pb
movq mm7, mm4
psubw mm6, mm0
pcmpgtw mm7, mm5 // pa > pb?
movq mm0, mm7
// use mm7 mask to merge pa & pb
pand mm5, mm7
// use mm0 mask copy to merge a & b
pand mm2, mm0
pandn mm7, mm4
pandn mm0, mm1
paddw mm7, mm5
paddw mm0, mm2
// test ((pa <= pb)? pa:pb) <= pc
pcmpgtw mm7, mm6 // pab > pc?
pxor mm1, mm1
pand mm3, mm7
pandn mm7, mm0
pxor mm1, mm1
paddw mm7, mm3
pxor mm0, mm0
// Step ex to next set of 8 bytes and repeat loop til done
add ebx, 8
packuswb mm1, mm7
paddb mm1, [edi + ebx - 8] // add Paeth predictor with Raw(x)
cmp ebx, MMXLength
movq [edi + ebx - 8], mm1 // write back updated value
// mm1 will be used as Raw(x-bpp) next loop
jb dpth8lp
} // end _asm block
}
break;
 
case 1: // bpp = 1
case 2: // bpp = 2
default: // bpp > 8
{
_asm {
mov ebx, diff
cmp ebx, FullLength
jnb dpthdend
mov edi, row
mov esi, prev_row
// Do Paeth decode for remaining bytes
mov edx, ebx
xor ecx, ecx // zero ecx before using cl & cx in loop below
sub edx, bpp // Set edx = ebx - bpp
dpthdlp:
xor eax, eax
// pav = p - a = (a + b - c) - a = b - c
mov al, [esi + ebx] // load Prior(x) into al
mov cl, [esi + edx] // load Prior(x-bpp) into cl
sub eax, ecx // subtract Prior(x-bpp)
mov patemp, eax // Save pav for later use
xor eax, eax
// pbv = p - b = (a + b - c) - b = a - c
mov al, [edi + edx] // load Raw(x-bpp) into al
sub eax, ecx // subtract Prior(x-bpp)
mov ecx, eax
// pcv = p - c = (a + b - c) -c = (a - c) + (b - c) = pav + pbv
add eax, patemp // pcv = pav + pbv
// pc = abs(pcv)
test eax, 0x80000000
jz dpthdpca
neg eax // reverse sign of neg values
dpthdpca:
mov pctemp, eax // save pc for later use
// pb = abs(pbv)
test ecx, 0x80000000
jz dpthdpba
neg ecx // reverse sign of neg values
dpthdpba:
mov pbtemp, ecx // save pb for later use
// pa = abs(pav)
mov eax, patemp
test eax, 0x80000000
jz dpthdpaa
neg eax // reverse sign of neg values
dpthdpaa:
mov patemp, eax // save pa for later use
// test if pa <= pb
cmp eax, ecx
jna dpthdabb
// pa > pb; now test if pb <= pc
cmp ecx, pctemp
jna dpthdbbc
// pb > pc; Raw(x) = Paeth(x) + Prior(x-bpp)
mov cl, [esi + edx] // load Prior(x-bpp) into cl
jmp dpthdpaeth
dpthdbbc:
// pb <= pc; Raw(x) = Paeth(x) + Prior(x)
mov cl, [esi + ebx] // load Prior(x) into cl
jmp dpthdpaeth
dpthdabb:
// pa <= pb; now test if pa <= pc
cmp eax, pctemp
jna dpthdabc
// pa > pc; Raw(x) = Paeth(x) + Prior(x-bpp)
mov cl, [esi + edx] // load Prior(x-bpp) into cl
jmp dpthdpaeth
dpthdabc:
// pa <= pc; Raw(x) = Paeth(x) + Raw(x-bpp)
mov cl, [edi + edx] // load Raw(x-bpp) into cl
dpthdpaeth:
inc ebx
inc edx
// Raw(x) = (Paeth(x) + Paeth_Predictor( a, b, c )) mod 256
add [edi + ebx - 1], cl
cmp ebx, FullLength
jb dpthdlp
dpthdend:
} // end _asm block
}
return; // No need to go further with this one
} // end switch ( bpp )
_asm
{
// MMX acceleration complete now do clean-up
// Check if any remaining bytes left to decode
mov ebx, MMXLength
cmp ebx, FullLength
jnb dpthend
mov edi, row
mov esi, prev_row
// Do Paeth decode for remaining bytes
mov edx, ebx
xor ecx, ecx // zero ecx before using cl & cx in loop below
sub edx, bpp // Set edx = ebx - bpp
dpthlp2:
xor eax, eax
// pav = p - a = (a + b - c) - a = b - c
mov al, [esi + ebx] // load Prior(x) into al
mov cl, [esi + edx] // load Prior(x-bpp) into cl
sub eax, ecx // subtract Prior(x-bpp)
mov patemp, eax // Save pav for later use
xor eax, eax
// pbv = p - b = (a + b - c) - b = a - c
mov al, [edi + edx] // load Raw(x-bpp) into al
sub eax, ecx // subtract Prior(x-bpp)
mov ecx, eax
// pcv = p - c = (a + b - c) -c = (a - c) + (b - c) = pav + pbv
add eax, patemp // pcv = pav + pbv
// pc = abs(pcv)
test eax, 0x80000000
jz dpthpca2
neg eax // reverse sign of neg values
dpthpca2:
mov pctemp, eax // save pc for later use
// pb = abs(pbv)
test ecx, 0x80000000
jz dpthpba2
neg ecx // reverse sign of neg values
dpthpba2:
mov pbtemp, ecx // save pb for later use
// pa = abs(pav)
mov eax, patemp
test eax, 0x80000000
jz dpthpaa2
neg eax // reverse sign of neg values
dpthpaa2:
mov patemp, eax // save pa for later use
// test if pa <= pb
cmp eax, ecx
jna dpthabb2
// pa > pb; now test if pb <= pc
cmp ecx, pctemp
jna dpthbbc2
// pb > pc; Raw(x) = Paeth(x) + Prior(x-bpp)
mov cl, [esi + edx] // load Prior(x-bpp) into cl
jmp dpthpaeth2
dpthbbc2:
// pb <= pc; Raw(x) = Paeth(x) + Prior(x)
mov cl, [esi + ebx] // load Prior(x) into cl
jmp dpthpaeth2
dpthabb2:
// pa <= pb; now test if pa <= pc
cmp eax, pctemp
jna dpthabc2
// pa > pc; Raw(x) = Paeth(x) + Prior(x-bpp)
mov cl, [esi + edx] // load Prior(x-bpp) into cl
jmp dpthpaeth2
dpthabc2:
// pa <= pc; Raw(x) = Paeth(x) + Raw(x-bpp)
mov cl, [edi + edx] // load Raw(x-bpp) into cl
dpthpaeth2:
inc ebx
inc edx
// Raw(x) = (Paeth(x) + Paeth_Predictor( a, b, c )) mod 256
add [edi + ebx - 1], cl
cmp ebx, FullLength
jb dpthlp2
dpthend:
emms // End MMX instructions; prep for possible FP instrs.
} // end _asm block
}
 
// Optimized code for PNG Sub filter decoder
void /* PRIVATE */
png_read_filter_row_mmx_sub(png_row_infop row_info, png_bytep row)
{
//int test;
int bpp;
png_uint_32 FullLength;
png_uint_32 MMXLength;
int diff;
 
bpp = (row_info->pixel_depth + 7) >> 3; // Get # bytes per pixel
FullLength = row_info->rowbytes - bpp; // # of bytes to filter
_asm {
mov edi, row
mov esi, edi // lp = row
add edi, bpp // rp = row + bpp
xor eax, eax
// get # of bytes to alignment
mov diff, edi // take start of row
add diff, 0xf // add 7 + 8 to incr past
// alignment boundary
xor ebx, ebx
and diff, 0xfffffff8 // mask to alignment boundary
sub diff, edi // subtract from start ==> value
// ebx at alignment
jz dsubgo
// fix alignment
dsublp1:
mov al, [esi+ebx]
add [edi+ebx], al
inc ebx
cmp ebx, diff
jb dsublp1
dsubgo:
mov ecx, FullLength
mov edx, ecx
sub edx, ebx // subtract alignment fix
and edx, 0x00000007 // calc bytes over mult of 8
sub ecx, edx // drop over bytes from length
mov MMXLength, ecx
} // end _asm block
 
// Now do the math for the rest of the row
switch ( bpp )
{
case 3:
{
ActiveMask.use = 0x0000ffffff000000;
ShiftBpp.use = 24; // == 3 * 8
ShiftRem.use = 40; // == 64 - 24
_asm {
mov edi, row
movq mm7, ActiveMask // Load ActiveMask for 2nd active byte group
mov esi, edi // lp = row
add edi, bpp // rp = row + bpp
movq mm6, mm7
mov ebx, diff
psllq mm6, ShiftBpp // Move mask in mm6 to cover 3rd active
// byte group
// PRIME the pump (load the first Raw(x-bpp) data set
movq mm1, [edi+ebx-8]
dsub3lp:
psrlq mm1, ShiftRem // Shift data for adding 1st bpp bytes
// no need for mask; shift clears inactive bytes
// Add 1st active group
movq mm0, [edi+ebx]
paddb mm0, mm1
// Add 2nd active group
movq mm1, mm0 // mov updated Raws to mm1
psllq mm1, ShiftBpp // shift data to position correctly
pand mm1, mm7 // mask to use only 2nd active group
paddb mm0, mm1
// Add 3rd active group
movq mm1, mm0 // mov updated Raws to mm1
psllq mm1, ShiftBpp // shift data to position correctly
pand mm1, mm6 // mask to use only 3rd active group
add ebx, 8
paddb mm0, mm1
cmp ebx, MMXLength
movq [edi+ebx-8], mm0 // Write updated Raws back to array
// Prep for doing 1st add at top of loop
movq mm1, mm0
jb dsub3lp
} // end _asm block
}
break;
 
case 1:
{
// Placed here just in case this is a duplicate of the
// non-MMX code for the SUB filter in png_read_filter_row below
//
// png_bytep rp;
// png_bytep lp;
// png_uint_32 i;
// bpp = (row_info->pixel_depth + 7) >> 3;
// for (i = (png_uint_32)bpp, rp = row + bpp, lp = row;
// i < row_info->rowbytes; i++, rp++, lp++)
// {
// *rp = (png_byte)(((int)(*rp) + (int)(*lp)) & 0xff);
// }
_asm {
mov ebx, diff
mov edi, row
cmp ebx, FullLength
jnb dsub1end
mov esi, edi // lp = row
xor eax, eax
add edi, bpp // rp = row + bpp
dsub1lp:
mov al, [esi+ebx]
add [edi+ebx], al
inc ebx
cmp ebx, FullLength
jb dsub1lp
dsub1end:
} // end _asm block
}
return;
 
case 6:
case 7:
case 4:
case 5:
{
ShiftBpp.use = bpp << 3;
ShiftRem.use = 64 - ShiftBpp.use;
_asm {
mov edi, row
mov ebx, diff
mov esi, edi // lp = row
add edi, bpp // rp = row + bpp
// PRIME the pump (load the first Raw(x-bpp) data set
movq mm1, [edi+ebx-8]
dsub4lp:
psrlq mm1, ShiftRem // Shift data for adding 1st bpp bytes
// no need for mask; shift clears inactive bytes
movq mm0, [edi+ebx]
paddb mm0, mm1
// Add 2nd active group
movq mm1, mm0 // mov updated Raws to mm1
psllq mm1, ShiftBpp // shift data to position correctly
// there is no need for any mask
// since shift clears inactive bits/bytes
add ebx, 8
paddb mm0, mm1
cmp ebx, MMXLength
movq [edi+ebx-8], mm0
movq mm1, mm0 // Prep for doing 1st add at top of loop
jb dsub4lp
} // end _asm block
}
break;
 
case 2:
{
ActiveMask.use = 0x00000000ffff0000;
ShiftBpp.use = 16; // == 2 * 8
ShiftRem.use = 48; // == 64 - 16
_asm {
movq mm7, ActiveMask // Load ActiveMask for 2nd active byte group
mov ebx, diff
movq mm6, mm7
mov edi, row
psllq mm6, ShiftBpp // Move mask in mm6 to cover 3rd active
// byte group
mov esi, edi // lp = row
movq mm5, mm6
add edi, bpp // rp = row + bpp
psllq mm5, ShiftBpp // Move mask in mm5 to cover 4th active
// byte group
// PRIME the pump (load the first Raw(x-bpp) data set
movq mm1, [edi+ebx-8]
dsub2lp:
// Add 1st active group
psrlq mm1, ShiftRem // Shift data for adding 1st bpp bytes
// no need for mask; shift clears inactive
// bytes
movq mm0, [edi+ebx]
paddb mm0, mm1
// Add 2nd active group
movq mm1, mm0 // mov updated Raws to mm1
psllq mm1, ShiftBpp // shift data to position correctly
pand mm1, mm7 // mask to use only 2nd active group
paddb mm0, mm1
// Add 3rd active group
movq mm1, mm0 // mov updated Raws to mm1
psllq mm1, ShiftBpp // shift data to position correctly
pand mm1, mm6 // mask to use only 3rd active group
paddb mm0, mm1
// Add 4th active group
movq mm1, mm0 // mov updated Raws to mm1
psllq mm1, ShiftBpp // shift data to position correctly
pand mm1, mm5 // mask to use only 4th active group
add ebx, 8
paddb mm0, mm1
cmp ebx, MMXLength
movq [edi+ebx-8], mm0 // Write updated Raws back to array
movq mm1, mm0 // Prep for doing 1st add at top of loop
jb dsub2lp
} // end _asm block
}
break;
case 8:
{
_asm {
mov edi, row
mov ebx, diff
mov esi, edi // lp = row
add edi, bpp // rp = row + bpp
mov ecx, MMXLength
movq mm7, [edi+ebx-8] // PRIME the pump (load the first
// Raw(x-bpp) data set
and ecx, 0x0000003f // calc bytes over mult of 64
dsub8lp:
movq mm0, [edi+ebx] // Load Sub(x) for 1st 8 bytes
paddb mm0, mm7
movq mm1, [edi+ebx+8] // Load Sub(x) for 2nd 8 bytes
movq [edi+ebx], mm0 // Write Raw(x) for 1st 8 bytes
// Now mm0 will be used as Raw(x-bpp) for
// the 2nd group of 8 bytes. This will be
// repeated for each group of 8 bytes with
// the 8th group being used as the Raw(x-bpp)
// for the 1st group of the next loop.
paddb mm1, mm0
movq mm2, [edi+ebx+16] // Load Sub(x) for 3rd 8 bytes
movq [edi+ebx+8], mm1 // Write Raw(x) for 2nd 8 bytes
paddb mm2, mm1
movq mm3, [edi+ebx+24] // Load Sub(x) for 4th 8 bytes
movq [edi+ebx+16], mm2 // Write Raw(x) for 3rd 8 bytes
paddb mm3, mm2
movq mm4, [edi+ebx+32] // Load Sub(x) for 5th 8 bytes
movq [edi+ebx+24], mm3 // Write Raw(x) for 4th 8 bytes
paddb mm4, mm3
movq mm5, [edi+ebx+40] // Load Sub(x) for 6th 8 bytes
movq [edi+ebx+32], mm4 // Write Raw(x) for 5th 8 bytes
paddb mm5, mm4
movq mm6, [edi+ebx+48] // Load Sub(x) for 7th 8 bytes
movq [edi+ebx+40], mm5 // Write Raw(x) for 6th 8 bytes
paddb mm6, mm5
movq mm7, [edi+ebx+56] // Load Sub(x) for 8th 8 bytes
movq [edi+ebx+48], mm6 // Write Raw(x) for 7th 8 bytes
add ebx, 64
paddb mm7, mm6
cmp ebx, ecx
movq [edi+ebx-8], mm7 // Write Raw(x) for 8th 8 bytes
jb dsub8lp
cmp ebx, MMXLength
jnb dsub8lt8
dsub8lpA:
movq mm0, [edi+ebx]
add ebx, 8
paddb mm0, mm7
cmp ebx, MMXLength
movq [edi+ebx-8], mm0 // use -8 to offset early add to ebx
movq mm7, mm0 // Move calculated Raw(x) data to mm1 to
// be the new Raw(x-bpp) for the next loop
jb dsub8lpA
dsub8lt8:
} // end _asm block
}
break;
 
default: // bpp greater than 8 bytes
{
_asm {
mov ebx, diff
mov edi, row
mov esi, edi // lp = row
add edi, bpp // rp = row + bpp
dsubAlp:
movq mm0, [edi+ebx]
movq mm1, [esi+ebx]
add ebx, 8
paddb mm0, mm1
cmp ebx, MMXLength
movq [edi+ebx-8], mm0 // mov does not affect flags; -8 to offset
// add ebx
jb dsubAlp
} // end _asm block
}
break;
 
} // end switch ( bpp )
 
_asm {
mov ebx, MMXLength
mov edi, row
cmp ebx, FullLength
jnb dsubend
mov esi, edi // lp = row
xor eax, eax
add edi, bpp // rp = row + bpp
dsublp2:
mov al, [esi+ebx]
add [edi+ebx], al
inc ebx
cmp ebx, FullLength
jb dsublp2
dsubend:
emms // End MMX instructions; prep for possible FP instrs.
} // end _asm block
}
 
// Optimized code for PNG Up filter decoder
void /* PRIVATE */
png_read_filter_row_mmx_up(png_row_infop row_info, png_bytep row,
png_bytep prev_row)
{
png_uint_32 len;
len = row_info->rowbytes; // # of bytes to filter
_asm {
mov edi, row
// get # of bytes to alignment
mov ecx, edi
xor ebx, ebx
add ecx, 0x7
xor eax, eax
and ecx, 0xfffffff8
mov esi, prev_row
sub ecx, edi
jz dupgo
// fix alignment
duplp1:
mov al, [edi+ebx]
add al, [esi+ebx]
inc ebx
cmp ebx, ecx
mov [edi + ebx-1], al // mov does not affect flags; -1 to offset inc ebx
jb duplp1
dupgo:
mov ecx, len
mov edx, ecx
sub edx, ebx // subtract alignment fix
and edx, 0x0000003f // calc bytes over mult of 64
sub ecx, edx // drop over bytes from length
// Unrolled loop - use all MMX registers and interleave to reduce
// number of branch instructions (loops) and reduce partial stalls
duploop:
movq mm1, [esi+ebx]
movq mm0, [edi+ebx]
movq mm3, [esi+ebx+8]
paddb mm0, mm1
movq mm2, [edi+ebx+8]
movq [edi+ebx], mm0
paddb mm2, mm3
movq mm5, [esi+ebx+16]
movq [edi+ebx+8], mm2
movq mm4, [edi+ebx+16]
movq mm7, [esi+ebx+24]
paddb mm4, mm5
movq mm6, [edi+ebx+24]
movq [edi+ebx+16], mm4
paddb mm6, mm7
movq mm1, [esi+ebx+32]
movq [edi+ebx+24], mm6
movq mm0, [edi+ebx+32]
movq mm3, [esi+ebx+40]
paddb mm0, mm1
movq mm2, [edi+ebx+40]
movq [edi+ebx+32], mm0
paddb mm2, mm3
movq mm5, [esi+ebx+48]
movq [edi+ebx+40], mm2
movq mm4, [edi+ebx+48]
movq mm7, [esi+ebx+56]
paddb mm4, mm5
movq mm6, [edi+ebx+56]
movq [edi+ebx+48], mm4
add ebx, 64
paddb mm6, mm7
cmp ebx, ecx
movq [edi+ebx-8], mm6 // (+56)movq does not affect flags;
// -8 to offset add ebx
jb duploop
 
cmp edx, 0 // Test for bytes over mult of 64
jz dupend
 
 
// 2 lines added by lcreeve@netins.net
// (mail 11 Jul 98 in png-implement list)
cmp edx, 8 //test for less than 8 bytes
jb duplt8
 
 
add ecx, edx
and edx, 0x00000007 // calc bytes over mult of 8
sub ecx, edx // drop over bytes from length
jz duplt8
// Loop using MMX registers mm0 & mm1 to update 8 bytes simultaneously
duplpA:
movq mm1, [esi+ebx]
movq mm0, [edi+ebx]
add ebx, 8
paddb mm0, mm1
cmp ebx, ecx
movq [edi+ebx-8], mm0 // movq does not affect flags; -8 to offset add ebx
jb duplpA
cmp edx, 0 // Test for bytes over mult of 8
jz dupend
duplt8:
xor eax, eax
add ecx, edx // move over byte count into counter
// Loop using x86 registers to update remaining bytes
duplp2:
mov al, [edi + ebx]
add al, [esi + ebx]
inc ebx
cmp ebx, ecx
mov [edi + ebx-1], al // mov does not affect flags; -1 to offset inc ebx
jb duplp2
dupend:
// Conversion of filtered row completed
emms // End MMX instructions; prep for possible FP instrs.
} // end _asm block
}
 
 
// Optimized png_read_filter_row routines
void /* PRIVATE */
png_read_filter_row(png_structp png_ptr, png_row_infop row_info, png_bytep
row, png_bytep prev_row, int filter)
{
#ifdef PNG_DEBUG
char filnm[10];
#endif
 
if (mmx_supported == 2) {
/* this should have happened in png_init_mmx_flags() already */
png_warning(png_ptr, "asm_flags may not have been initialized");
png_mmx_support();
}
 
#ifdef PNG_DEBUG
png_debug(1, "in png_read_filter_row\n");
switch (filter)
{
case 0: sprintf(filnm, "none");
break;
case 1: sprintf(filnm, "sub-%s",
(png_ptr->asm_flags & PNG_ASM_FLAG_MMX_READ_FILTER_SUB)? "MMX" : "x86");
break;
case 2: sprintf(filnm, "up-%s",
(png_ptr->asm_flags & PNG_ASM_FLAG_MMX_READ_FILTER_UP)? "MMX" : "x86");
break;
case 3: sprintf(filnm, "avg-%s",
(png_ptr->asm_flags & PNG_ASM_FLAG_MMX_READ_FILTER_AVG)? "MMX" : "x86");
break;
case 4: sprintf(filnm, "Paeth-%s",
(png_ptr->asm_flags & PNG_ASM_FLAG_MMX_READ_FILTER_PAETH)? "MMX":"x86");
break;
default: sprintf(filnm, "unknw");
break;
}
png_debug2(0,"row=%5d, %s, ", png_ptr->row_number, filnm);
png_debug2(0, "pd=%2d, b=%d, ", (int)row_info->pixel_depth,
(int)((row_info->pixel_depth + 7) >> 3));
png_debug1(0,"len=%8d, ", row_info->rowbytes);
#endif /* PNG_DEBUG */
 
switch (filter)
{
case PNG_FILTER_VALUE_NONE:
break;
 
case PNG_FILTER_VALUE_SUB:
{
if ((png_ptr->asm_flags & PNG_ASM_FLAG_MMX_READ_FILTER_SUB) &&
(row_info->pixel_depth >= png_ptr->mmx_bitdepth_threshold) &&
(row_info->rowbytes >= png_ptr->mmx_rowbytes_threshold))
{
png_read_filter_row_mmx_sub(row_info, row);
}
else
{
png_uint_32 i;
png_uint_32 istop = row_info->rowbytes;
png_uint_32 bpp = (row_info->pixel_depth + 7) >> 3;
png_bytep rp = row + bpp;
png_bytep lp = row;
 
for (i = bpp; i < istop; i++)
{
*rp = (png_byte)(((int)(*rp) + (int)(*lp++)) & 0xff);
rp++;
}
}
break;
}
 
case PNG_FILTER_VALUE_UP:
{
if ((png_ptr->asm_flags & PNG_ASM_FLAG_MMX_READ_FILTER_UP) &&
(row_info->pixel_depth >= png_ptr->mmx_bitdepth_threshold) &&
(row_info->rowbytes >= png_ptr->mmx_rowbytes_threshold))
{
png_read_filter_row_mmx_up(row_info, row, prev_row);
}
else
{
png_uint_32 i;
png_uint_32 istop = row_info->rowbytes;
png_bytep rp = row;
png_bytep pp = prev_row;
 
for (i = 0; i < istop; ++i)
{
*rp = (png_byte)(((int)(*rp) + (int)(*pp++)) & 0xff);
rp++;
}
}
break;
}
 
case PNG_FILTER_VALUE_AVG:
{
if ((png_ptr->asm_flags & PNG_ASM_FLAG_MMX_READ_FILTER_AVG) &&
(row_info->pixel_depth >= png_ptr->mmx_bitdepth_threshold) &&
(row_info->rowbytes >= png_ptr->mmx_rowbytes_threshold))
{
png_read_filter_row_mmx_avg(row_info, row, prev_row);
}
else
{
png_uint_32 i;
png_bytep rp = row;
png_bytep pp = prev_row;
png_bytep lp = row;
png_uint_32 bpp = (row_info->pixel_depth + 7) >> 3;
png_uint_32 istop = row_info->rowbytes - bpp;
 
for (i = 0; i < bpp; i++)
{
*rp = (png_byte)(((int)(*rp) +
((int)(*pp++) >> 1)) & 0xff);
rp++;
}
 
for (i = 0; i < istop; i++)
{
*rp = (png_byte)(((int)(*rp) +
((int)(*pp++ + *lp++) >> 1)) & 0xff);
rp++;
}
}
break;
}
 
case PNG_FILTER_VALUE_PAETH:
{
if ((png_ptr->asm_flags & PNG_ASM_FLAG_MMX_READ_FILTER_PAETH) &&
(row_info->pixel_depth >= png_ptr->mmx_bitdepth_threshold) &&
(row_info->rowbytes >= png_ptr->mmx_rowbytes_threshold))
{
png_read_filter_row_mmx_paeth(row_info, row, prev_row);
}
else
{
png_uint_32 i;
png_bytep rp = row;
png_bytep pp = prev_row;
png_bytep lp = row;
png_bytep cp = prev_row;
png_uint_32 bpp = (row_info->pixel_depth + 7) >> 3;
png_uint_32 istop=row_info->rowbytes - bpp;
 
for (i = 0; i < bpp; i++)
{
*rp = (png_byte)(((int)(*rp) + (int)(*pp++)) & 0xff);
rp++;
}
 
for (i = 0; i < istop; i++) // use leftover rp,pp
{
int a, b, c, pa, pb, pc, p;
 
a = *lp++;
b = *pp++;
c = *cp++;
 
p = b - c;
pc = a - c;
 
#ifdef PNG_USE_ABS
pa = abs(p);
pb = abs(pc);
pc = abs(p + pc);
#else
pa = p < 0 ? -p : p;
pb = pc < 0 ? -pc : pc;
pc = (p + pc) < 0 ? -(p + pc) : p + pc;
#endif
 
/*
if (pa <= pb && pa <= pc)
p = a;
else if (pb <= pc)
p = b;
else
p = c;
*/
 
p = (pa <= pb && pa <=pc) ? a : (pb <= pc) ? b : c;
 
*rp = (png_byte)(((int)(*rp) + p) & 0xff);
rp++;
}
}
break;
}
 
default:
png_warning(png_ptr, "Ignoring bad row filter type");
*row=0;
break;
}
}
 
#endif /* PNG_ASSEMBLER_CODE_SUPPORTED && PNG_USE_PNGVCRD */
/shark/trunk/ports/png/pngread.c
0,0 → 1,1424
 
/* pngread.c - read a PNG file
*
* libpng 1.2.5 - October 3, 2002
* For conditions of distribution and use, see copyright notice in png.h
* Copyright (c) 1998-2002 Glenn Randers-Pehrson
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
*
* This file contains routines that an application calls directly to
* read a PNG file or stream.
*/
 
#define PNG_INTERNAL
#include "png.h"
 
/* Create a PNG structure for reading, and allocate any memory needed. */
png_structp PNGAPI
png_create_read_struct(png_const_charp user_png_ver, png_voidp error_ptr,
png_error_ptr error_fn, png_error_ptr warn_fn)
{
 
#ifdef PNG_USER_MEM_SUPPORTED
return (png_create_read_struct_2(user_png_ver, error_ptr, error_fn,
warn_fn, png_voidp_NULL, png_malloc_ptr_NULL, png_free_ptr_NULL));
}
 
/* Alternate create PNG structure for reading, and allocate any memory needed. */
png_structp PNGAPI
png_create_read_struct_2(png_const_charp user_png_ver, png_voidp error_ptr,
png_error_ptr error_fn, png_error_ptr warn_fn, png_voidp mem_ptr,
png_malloc_ptr malloc_fn, png_free_ptr free_fn)
{
#endif /* PNG_USER_MEM_SUPPORTED */
 
png_structp png_ptr;
 
#ifdef PNG_SETJMP_SUPPORTED
#ifdef USE_FAR_KEYWORD
jmp_buf jmpbuf;
#endif
#endif
 
int i;
 
png_debug(1, "in png_create_read_struct\n");
#ifdef PNG_USER_MEM_SUPPORTED
png_ptr = (png_structp)png_create_struct_2(PNG_STRUCT_PNG,
(png_malloc_ptr)malloc_fn, (png_voidp)mem_ptr);
#else
png_ptr = (png_structp)png_create_struct(PNG_STRUCT_PNG);
#endif
if (png_ptr == NULL)
return (NULL);
 
#if !defined(PNG_1_0_X)
#ifdef PNG_ASSEMBLER_CODE_SUPPORTED
png_init_mmx_flags(png_ptr); /* 1.2.0 addition */
#endif
#endif /* PNG_1_0_X */
 
#ifdef PNG_SETJMP_SUPPORTED
#ifdef USE_FAR_KEYWORD
if (setjmp(jmpbuf))
#else
if (setjmp(png_ptr->jmpbuf))
#endif
{
png_free(png_ptr, png_ptr->zbuf);
png_ptr->zbuf=NULL;
#ifdef PNG_USER_MEM_SUPPORTED
png_destroy_struct_2((png_voidp)png_ptr,
(png_free_ptr)free_fn, (png_voidp)mem_ptr);
#else
png_destroy_struct((png_voidp)png_ptr);
#endif
return (NULL);
}
#ifdef USE_FAR_KEYWORD
png_memcpy(png_ptr->jmpbuf,jmpbuf,sizeof(jmp_buf));
#endif
#endif
 
#ifdef PNG_USER_MEM_SUPPORTED
png_set_mem_fn(png_ptr, mem_ptr, malloc_fn, free_fn);
#endif
 
png_set_error_fn(png_ptr, error_ptr, error_fn, warn_fn);
 
i=0;
do
{
if(user_png_ver[i] != png_libpng_ver[i])
png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH;
} while (png_libpng_ver[i++]);
 
if (png_ptr->flags & PNG_FLAG_LIBRARY_MISMATCH)
{
/* Libpng 0.90 and later are binary incompatible with libpng 0.89, so
* we must recompile any applications that use any older library version.
* For versions after libpng 1.0, we will be compatible, so we need
* only check the first digit.
*/
if (user_png_ver == NULL || user_png_ver[0] != png_libpng_ver[0] ||
(user_png_ver[0] == '1' && user_png_ver[2] != png_libpng_ver[2]) ||
(user_png_ver[0] == '0' && user_png_ver[2] < '9'))
{
#if !defined(PNG_NO_STDIO) && !defined(_WIN32_WCE)
char msg[80];
if (user_png_ver)
{
sprintf(msg, "Application was compiled with png.h from libpng-%.20s",
user_png_ver);
png_warning(png_ptr, msg);
}
sprintf(msg, "Application is running with png.c from libpng-%.20s",
png_libpng_ver);
png_warning(png_ptr, msg);
#endif
#ifdef PNG_ERROR_NUMBERS_SUPPORTED
png_ptr->flags=0;
#endif
png_error(png_ptr,
"Incompatible libpng version in application and library");
}
}
 
/* initialize zbuf - compression buffer */
png_ptr->zbuf_size = PNG_ZBUF_SIZE;
png_ptr->zbuf = (png_bytep)png_malloc(png_ptr,
(png_uint_32)png_ptr->zbuf_size);
png_ptr->zstream.zalloc = png_zalloc;
png_ptr->zstream.zfree = png_zfree;
png_ptr->zstream.opaque = (voidpf)png_ptr;
 
switch (inflateInit(&png_ptr->zstream))
{
case Z_OK: /* Do nothing */ break;
case Z_MEM_ERROR:
case Z_STREAM_ERROR: png_error(png_ptr, "zlib memory error"); break;
case Z_VERSION_ERROR: png_error(png_ptr, "zlib version error"); break;
default: png_error(png_ptr, "Unknown zlib error");
}
 
png_ptr->zstream.next_out = png_ptr->zbuf;
png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size;
 
png_set_read_fn(png_ptr, png_voidp_NULL, png_rw_ptr_NULL);
 
#ifdef PNG_SETJMP_SUPPORTED
/* Applications that neglect to set up their own setjmp() and then encounter
a png_error() will longjmp here. Since the jmpbuf is then meaningless we
abort instead of returning. */
#ifdef USE_FAR_KEYWORD
if (setjmp(jmpbuf))
PNG_ABORT();
png_memcpy(png_ptr->jmpbuf,jmpbuf,sizeof(jmp_buf));
#else
if (setjmp(png_ptr->jmpbuf))
PNG_ABORT();
#endif
#endif
return (png_ptr);
}
 
/* Initialize PNG structure for reading, and allocate any memory needed.
This interface is deprecated in favour of the png_create_read_struct(),
and it will eventually disappear. */
#undef png_read_init
void PNGAPI
png_read_init(png_structp png_ptr)
{
/* We only come here via pre-1.0.7-compiled applications */
png_read_init_2(png_ptr, "1.0.6 or earlier", 0, 0);
}
 
void PNGAPI
png_read_init_2(png_structp png_ptr, png_const_charp user_png_ver,
png_size_t png_struct_size, png_size_t png_info_size)
{
/* We only come here via pre-1.0.12-compiled applications */
#if !defined(PNG_NO_STDIO) && !defined(_WIN32_WCE)
if(sizeof(png_struct) > png_struct_size || sizeof(png_info) > png_info_size)
{
char msg[80];
png_ptr->warning_fn=NULL;
if (user_png_ver)
{
sprintf(msg, "Application was compiled with png.h from libpng-%.20s",
user_png_ver);
png_warning(png_ptr, msg);
}
sprintf(msg, "Application is running with png.c from libpng-%.20s",
png_libpng_ver);
png_warning(png_ptr, msg);
}
#endif
if(sizeof(png_struct) > png_struct_size)
{
png_ptr->error_fn=NULL;
#ifdef PNG_ERROR_NUMBERS_SUPPORTED
png_ptr->flags=0;
#endif
png_error(png_ptr,
"The png struct allocated by the application for reading is too small.");
}
if(sizeof(png_info) > png_info_size)
{
png_ptr->error_fn=NULL;
#ifdef PNG_ERROR_NUMBERS_SUPPORTED
png_ptr->flags=0;
#endif
png_error(png_ptr,
"The info struct allocated by application for reading is too small.");
}
png_read_init_3(&png_ptr, user_png_ver, png_struct_size);
}
 
void PNGAPI
png_read_init_3(png_structpp ptr_ptr, png_const_charp user_png_ver,
png_size_t png_struct_size)
{
#ifdef PNG_SETJMP_SUPPORTED
jmp_buf tmp_jmp; /* to save current jump buffer */
#endif
 
int i=0;
 
png_structp png_ptr=*ptr_ptr;
 
do
{
if(user_png_ver[i] != png_libpng_ver[i])
{
#ifdef PNG_LEGACY_SUPPORTED
png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH;
#else
png_ptr->warning_fn=NULL;
png_warning(png_ptr,
"Application uses deprecated png_read_init() and should be recompiled.");
break;
#endif
}
} while (png_libpng_ver[i++]);
 
png_debug(1, "in png_read_init_3\n");
 
#ifdef PNG_SETJMP_SUPPORTED
/* save jump buffer and error functions */
png_memcpy(tmp_jmp, png_ptr->jmpbuf, sizeof (jmp_buf));
#endif
 
if(sizeof(png_struct) > png_struct_size)
{
png_destroy_struct(png_ptr);
*ptr_ptr = (png_structp)png_create_struct(PNG_STRUCT_PNG);
png_ptr = *ptr_ptr;
}
 
/* reset all variables to 0 */
png_memset(png_ptr, 0, sizeof (png_struct));
 
#ifdef PNG_SETJMP_SUPPORTED
/* restore jump buffer */
png_memcpy(png_ptr->jmpbuf, tmp_jmp, sizeof (jmp_buf));
#endif
 
/* initialize zbuf - compression buffer */
png_ptr->zbuf_size = PNG_ZBUF_SIZE;
png_ptr->zbuf = (png_bytep)png_malloc(png_ptr,
(png_uint_32)png_ptr->zbuf_size);
png_ptr->zstream.zalloc = png_zalloc;
png_ptr->zstream.zfree = png_zfree;
png_ptr->zstream.opaque = (voidpf)png_ptr;
 
switch (inflateInit(&png_ptr->zstream))
{
case Z_OK: /* Do nothing */ break;
case Z_MEM_ERROR:
case Z_STREAM_ERROR: png_error(png_ptr, "zlib memory"); break;
case Z_VERSION_ERROR: png_error(png_ptr, "zlib version"); break;
default: png_error(png_ptr, "Unknown zlib error");
}
 
png_ptr->zstream.next_out = png_ptr->zbuf;
png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size;
 
png_set_read_fn(png_ptr, png_voidp_NULL, png_rw_ptr_NULL);
}
 
/* Read the information before the actual image data. This has been
* changed in v0.90 to allow reading a file that already has the magic
* bytes read from the stream. You can tell libpng how many bytes have
* been read from the beginning of the stream (up to the maximum of 8)
* via png_set_sig_bytes(), and we will only check the remaining bytes
* here. The application can then have access to the signature bytes we
* read if it is determined that this isn't a valid PNG file.
*/
void PNGAPI
png_read_info(png_structp png_ptr, png_infop info_ptr)
{
png_debug(1, "in png_read_info\n");
/* If we haven't checked all of the PNG signature bytes, do so now. */
if (png_ptr->sig_bytes < 8)
{
png_size_t num_checked = png_ptr->sig_bytes,
num_to_check = 8 - num_checked;
 
png_read_data(png_ptr, &(info_ptr->signature[num_checked]), num_to_check);
png_ptr->sig_bytes = 8;
 
if (png_sig_cmp(info_ptr->signature, num_checked, num_to_check))
{
if (num_checked < 4 &&
png_sig_cmp(info_ptr->signature, num_checked, num_to_check - 4))
png_error(png_ptr, "Not a PNG file");
else
png_error(png_ptr, "PNG file corrupted by ASCII conversion");
}
if (num_checked < 3)
png_ptr->mode |= PNG_HAVE_PNG_SIGNATURE;
}
 
for(;;)
{
#ifdef PNG_USE_LOCAL_ARRAYS
PNG_IHDR;
PNG_IDAT;
PNG_IEND;
PNG_PLTE;
#if defined(PNG_READ_bKGD_SUPPORTED)
PNG_bKGD;
#endif
#if defined(PNG_READ_cHRM_SUPPORTED)
PNG_cHRM;
#endif
#if defined(PNG_READ_gAMA_SUPPORTED)
PNG_gAMA;
#endif
#if defined(PNG_READ_hIST_SUPPORTED)
PNG_hIST;
#endif
#if defined(PNG_READ_iCCP_SUPPORTED)
PNG_iCCP;
#endif
#if defined(PNG_READ_iTXt_SUPPORTED)
PNG_iTXt;
#endif
#if defined(PNG_READ_oFFs_SUPPORTED)
PNG_oFFs;
#endif
#if defined(PNG_READ_pCAL_SUPPORTED)
PNG_pCAL;
#endif
#if defined(PNG_READ_pHYs_SUPPORTED)
PNG_pHYs;
#endif
#if defined(PNG_READ_sBIT_SUPPORTED)
PNG_sBIT;
#endif
#if defined(PNG_READ_sCAL_SUPPORTED)
PNG_sCAL;
#endif
#if defined(PNG_READ_sPLT_SUPPORTED)
PNG_sPLT;
#endif
#if defined(PNG_READ_sRGB_SUPPORTED)
PNG_sRGB;
#endif
#if defined(PNG_READ_tEXt_SUPPORTED)
PNG_tEXt;
#endif
#if defined(PNG_READ_tIME_SUPPORTED)
PNG_tIME;
#endif
#if defined(PNG_READ_tRNS_SUPPORTED)
PNG_tRNS;
#endif
#if defined(PNG_READ_zTXt_SUPPORTED)
PNG_zTXt;
#endif
#endif /* PNG_GLOBAL_ARRAYS */
png_byte chunk_length[4];
png_uint_32 length;
 
png_read_data(png_ptr, chunk_length, 4);
length = png_get_uint_32(chunk_length);
 
png_reset_crc(png_ptr);
png_crc_read(png_ptr, png_ptr->chunk_name, 4);
 
png_debug2(0, "Reading %s chunk, length=%lu.\n", png_ptr->chunk_name,
length);
 
if (length > PNG_MAX_UINT)
png_error(png_ptr, "Invalid chunk length.");
 
/* This should be a binary subdivision search or a hash for
* matching the chunk name rather than a linear search.
*/
if (!png_memcmp(png_ptr->chunk_name, png_IHDR, 4))
png_handle_IHDR(png_ptr, info_ptr, length);
else if (!png_memcmp(png_ptr->chunk_name, png_IEND, 4))
png_handle_IEND(png_ptr, info_ptr, length);
#ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED
else if (png_handle_as_unknown(png_ptr, png_ptr->chunk_name))
{
if (!png_memcmp(png_ptr->chunk_name, png_IDAT, 4))
png_ptr->mode |= PNG_HAVE_IDAT;
png_handle_unknown(png_ptr, info_ptr, length);
if (!png_memcmp(png_ptr->chunk_name, png_PLTE, 4))
png_ptr->mode |= PNG_HAVE_PLTE;
else if (!png_memcmp(png_ptr->chunk_name, png_IDAT, 4))
{
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before IDAT");
else if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE &&
!(png_ptr->mode & PNG_HAVE_PLTE))
png_error(png_ptr, "Missing PLTE before IDAT");
break;
}
}
#endif
else if (!png_memcmp(png_ptr->chunk_name, png_PLTE, 4))
png_handle_PLTE(png_ptr, info_ptr, length);
else if (!png_memcmp(png_ptr->chunk_name, png_IDAT, 4))
{
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before IDAT");
else if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE &&
!(png_ptr->mode & PNG_HAVE_PLTE))
png_error(png_ptr, "Missing PLTE before IDAT");
 
png_ptr->idat_size = length;
png_ptr->mode |= PNG_HAVE_IDAT;
break;
}
#if defined(PNG_READ_bKGD_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_bKGD, 4))
png_handle_bKGD(png_ptr, info_ptr, length);
#endif
#if defined(PNG_READ_cHRM_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_cHRM, 4))
png_handle_cHRM(png_ptr, info_ptr, length);
#endif
#if defined(PNG_READ_gAMA_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_gAMA, 4))
png_handle_gAMA(png_ptr, info_ptr, length);
#endif
#if defined(PNG_READ_hIST_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_hIST, 4))
png_handle_hIST(png_ptr, info_ptr, length);
#endif
#if defined(PNG_READ_oFFs_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_oFFs, 4))
png_handle_oFFs(png_ptr, info_ptr, length);
#endif
#if defined(PNG_READ_pCAL_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_pCAL, 4))
png_handle_pCAL(png_ptr, info_ptr, length);
#endif
#if defined(PNG_READ_sCAL_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_sCAL, 4))
png_handle_sCAL(png_ptr, info_ptr, length);
#endif
#if defined(PNG_READ_pHYs_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_pHYs, 4))
png_handle_pHYs(png_ptr, info_ptr, length);
#endif
#if defined(PNG_READ_sBIT_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_sBIT, 4))
png_handle_sBIT(png_ptr, info_ptr, length);
#endif
#if defined(PNG_READ_sRGB_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_sRGB, 4))
png_handle_sRGB(png_ptr, info_ptr, length);
#endif
#if defined(PNG_READ_iCCP_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_iCCP, 4))
png_handle_iCCP(png_ptr, info_ptr, length);
#endif
#if defined(PNG_READ_sPLT_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_sPLT, 4))
png_handle_sPLT(png_ptr, info_ptr, length);
#endif
#if defined(PNG_READ_tEXt_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_tEXt, 4))
png_handle_tEXt(png_ptr, info_ptr, length);
#endif
#if defined(PNG_READ_tIME_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_tIME, 4))
png_handle_tIME(png_ptr, info_ptr, length);
#endif
#if defined(PNG_READ_tRNS_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_tRNS, 4))
png_handle_tRNS(png_ptr, info_ptr, length);
#endif
#if defined(PNG_READ_zTXt_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_zTXt, 4))
png_handle_zTXt(png_ptr, info_ptr, length);
#endif
#if defined(PNG_READ_iTXt_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_iTXt, 4))
png_handle_iTXt(png_ptr, info_ptr, length);
#endif
else
png_handle_unknown(png_ptr, info_ptr, length);
}
}
 
/* optional call to update the users info_ptr structure */
void PNGAPI
png_read_update_info(png_structp png_ptr, png_infop info_ptr)
{
png_debug(1, "in png_read_update_info\n");
if (!(png_ptr->flags & PNG_FLAG_ROW_INIT))
png_read_start_row(png_ptr);
else
png_warning(png_ptr,
"Ignoring extra png_read_update_info() call; row buffer not reallocated");
png_read_transform_info(png_ptr, info_ptr);
}
 
/* Initialize palette, background, etc, after transformations
* are set, but before any reading takes place. This allows
* the user to obtain a gamma-corrected palette, for example.
* If the user doesn't call this, we will do it ourselves.
*/
void PNGAPI
png_start_read_image(png_structp png_ptr)
{
png_debug(1, "in png_start_read_image\n");
if (!(png_ptr->flags & PNG_FLAG_ROW_INIT))
png_read_start_row(png_ptr);
}
 
void PNGAPI
png_read_row(png_structp png_ptr, png_bytep row, png_bytep dsp_row)
{
#ifdef PNG_USE_LOCAL_ARRAYS
PNG_IDAT;
const int png_pass_dsp_mask[7] = {0xff, 0x0f, 0xff, 0x33, 0xff, 0x55, 0xff};
const int png_pass_mask[7] = {0x80, 0x08, 0x88, 0x22, 0xaa, 0x55, 0xff};
#endif
int ret;
png_debug2(1, "in png_read_row (row %lu, pass %d)\n",
png_ptr->row_number, png_ptr->pass);
if (!(png_ptr->flags & PNG_FLAG_ROW_INIT))
png_read_start_row(png_ptr);
if (png_ptr->row_number == 0 && png_ptr->pass == 0)
{
/* check for transforms that have been set but were defined out */
#if defined(PNG_WRITE_INVERT_SUPPORTED) && !defined(PNG_READ_INVERT_SUPPORTED)
if (png_ptr->transformations & PNG_INVERT_MONO)
png_warning(png_ptr, "PNG_READ_INVERT_SUPPORTED is not defined.");
#endif
#if defined(PNG_WRITE_FILLER_SUPPORTED) && !defined(PNG_READ_FILLER_SUPPORTED)
if (png_ptr->transformations & PNG_FILLER)
png_warning(png_ptr, "PNG_READ_FILLER_SUPPORTED is not defined.");
#endif
#if defined(PNG_WRITE_PACKSWAP_SUPPORTED) && !defined(PNG_READ_PACKSWAP_SUPPORTED)
if (png_ptr->transformations & PNG_PACKSWAP)
png_warning(png_ptr, "PNG_READ_PACKSWAP_SUPPORTED is not defined.");
#endif
#if defined(PNG_WRITE_PACK_SUPPORTED) && !defined(PNG_READ_PACK_SUPPORTED)
if (png_ptr->transformations & PNG_PACK)
png_warning(png_ptr, "PNG_READ_PACK_SUPPORTED is not defined.");
#endif
#if defined(PNG_WRITE_SHIFT_SUPPORTED) && !defined(PNG_READ_SHIFT_SUPPORTED)
if (png_ptr->transformations & PNG_SHIFT)
png_warning(png_ptr, "PNG_READ_SHIFT_SUPPORTED is not defined.");
#endif
#if defined(PNG_WRITE_BGR_SUPPORTED) && !defined(PNG_READ_BGR_SUPPORTED)
if (png_ptr->transformations & PNG_BGR)
png_warning(png_ptr, "PNG_READ_BGR_SUPPORTED is not defined.");
#endif
#if defined(PNG_WRITE_SWAP_SUPPORTED) && !defined(PNG_READ_SWAP_SUPPORTED)
if (png_ptr->transformations & PNG_SWAP_BYTES)
png_warning(png_ptr, "PNG_READ_SWAP_SUPPORTED is not defined.");
#endif
}
 
#if defined(PNG_READ_INTERLACING_SUPPORTED)
/* if interlaced and we do not need a new row, combine row and return */
if (png_ptr->interlaced && (png_ptr->transformations & PNG_INTERLACE))
{
switch (png_ptr->pass)
{
case 0:
if (png_ptr->row_number & 0x07)
{
if (dsp_row != NULL)
png_combine_row(png_ptr, dsp_row,
png_pass_dsp_mask[png_ptr->pass]);
png_read_finish_row(png_ptr);
return;
}
break;
case 1:
if ((png_ptr->row_number & 0x07) || png_ptr->width < 5)
{
if (dsp_row != NULL)
png_combine_row(png_ptr, dsp_row,
png_pass_dsp_mask[png_ptr->pass]);
png_read_finish_row(png_ptr);
return;
}
break;
case 2:
if ((png_ptr->row_number & 0x07) != 4)
{
if (dsp_row != NULL && (png_ptr->row_number & 4))
png_combine_row(png_ptr, dsp_row,
png_pass_dsp_mask[png_ptr->pass]);
png_read_finish_row(png_ptr);
return;
}
break;
case 3:
if ((png_ptr->row_number & 3) || png_ptr->width < 3)
{
if (dsp_row != NULL)
png_combine_row(png_ptr, dsp_row,
png_pass_dsp_mask[png_ptr->pass]);
png_read_finish_row(png_ptr);
return;
}
break;
case 4:
if ((png_ptr->row_number & 3) != 2)
{
if (dsp_row != NULL && (png_ptr->row_number & 2))
png_combine_row(png_ptr, dsp_row,
png_pass_dsp_mask[png_ptr->pass]);
png_read_finish_row(png_ptr);
return;
}
break;
case 5:
if ((png_ptr->row_number & 1) || png_ptr->width < 2)
{
if (dsp_row != NULL)
png_combine_row(png_ptr, dsp_row,
png_pass_dsp_mask[png_ptr->pass]);
png_read_finish_row(png_ptr);
return;
}
break;
case 6:
if (!(png_ptr->row_number & 1))
{
png_read_finish_row(png_ptr);
return;
}
break;
}
}
#endif
 
if (!(png_ptr->mode & PNG_HAVE_IDAT))
png_error(png_ptr, "Invalid attempt to read row data");
 
png_ptr->zstream.next_out = png_ptr->row_buf;
png_ptr->zstream.avail_out = (uInt)png_ptr->irowbytes;
do
{
if (!(png_ptr->zstream.avail_in))
{
while (!png_ptr->idat_size)
{
png_byte chunk_length[4];
 
png_crc_finish(png_ptr, 0);
 
png_read_data(png_ptr, chunk_length, 4);
png_ptr->idat_size = png_get_uint_32(chunk_length);
 
if (png_ptr->idat_size > PNG_MAX_UINT)
png_error(png_ptr, "Invalid chunk length.");
 
png_reset_crc(png_ptr);
png_crc_read(png_ptr, png_ptr->chunk_name, 4);
if (png_memcmp(png_ptr->chunk_name, png_IDAT, 4))
png_error(png_ptr, "Not enough image data");
}
png_ptr->zstream.avail_in = (uInt)png_ptr->zbuf_size;
png_ptr->zstream.next_in = png_ptr->zbuf;
if (png_ptr->zbuf_size > png_ptr->idat_size)
png_ptr->zstream.avail_in = (uInt)png_ptr->idat_size;
png_crc_read(png_ptr, png_ptr->zbuf,
(png_size_t)png_ptr->zstream.avail_in);
png_ptr->idat_size -= png_ptr->zstream.avail_in;
}
ret = inflate(&png_ptr->zstream, Z_PARTIAL_FLUSH);
if (ret == Z_STREAM_END)
{
if (png_ptr->zstream.avail_out || png_ptr->zstream.avail_in ||
png_ptr->idat_size)
png_error(png_ptr, "Extra compressed data");
png_ptr->mode |= PNG_AFTER_IDAT;
png_ptr->flags |= PNG_FLAG_ZLIB_FINISHED;
break;
}
if (ret != Z_OK)
png_error(png_ptr, png_ptr->zstream.msg ? png_ptr->zstream.msg :
"Decompression error");
 
} while (png_ptr->zstream.avail_out);
 
png_ptr->row_info.color_type = png_ptr->color_type;
png_ptr->row_info.width = png_ptr->iwidth;
png_ptr->row_info.channels = png_ptr->channels;
png_ptr->row_info.bit_depth = png_ptr->bit_depth;
png_ptr->row_info.pixel_depth = png_ptr->pixel_depth;
png_ptr->row_info.rowbytes = ((png_ptr->row_info.width *
(png_uint_32)png_ptr->row_info.pixel_depth + 7) >> 3);
 
if(png_ptr->row_buf[0])
png_read_filter_row(png_ptr, &(png_ptr->row_info),
png_ptr->row_buf + 1, png_ptr->prev_row + 1,
(int)(png_ptr->row_buf[0]));
 
png_memcpy_check(png_ptr, png_ptr->prev_row, png_ptr->row_buf,
png_ptr->rowbytes + 1);
#if defined(PNG_MNG_FEATURES_SUPPORTED)
if((png_ptr->mng_features_permitted & PNG_FLAG_MNG_FILTER_64) &&
(png_ptr->filter_type == PNG_INTRAPIXEL_DIFFERENCING))
{
/* Intrapixel differencing */
png_do_read_intrapixel(&(png_ptr->row_info), png_ptr->row_buf + 1);
}
#endif
 
if (png_ptr->transformations)
png_do_read_transformations(png_ptr);
 
#if defined(PNG_READ_INTERLACING_SUPPORTED)
/* blow up interlaced rows to full size */
if (png_ptr->interlaced &&
(png_ptr->transformations & PNG_INTERLACE))
{
if (png_ptr->pass < 6)
/* old interface (pre-1.0.9):
png_do_read_interlace(&(png_ptr->row_info),
png_ptr->row_buf + 1, png_ptr->pass, png_ptr->transformations);
*/
png_do_read_interlace(png_ptr);
 
if (dsp_row != NULL)
png_combine_row(png_ptr, dsp_row,
png_pass_dsp_mask[png_ptr->pass]);
if (row != NULL)
png_combine_row(png_ptr, row,
png_pass_mask[png_ptr->pass]);
}
else
#endif
{
if (row != NULL)
png_combine_row(png_ptr, row, 0xff);
if (dsp_row != NULL)
png_combine_row(png_ptr, dsp_row, 0xff);
}
png_read_finish_row(png_ptr);
 
if (png_ptr->read_row_fn != NULL)
(*(png_ptr->read_row_fn))(png_ptr, png_ptr->row_number, png_ptr->pass);
}
 
/* Read one or more rows of image data. If the image is interlaced,
* and png_set_interlace_handling() has been called, the rows need to
* contain the contents of the rows from the previous pass. If the
* image has alpha or transparency, and png_handle_alpha()[*] has been
* called, the rows contents must be initialized to the contents of the
* screen.
*
* "row" holds the actual image, and pixels are placed in it
* as they arrive. If the image is displayed after each pass, it will
* appear to "sparkle" in. "display_row" can be used to display a
* "chunky" progressive image, with finer detail added as it becomes
* available. If you do not want this "chunky" display, you may pass
* NULL for display_row. If you do not want the sparkle display, and
* you have not called png_handle_alpha(), you may pass NULL for rows.
* If you have called png_handle_alpha(), and the image has either an
* alpha channel or a transparency chunk, you must provide a buffer for
* rows. In this case, you do not have to provide a display_row buffer
* also, but you may. If the image is not interlaced, or if you have
* not called png_set_interlace_handling(), the display_row buffer will
* be ignored, so pass NULL to it.
*
* [*] png_handle_alpha() does not exist yet, as of libpng version 1.2.5
*/
 
void PNGAPI
png_read_rows(png_structp png_ptr, png_bytepp row,
png_bytepp display_row, png_uint_32 num_rows)
{
png_uint_32 i;
png_bytepp rp;
png_bytepp dp;
 
png_debug(1, "in png_read_rows\n");
rp = row;
dp = display_row;
if (rp != NULL && dp != NULL)
for (i = 0; i < num_rows; i++)
{
png_bytep rptr = *rp++;
png_bytep dptr = *dp++;
 
png_read_row(png_ptr, rptr, dptr);
}
else if(rp != NULL)
for (i = 0; i < num_rows; i++)
{
png_bytep rptr = *rp;
png_read_row(png_ptr, rptr, png_bytep_NULL);
rp++;
}
else if(dp != NULL)
for (i = 0; i < num_rows; i++)
{
png_bytep dptr = *dp;
png_read_row(png_ptr, png_bytep_NULL, dptr);
dp++;
}
}
 
/* Read the entire image. If the image has an alpha channel or a tRNS
* chunk, and you have called png_handle_alpha()[*], you will need to
* initialize the image to the current image that PNG will be overlaying.
* We set the num_rows again here, in case it was incorrectly set in
* png_read_start_row() by a call to png_read_update_info() or
* png_start_read_image() if png_set_interlace_handling() wasn't called
* prior to either of these functions like it should have been. You can
* only call this function once. If you desire to have an image for
* each pass of a interlaced image, use png_read_rows() instead.
*
* [*] png_handle_alpha() does not exist yet, as of libpng version 1.2.5
*/
void PNGAPI
png_read_image(png_structp png_ptr, png_bytepp image)
{
png_uint_32 i,image_height;
int pass, j;
png_bytepp rp;
 
png_debug(1, "in png_read_image\n");
 
#ifdef PNG_READ_INTERLACING_SUPPORTED
pass = png_set_interlace_handling(png_ptr);
#else
if (png_ptr->interlaced)
png_error(png_ptr,
"Cannot read interlaced image -- interlace handler disabled.");
pass = 1;
#endif
 
 
image_height=png_ptr->height;
png_ptr->num_rows = image_height; /* Make sure this is set correctly */
 
for (j = 0; j < pass; j++)
{
rp = image;
for (i = 0; i < image_height; i++)
{
png_read_row(png_ptr, *rp, png_bytep_NULL);
rp++;
}
}
}
 
/* Read the end of the PNG file. Will not read past the end of the
* file, will verify the end is accurate, and will read any comments
* or time information at the end of the file, if info is not NULL.
*/
void PNGAPI
png_read_end(png_structp png_ptr, png_infop info_ptr)
{
png_byte chunk_length[4];
png_uint_32 length;
 
png_debug(1, "in png_read_end\n");
png_crc_finish(png_ptr, 0); /* Finish off CRC from last IDAT chunk */
 
do
{
#ifdef PNG_USE_LOCAL_ARRAYS
PNG_IHDR;
PNG_IDAT;
PNG_IEND;
PNG_PLTE;
#if defined(PNG_READ_bKGD_SUPPORTED)
PNG_bKGD;
#endif
#if defined(PNG_READ_cHRM_SUPPORTED)
PNG_cHRM;
#endif
#if defined(PNG_READ_gAMA_SUPPORTED)
PNG_gAMA;
#endif
#if defined(PNG_READ_hIST_SUPPORTED)
PNG_hIST;
#endif
#if defined(PNG_READ_iCCP_SUPPORTED)
PNG_iCCP;
#endif
#if defined(PNG_READ_iTXt_SUPPORTED)
PNG_iTXt;
#endif
#if defined(PNG_READ_oFFs_SUPPORTED)
PNG_oFFs;
#endif
#if defined(PNG_READ_pCAL_SUPPORTED)
PNG_pCAL;
#endif
#if defined(PNG_READ_pHYs_SUPPORTED)
PNG_pHYs;
#endif
#if defined(PNG_READ_sBIT_SUPPORTED)
PNG_sBIT;
#endif
#if defined(PNG_READ_sCAL_SUPPORTED)
PNG_sCAL;
#endif
#if defined(PNG_READ_sPLT_SUPPORTED)
PNG_sPLT;
#endif
#if defined(PNG_READ_sRGB_SUPPORTED)
PNG_sRGB;
#endif
#if defined(PNG_READ_tEXt_SUPPORTED)
PNG_tEXt;
#endif
#if defined(PNG_READ_tIME_SUPPORTED)
PNG_tIME;
#endif
#if defined(PNG_READ_tRNS_SUPPORTED)
PNG_tRNS;
#endif
#if defined(PNG_READ_zTXt_SUPPORTED)
PNG_zTXt;
#endif
#endif /* PNG_GLOBAL_ARRAYS */
 
png_read_data(png_ptr, chunk_length, 4);
length = png_get_uint_32(chunk_length);
 
png_reset_crc(png_ptr);
png_crc_read(png_ptr, png_ptr->chunk_name, 4);
 
png_debug1(0, "Reading %s chunk.\n", png_ptr->chunk_name);
 
if (length > PNG_MAX_UINT)
png_error(png_ptr, "Invalid chunk length.");
 
if (!png_memcmp(png_ptr->chunk_name, png_IHDR, 4))
png_handle_IHDR(png_ptr, info_ptr, length);
else if (!png_memcmp(png_ptr->chunk_name, png_IEND, 4))
png_handle_IEND(png_ptr, info_ptr, length);
#ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED
else if (png_handle_as_unknown(png_ptr, png_ptr->chunk_name))
{
if (!png_memcmp(png_ptr->chunk_name, png_IDAT, 4))
{
if (length > 0 || png_ptr->mode & PNG_AFTER_IDAT)
png_error(png_ptr, "Too many IDAT's found");
}
else
png_ptr->mode |= PNG_AFTER_IDAT;
png_handle_unknown(png_ptr, info_ptr, length);
if (!png_memcmp(png_ptr->chunk_name, png_PLTE, 4))
png_ptr->mode |= PNG_HAVE_PLTE;
}
#endif
else if (!png_memcmp(png_ptr->chunk_name, png_IDAT, 4))
{
/* Zero length IDATs are legal after the last IDAT has been
* read, but not after other chunks have been read.
*/
if (length > 0 || png_ptr->mode & PNG_AFTER_IDAT)
png_error(png_ptr, "Too many IDAT's found");
png_crc_finish(png_ptr, length);
}
else if (!png_memcmp(png_ptr->chunk_name, png_PLTE, 4))
png_handle_PLTE(png_ptr, info_ptr, length);
#if defined(PNG_READ_bKGD_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_bKGD, 4))
png_handle_bKGD(png_ptr, info_ptr, length);
#endif
#if defined(PNG_READ_cHRM_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_cHRM, 4))
png_handle_cHRM(png_ptr, info_ptr, length);
#endif
#if defined(PNG_READ_gAMA_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_gAMA, 4))
png_handle_gAMA(png_ptr, info_ptr, length);
#endif
#if defined(PNG_READ_hIST_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_hIST, 4))
png_handle_hIST(png_ptr, info_ptr, length);
#endif
#if defined(PNG_READ_oFFs_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_oFFs, 4))
png_handle_oFFs(png_ptr, info_ptr, length);
#endif
#if defined(PNG_READ_pCAL_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_pCAL, 4))
png_handle_pCAL(png_ptr, info_ptr, length);
#endif
#if defined(PNG_READ_sCAL_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_sCAL, 4))
png_handle_sCAL(png_ptr, info_ptr, length);
#endif
#if defined(PNG_READ_pHYs_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_pHYs, 4))
png_handle_pHYs(png_ptr, info_ptr, length);
#endif
#if defined(PNG_READ_sBIT_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_sBIT, 4))
png_handle_sBIT(png_ptr, info_ptr, length);
#endif
#if defined(PNG_READ_sRGB_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_sRGB, 4))
png_handle_sRGB(png_ptr, info_ptr, length);
#endif
#if defined(PNG_READ_iCCP_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_iCCP, 4))
png_handle_iCCP(png_ptr, info_ptr, length);
#endif
#if defined(PNG_READ_sPLT_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_sPLT, 4))
png_handle_sPLT(png_ptr, info_ptr, length);
#endif
#if defined(PNG_READ_tEXt_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_tEXt, 4))
png_handle_tEXt(png_ptr, info_ptr, length);
#endif
#if defined(PNG_READ_tIME_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_tIME, 4))
png_handle_tIME(png_ptr, info_ptr, length);
#endif
#if defined(PNG_READ_tRNS_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_tRNS, 4))
png_handle_tRNS(png_ptr, info_ptr, length);
#endif
#if defined(PNG_READ_zTXt_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_zTXt, 4))
png_handle_zTXt(png_ptr, info_ptr, length);
#endif
#if defined(PNG_READ_iTXt_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_iTXt, 4))
png_handle_iTXt(png_ptr, info_ptr, length);
#endif
else
png_handle_unknown(png_ptr, info_ptr, length);
} while (!(png_ptr->mode & PNG_HAVE_IEND));
}
 
/* free all memory used by the read */
void PNGAPI
png_destroy_read_struct(png_structpp png_ptr_ptr, png_infopp info_ptr_ptr,
png_infopp end_info_ptr_ptr)
{
png_structp png_ptr = NULL;
png_infop info_ptr = NULL, end_info_ptr = NULL;
#ifdef PNG_USER_MEM_SUPPORTED
png_free_ptr free_fn = NULL;
png_voidp mem_ptr = NULL;
#endif
 
png_debug(1, "in png_destroy_read_struct\n");
if (png_ptr_ptr != NULL)
png_ptr = *png_ptr_ptr;
 
if (info_ptr_ptr != NULL)
info_ptr = *info_ptr_ptr;
 
if (end_info_ptr_ptr != NULL)
end_info_ptr = *end_info_ptr_ptr;
 
#ifdef PNG_USER_MEM_SUPPORTED
free_fn = png_ptr->free_fn;
mem_ptr = png_ptr->mem_ptr;
#endif
 
png_read_destroy(png_ptr, info_ptr, end_info_ptr);
 
if (info_ptr != NULL)
{
#if defined(PNG_TEXT_SUPPORTED)
png_free_data(png_ptr, info_ptr, PNG_FREE_TEXT, -1);
#endif
 
#ifdef PNG_USER_MEM_SUPPORTED
png_destroy_struct_2((png_voidp)info_ptr, (png_free_ptr)free_fn,
(png_voidp)mem_ptr);
#else
png_destroy_struct((png_voidp)info_ptr);
#endif
*info_ptr_ptr = NULL;
}
 
if (end_info_ptr != NULL)
{
#if defined(PNG_READ_TEXT_SUPPORTED)
png_free_data(png_ptr, end_info_ptr, PNG_FREE_TEXT, -1);
#endif
#ifdef PNG_USER_MEM_SUPPORTED
png_destroy_struct_2((png_voidp)end_info_ptr, (png_free_ptr)free_fn,
(png_voidp)mem_ptr);
#else
png_destroy_struct((png_voidp)end_info_ptr);
#endif
*end_info_ptr_ptr = NULL;
}
 
if (png_ptr != NULL)
{
#ifdef PNG_USER_MEM_SUPPORTED
png_destroy_struct_2((png_voidp)png_ptr, (png_free_ptr)free_fn,
(png_voidp)mem_ptr);
#else
png_destroy_struct((png_voidp)png_ptr);
#endif
*png_ptr_ptr = NULL;
}
}
 
/* free all memory used by the read (old method) */
void /* PRIVATE */
png_read_destroy(png_structp png_ptr, png_infop info_ptr, png_infop end_info_ptr)
{
#ifdef PNG_SETJMP_SUPPORTED
jmp_buf tmp_jmp;
#endif
png_error_ptr error_fn;
png_error_ptr warning_fn;
png_voidp error_ptr;
#ifdef PNG_USER_MEM_SUPPORTED
png_free_ptr free_fn;
#endif
 
png_debug(1, "in png_read_destroy\n");
if (info_ptr != NULL)
png_info_destroy(png_ptr, info_ptr);
 
if (end_info_ptr != NULL)
png_info_destroy(png_ptr, end_info_ptr);
 
png_free(png_ptr, png_ptr->zbuf);
png_free(png_ptr, png_ptr->big_row_buf);
png_free(png_ptr, png_ptr->prev_row);
#if defined(PNG_READ_DITHER_SUPPORTED)
png_free(png_ptr, png_ptr->palette_lookup);
png_free(png_ptr, png_ptr->dither_index);
#endif
#if defined(PNG_READ_GAMMA_SUPPORTED)
png_free(png_ptr, png_ptr->gamma_table);
#endif
#if defined(PNG_READ_BACKGROUND_SUPPORTED)
png_free(png_ptr, png_ptr->gamma_from_1);
png_free(png_ptr, png_ptr->gamma_to_1);
#endif
#ifdef PNG_FREE_ME_SUPPORTED
if (png_ptr->free_me & PNG_FREE_PLTE)
png_zfree(png_ptr, png_ptr->palette);
png_ptr->free_me &= ~PNG_FREE_PLTE;
#else
if (png_ptr->flags & PNG_FLAG_FREE_PLTE)
png_zfree(png_ptr, png_ptr->palette);
png_ptr->flags &= ~PNG_FLAG_FREE_PLTE;
#endif
#if defined(PNG_tRNS_SUPPORTED) || \
defined(PNG_READ_EXPAND_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED)
#ifdef PNG_FREE_ME_SUPPORTED
if (png_ptr->free_me & PNG_FREE_TRNS)
png_free(png_ptr, png_ptr->trans);
png_ptr->free_me &= ~PNG_FREE_TRNS;
#else
if (png_ptr->flags & PNG_FLAG_FREE_TRNS)
png_free(png_ptr, png_ptr->trans);
png_ptr->flags &= ~PNG_FLAG_FREE_TRNS;
#endif
#endif
#if defined(PNG_READ_hIST_SUPPORTED)
#ifdef PNG_FREE_ME_SUPPORTED
if (png_ptr->free_me & PNG_FREE_HIST)
png_free(png_ptr, png_ptr->hist);
png_ptr->free_me &= ~PNG_FREE_HIST;
#else
if (png_ptr->flags & PNG_FLAG_FREE_HIST)
png_free(png_ptr, png_ptr->hist);
png_ptr->flags &= ~PNG_FLAG_FREE_HIST;
#endif
#endif
#if defined(PNG_READ_GAMMA_SUPPORTED)
if (png_ptr->gamma_16_table != NULL)
{
int i;
int istop = (1 << (8 - png_ptr->gamma_shift));
for (i = 0; i < istop; i++)
{
png_free(png_ptr, png_ptr->gamma_16_table[i]);
}
png_free(png_ptr, png_ptr->gamma_16_table);
}
#if defined(PNG_READ_BACKGROUND_SUPPORTED)
if (png_ptr->gamma_16_from_1 != NULL)
{
int i;
int istop = (1 << (8 - png_ptr->gamma_shift));
for (i = 0; i < istop; i++)
{
png_free(png_ptr, png_ptr->gamma_16_from_1[i]);
}
png_free(png_ptr, png_ptr->gamma_16_from_1);
}
if (png_ptr->gamma_16_to_1 != NULL)
{
int i;
int istop = (1 << (8 - png_ptr->gamma_shift));
for (i = 0; i < istop; i++)
{
png_free(png_ptr, png_ptr->gamma_16_to_1[i]);
}
png_free(png_ptr, png_ptr->gamma_16_to_1);
}
#endif
#endif
#if defined(PNG_TIME_RFC1123_SUPPORTED)
png_free(png_ptr, png_ptr->time_buffer);
#endif
 
inflateEnd(&png_ptr->zstream);
#ifdef PNG_PROGRESSIVE_READ_SUPPORTED
png_free(png_ptr, png_ptr->save_buffer);
#endif
 
#ifdef PNG_PROGRESSIVE_READ_SUPPORTED
#ifdef PNG_TEXT_SUPPORTED
png_free(png_ptr, png_ptr->current_text);
#endif /* PNG_TEXT_SUPPORTED */
#endif /* PNG_PROGRESSIVE_READ_SUPPORTED */
 
/* Save the important info out of the png_struct, in case it is
* being used again.
*/
#ifdef PNG_SETJMP_SUPPORTED
png_memcpy(tmp_jmp, png_ptr->jmpbuf, sizeof (jmp_buf));
#endif
 
error_fn = png_ptr->error_fn;
warning_fn = png_ptr->warning_fn;
error_ptr = png_ptr->error_ptr;
#ifdef PNG_USER_MEM_SUPPORTED
free_fn = png_ptr->free_fn;
#endif
 
png_memset(png_ptr, 0, sizeof (png_struct));
 
png_ptr->error_fn = error_fn;
png_ptr->warning_fn = warning_fn;
png_ptr->error_ptr = error_ptr;
#ifdef PNG_USER_MEM_SUPPORTED
png_ptr->free_fn = free_fn;
#endif
 
#ifdef PNG_SETJMP_SUPPORTED
png_memcpy(png_ptr->jmpbuf, tmp_jmp, sizeof (jmp_buf));
#endif
 
}
 
void PNGAPI
png_set_read_status_fn(png_structp png_ptr, png_read_status_ptr read_row_fn)
{
png_ptr->read_row_fn = read_row_fn;
}
 
#if defined(PNG_INFO_IMAGE_SUPPORTED)
void PNGAPI
png_read_png(png_structp png_ptr, png_infop info_ptr,
int transforms,
voidp params)
{
int row;
 
#if defined(PNG_READ_INVERT_ALPHA_SUPPORTED)
/* invert the alpha channel from opacity to transparency */
if (transforms & PNG_TRANSFORM_INVERT_ALPHA)
png_set_invert_alpha(png_ptr);
#endif
 
/* The call to png_read_info() gives us all of the information from the
* PNG file before the first IDAT (image data chunk).
*/
png_read_info(png_ptr, info_ptr);
 
/* -------------- image transformations start here ------------------- */
 
#if defined(PNG_READ_16_TO_8_SUPPORTED)
/* tell libpng to strip 16 bit/color files down to 8 bits/color */
if (transforms & PNG_TRANSFORM_STRIP_16)
png_set_strip_16(png_ptr);
#endif
 
#if defined(PNG_READ_STRIP_ALPHA_SUPPORTED)
/* Strip alpha bytes from the input data without combining with the
* background (not recommended).
*/
if (transforms & PNG_TRANSFORM_STRIP_ALPHA)
png_set_strip_alpha(png_ptr);
#endif
 
#if defined(PNG_READ_PACK_SUPPORTED) && !defined(PNG_READ_EXPAND_SUPPORTED)
/* Extract multiple pixels with bit depths of 1, 2, and 4 from a single
* byte into separate bytes (useful for paletted and grayscale images).
*/
if (transforms & PNG_TRANSFORM_PACKING)
png_set_packing(png_ptr);
#endif
 
#if defined(PNG_READ_PACKSWAP_SUPPORTED)
/* Change the order of packed pixels to least significant bit first
* (not useful if you are using png_set_packing). */
if (transforms & PNG_TRANSFORM_PACKSWAP)
png_set_packswap(png_ptr);
#endif
 
#if defined(PNG_READ_EXPAND_SUPPORTED)
/* Expand paletted colors into true RGB triplets
* Expand grayscale images to full 8 bits from 1, 2, or 4 bits/pixel
* Expand paletted or RGB images with transparency to full alpha
* channels so the data will be available as RGBA quartets.
*/
if (transforms & PNG_TRANSFORM_EXPAND)
if ((png_ptr->bit_depth < 8) ||
(png_ptr->color_type == PNG_COLOR_TYPE_PALETTE) ||
(png_get_valid(png_ptr, info_ptr, PNG_INFO_tRNS)))
png_set_expand(png_ptr);
#endif
 
/* We don't handle background color or gamma transformation or dithering. */
 
#if defined(PNG_READ_INVERT_SUPPORTED)
/* invert monochrome files to have 0 as white and 1 as black */
if (transforms & PNG_TRANSFORM_INVERT_MONO)
png_set_invert_mono(png_ptr);
#endif
 
#if defined(PNG_READ_SHIFT_SUPPORTED)
/* If you want to shift the pixel values from the range [0,255] or
* [0,65535] to the original [0,7] or [0,31], or whatever range the
* colors were originally in:
*/
if ((transforms & PNG_TRANSFORM_SHIFT)
&& png_get_valid(png_ptr, info_ptr, PNG_INFO_sBIT))
{
png_color_8p sig_bit;
 
png_get_sBIT(png_ptr, info_ptr, &sig_bit);
png_set_shift(png_ptr, sig_bit);
}
#endif
 
#if defined(PNG_READ_BGR_SUPPORTED)
/* flip the RGB pixels to BGR (or RGBA to BGRA) */
if (transforms & PNG_TRANSFORM_BGR)
png_set_bgr(png_ptr);
#endif
 
#if defined(PNG_READ_SWAP_ALPHA_SUPPORTED)
/* swap the RGBA or GA data to ARGB or AG (or BGRA to ABGR) */
if (transforms & PNG_TRANSFORM_SWAP_ALPHA)
png_set_swap_alpha(png_ptr);
#endif
 
#if defined(PNG_READ_SWAP_SUPPORTED)
/* swap bytes of 16 bit files to least significant byte first */
if (transforms & PNG_TRANSFORM_SWAP_ENDIAN)
png_set_swap(png_ptr);
#endif
 
/* We don't handle adding filler bytes */
 
/* Optional call to gamma correct and add the background to the palette
* and update info structure. REQUIRED if you are expecting libpng to
* update the palette for you (i.e., you selected such a transform above).
*/
png_read_update_info(png_ptr, info_ptr);
 
/* -------------- image transformations end here ------------------- */
 
#ifdef PNG_FREE_ME_SUPPORTED
png_free_data(png_ptr, info_ptr, PNG_FREE_ROWS, 0);
#endif
if(info_ptr->row_pointers == NULL)
{
info_ptr->row_pointers = (png_bytepp)png_malloc(png_ptr,
info_ptr->height * sizeof(png_bytep));
#ifdef PNG_FREE_ME_SUPPORTED
info_ptr->free_me |= PNG_FREE_ROWS;
#endif
for (row = 0; row < (int)info_ptr->height; row++)
{
info_ptr->row_pointers[row] = (png_bytep)png_malloc(png_ptr,
png_get_rowbytes(png_ptr, info_ptr));
}
}
 
png_read_image(png_ptr, info_ptr->row_pointers);
info_ptr->valid |= PNG_INFO_IDAT;
 
/* read rest of file, and get additional chunks in info_ptr - REQUIRED */
png_read_end(png_ptr, info_ptr);
 
if(transforms == 0 || params == NULL)
/* quiet compiler warnings */ return;
 
}
#endif
/shark/trunk/ports/png/pngmem.c
0,0 → 1,566
 
/* pngmem.c - stub functions for memory allocation
*
* libpng 1.2.5 - October 3, 2002
* For conditions of distribution and use, see copyright notice in png.h
* Copyright (c) 1998-2002 Glenn Randers-Pehrson
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
*
* This file provides a location for all memory allocation. Users who
* need special memory handling are expected to supply replacement
* functions for png_malloc() and png_free(), and to use
* png_create_read_struct_2() and png_create_write_struct_2() to
* identify the replacement functions.
*/
 
#define PNG_INTERNAL
#include "png.h"
 
/* Borland DOS special memory handler */
#if defined(__TURBOC__) && !defined(_Windows) && !defined(__FLAT__)
/* if you change this, be sure to change the one in png.h also */
 
/* Allocate memory for a png_struct. The malloc and memset can be replaced
by a single call to calloc() if this is thought to improve performance. */
png_voidp /* PRIVATE */
png_create_struct(int type)
{
#ifdef PNG_USER_MEM_SUPPORTED
return (png_create_struct_2(type, png_malloc_ptr_NULL, png_voidp_NULL));
}
 
/* Alternate version of png_create_struct, for use with user-defined malloc. */
png_voidp /* PRIVATE */
png_create_struct_2(int type, png_malloc_ptr malloc_fn, png_voidp mem_ptr)
{
#endif /* PNG_USER_MEM_SUPPORTED */
png_size_t size;
png_voidp struct_ptr;
 
if (type == PNG_STRUCT_INFO)
size = sizeof(png_info);
else if (type == PNG_STRUCT_PNG)
size = sizeof(png_struct);
else
return (png_get_copyright());
 
#ifdef PNG_USER_MEM_SUPPORTED
if(malloc_fn != NULL)
{
png_struct dummy_struct;
png_structp png_ptr = &dummy_struct;
png_ptr->mem_ptr=mem_ptr;
struct_ptr = (*(malloc_fn))(png_ptr, (png_uint_32)size);
}
else
#endif /* PNG_USER_MEM_SUPPORTED */
struct_ptr = (png_voidp)farmalloc(size));
if (struct_ptr != NULL)
png_memset(struct_ptr, 0, size);
return (struct_ptr);
}
 
/* Free memory allocated by a png_create_struct() call */
void /* PRIVATE */
png_destroy_struct(png_voidp struct_ptr)
{
#ifdef PNG_USER_MEM_SUPPORTED
png_destroy_struct_2(struct_ptr, png_free_ptr_NULL, png_voidp_NULL);
}
 
/* Free memory allocated by a png_create_struct() call */
void /* PRIVATE */
png_destroy_struct_2(png_voidp struct_ptr, png_free_ptr free_fn,
png_voidp mem_ptr)
{
#endif
if (struct_ptr != NULL)
{
#ifdef PNG_USER_MEM_SUPPORTED
if(free_fn != NULL)
{
png_struct dummy_struct;
png_structp png_ptr = &dummy_struct;
png_ptr->mem_ptr=mem_ptr;
(*(free_fn))(png_ptr, struct_ptr);
return;
}
#endif /* PNG_USER_MEM_SUPPORTED */
farfree (struct_ptr);
}
}
 
/* Allocate memory. For reasonable files, size should never exceed
* 64K. However, zlib may allocate more then 64K if you don't tell
* it not to. See zconf.h and png.h for more information. zlib does
* need to allocate exactly 64K, so whatever you call here must
* have the ability to do that.
*
* Borland seems to have a problem in DOS mode for exactly 64K.
* It gives you a segment with an offset of 8 (perhaps to store its
* memory stuff). zlib doesn't like this at all, so we have to
* detect and deal with it. This code should not be needed in
* Windows or OS/2 modes, and only in 16 bit mode. This code has
* been updated by Alexander Lehmann for version 0.89 to waste less
* memory.
*
* Note that we can't use png_size_t for the "size" declaration,
* since on some systems a png_size_t is a 16-bit quantity, and as a
* result, we would be truncating potentially larger memory requests
* (which should cause a fatal error) and introducing major problems.
*/
 
png_voidp PNGAPI
png_malloc(png_structp png_ptr, png_uint_32 size)
{
png_voidp ret;
 
if (png_ptr == NULL || size == 0)
return (NULL);
 
#ifdef PNG_USER_MEM_SUPPORTED
if(png_ptr->malloc_fn != NULL)
{
ret = ((png_voidp)(*(png_ptr->malloc_fn))(png_ptr, (png_size_t)size));
if (ret == NULL && (png_ptr->flags&PNG_FLAG_MALLOC_NULL_MEM_OK) == 0)
png_error(png_ptr, "Out of memory!");
return (ret);
}
else
return png_malloc_default(png_ptr, size);
}
 
png_voidp PNGAPI
png_malloc_default(png_structp png_ptr, png_uint_32 size)
{
png_voidp ret;
#endif /* PNG_USER_MEM_SUPPORTED */
 
#ifdef PNG_MAX_MALLOC_64K
if (size > (png_uint_32)65536L)
png_error(png_ptr, "Cannot Allocate > 64K");
#endif
 
if (size == (png_uint_32)65536L)
{
if (png_ptr->offset_table == NULL)
{
/* try to see if we need to do any of this fancy stuff */
ret = farmalloc(size);
if (ret == NULL || ((png_size_t)ret & 0xffff))
{
int num_blocks;
png_uint_32 total_size;
png_bytep table;
int i;
png_byte huge * hptr;
 
if (ret != NULL)
{
farfree(ret);
ret = NULL;
}
 
if(png_ptr->zlib_window_bits > 14)
num_blocks = (int)(1 << (png_ptr->zlib_window_bits - 14));
else
num_blocks = 1;
if (png_ptr->zlib_mem_level >= 7)
num_blocks += (int)(1 << (png_ptr->zlib_mem_level - 7));
else
num_blocks++;
 
total_size = ((png_uint_32)65536L) * (png_uint_32)num_blocks+16;
 
table = farmalloc(total_size);
 
if (table == NULL)
{
if (png_ptr->flags&PNG_FLAG_MALLOC_NULL_MEM_OK) == 0)
png_error(png_ptr, "Out Of Memory."); /* Note "O" and "M" */
else
png_warning(png_ptr, "Out Of Memory.");
return (NULL);
}
 
if ((png_size_t)table & 0xfff0)
{
if (png_ptr->flags&PNG_FLAG_MALLOC_NULL_MEM_OK) == 0)
png_error(png_ptr,
"Farmalloc didn't return normalized pointer");
else
png_warning(png_ptr,
"Farmalloc didn't return normalized pointer");
return (NULL);
}
 
png_ptr->offset_table = table;
png_ptr->offset_table_ptr = farmalloc(num_blocks *
sizeof (png_bytep));
 
if (png_ptr->offset_table_ptr == NULL)
{
if (png_ptr->flags&PNG_FLAG_MALLOC_NULL_MEM_OK) == 0)
png_error(png_ptr, "Out Of memory."); /* Note "O" and "M" */
else
png_warning(png_ptr, "Out Of memory.");
return (NULL);
}
 
hptr = (png_byte huge *)table;
if ((png_size_t)hptr & 0xf)
{
hptr = (png_byte huge *)((long)(hptr) & 0xfffffff0L);
hptr = hptr + 16L; /* "hptr += 16L" fails on Turbo C++ 3.0 */
}
for (i = 0; i < num_blocks; i++)
{
png_ptr->offset_table_ptr[i] = (png_bytep)hptr;
hptr = hptr + (png_uint_32)65536L; /* "+=" fails on TC++3.0 */
}
 
png_ptr->offset_table_number = num_blocks;
png_ptr->offset_table_count = 0;
png_ptr->offset_table_count_free = 0;
}
}
 
if (png_ptr->offset_table_count >= png_ptr->offset_table_number)
{
if (png_ptr->flags&PNG_FLAG_MALLOC_NULL_MEM_OK) == 0)
png_error(png_ptr, "Out of Memory."); /* Note "o" and "M" */
else
png_warning(png_ptr, "Out of Memory.");
return (NULL);
}
 
ret = png_ptr->offset_table_ptr[png_ptr->offset_table_count++];
}
else
ret = farmalloc(size);
 
if (ret == NULL)
{
if (png_ptr->flags&PNG_FLAG_MALLOC_NULL_MEM_OK) == 0)
png_error(png_ptr, "Out of memory."); /* Note "o" and "m" */
else
png_warning(png_ptr, "Out of memory."); /* Note "o" and "m" */
}
 
return (ret);
}
 
/* free a pointer allocated by png_malloc(). In the default
configuration, png_ptr is not used, but is passed in case it
is needed. If ptr is NULL, return without taking any action. */
void PNGAPI
png_free(png_structp png_ptr, png_voidp ptr)
{
if (png_ptr == NULL || ptr == NULL)
return;
 
#ifdef PNG_USER_MEM_SUPPORTED
if (png_ptr->free_fn != NULL)
{
(*(png_ptr->free_fn))(png_ptr, ptr);
return;
}
else png_free_default(png_ptr, ptr);
}
 
void PNGAPI
png_free_default(png_structp png_ptr, png_voidp ptr)
{
#endif /* PNG_USER_MEM_SUPPORTED */
 
if (png_ptr->offset_table != NULL)
{
int i;
 
for (i = 0; i < png_ptr->offset_table_count; i++)
{
if (ptr == png_ptr->offset_table_ptr[i])
{
ptr = NULL;
png_ptr->offset_table_count_free++;
break;
}
}
if (png_ptr->offset_table_count_free == png_ptr->offset_table_count)
{
farfree(png_ptr->offset_table);
farfree(png_ptr->offset_table_ptr);
png_ptr->offset_table = NULL;
png_ptr->offset_table_ptr = NULL;
}
}
 
if (ptr != NULL)
{
farfree(ptr);
}
}
 
#else /* Not the Borland DOS special memory handler */
 
/* Allocate memory for a png_struct or a png_info. The malloc and
memset can be replaced by a single call to calloc() if this is thought
to improve performance noticably. */
png_voidp /* PRIVATE */
png_create_struct(int type)
{
#ifdef PNG_USER_MEM_SUPPORTED
return (png_create_struct_2(type, png_malloc_ptr_NULL, png_voidp_NULL));
}
 
/* Allocate memory for a png_struct or a png_info. The malloc and
memset can be replaced by a single call to calloc() if this is thought
to improve performance noticably. */
png_voidp /* PRIVATE */
png_create_struct_2(int type, png_malloc_ptr malloc_fn, png_voidp mem_ptr)
{
#endif /* PNG_USER_MEM_SUPPORTED */
png_size_t size;
png_voidp struct_ptr;
 
if (type == PNG_STRUCT_INFO)
size = sizeof(png_info);
else if (type == PNG_STRUCT_PNG)
size = sizeof(png_struct);
else
return (NULL);
 
#ifdef PNG_USER_MEM_SUPPORTED
if(malloc_fn != NULL)
{
png_struct dummy_struct;
png_structp png_ptr = &dummy_struct;
png_ptr->mem_ptr=mem_ptr;
struct_ptr = (*(malloc_fn))(png_ptr, size);
if (struct_ptr != NULL)
png_memset(struct_ptr, 0, size);
return (struct_ptr);
}
#endif /* PNG_USER_MEM_SUPPORTED */
 
#if defined(__TURBOC__) && !defined(__FLAT__)
if ((struct_ptr = (png_voidp)farmalloc(size)) != NULL)
#else
# if defined(_MSC_VER) && defined(MAXSEG_64K)
if ((struct_ptr = (png_voidp)halloc(size,1)) != NULL)
# else
if ((struct_ptr = (png_voidp)malloc(size)) != NULL)
# endif
#endif
{
png_memset(struct_ptr, 0, size);
}
 
return (struct_ptr);
}
 
 
/* Free memory allocated by a png_create_struct() call */
void /* PRIVATE */
png_destroy_struct(png_voidp struct_ptr)
{
#ifdef PNG_USER_MEM_SUPPORTED
png_destroy_struct_2(struct_ptr, png_free_ptr_NULL, png_voidp_NULL);
}
 
/* Free memory allocated by a png_create_struct() call */
void /* PRIVATE */
png_destroy_struct_2(png_voidp struct_ptr, png_free_ptr free_fn,
png_voidp mem_ptr)
{
#endif /* PNG_USER_MEM_SUPPORTED */
if (struct_ptr != NULL)
{
#ifdef PNG_USER_MEM_SUPPORTED
if(free_fn != NULL)
{
png_struct dummy_struct;
png_structp png_ptr = &dummy_struct;
png_ptr->mem_ptr=mem_ptr;
(*(free_fn))(png_ptr, struct_ptr);
return;
}
#endif /* PNG_USER_MEM_SUPPORTED */
#if defined(__TURBOC__) && !defined(__FLAT__)
farfree(struct_ptr);
#else
# if defined(_MSC_VER) && defined(MAXSEG_64K)
hfree(struct_ptr);
# else
free(struct_ptr);
# endif
#endif
}
}
 
/* Allocate memory. For reasonable files, size should never exceed
64K. However, zlib may allocate more then 64K if you don't tell
it not to. See zconf.h and png.h for more information. zlib does
need to allocate exactly 64K, so whatever you call here must
have the ability to do that. */
 
png_voidp PNGAPI
png_malloc(png_structp png_ptr, png_uint_32 size)
{
png_voidp ret;
 
if (png_ptr == NULL || size == 0)
return (NULL);
 
#ifdef PNG_USER_MEM_SUPPORTED
if(png_ptr->malloc_fn != NULL)
{
ret = ((png_voidp)(*(png_ptr->malloc_fn))(png_ptr, (png_size_t)size));
if (ret == NULL && (png_ptr->flags&PNG_FLAG_MALLOC_NULL_MEM_OK) == 0)
png_error(png_ptr, "Out of Memory!");
return (ret);
}
else
return (png_malloc_default(png_ptr, size));
}
 
png_voidp PNGAPI
png_malloc_default(png_structp png_ptr, png_uint_32 size)
{
png_voidp ret;
#endif /* PNG_USER_MEM_SUPPORTED */
 
#ifdef PNG_MAX_MALLOC_64K
if (size > (png_uint_32)65536L)
{
if(png_ptr->flags&PNG_FLAG_MALLOC_NULL_MEM_OK) == 0)
png_error(png_ptr, "Cannot Allocate > 64K");
else
return NULL;
}
#endif
 
#if defined(__TURBOC__) && !defined(__FLAT__)
ret = farmalloc(size);
#else
# if defined(_MSC_VER) && defined(MAXSEG_64K)
ret = halloc(size, 1);
# else
ret = malloc((size_t)size);
# endif
#endif
 
if (ret == NULL && (png_ptr->flags&PNG_FLAG_MALLOC_NULL_MEM_OK) == 0)
png_error(png_ptr, "Out of Memory");
 
return (ret);
}
 
/* Free a pointer allocated by png_malloc(). If ptr is NULL, return
without taking any action. */
void PNGAPI
png_free(png_structp png_ptr, png_voidp ptr)
{
if (png_ptr == NULL || ptr == NULL)
return;
 
#ifdef PNG_USER_MEM_SUPPORTED
if (png_ptr->free_fn != NULL)
{
(*(png_ptr->free_fn))(png_ptr, ptr);
return;
}
else png_free_default(png_ptr, ptr);
}
void PNGAPI
png_free_default(png_structp png_ptr, png_voidp ptr)
{
if (png_ptr == NULL || ptr == NULL)
return;
 
#endif /* PNG_USER_MEM_SUPPORTED */
 
#if defined(__TURBOC__) && !defined(__FLAT__)
farfree(ptr);
#else
# if defined(_MSC_VER) && defined(MAXSEG_64K)
hfree(ptr);
# else
free(ptr);
# endif
#endif
}
 
#endif /* Not Borland DOS special memory handler */
 
#if defined(PNG_1_0_X)
# define png_malloc_warn png_malloc
#else
/* This function was added at libpng version 1.2.3. The png_malloc_warn()
* function will issue a png_warning and return NULL instead of issuing a
* png_error, if it fails to allocate the requested memory.
*/
png_voidp PNGAPI
png_malloc_warn(png_structp png_ptr, png_uint_32 size)
{
png_voidp ptr;
png_uint_32 save_flags=png_ptr->flags;
 
png_ptr->flags|=PNG_FLAG_MALLOC_NULL_MEM_OK;
ptr = (png_voidp)png_malloc((png_structp)png_ptr, size);
png_ptr->flags=save_flags;
return(ptr);
}
#endif
 
png_voidp PNGAPI
png_memcpy_check (png_structp png_ptr, png_voidp s1, png_voidp s2,
png_uint_32 length)
{
png_size_t size;
 
size = (png_size_t)length;
if ((png_uint_32)size != length)
png_error(png_ptr,"Overflow in png_memcpy_check.");
 
return(png_memcpy (s1, s2, size));
}
 
png_voidp PNGAPI
png_memset_check (png_structp png_ptr, png_voidp s1, int value,
png_uint_32 length)
{
png_size_t size;
 
size = (png_size_t)length;
if ((png_uint_32)size != length)
png_error(png_ptr,"Overflow in png_memset_check.");
 
return (png_memset (s1, value, size));
 
}
 
#ifdef PNG_USER_MEM_SUPPORTED
/* This function is called when the application wants to use another method
* of allocating and freeing memory.
*/
void PNGAPI
png_set_mem_fn(png_structp png_ptr, png_voidp mem_ptr, png_malloc_ptr
malloc_fn, png_free_ptr free_fn)
{
png_ptr->mem_ptr = mem_ptr;
png_ptr->malloc_fn = malloc_fn;
png_ptr->free_fn = free_fn;
}
 
/* This function returns a pointer to the mem_ptr associated with the user
* functions. The application should free any memory associated with this
* pointer before png_write_destroy and png_read_destroy are called.
*/
png_voidp PNGAPI
png_get_mem_ptr(png_structp png_ptr)
{
return ((png_voidp)png_ptr->mem_ptr);
}
#endif /* PNG_USER_MEM_SUPPORTED */
/shark/trunk/ports/png/pngget.c
0,0 → 1,927
 
/* pngget.c - retrieval of values from info struct
*
* libpng 1.2.5 - October 3, 2002
* For conditions of distribution and use, see copyright notice in png.h
* Copyright (c) 1998-2002 Glenn Randers-Pehrson
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
*/
 
#define PNG_INTERNAL
#include "png.h"
 
png_uint_32 PNGAPI
png_get_valid(png_structp png_ptr, png_infop info_ptr, png_uint_32 flag)
{
if (png_ptr != NULL && info_ptr != NULL)
return(info_ptr->valid & flag);
else
return(0);
}
 
png_uint_32 PNGAPI
png_get_rowbytes(png_structp png_ptr, png_infop info_ptr)
{
if (png_ptr != NULL && info_ptr != NULL)
return(info_ptr->rowbytes);
else
return(0);
}
 
#if defined(PNG_INFO_IMAGE_SUPPORTED)
png_bytepp PNGAPI
png_get_rows(png_structp png_ptr, png_infop info_ptr)
{
if (png_ptr != NULL && info_ptr != NULL)
return(info_ptr->row_pointers);
else
return(0);
}
#endif
 
#ifdef PNG_EASY_ACCESS_SUPPORTED
/* easy access to info, added in libpng-0.99 */
png_uint_32 PNGAPI
png_get_image_width(png_structp png_ptr, png_infop info_ptr)
{
if (png_ptr != NULL && info_ptr != NULL)
{
return info_ptr->width;
}
return (0);
}
 
png_uint_32 PNGAPI
png_get_image_height(png_structp png_ptr, png_infop info_ptr)
{
if (png_ptr != NULL && info_ptr != NULL)
{
return info_ptr->height;
}
return (0);
}
 
png_byte PNGAPI
png_get_bit_depth(png_structp png_ptr, png_infop info_ptr)
{
if (png_ptr != NULL && info_ptr != NULL)
{
return info_ptr->bit_depth;
}
return (0);
}
 
png_byte PNGAPI
png_get_color_type(png_structp png_ptr, png_infop info_ptr)
{
if (png_ptr != NULL && info_ptr != NULL)
{
return info_ptr->color_type;
}
return (0);
}
 
png_byte PNGAPI
png_get_filter_type(png_structp png_ptr, png_infop info_ptr)
{
if (png_ptr != NULL && info_ptr != NULL)
{
return info_ptr->filter_type;
}
return (0);
}
 
png_byte PNGAPI
png_get_interlace_type(png_structp png_ptr, png_infop info_ptr)
{
if (png_ptr != NULL && info_ptr != NULL)
{
return info_ptr->interlace_type;
}
return (0);
}
 
png_byte PNGAPI
png_get_compression_type(png_structp png_ptr, png_infop info_ptr)
{
if (png_ptr != NULL && info_ptr != NULL)
{
return info_ptr->compression_type;
}
return (0);
}
 
png_uint_32 PNGAPI
png_get_x_pixels_per_meter(png_structp png_ptr, png_infop info_ptr)
{
if (png_ptr != NULL && info_ptr != NULL)
#if defined(PNG_pHYs_SUPPORTED)
if (info_ptr->valid & PNG_INFO_pHYs)
{
png_debug1(1, "in %s retrieval function\n", "png_get_x_pixels_per_meter");
if(info_ptr->phys_unit_type != PNG_RESOLUTION_METER)
return (0);
else return (info_ptr->x_pixels_per_unit);
}
#else
return (0);
#endif
return (0);
}
 
png_uint_32 PNGAPI
png_get_y_pixels_per_meter(png_structp png_ptr, png_infop info_ptr)
{
if (png_ptr != NULL && info_ptr != NULL)
#if defined(PNG_pHYs_SUPPORTED)
if (info_ptr->valid & PNG_INFO_pHYs)
{
png_debug1(1, "in %s retrieval function\n", "png_get_y_pixels_per_meter");
if(info_ptr->phys_unit_type != PNG_RESOLUTION_METER)
return (0);
else return (info_ptr->y_pixels_per_unit);
}
#else
return (0);
#endif
return (0);
}
 
png_uint_32 PNGAPI
png_get_pixels_per_meter(png_structp png_ptr, png_infop info_ptr)
{
if (png_ptr != NULL && info_ptr != NULL)
#if defined(PNG_pHYs_SUPPORTED)
if (info_ptr->valid & PNG_INFO_pHYs)
{
png_debug1(1, "in %s retrieval function\n", "png_get_pixels_per_meter");
if(info_ptr->phys_unit_type != PNG_RESOLUTION_METER ||
info_ptr->x_pixels_per_unit != info_ptr->y_pixels_per_unit)
return (0);
else return (info_ptr->x_pixels_per_unit);
}
#else
return (0);
#endif
return (0);
}
 
#ifdef PNG_FLOATING_POINT_SUPPORTED
float PNGAPI
png_get_pixel_aspect_ratio(png_structp png_ptr, png_infop info_ptr)
{
if (png_ptr != NULL && info_ptr != NULL)
#if defined(PNG_pHYs_SUPPORTED)
if (info_ptr->valid & PNG_INFO_pHYs)
{
png_debug1(1, "in %s retrieval function\n", "png_get_aspect_ratio");
if (info_ptr->x_pixels_per_unit == 0)
return ((float)0.0);
else
return ((float)((float)info_ptr->y_pixels_per_unit
/(float)info_ptr->x_pixels_per_unit));
}
#else
return (0.0);
#endif
return ((float)0.0);
}
#endif
 
png_int_32 PNGAPI
png_get_x_offset_microns(png_structp png_ptr, png_infop info_ptr)
{
if (png_ptr != NULL && info_ptr != NULL)
#if defined(PNG_oFFs_SUPPORTED)
if (info_ptr->valid & PNG_INFO_oFFs)
{
png_debug1(1, "in %s retrieval function\n", "png_get_x_offset_microns");
if(info_ptr->offset_unit_type != PNG_OFFSET_MICROMETER)
return (0);
else return (info_ptr->x_offset);
}
#else
return (0);
#endif
return (0);
}
 
png_int_32 PNGAPI
png_get_y_offset_microns(png_structp png_ptr, png_infop info_ptr)
{
if (png_ptr != NULL && info_ptr != NULL)
#if defined(PNG_oFFs_SUPPORTED)
if (info_ptr->valid & PNG_INFO_oFFs)
{
png_debug1(1, "in %s retrieval function\n", "png_get_y_offset_microns");
if(info_ptr->offset_unit_type != PNG_OFFSET_MICROMETER)
return (0);
else return (info_ptr->y_offset);
}
#else
return (0);
#endif
return (0);
}
 
png_int_32 PNGAPI
png_get_x_offset_pixels(png_structp png_ptr, png_infop info_ptr)
{
if (png_ptr != NULL && info_ptr != NULL)
#if defined(PNG_oFFs_SUPPORTED)
if (info_ptr->valid & PNG_INFO_oFFs)
{
png_debug1(1, "in %s retrieval function\n", "png_get_x_offset_microns");
if(info_ptr->offset_unit_type != PNG_OFFSET_PIXEL)
return (0);
else return (info_ptr->x_offset);
}
#else
return (0);
#endif
return (0);
}
 
png_int_32 PNGAPI
png_get_y_offset_pixels(png_structp png_ptr, png_infop info_ptr)
{
if (png_ptr != NULL && info_ptr != NULL)
#if defined(PNG_oFFs_SUPPORTED)
if (info_ptr->valid & PNG_INFO_oFFs)
{
png_debug1(1, "in %s retrieval function\n", "png_get_y_offset_microns");
if(info_ptr->offset_unit_type != PNG_OFFSET_PIXEL)
return (0);
else return (info_ptr->y_offset);
}
#else
return (0);
#endif
return (0);
}
 
#if defined(PNG_INCH_CONVERSIONS) && defined(PNG_FLOATING_POINT_SUPPORTED)
png_uint_32 PNGAPI
png_get_pixels_per_inch(png_structp png_ptr, png_infop info_ptr)
{
return ((png_uint_32)((float)png_get_pixels_per_meter(png_ptr, info_ptr)
*.0254 +.5));
}
 
png_uint_32 PNGAPI
png_get_x_pixels_per_inch(png_structp png_ptr, png_infop info_ptr)
{
return ((png_uint_32)((float)png_get_x_pixels_per_meter(png_ptr, info_ptr)
*.0254 +.5));
}
 
png_uint_32 PNGAPI
png_get_y_pixels_per_inch(png_structp png_ptr, png_infop info_ptr)
{
return ((png_uint_32)((float)png_get_y_pixels_per_meter(png_ptr, info_ptr)
*.0254 +.5));
}
 
float PNGAPI
png_get_x_offset_inches(png_structp png_ptr, png_infop info_ptr)
{
return ((float)png_get_x_offset_microns(png_ptr, info_ptr)
*.00003937);
}
 
float PNGAPI
png_get_y_offset_inches(png_structp png_ptr, png_infop info_ptr)
{
return ((float)png_get_y_offset_microns(png_ptr, info_ptr)
*.00003937);
}
 
#if defined(PNG_pHYs_SUPPORTED)
png_uint_32 PNGAPI
png_get_pHYs_dpi(png_structp png_ptr, png_infop info_ptr,
png_uint_32 *res_x, png_uint_32 *res_y, int *unit_type)
{
png_uint_32 retval = 0;
 
if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_pHYs))
{
png_debug1(1, "in %s retrieval function\n", "pHYs");
if (res_x != NULL)
{
*res_x = info_ptr->x_pixels_per_unit;
retval |= PNG_INFO_pHYs;
}
if (res_y != NULL)
{
*res_y = info_ptr->y_pixels_per_unit;
retval |= PNG_INFO_pHYs;
}
if (unit_type != NULL)
{
*unit_type = (int)info_ptr->phys_unit_type;
retval |= PNG_INFO_pHYs;
if(*unit_type == 1)
{
if (res_x != NULL) *res_x = (png_uint_32)(*res_x * .0254 + .50);
if (res_y != NULL) *res_y = (png_uint_32)(*res_y * .0254 + .50);
}
}
}
return (retval);
}
#endif /* PNG_pHYs_SUPPORTED */
#endif /* PNG_INCH_CONVERSIONS && PNG_FLOATING_POINT_SUPPORTED */
 
/* png_get_channels really belongs in here, too, but it's been around longer */
 
#endif /* PNG_EASY_ACCESS_SUPPORTED */
 
png_byte PNGAPI
png_get_channels(png_structp png_ptr, png_infop info_ptr)
{
if (png_ptr != NULL && info_ptr != NULL)
return(info_ptr->channels);
else
return (0);
}
 
png_bytep PNGAPI
png_get_signature(png_structp png_ptr, png_infop info_ptr)
{
if (png_ptr != NULL && info_ptr != NULL)
return(info_ptr->signature);
else
return (NULL);
}
 
#if defined(PNG_bKGD_SUPPORTED)
png_uint_32 PNGAPI
png_get_bKGD(png_structp png_ptr, png_infop info_ptr,
png_color_16p *background)
{
if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_bKGD)
&& background != NULL)
{
png_debug1(1, "in %s retrieval function\n", "bKGD");
*background = &(info_ptr->background);
return (PNG_INFO_bKGD);
}
return (0);
}
#endif
 
#if defined(PNG_cHRM_SUPPORTED)
#ifdef PNG_FLOATING_POINT_SUPPORTED
png_uint_32 PNGAPI
png_get_cHRM(png_structp png_ptr, png_infop info_ptr,
double *white_x, double *white_y, double *red_x, double *red_y,
double *green_x, double *green_y, double *blue_x, double *blue_y)
{
if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_cHRM))
{
png_debug1(1, "in %s retrieval function\n", "cHRM");
if (white_x != NULL)
*white_x = (double)info_ptr->x_white;
if (white_y != NULL)
*white_y = (double)info_ptr->y_white;
if (red_x != NULL)
*red_x = (double)info_ptr->x_red;
if (red_y != NULL)
*red_y = (double)info_ptr->y_red;
if (green_x != NULL)
*green_x = (double)info_ptr->x_green;
if (green_y != NULL)
*green_y = (double)info_ptr->y_green;
if (blue_x != NULL)
*blue_x = (double)info_ptr->x_blue;
if (blue_y != NULL)
*blue_y = (double)info_ptr->y_blue;
return (PNG_INFO_cHRM);
}
return (0);
}
#endif
#ifdef PNG_FIXED_POINT_SUPPORTED
png_uint_32 PNGAPI
png_get_cHRM_fixed(png_structp png_ptr, png_infop info_ptr,
png_fixed_point *white_x, png_fixed_point *white_y, png_fixed_point *red_x,
png_fixed_point *red_y, png_fixed_point *green_x, png_fixed_point *green_y,
png_fixed_point *blue_x, png_fixed_point *blue_y)
{
if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_cHRM))
{
png_debug1(1, "in %s retrieval function\n", "cHRM");
if (white_x != NULL)
*white_x = info_ptr->int_x_white;
if (white_y != NULL)
*white_y = info_ptr->int_y_white;
if (red_x != NULL)
*red_x = info_ptr->int_x_red;
if (red_y != NULL)
*red_y = info_ptr->int_y_red;
if (green_x != NULL)
*green_x = info_ptr->int_x_green;
if (green_y != NULL)
*green_y = info_ptr->int_y_green;
if (blue_x != NULL)
*blue_x = info_ptr->int_x_blue;
if (blue_y != NULL)
*blue_y = info_ptr->int_y_blue;
return (PNG_INFO_cHRM);
}
return (0);
}
#endif
#endif
 
#if defined(PNG_gAMA_SUPPORTED)
#ifdef PNG_FLOATING_POINT_SUPPORTED
png_uint_32 PNGAPI
png_get_gAMA(png_structp png_ptr, png_infop info_ptr, double *file_gamma)
{
if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_gAMA)
&& file_gamma != NULL)
{
png_debug1(1, "in %s retrieval function\n", "gAMA");
*file_gamma = (double)info_ptr->gamma;
return (PNG_INFO_gAMA);
}
return (0);
}
#endif
#ifdef PNG_FIXED_POINT_SUPPORTED
png_uint_32 PNGAPI
png_get_gAMA_fixed(png_structp png_ptr, png_infop info_ptr,
png_fixed_point *int_file_gamma)
{
if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_gAMA)
&& int_file_gamma != NULL)
{
png_debug1(1, "in %s retrieval function\n", "gAMA");
*int_file_gamma = info_ptr->int_gamma;
return (PNG_INFO_gAMA);
}
return (0);
}
#endif
#endif
 
#if defined(PNG_sRGB_SUPPORTED)
png_uint_32 PNGAPI
png_get_sRGB(png_structp png_ptr, png_infop info_ptr, int *file_srgb_intent)
{
if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_sRGB)
&& file_srgb_intent != NULL)
{
png_debug1(1, "in %s retrieval function\n", "sRGB");
*file_srgb_intent = (int)info_ptr->srgb_intent;
return (PNG_INFO_sRGB);
}
return (0);
}
#endif
 
#if defined(PNG_iCCP_SUPPORTED)
png_uint_32 PNGAPI
png_get_iCCP(png_structp png_ptr, png_infop info_ptr,
png_charpp name, int *compression_type,
png_charpp profile, png_uint_32 *proflen)
{
if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_iCCP)
&& name != NULL && profile != NULL && proflen != NULL)
{
png_debug1(1, "in %s retrieval function\n", "iCCP");
*name = info_ptr->iccp_name;
*profile = info_ptr->iccp_profile;
/* compression_type is a dummy so the API won't have to change
if we introduce multiple compression types later. */
*proflen = (int)info_ptr->iccp_proflen;
*compression_type = (int)info_ptr->iccp_compression;
return (PNG_INFO_iCCP);
}
return (0);
}
#endif
 
#if defined(PNG_sPLT_SUPPORTED)
png_uint_32 PNGAPI
png_get_sPLT(png_structp png_ptr, png_infop info_ptr,
png_sPLT_tpp spalettes)
{
if (png_ptr != NULL && info_ptr != NULL && spalettes != NULL)
*spalettes = info_ptr->splt_palettes;
return ((png_uint_32)info_ptr->splt_palettes_num);
}
#endif
 
#if defined(PNG_hIST_SUPPORTED)
png_uint_32 PNGAPI
png_get_hIST(png_structp png_ptr, png_infop info_ptr, png_uint_16p *hist)
{
if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_hIST)
&& hist != NULL)
{
png_debug1(1, "in %s retrieval function\n", "hIST");
*hist = info_ptr->hist;
return (PNG_INFO_hIST);
}
return (0);
}
#endif
 
png_uint_32 PNGAPI
png_get_IHDR(png_structp png_ptr, png_infop info_ptr,
png_uint_32 *width, png_uint_32 *height, int *bit_depth,
int *color_type, int *interlace_type, int *compression_type,
int *filter_type)
 
{
if (png_ptr != NULL && info_ptr != NULL && width != NULL && height != NULL &&
bit_depth != NULL && color_type != NULL)
{
int pixel_depth, channels;
png_uint_32 rowbytes_per_pixel;
 
png_debug1(1, "in %s retrieval function\n", "IHDR");
*width = info_ptr->width;
*height = info_ptr->height;
*bit_depth = info_ptr->bit_depth;
if (info_ptr->bit_depth < 1 || info_ptr->bit_depth > 16)
png_error(png_ptr, "Invalid bit depth");
*color_type = info_ptr->color_type;
if (info_ptr->color_type > 6)
png_error(png_ptr, "Invalid color type");
if (compression_type != NULL)
*compression_type = info_ptr->compression_type;
if (filter_type != NULL)
*filter_type = info_ptr->filter_type;
if (interlace_type != NULL)
*interlace_type = info_ptr->interlace_type;
 
/* check for potential overflow of rowbytes */
if (*color_type == PNG_COLOR_TYPE_PALETTE)
channels = 1;
else if (*color_type & PNG_COLOR_MASK_COLOR)
channels = 3;
else
channels = 1;
if (*color_type & PNG_COLOR_MASK_ALPHA)
channels++;
pixel_depth = *bit_depth * channels;
rowbytes_per_pixel = (pixel_depth + 7) >> 3;
if (width == 0 || *width > PNG_MAX_UINT)
png_error(png_ptr, "Invalid image width");
if (height == 0 || *height > PNG_MAX_UINT)
png_error(png_ptr, "Invalid image height");
if (*width > PNG_MAX_UINT/rowbytes_per_pixel - 64)
{
png_error(png_ptr,
"Width too large for libpng to process image data.");
}
return (1);
}
return (0);
}
 
#if defined(PNG_oFFs_SUPPORTED)
png_uint_32 PNGAPI
png_get_oFFs(png_structp png_ptr, png_infop info_ptr,
png_int_32 *offset_x, png_int_32 *offset_y, int *unit_type)
{
if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_oFFs)
&& offset_x != NULL && offset_y != NULL && unit_type != NULL)
{
png_debug1(1, "in %s retrieval function\n", "oFFs");
*offset_x = info_ptr->x_offset;
*offset_y = info_ptr->y_offset;
*unit_type = (int)info_ptr->offset_unit_type;
return (PNG_INFO_oFFs);
}
return (0);
}
#endif
 
#if defined(PNG_pCAL_SUPPORTED)
png_uint_32 PNGAPI
png_get_pCAL(png_structp png_ptr, png_infop info_ptr,
png_charp *purpose, png_int_32 *X0, png_int_32 *X1, int *type, int *nparams,
png_charp *units, png_charpp *params)
{
if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_pCAL)
&& purpose != NULL && X0 != NULL && X1 != NULL && type != NULL &&
nparams != NULL && units != NULL && params != NULL)
{
png_debug1(1, "in %s retrieval function\n", "pCAL");
*purpose = info_ptr->pcal_purpose;
*X0 = info_ptr->pcal_X0;
*X1 = info_ptr->pcal_X1;
*type = (int)info_ptr->pcal_type;
*nparams = (int)info_ptr->pcal_nparams;
*units = info_ptr->pcal_units;
*params = info_ptr->pcal_params;
return (PNG_INFO_pCAL);
}
return (0);
}
#endif
 
#if defined(PNG_sCAL_SUPPORTED)
#ifdef PNG_FLOATING_POINT_SUPPORTED
png_uint_32 PNGAPI
png_get_sCAL(png_structp png_ptr, png_infop info_ptr,
int *unit, double *width, double *height)
{
if (png_ptr != NULL && info_ptr != NULL &&
(info_ptr->valid & PNG_INFO_sCAL))
{
*unit = info_ptr->scal_unit;
*width = info_ptr->scal_pixel_width;
*height = info_ptr->scal_pixel_height;
return (PNG_INFO_sCAL);
}
return(0);
}
#else
#ifdef PNG_FIXED_POINT_SUPPORTED
png_uint_32 PNGAPI
png_get_sCAL_s(png_structp png_ptr, png_infop info_ptr,
int *unit, png_charpp width, png_charpp height)
{
if (png_ptr != NULL && info_ptr != NULL &&
(info_ptr->valid & PNG_INFO_sCAL))
{
*unit = info_ptr->scal_unit;
*width = info_ptr->scal_s_width;
*height = info_ptr->scal_s_height;
return (PNG_INFO_sCAL);
}
return(0);
}
#endif
#endif
#endif
 
#if defined(PNG_pHYs_SUPPORTED)
png_uint_32 PNGAPI
png_get_pHYs(png_structp png_ptr, png_infop info_ptr,
png_uint_32 *res_x, png_uint_32 *res_y, int *unit_type)
{
png_uint_32 retval = 0;
 
if (png_ptr != NULL && info_ptr != NULL &&
(info_ptr->valid & PNG_INFO_pHYs))
{
png_debug1(1, "in %s retrieval function\n", "pHYs");
if (res_x != NULL)
{
*res_x = info_ptr->x_pixels_per_unit;
retval |= PNG_INFO_pHYs;
}
if (res_y != NULL)
{
*res_y = info_ptr->y_pixels_per_unit;
retval |= PNG_INFO_pHYs;
}
if (unit_type != NULL)
{
*unit_type = (int)info_ptr->phys_unit_type;
retval |= PNG_INFO_pHYs;
}
}
return (retval);
}
#endif
 
png_uint_32 PNGAPI
png_get_PLTE(png_structp png_ptr, png_infop info_ptr, png_colorp *palette,
int *num_palette)
{
if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_PLTE)
&& palette != NULL)
{
png_debug1(1, "in %s retrieval function\n", "PLTE");
*palette = info_ptr->palette;
*num_palette = info_ptr->num_palette;
png_debug1(3, "num_palette = %d\n", *num_palette);
return (PNG_INFO_PLTE);
}
return (0);
}
 
#if defined(PNG_sBIT_SUPPORTED)
png_uint_32 PNGAPI
png_get_sBIT(png_structp png_ptr, png_infop info_ptr, png_color_8p *sig_bit)
{
if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_sBIT)
&& sig_bit != NULL)
{
png_debug1(1, "in %s retrieval function\n", "sBIT");
*sig_bit = &(info_ptr->sig_bit);
return (PNG_INFO_sBIT);
}
return (0);
}
#endif
 
#if defined(PNG_TEXT_SUPPORTED)
png_uint_32 PNGAPI
png_get_text(png_structp png_ptr, png_infop info_ptr, png_textp *text_ptr,
int *num_text)
{
if (png_ptr != NULL && info_ptr != NULL && info_ptr->num_text > 0)
{
png_debug1(1, "in %s retrieval function\n",
(png_ptr->chunk_name[0] == '\0' ? "text"
: (png_const_charp)png_ptr->chunk_name));
if (text_ptr != NULL)
*text_ptr = info_ptr->text;
if (num_text != NULL)
*num_text = info_ptr->num_text;
return ((png_uint_32)info_ptr->num_text);
}
if (num_text != NULL)
*num_text = 0;
return(0);
}
#endif
 
#if defined(PNG_tIME_SUPPORTED)
png_uint_32 PNGAPI
png_get_tIME(png_structp png_ptr, png_infop info_ptr, png_timep *mod_time)
{
if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_tIME)
&& mod_time != NULL)
{
png_debug1(1, "in %s retrieval function\n", "tIME");
*mod_time = &(info_ptr->mod_time);
return (PNG_INFO_tIME);
}
return (0);
}
#endif
 
#if defined(PNG_tRNS_SUPPORTED)
png_uint_32 PNGAPI
png_get_tRNS(png_structp png_ptr, png_infop info_ptr,
png_bytep *trans, int *num_trans, png_color_16p *trans_values)
{
png_uint_32 retval = 0;
if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_tRNS))
{
png_debug1(1, "in %s retrieval function\n", "tRNS");
if (info_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
{
if (trans != NULL)
{
*trans = info_ptr->trans;
retval |= PNG_INFO_tRNS;
}
if (trans_values != NULL)
*trans_values = &(info_ptr->trans_values);
}
else /* if (info_ptr->color_type != PNG_COLOR_TYPE_PALETTE) */
{
if (trans_values != NULL)
{
*trans_values = &(info_ptr->trans_values);
retval |= PNG_INFO_tRNS;
}
if(trans != NULL)
*trans = NULL;
}
if(num_trans != NULL)
{
*num_trans = info_ptr->num_trans;
retval |= PNG_INFO_tRNS;
}
}
return (retval);
}
#endif
 
#if defined(PNG_UNKNOWN_CHUNKS_SUPPORTED)
png_uint_32 PNGAPI
png_get_unknown_chunks(png_structp png_ptr, png_infop info_ptr,
png_unknown_chunkpp unknowns)
{
if (png_ptr != NULL && info_ptr != NULL && unknowns != NULL)
*unknowns = info_ptr->unknown_chunks;
return ((png_uint_32)info_ptr->unknown_chunks_num);
}
#endif
 
#if defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
png_byte PNGAPI
png_get_rgb_to_gray_status (png_structp png_ptr)
{
return (png_byte)(png_ptr? png_ptr->rgb_to_gray_status : 0);
}
#endif
 
#if defined(PNG_USER_CHUNKS_SUPPORTED)
png_voidp PNGAPI
png_get_user_chunk_ptr(png_structp png_ptr)
{
return (png_ptr? png_ptr->user_chunk_ptr : NULL);
}
#endif
 
 
png_uint_32 PNGAPI
png_get_compression_buffer_size(png_structp png_ptr)
{
return (png_uint_32)(png_ptr? png_ptr->zbuf_size : 0L);
}
 
 
#ifndef PNG_1_0_X
#ifdef PNG_ASSEMBLER_CODE_SUPPORTED
/* this function was added to libpng 1.2.0 and should exist by default */
png_uint_32 PNGAPI
png_get_asm_flags (png_structp png_ptr)
{
return (png_uint_32)(png_ptr? png_ptr->asm_flags : 0L);
}
 
/* this function was added to libpng 1.2.0 and should exist by default */
png_uint_32 PNGAPI
png_get_asm_flagmask (int flag_select)
{
png_uint_32 settable_asm_flags = 0;
 
if (flag_select & PNG_SELECT_READ)
settable_asm_flags |=
PNG_ASM_FLAG_MMX_READ_COMBINE_ROW |
PNG_ASM_FLAG_MMX_READ_INTERLACE |
PNG_ASM_FLAG_MMX_READ_FILTER_SUB |
PNG_ASM_FLAG_MMX_READ_FILTER_UP |
PNG_ASM_FLAG_MMX_READ_FILTER_AVG |
PNG_ASM_FLAG_MMX_READ_FILTER_PAETH ;
/* no non-MMX flags yet */
 
#if 0
/* GRR: no write-flags yet, either, but someday... */
if (flag_select & PNG_SELECT_WRITE)
settable_asm_flags |=
PNG_ASM_FLAG_MMX_WRITE_ [whatever] ;
#endif /* 0 */
 
return settable_asm_flags; /* _theoretically_ settable capabilities only */
}
#endif /* PNG_ASSEMBLER_CODE_SUPPORTED */
 
 
#if defined(PNG_ASSEMBLER_CODE_SUPPORTED)
/* GRR: could add this: && defined(PNG_MMX_CODE_SUPPORTED) */
/* this function was added to libpng 1.2.0 */
png_uint_32 PNGAPI
png_get_mmx_flagmask (int flag_select, int *compilerID)
{
png_uint_32 settable_mmx_flags = 0;
 
if (flag_select & PNG_SELECT_READ)
settable_mmx_flags |=
PNG_ASM_FLAG_MMX_READ_COMBINE_ROW |
PNG_ASM_FLAG_MMX_READ_INTERLACE |
PNG_ASM_FLAG_MMX_READ_FILTER_SUB |
PNG_ASM_FLAG_MMX_READ_FILTER_UP |
PNG_ASM_FLAG_MMX_READ_FILTER_AVG |
PNG_ASM_FLAG_MMX_READ_FILTER_PAETH ;
#if 0
/* GRR: no MMX write support yet, but someday... */
if (flag_select & PNG_SELECT_WRITE)
settable_mmx_flags |=
PNG_ASM_FLAG_MMX_WRITE_ [whatever] ;
#endif /* 0 */
 
if (compilerID != NULL) {
#ifdef PNG_USE_PNGVCRD
*compilerID = 1; /* MSVC */
#else
#ifdef PNG_USE_PNGGCCRD
*compilerID = 2; /* gcc/gas */
#else
*compilerID = -1; /* unknown (i.e., no asm/MMX code compiled) */
#endif
#endif
}
 
return settable_mmx_flags; /* _theoretically_ settable capabilities only */
}
 
/* this function was added to libpng 1.2.0 */
png_byte PNGAPI
png_get_mmx_bitdepth_threshold (png_structp png_ptr)
{
return (png_byte)(png_ptr? png_ptr->mmx_bitdepth_threshold : 0);
}
 
/* this function was added to libpng 1.2.0 */
png_uint_32 PNGAPI
png_get_mmx_rowbytes_threshold (png_structp png_ptr)
{
return (png_uint_32)(png_ptr? png_ptr->mmx_rowbytes_threshold : 0L);
}
#endif /* PNG_ASSEMBLER_CODE_SUPPORTED */
#endif /* PNG_1_0_X */
/shark/trunk/ports/png/png.c
0,0 → 1,805
 
/* png.c - location for general purpose libpng functions
*
* libpng version 1.2.5 - October 3, 2002
* Copyright (c) 1998-2002 Glenn Randers-Pehrson
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
*
*/
 
#define PNG_INTERNAL
#define PNG_NO_EXTERN
#include "png.h"
 
/* Generate a compiler error if there is an old png.h in the search path. */
typedef version_1_2_5 Your_png_h_is_not_version_1_2_5;
 
/* Version information for C files. This had better match the version
* string defined in png.h. */
 
#ifdef PNG_USE_GLOBAL_ARRAYS
/* png_libpng_ver was changed to a function in version 1.0.5c */
const char png_libpng_ver[18] = "1.2.5";
 
/* png_sig was changed to a function in version 1.0.5c */
/* Place to hold the signature string for a PNG file. */
const png_byte FARDATA png_sig[8] = {137, 80, 78, 71, 13, 10, 26, 10};
 
/* Invoke global declarations for constant strings for known chunk types */
PNG_IHDR;
PNG_IDAT;
PNG_IEND;
PNG_PLTE;
PNG_bKGD;
PNG_cHRM;
PNG_gAMA;
PNG_hIST;
PNG_iCCP;
PNG_iTXt;
PNG_oFFs;
PNG_pCAL;
PNG_sCAL;
PNG_pHYs;
PNG_sBIT;
PNG_sPLT;
PNG_sRGB;
PNG_tEXt;
PNG_tIME;
PNG_tRNS;
PNG_zTXt;
 
/* arrays to facilitate easy interlacing - use pass (0 - 6) as index */
 
/* start of interlace block */
const int FARDATA png_pass_start[] = {0, 4, 0, 2, 0, 1, 0};
 
/* offset to next interlace block */
const int FARDATA png_pass_inc[] = {8, 8, 4, 4, 2, 2, 1};
 
/* start of interlace block in the y direction */
const int FARDATA png_pass_ystart[] = {0, 0, 4, 0, 2, 0, 1};
 
/* offset to next interlace block in the y direction */
const int FARDATA png_pass_yinc[] = {8, 8, 8, 4, 4, 2, 2};
 
/* width of interlace block (used in assembler routines only) */
#ifdef PNG_HAVE_ASSEMBLER_COMBINE_ROW
const int FARDATA png_pass_width[] = {8, 4, 4, 2, 2, 1, 1};
#endif
 
/* Height of interlace block. This is not currently used - if you need
* it, uncomment it here and in png.h
const int FARDATA png_pass_height[] = {8, 8, 4, 4, 2, 2, 1};
*/
 
/* Mask to determine which pixels are valid in a pass */
const int FARDATA png_pass_mask[] = {0x80, 0x08, 0x88, 0x22, 0xaa, 0x55, 0xff};
 
/* Mask to determine which pixels to overwrite while displaying */
const int FARDATA png_pass_dsp_mask[]
= {0xff, 0x0f, 0xff, 0x33, 0xff, 0x55, 0xff};
 
#endif
 
/* Tells libpng that we have already handled the first "num_bytes" bytes
* of the PNG file signature. If the PNG data is embedded into another
* stream we can set num_bytes = 8 so that libpng will not attempt to read
* or write any of the magic bytes before it starts on the IHDR.
*/
 
void PNGAPI
png_set_sig_bytes(png_structp png_ptr, int num_bytes)
{
png_debug(1, "in png_set_sig_bytes\n");
if (num_bytes > 8)
png_error(png_ptr, "Too many bytes for PNG signature.");
 
png_ptr->sig_bytes = (png_byte)(num_bytes < 0 ? 0 : num_bytes);
}
 
/* Checks whether the supplied bytes match the PNG signature. We allow
* checking less than the full 8-byte signature so that those apps that
* already read the first few bytes of a file to determine the file type
* can simply check the remaining bytes for extra assurance. Returns
* an integer less than, equal to, or greater than zero if sig is found,
* respectively, to be less than, to match, or be greater than the correct
* PNG signature (this is the same behaviour as strcmp, memcmp, etc).
*/
int PNGAPI
png_sig_cmp(png_bytep sig, png_size_t start, png_size_t num_to_check)
{
png_byte png_signature[8] = {137, 80, 78, 71, 13, 10, 26, 10};
if (num_to_check > 8)
num_to_check = 8;
else if (num_to_check < 1)
return (0);
 
if (start > 7)
return (0);
 
if (start + num_to_check > 8)
num_to_check = 8 - start;
 
return ((int)(png_memcmp(&sig[start], &png_signature[start], num_to_check)));
}
 
/* (Obsolete) function to check signature bytes. It does not allow one
* to check a partial signature. This function might be removed in the
* future - use png_sig_cmp(). Returns true (nonzero) if the file is a PNG.
*/
int PNGAPI
png_check_sig(png_bytep sig, int num)
{
return ((int)!png_sig_cmp(sig, (png_size_t)0, (png_size_t)num));
}
 
/* Function to allocate memory for zlib and clear it to 0. */
#ifdef PNG_1_0_X
voidpf PNGAPI
#else
voidpf /* private */
#endif
png_zalloc(voidpf png_ptr, uInt items, uInt size)
{
png_uint_32 num_bytes = (png_uint_32)items * size;
png_voidp ptr;
png_structp p=png_ptr;
png_uint_32 save_flags=p->flags;
 
p->flags|=PNG_FLAG_MALLOC_NULL_MEM_OK;
ptr = (png_voidp)png_malloc((png_structp)png_ptr, num_bytes);
p->flags=save_flags;
 
#ifndef PNG_NO_ZALLOC_ZERO
if (ptr == NULL)
return ((voidpf)ptr);
 
if (num_bytes > (png_uint_32)0x8000L)
{
png_memset(ptr, 0, (png_size_t)0x8000L);
png_memset((png_bytep)ptr + (png_size_t)0x8000L, 0,
(png_size_t)(num_bytes - (png_uint_32)0x8000L));
}
else
{
png_memset(ptr, 0, (png_size_t)num_bytes);
}
#endif
return ((voidpf)ptr);
}
 
/* function to free memory for zlib */
#ifdef PNG_1_0_X
void PNGAPI
#else
void /* private */
#endif
png_zfree(voidpf png_ptr, voidpf ptr)
{
png_free((png_structp)png_ptr, (png_voidp)ptr);
}
 
/* Reset the CRC variable to 32 bits of 1's. Care must be taken
* in case CRC is > 32 bits to leave the top bits 0.
*/
void /* PRIVATE */
png_reset_crc(png_structp png_ptr)
{
png_ptr->crc = crc32(0, Z_NULL, 0);
}
 
/* Calculate the CRC over a section of data. We can only pass as
* much data to this routine as the largest single buffer size. We
* also check that this data will actually be used before going to the
* trouble of calculating it.
*/
void /* PRIVATE */
png_calculate_crc(png_structp png_ptr, png_bytep ptr, png_size_t length)
{
int need_crc = 1;
 
if (png_ptr->chunk_name[0] & 0x20) /* ancillary */
{
if ((png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_MASK) ==
(PNG_FLAG_CRC_ANCILLARY_USE | PNG_FLAG_CRC_ANCILLARY_NOWARN))
need_crc = 0;
}
else /* critical */
{
if (png_ptr->flags & PNG_FLAG_CRC_CRITICAL_IGNORE)
need_crc = 0;
}
 
if (need_crc)
png_ptr->crc = crc32(png_ptr->crc, ptr, (uInt)length);
}
 
/* Allocate the memory for an info_struct for the application. We don't
* really need the png_ptr, but it could potentially be useful in the
* future. This should be used in favour of malloc(sizeof(png_info))
* and png_info_init() so that applications that want to use a shared
* libpng don't have to be recompiled if png_info changes size.
*/
png_infop PNGAPI
png_create_info_struct(png_structp png_ptr)
{
png_infop info_ptr;
 
png_debug(1, "in png_create_info_struct\n");
if(png_ptr == NULL) return (NULL);
#ifdef PNG_USER_MEM_SUPPORTED
info_ptr = (png_infop)png_create_struct_2(PNG_STRUCT_INFO,
png_ptr->malloc_fn, png_ptr->mem_ptr);
#else
info_ptr = (png_infop)png_create_struct(PNG_STRUCT_INFO);
#endif
if (info_ptr != NULL)
png_info_init_3(&info_ptr, sizeof(png_info));
 
return (info_ptr);
}
 
/* This function frees the memory associated with a single info struct.
* Normally, one would use either png_destroy_read_struct() or
* png_destroy_write_struct() to free an info struct, but this may be
* useful for some applications.
*/
void PNGAPI
png_destroy_info_struct(png_structp png_ptr, png_infopp info_ptr_ptr)
{
png_infop info_ptr = NULL;
 
png_debug(1, "in png_destroy_info_struct\n");
if (info_ptr_ptr != NULL)
info_ptr = *info_ptr_ptr;
 
if (info_ptr != NULL)
{
png_info_destroy(png_ptr, info_ptr);
 
#ifdef PNG_USER_MEM_SUPPORTED
png_destroy_struct_2((png_voidp)info_ptr, png_ptr->free_fn,
png_ptr->mem_ptr);
#else
png_destroy_struct((png_voidp)info_ptr);
#endif
*info_ptr_ptr = NULL;
}
}
 
/* Initialize the info structure. This is now an internal function (0.89)
* and applications using it are urged to use png_create_info_struct()
* instead.
*/
#undef png_info_init
void PNGAPI
png_info_init(png_infop info_ptr)
{
/* We only come here via pre-1.0.12-compiled applications */
png_info_init_3(&info_ptr, 0);
}
 
void PNGAPI
png_info_init_3(png_infopp ptr_ptr, png_size_t png_info_struct_size)
{
png_infop info_ptr = *ptr_ptr;
 
png_debug(1, "in png_info_init_3\n");
 
if(sizeof(png_info) > png_info_struct_size)
{
png_destroy_struct(info_ptr);
info_ptr = (png_infop)png_create_struct(PNG_STRUCT_INFO);
*ptr_ptr = info_ptr;
}
 
/* set everything to 0 */
png_memset(info_ptr, 0, sizeof (png_info));
}
 
#ifdef PNG_FREE_ME_SUPPORTED
void PNGAPI
png_data_freer(png_structp png_ptr, png_infop info_ptr,
int freer, png_uint_32 mask)
{
png_debug(1, "in png_data_freer\n");
if (png_ptr == NULL || info_ptr == NULL)
return;
if(freer == PNG_DESTROY_WILL_FREE_DATA)
info_ptr->free_me |= mask;
else if(freer == PNG_USER_WILL_FREE_DATA)
info_ptr->free_me &= ~mask;
else
png_warning(png_ptr,
"Unknown freer parameter in png_data_freer.");
}
#endif
 
void PNGAPI
png_free_data(png_structp png_ptr, png_infop info_ptr, png_uint_32 mask,
int num)
{
png_debug(1, "in png_free_data\n");
if (png_ptr == NULL || info_ptr == NULL)
return;
 
#if defined(PNG_TEXT_SUPPORTED)
/* free text item num or (if num == -1) all text items */
#ifdef PNG_FREE_ME_SUPPORTED
if ((mask & PNG_FREE_TEXT) & info_ptr->free_me)
#else
if (mask & PNG_FREE_TEXT)
#endif
{
if (num != -1)
{
if (info_ptr->text && info_ptr->text[num].key)
{
png_free(png_ptr, info_ptr->text[num].key);
info_ptr->text[num].key = NULL;
}
}
else
{
int i;
for (i = 0; i < info_ptr->num_text; i++)
png_free_data(png_ptr, info_ptr, PNG_FREE_TEXT, i);
png_free(png_ptr, info_ptr->text);
info_ptr->text = NULL;
info_ptr->num_text=0;
}
}
#endif
 
#if defined(PNG_tRNS_SUPPORTED)
/* free any tRNS entry */
#ifdef PNG_FREE_ME_SUPPORTED
if ((mask & PNG_FREE_TRNS) & info_ptr->free_me)
#else
if ((mask & PNG_FREE_TRNS) && (png_ptr->flags & PNG_FLAG_FREE_TRNS))
#endif
{
png_free(png_ptr, info_ptr->trans);
info_ptr->valid &= ~PNG_INFO_tRNS;
#ifndef PNG_FREE_ME_SUPPORTED
png_ptr->flags &= ~PNG_FLAG_FREE_TRNS;
#endif
info_ptr->trans = NULL;
}
#endif
 
#if defined(PNG_sCAL_SUPPORTED)
/* free any sCAL entry */
#ifdef PNG_FREE_ME_SUPPORTED
if ((mask & PNG_FREE_SCAL) & info_ptr->free_me)
#else
if (mask & PNG_FREE_SCAL)
#endif
{
#if defined(PNG_FIXED_POINT_SUPPORTED) && !defined(PNG_FLOATING_POINT_SUPPORTED)
png_free(png_ptr, info_ptr->scal_s_width);
png_free(png_ptr, info_ptr->scal_s_height);
info_ptr->scal_s_width = NULL;
info_ptr->scal_s_height = NULL;
#endif
info_ptr->valid &= ~PNG_INFO_sCAL;
}
#endif
 
#if defined(PNG_pCAL_SUPPORTED)
/* free any pCAL entry */
#ifdef PNG_FREE_ME_SUPPORTED
if ((mask & PNG_FREE_PCAL) & info_ptr->free_me)
#else
if (mask & PNG_FREE_PCAL)
#endif
{
png_free(png_ptr, info_ptr->pcal_purpose);
png_free(png_ptr, info_ptr->pcal_units);
info_ptr->pcal_purpose = NULL;
info_ptr->pcal_units = NULL;
if (info_ptr->pcal_params != NULL)
{
int i;
for (i = 0; i < (int)info_ptr->pcal_nparams; i++)
{
png_free(png_ptr, info_ptr->pcal_params[i]);
info_ptr->pcal_params[i]=NULL;
}
png_free(png_ptr, info_ptr->pcal_params);
info_ptr->pcal_params = NULL;
}
info_ptr->valid &= ~PNG_INFO_pCAL;
}
#endif
 
#if defined(PNG_iCCP_SUPPORTED)
/* free any iCCP entry */
#ifdef PNG_FREE_ME_SUPPORTED
if ((mask & PNG_FREE_ICCP) & info_ptr->free_me)
#else
if (mask & PNG_FREE_ICCP)
#endif
{
png_free(png_ptr, info_ptr->iccp_name);
png_free(png_ptr, info_ptr->iccp_profile);
info_ptr->iccp_name = NULL;
info_ptr->iccp_profile = NULL;
info_ptr->valid &= ~PNG_INFO_iCCP;
}
#endif
 
#if defined(PNG_sPLT_SUPPORTED)
/* free a given sPLT entry, or (if num == -1) all sPLT entries */
#ifdef PNG_FREE_ME_SUPPORTED
if ((mask & PNG_FREE_SPLT) & info_ptr->free_me)
#else
if (mask & PNG_FREE_SPLT)
#endif
{
if (num != -1)
{
if(info_ptr->splt_palettes)
{
png_free(png_ptr, info_ptr->splt_palettes[num].name);
png_free(png_ptr, info_ptr->splt_palettes[num].entries);
info_ptr->splt_palettes[num].name = NULL;
info_ptr->splt_palettes[num].entries = NULL;
}
}
else
{
if(info_ptr->splt_palettes_num)
{
int i;
for (i = 0; i < (int)info_ptr->splt_palettes_num; i++)
png_free_data(png_ptr, info_ptr, PNG_FREE_SPLT, i);
 
png_free(png_ptr, info_ptr->splt_palettes);
info_ptr->splt_palettes = NULL;
info_ptr->splt_palettes_num = 0;
}
info_ptr->valid &= ~PNG_INFO_sPLT;
}
}
#endif
 
#if defined(PNG_UNKNOWN_CHUNKS_SUPPORTED)
#ifdef PNG_FREE_ME_SUPPORTED
if ((mask & PNG_FREE_UNKN) & info_ptr->free_me)
#else
if (mask & PNG_FREE_UNKN)
#endif
{
if (num != -1)
{
if(info_ptr->unknown_chunks)
{
png_free(png_ptr, info_ptr->unknown_chunks[num].data);
info_ptr->unknown_chunks[num].data = NULL;
}
}
else
{
int i;
 
if(info_ptr->unknown_chunks_num)
{
for (i = 0; i < (int)info_ptr->unknown_chunks_num; i++)
png_free_data(png_ptr, info_ptr, PNG_FREE_UNKN, i);
 
png_free(png_ptr, info_ptr->unknown_chunks);
info_ptr->unknown_chunks = NULL;
info_ptr->unknown_chunks_num = 0;
}
}
}
#endif
 
#if defined(PNG_hIST_SUPPORTED)
/* free any hIST entry */
#ifdef PNG_FREE_ME_SUPPORTED
if ((mask & PNG_FREE_HIST) & info_ptr->free_me)
#else
if ((mask & PNG_FREE_HIST) && (png_ptr->flags & PNG_FLAG_FREE_HIST))
#endif
{
png_free(png_ptr, info_ptr->hist);
info_ptr->hist = NULL;
info_ptr->valid &= ~PNG_INFO_hIST;
#ifndef PNG_FREE_ME_SUPPORTED
png_ptr->flags &= ~PNG_FLAG_FREE_HIST;
#endif
}
#endif
 
/* free any PLTE entry that was internally allocated */
#ifdef PNG_FREE_ME_SUPPORTED
if ((mask & PNG_FREE_PLTE) & info_ptr->free_me)
#else
if ((mask & PNG_FREE_PLTE) && (png_ptr->flags & PNG_FLAG_FREE_PLTE))
#endif
{
png_zfree(png_ptr, info_ptr->palette);
info_ptr->palette = NULL;
info_ptr->valid &= ~PNG_INFO_PLTE;
#ifndef PNG_FREE_ME_SUPPORTED
png_ptr->flags &= ~PNG_FLAG_FREE_PLTE;
#endif
info_ptr->num_palette = 0;
}
 
#if defined(PNG_INFO_IMAGE_SUPPORTED)
/* free any image bits attached to the info structure */
#ifdef PNG_FREE_ME_SUPPORTED
if ((mask & PNG_FREE_ROWS) & info_ptr->free_me)
#else
if (mask & PNG_FREE_ROWS)
#endif
{
if(info_ptr->row_pointers)
{
int row;
for (row = 0; row < (int)info_ptr->height; row++)
{
png_free(png_ptr, info_ptr->row_pointers[row]);
info_ptr->row_pointers[row]=NULL;
}
png_free(png_ptr, info_ptr->row_pointers);
info_ptr->row_pointers=NULL;
}
info_ptr->valid &= ~PNG_INFO_IDAT;
}
#endif
 
#ifdef PNG_FREE_ME_SUPPORTED
if(num == -1)
info_ptr->free_me &= ~mask;
else
info_ptr->free_me &= ~(mask & ~PNG_FREE_MUL);
#endif
}
 
/* This is an internal routine to free any memory that the info struct is
* pointing to before re-using it or freeing the struct itself. Recall
* that png_free() checks for NULL pointers for us.
*/
void /* PRIVATE */
png_info_destroy(png_structp png_ptr, png_infop info_ptr)
{
png_debug(1, "in png_info_destroy\n");
 
png_free_data(png_ptr, info_ptr, PNG_FREE_ALL, -1);
 
#if defined(PNG_UNKNOWN_CHUNKS_SUPPORTED)
if (png_ptr->num_chunk_list)
{
png_free(png_ptr, png_ptr->chunk_list);
png_ptr->chunk_list=NULL;
png_ptr->num_chunk_list=0;
}
#endif
 
png_info_init_3(&info_ptr, sizeof(png_info));
}
 
/* This function returns a pointer to the io_ptr associated with the user
* functions. The application should free any memory associated with this
* pointer before png_write_destroy() or png_read_destroy() are called.
*/
png_voidp PNGAPI
png_get_io_ptr(png_structp png_ptr)
{
return (png_ptr->io_ptr);
}
 
#if !defined(PNG_NO_STDIO)
/* Initialize the default input/output functions for the PNG file. If you
* use your own read or write routines, you can call either png_set_read_fn()
* or png_set_write_fn() instead of png_init_io(). If you have defined
* PNG_NO_STDIO, you must use a function of your own because "FILE *" isn't
* necessarily available.
*/
void PNGAPI
png_init_io(png_structp png_ptr, png_FILE_p fp)
{
png_debug(1, "in png_init_io\n");
png_ptr->io_ptr = (png_voidp)fp;
}
#endif
 
#if defined(PNG_TIME_RFC1123_SUPPORTED)
/* Convert the supplied time into an RFC 1123 string suitable for use in
* a "Creation Time" or other text-based time string.
*/
png_charp PNGAPI
png_convert_to_rfc1123(png_structp png_ptr, png_timep ptime)
{
static PNG_CONST char short_months[12][4] =
{"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"};
 
if (png_ptr->time_buffer == NULL)
{
png_ptr->time_buffer = (png_charp)png_malloc(png_ptr, (png_uint_32)(29*
sizeof(char)));
}
 
#if defined(_WIN32_WCE)
{
wchar_t time_buf[29];
wsprintf(time_buf, TEXT("%d %S %d %02d:%02d:%02d +0000"),
ptime->day % 32, short_months[(ptime->month - 1) % 12],
ptime->year, ptime->hour % 24, ptime->minute % 60,
ptime->second % 61);
WideCharToMultiByte(CP_ACP, 0, time_buf, -1, png_ptr->time_buffer, 29,
NULL, NULL);
}
#else
#ifdef USE_FAR_KEYWORD
{
char near_time_buf[29];
sprintf(near_time_buf, "%d %s %d %02d:%02d:%02d +0000",
ptime->day % 32, short_months[(ptime->month - 1) % 12],
ptime->year, ptime->hour % 24, ptime->minute % 60,
ptime->second % 61);
png_memcpy(png_ptr->time_buffer, near_time_buf,
29*sizeof(char));
}
#else
sprintf(png_ptr->time_buffer, "%d %s %d %02d:%02d:%02d +0000",
ptime->day % 32, short_months[(ptime->month - 1) % 12],
ptime->year, ptime->hour % 24, ptime->minute % 60,
ptime->second % 61);
#endif
#endif /* _WIN32_WCE */
return ((png_charp)png_ptr->time_buffer);
}
#endif /* PNG_TIME_RFC1123_SUPPORTED */
 
#if 0
/* Signature string for a PNG file. */
png_bytep PNGAPI
png_sig_bytes(void)
{
return ((png_bytep)"\211\120\116\107\015\012\032\012");
}
#endif
 
png_charp PNGAPI
png_get_copyright(png_structp png_ptr)
{
if (png_ptr != NULL || png_ptr == NULL) /* silence compiler warning */
return ((png_charp) "\n libpng version 1.2.5 - October 3, 2002\n\
Copyright (c) 1998-2002 Glenn Randers-Pehrson\n\
Copyright (c) 1996-1997 Andreas Dilger\n\
Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc.\n");
return ((png_charp) "");
}
 
/* The following return the library version as a short string in the
* format 1.0.0 through 99.99.99zz. To get the version of *.h files used
* with your application, print out PNG_LIBPNG_VER_STRING, which is defined
* in png.h.
*/
 
png_charp PNGAPI
png_get_libpng_ver(png_structp png_ptr)
{
/* Version of *.c files used when building libpng */
if(png_ptr != NULL) /* silence compiler warning about unused png_ptr */
return((png_charp) "1.2.5");
return((png_charp) "1.2.5");
}
 
png_charp PNGAPI
png_get_header_ver(png_structp png_ptr)
{
/* Version of *.h files used when building libpng */
if(png_ptr != NULL) /* silence compiler warning about unused png_ptr */
return((png_charp) PNG_LIBPNG_VER_STRING);
return((png_charp) PNG_LIBPNG_VER_STRING);
}
 
png_charp PNGAPI
png_get_header_version(png_structp png_ptr)
{
/* Returns longer string containing both version and date */
if(png_ptr != NULL) /* silence compiler warning about unused png_ptr */
return((png_charp) PNG_HEADER_VERSION_STRING);
return((png_charp) PNG_HEADER_VERSION_STRING);
}
 
#ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED
int PNGAPI
png_handle_as_unknown(png_structp png_ptr, png_bytep chunk_name)
{
/* check chunk_name and return "keep" value if it's on the list, else 0 */
int i;
png_bytep p;
if((png_ptr == NULL && chunk_name == NULL) || png_ptr->num_chunk_list<=0)
return 0;
p=png_ptr->chunk_list+png_ptr->num_chunk_list*5-5;
for (i = png_ptr->num_chunk_list; i; i--, p-=5)
if (!png_memcmp(chunk_name, p, 4))
return ((int)*(p+4));
return 0;
}
#endif
 
/* This function, added to libpng-1.0.6g, is untested. */
int PNGAPI
png_reset_zstream(png_structp png_ptr)
{
return (inflateReset(&png_ptr->zstream));
}
 
/* This function was added to libpng-1.0.7 */
png_uint_32 PNGAPI
png_access_version_number(void)
{
/* Version of *.c files used when building libpng */
return((png_uint_32) 10205L);
}
 
 
#if !defined(PNG_1_0_X)
#if defined(PNG_ASSEMBLER_CODE_SUPPORTED)
/* GRR: could add this: && defined(PNG_MMX_CODE_SUPPORTED) */
/* this INTERNAL function was added to libpng 1.2.0 */
void /* PRIVATE */
png_init_mmx_flags (png_structp png_ptr)
{
png_ptr->mmx_rowbytes_threshold = 0;
png_ptr->mmx_bitdepth_threshold = 0;
 
# if (defined(PNG_USE_PNGVCRD) || defined(PNG_USE_PNGGCCRD))
 
png_ptr->asm_flags |= PNG_ASM_FLAG_MMX_SUPPORT_COMPILED;
 
if (png_mmx_support() > 0) {
png_ptr->asm_flags |= PNG_ASM_FLAG_MMX_SUPPORT_IN_CPU
# ifdef PNG_HAVE_ASSEMBLER_COMBINE_ROW
| PNG_ASM_FLAG_MMX_READ_COMBINE_ROW
# endif
# ifdef PNG_HAVE_ASSEMBLER_READ_INTERLACE
| PNG_ASM_FLAG_MMX_READ_INTERLACE
# endif
# ifndef PNG_HAVE_ASSEMBLER_READ_FILTER_ROW
;
# else
| PNG_ASM_FLAG_MMX_READ_FILTER_SUB
| PNG_ASM_FLAG_MMX_READ_FILTER_UP
| PNG_ASM_FLAG_MMX_READ_FILTER_AVG
| PNG_ASM_FLAG_MMX_READ_FILTER_PAETH ;
 
png_ptr->mmx_rowbytes_threshold = PNG_MMX_ROWBYTES_THRESHOLD_DEFAULT;
png_ptr->mmx_bitdepth_threshold = PNG_MMX_BITDEPTH_THRESHOLD_DEFAULT;
# endif
} else {
png_ptr->asm_flags &= ~( PNG_ASM_FLAG_MMX_SUPPORT_IN_CPU
| PNG_MMX_READ_FLAGS
| PNG_MMX_WRITE_FLAGS );
}
 
# else /* !((PNGVCRD || PNGGCCRD) && PNG_ASSEMBLER_CODE_SUPPORTED)) */
 
/* clear all MMX flags; no support is compiled in */
png_ptr->asm_flags &= ~( PNG_MMX_FLAGS );
 
# endif /* ?(PNGVCRD || PNGGCCRD) */
}
 
#endif /* !(PNG_ASSEMBLER_CODE_SUPPORTED) */
 
/* this function was added to libpng 1.2.0 */
#if !defined(PNG_USE_PNGGCCRD) && \
!(defined(PNG_ASSEMBLER_CODE_SUPPORTED) && defined(PNG_USE_PNGVCRD))
int PNGAPI
png_mmx_support(void)
{
return -1;
}
#endif
#endif /* PNG_1_0_X */
/shark/trunk/ports/png/pnggccrd.c
0,0 → 1,5397
/* pnggccrd.c - mixed C/assembler version of utilities to read a PNG file
*
* For Intel x86 CPU (Pentium-MMX or later) and GNU C compiler.
*
* See http://www.intel.com/drg/pentiumII/appnotes/916/916.htm
* and http://www.intel.com/drg/pentiumII/appnotes/923/923.htm
* for Intel's performance analysis of the MMX vs. non-MMX code.
*
* libpng version 1.2.5 - October 3, 2002
* For conditions of distribution and use, see copyright notice in png.h
* Copyright (c) 1998-2002 Glenn Randers-Pehrson
* Copyright (c) 1998, Intel Corporation
*
* Based on MSVC code contributed by Nirav Chhatrapati, Intel Corp., 1998.
* Interface to libpng contributed by Gilles Vollant, 1999.
* GNU C port by Greg Roelofs, 1999-2001.
*
* Lines 2350-4300 converted in place with intel2gas 1.3.1:
*
* intel2gas -mdI pnggccrd.c.partially-msvc -o pnggccrd.c
*
* and then cleaned up by hand. See http://hermes.terminal.at/intel2gas/ .
*
* NOTE: A sufficiently recent version of GNU as (or as.exe under DOS/Windows)
* is required to assemble the newer MMX instructions such as movq.
* For djgpp, see
*
* ftp://ftp.simtel.net/pub/simtelnet/gnu/djgpp/v2gnu/bnu281b.zip
*
* (or a later version in the same directory). For Linux, check your
* distribution's web site(s) or try these links:
*
* http://rufus.w3.org/linux/RPM/binutils.html
* http://www.debian.org/Packages/stable/devel/binutils.html
* ftp://ftp.slackware.com/pub/linux/slackware/slackware/slakware/d1/
* binutils.tgz
*
* For other platforms, see the main GNU site:
*
* ftp://ftp.gnu.org/pub/gnu/binutils/
*
* Version 2.5.2l.15 is definitely too old...
*/
 
/*
* TEMPORARY PORTING NOTES AND CHANGELOG (mostly by Greg Roelofs)
* =====================================
*
* 19991006:
* - fixed sign error in post-MMX cleanup code (16- & 32-bit cases)
*
* 19991007:
* - additional optimizations (possible or definite):
* x [DONE] write MMX code for 64-bit case (pixel_bytes == 8) [not tested]
* - write MMX code for 48-bit case (pixel_bytes == 6)
* - figure out what's up with 24-bit case (pixel_bytes == 3):
* why subtract 8 from width_mmx in the pass 4/5 case?
* (only width_mmx case) (near line 1606)
* x [DONE] replace pixel_bytes within each block with the true
* constant value (or are compilers smart enough to do that?)
* - rewrite all MMX interlacing code so it's aligned with
* the *beginning* of the row buffer, not the end. This
* would not only allow one to eliminate half of the memory
* writes for odd passes (that is, pass == odd), it may also
* eliminate some unaligned-data-access exceptions (assuming
* there's a penalty for not aligning 64-bit accesses on
* 64-bit boundaries). The only catch is that the "leftover"
* pixel(s) at the end of the row would have to be saved,
* but there are enough unused MMX registers in every case,
* so this is not a problem. A further benefit is that the
* post-MMX cleanup code (C code) in at least some of the
* cases could be done within the assembler block.
* x [DONE] the "v3 v2 v1 v0 v7 v6 v5 v4" comments are confusing,
* inconsistent, and don't match the MMX Programmer's Reference
* Manual conventions anyway. They should be changed to
* "b7 b6 b5 b4 b3 b2 b1 b0," where b0 indicates the byte that
* was lowest in memory (e.g., corresponding to a left pixel)
* and b7 is the byte that was highest (e.g., a right pixel).
*
* 19991016:
* - Brennan's Guide notwithstanding, gcc under Linux does *not*
* want globals prefixed by underscores when referencing them--
* i.e., if the variable is const4, then refer to it as const4,
* not _const4. This seems to be a djgpp-specific requirement.
* Also, such variables apparently *must* be declared outside
* of functions; neither static nor automatic variables work if
* defined within the scope of a single function, but both
* static and truly global (multi-module) variables work fine.
*
* 19991023:
* - fixed png_combine_row() non-MMX replication bug (odd passes only?)
* - switched from string-concatenation-with-macros to cleaner method of
* renaming global variables for djgpp--i.e., always use prefixes in
* inlined assembler code (== strings) and conditionally rename the
* variables, not the other way around. Hence _const4, _mask8_0, etc.
*
* 19991024:
* - fixed mmxsupport()/png_do_read_interlace() first-row bug
* This one was severely weird: even though mmxsupport() doesn't touch
* ebx (where "row" pointer was stored), it nevertheless managed to zero
* the register (even in static/non-fPIC code--see below), which in turn
* caused png_do_read_interlace() to return prematurely on the first row of
* interlaced images (i.e., without expanding the interlaced pixels).
* Inspection of the generated assembly code didn't turn up any clues,
* although it did point at a minor optimization (i.e., get rid of
* mmx_supported_local variable and just use eax). Possibly the CPUID
* instruction is more destructive than it looks? (Not yet checked.)
* - "info gcc" was next to useless, so compared fPIC and non-fPIC assembly
* listings... Apparently register spillage has to do with ebx, since
* it's used to index the global offset table. Commenting it out of the
* input-reg lists in png_combine_row() eliminated compiler barfage, so
* ifdef'd with __PIC__ macro: if defined, use a global for unmask
*
* 19991107:
* - verified CPUID clobberage: 12-char string constant ("GenuineIntel",
* "AuthenticAMD", etc.) placed in ebx:ecx:edx. Still need to polish.
*
* 19991120:
* - made "diff" variable (now "_dif") global to simplify conversion of
* filtering routines (running out of regs, sigh). "diff" is still used
* in interlacing routines, however.
* - fixed up both versions of mmxsupport() (ORIG_THAT_USED_TO_CLOBBER_EBX
* macro determines which is used); original not yet tested.
*
* 20000213:
* - when compiling with gcc, be sure to use -fomit-frame-pointer
*
* 20000319:
* - fixed a register-name typo in png_do_read_interlace(), default (MMX) case,
* pass == 4 or 5, that caused visible corruption of interlaced images
*
* 20000623:
* - Various problems were reported with gcc 2.95.2 in the Cygwin environment,
* many of the form "forbidden register 0 (ax) was spilled for class AREG."
* This is explained at http://gcc.gnu.org/fom_serv/cache/23.html, and
* Chuck Wilson supplied a patch involving dummy output registers. See
* http://sourceforge.net/bugs/?func=detailbug&bug_id=108741&group_id=5624
* for the original (anonymous) SourceForge bug report.
*
* 20000706:
* - Chuck Wilson passed along these remaining gcc 2.95.2 errors:
* pnggccrd.c: In function `png_combine_row':
* pnggccrd.c:525: more than 10 operands in `asm'
* pnggccrd.c:669: more than 10 operands in `asm'
* pnggccrd.c:828: more than 10 operands in `asm'
* pnggccrd.c:994: more than 10 operands in `asm'
* pnggccrd.c:1177: more than 10 operands in `asm'
* They are all the same problem and can be worked around by using the
* global _unmask variable unconditionally, not just in the -fPIC case.
* Reportedly earlier versions of gcc also have the problem with more than
* 10 operands; they just don't report it. Much strangeness ensues, etc.
*
* 20000729:
* - enabled png_read_filter_row_mmx_up() (shortest remaining unconverted
* MMX routine); began converting png_read_filter_row_mmx_sub()
* - to finish remaining sections:
* - clean up indentation and comments
* - preload local variables
* - add output and input regs (order of former determines numerical
* mapping of latter)
* - avoid all usage of ebx (including bx, bh, bl) register [20000823]
* - remove "$" from addressing of Shift and Mask variables [20000823]
*
* 20000731:
* - global union vars causing segfaults in png_read_filter_row_mmx_sub()?
*
* 20000822:
* - ARGH, stupid png_read_filter_row_mmx_sub() segfault only happens with
* shared-library (-fPIC) version! Code works just fine as part of static
* library. Damn damn damn damn damn, should have tested that sooner.
* ebx is getting clobbered again (explicitly this time); need to save it
* on stack or rewrite asm code to avoid using it altogether. Blargh!
*
* 20000823:
* - first section was trickiest; all remaining sections have ebx -> edx now.
* (-fPIC works again.) Also added missing underscores to various Shift*
* and *Mask* globals and got rid of leading "$" signs.
*
* 20000826:
* - added visual separators to help navigate microscopic printed copies
* (http://pobox.com/~newt/code/gpr-latest.zip, mode 10); started working
* on png_read_filter_row_mmx_avg()
*
* 20000828:
* - finished png_read_filter_row_mmx_avg(): only Paeth left! (930 lines...)
* What the hell, did png_read_filter_row_mmx_paeth(), too. Comments not
* cleaned up/shortened in either routine, but functionality is complete
* and seems to be working fine.
*
* 20000829:
* - ahhh, figured out last(?) bit of gcc/gas asm-fu: if register is listed
* as an input reg (with dummy output variables, etc.), then it *cannot*
* also appear in the clobber list or gcc 2.95.2 will barf. The solution
* is simple enough...
*
* 20000914:
* - bug in png_read_filter_row_mmx_avg(): 16-bit grayscale not handled
* correctly (but 48-bit RGB just fine)
*
* 20000916:
* - fixed bug in png_read_filter_row_mmx_avg(), bpp == 2 case; three errors:
* - "_ShiftBpp.use = 24;" should have been "_ShiftBpp.use = 16;"
* - "_ShiftRem.use = 40;" should have been "_ShiftRem.use = 48;"
* - "psllq _ShiftRem, %%mm2" should have been "psrlq _ShiftRem, %%mm2"
*
* 20010101:
* - added new png_init_mmx_flags() function (here only because it needs to
* call mmxsupport(), which should probably become global png_mmxsupport());
* modified other MMX routines to run conditionally (png_ptr->asm_flags)
*
* 20010103:
* - renamed mmxsupport() to png_mmx_support(), with auto-set of mmx_supported,
* and made it public; moved png_init_mmx_flags() to png.c as internal func
*
* 20010104:
* - removed dependency on png_read_filter_row_c() (C code already duplicated
* within MMX version of png_read_filter_row()) so no longer necessary to
* compile it into pngrutil.o
*
* 20010310:
* - fixed buffer-overrun bug in png_combine_row() C code (non-MMX)
*
* 20020304:
* - eliminated incorrect use of width_mmx in pixel_bytes == 8 case
*
* STILL TO DO:
* - test png_do_read_interlace() 64-bit case (pixel_bytes == 8)
* - write MMX code for 48-bit case (pixel_bytes == 6)
* - figure out what's up with 24-bit case (pixel_bytes == 3):
* why subtract 8 from width_mmx in the pass 4/5 case?
* (only width_mmx case) (near line 1606)
* - rewrite all MMX interlacing code so it's aligned with beginning
* of the row buffer, not the end (see 19991007 for details)
* x pick one version of mmxsupport() and get rid of the other
* - add error messages to any remaining bogus default cases
* - enable pixel_depth == 8 cases in png_read_filter_row()? (test speed)
* x add support for runtime enable/disable/query of various MMX routines
*/
 
#define PNG_INTERNAL
#include "png.h"
 
#if defined(PNG_USE_PNGGCCRD)
 
int PNGAPI png_mmx_support(void);
 
#ifdef PNG_USE_LOCAL_ARRAYS
static const int FARDATA png_pass_start[7] = {0, 4, 0, 2, 0, 1, 0};
static const int FARDATA png_pass_inc[7] = {8, 8, 4, 4, 2, 2, 1};
static const int FARDATA png_pass_width[7] = {8, 4, 4, 2, 2, 1, 1};
#endif
 
#if defined(PNG_ASSEMBLER_CODE_SUPPORTED)
/* djgpp, Win32, and Cygwin add their own underscores to global variables,
* so define them without: */
#if defined(__DJGPP__) || defined(WIN32) || defined(__CYGWIN__)
# define _mmx_supported mmx_supported
# define _const4 const4
# define _const6 const6
# define _mask8_0 mask8_0
# define _mask16_1 mask16_1
# define _mask16_0 mask16_0
# define _mask24_2 mask24_2
# define _mask24_1 mask24_1
# define _mask24_0 mask24_0
# define _mask32_3 mask32_3
# define _mask32_2 mask32_2
# define _mask32_1 mask32_1
# define _mask32_0 mask32_0
# define _mask48_5 mask48_5
# define _mask48_4 mask48_4
# define _mask48_3 mask48_3
# define _mask48_2 mask48_2
# define _mask48_1 mask48_1
# define _mask48_0 mask48_0
# define _LBCarryMask LBCarryMask
# define _HBClearMask HBClearMask
# define _ActiveMask ActiveMask
# define _ActiveMask2 ActiveMask2
# define _ActiveMaskEnd ActiveMaskEnd
# define _ShiftBpp ShiftBpp
# define _ShiftRem ShiftRem
#ifdef PNG_THREAD_UNSAFE_OK
# define _unmask unmask
# define _FullLength FullLength
# define _MMXLength MMXLength
# define _dif dif
# define _patemp patemp
# define _pbtemp pbtemp
# define _pctemp pctemp
#endif
#endif
 
 
/* These constants are used in the inlined MMX assembly code.
Ignore gcc's "At top level: defined but not used" warnings. */
 
/* GRR 20000706: originally _unmask was needed only when compiling with -fPIC,
* since that case uses the %ebx register for indexing the Global Offset Table
* and there were no other registers available. But gcc 2.95 and later emit
* "more than 10 operands in `asm'" errors when %ebx is used to preload unmask
* in the non-PIC case, so we'll just use the global unconditionally now.
*/
#ifdef PNG_THREAD_UNSAFE_OK
static int _unmask;
#endif
 
static unsigned long long _mask8_0 = 0x0102040810204080LL;
 
static unsigned long long _mask16_1 = 0x0101020204040808LL;
static unsigned long long _mask16_0 = 0x1010202040408080LL;
 
static unsigned long long _mask24_2 = 0x0101010202020404LL;
static unsigned long long _mask24_1 = 0x0408080810101020LL;
static unsigned long long _mask24_0 = 0x2020404040808080LL;
 
static unsigned long long _mask32_3 = 0x0101010102020202LL;
static unsigned long long _mask32_2 = 0x0404040408080808LL;
static unsigned long long _mask32_1 = 0x1010101020202020LL;
static unsigned long long _mask32_0 = 0x4040404080808080LL;
 
static unsigned long long _mask48_5 = 0x0101010101010202LL;
static unsigned long long _mask48_4 = 0x0202020204040404LL;
static unsigned long long _mask48_3 = 0x0404080808080808LL;
static unsigned long long _mask48_2 = 0x1010101010102020LL;
static unsigned long long _mask48_1 = 0x2020202040404040LL;
static unsigned long long _mask48_0 = 0x4040808080808080LL;
 
static unsigned long long _const4 = 0x0000000000FFFFFFLL;
//static unsigned long long _const5 = 0x000000FFFFFF0000LL; // NOT USED
static unsigned long long _const6 = 0x00000000000000FFLL;
 
// These are used in the row-filter routines and should/would be local
// variables if not for gcc addressing limitations.
// WARNING: Their presence probably defeats the thread safety of libpng.
 
#ifdef PNG_THREAD_UNSAFE_OK
static png_uint_32 _FullLength;
static png_uint_32 _MMXLength;
static int _dif;
static int _patemp; // temp variables for Paeth routine
static int _pbtemp;
static int _pctemp;
#endif
 
void /* PRIVATE */
png_squelch_warnings(void)
{
#ifdef PNG_THREAD_UNSAFE_OK
_dif = _dif;
_patemp = _patemp;
_pbtemp = _pbtemp;
_pctemp = _pctemp;
_MMXLength = _MMXLength;
#endif
_const4 = _const4;
_const6 = _const6;
_mask8_0 = _mask8_0;
_mask16_1 = _mask16_1;
_mask16_0 = _mask16_0;
_mask24_2 = _mask24_2;
_mask24_1 = _mask24_1;
_mask24_0 = _mask24_0;
_mask32_3 = _mask32_3;
_mask32_2 = _mask32_2;
_mask32_1 = _mask32_1;
_mask32_0 = _mask32_0;
_mask48_5 = _mask48_5;
_mask48_4 = _mask48_4;
_mask48_3 = _mask48_3;
_mask48_2 = _mask48_2;
_mask48_1 = _mask48_1;
_mask48_0 = _mask48_0;
}
#endif /* PNG_ASSEMBLER_CODE_SUPPORTED */
 
 
static int _mmx_supported = 2;
 
/*===========================================================================*/
/* */
/* P N G _ C O M B I N E _ R O W */
/* */
/*===========================================================================*/
 
#if defined(PNG_HAVE_ASSEMBLER_COMBINE_ROW)
 
#define BPP2 2
#define BPP3 3 /* bytes per pixel (a.k.a. pixel_bytes) */
#define BPP4 4
#define BPP6 6 /* (defined only to help avoid cut-and-paste errors) */
#define BPP8 8
 
/* Combines the row recently read in with the previous row.
This routine takes care of alpha and transparency if requested.
This routine also handles the two methods of progressive display
of interlaced images, depending on the mask value.
The mask value describes which pixels are to be combined with
the row. The pattern always repeats every 8 pixels, so just 8
bits are needed. A one indicates the pixel is to be combined; a
zero indicates the pixel is to be skipped. This is in addition
to any alpha or transparency value associated with the pixel.
If you want all pixels to be combined, pass 0xff (255) in mask. */
 
/* Use this routine for the x86 platform - it uses a faster MMX routine
if the machine supports MMX. */
 
void /* PRIVATE */
png_combine_row(png_structp png_ptr, png_bytep row, int mask)
{
png_debug(1, "in png_combine_row (pnggccrd.c)\n");
 
#if defined(PNG_ASSEMBLER_CODE_SUPPORTED)
if (_mmx_supported == 2) {
/* this should have happened in png_init_mmx_flags() already */
png_warning(png_ptr, "asm_flags may not have been initialized");
png_mmx_support();
}
#endif
 
if (mask == 0xff)
{
png_debug(2,"mask == 0xff: doing single png_memcpy()\n");
png_memcpy(row, png_ptr->row_buf + 1,
(png_size_t)((png_ptr->width * png_ptr->row_info.pixel_depth + 7) >> 3));
}
else /* (png_combine_row() is never called with mask == 0) */
{
switch (png_ptr->row_info.pixel_depth)
{
case 1: /* png_ptr->row_info.pixel_depth */
{
png_bytep sp;
png_bytep dp;
int s_inc, s_start, s_end;
int m;
int shift;
png_uint_32 i;
 
sp = png_ptr->row_buf + 1;
dp = row;
m = 0x80;
#if defined(PNG_READ_PACKSWAP_SUPPORTED)
if (png_ptr->transformations & PNG_PACKSWAP)
{
s_start = 0;
s_end = 7;
s_inc = 1;
}
else
#endif
{
s_start = 7;
s_end = 0;
s_inc = -1;
}
 
shift = s_start;
 
for (i = 0; i < png_ptr->width; i++)
{
if (m & mask)
{
int value;
 
value = (*sp >> shift) & 0x1;
*dp &= (png_byte)((0x7f7f >> (7 - shift)) & 0xff);
*dp |= (png_byte)(value << shift);
}
 
if (shift == s_end)
{
shift = s_start;
sp++;
dp++;
}
else
shift += s_inc;
 
if (m == 1)
m = 0x80;
else
m >>= 1;
}
break;
}
 
case 2: /* png_ptr->row_info.pixel_depth */
{
png_bytep sp;
png_bytep dp;
int s_start, s_end, s_inc;
int m;
int shift;
png_uint_32 i;
int value;
 
sp = png_ptr->row_buf + 1;
dp = row;
m = 0x80;
#if defined(PNG_READ_PACKSWAP_SUPPORTED)
if (png_ptr->transformations & PNG_PACKSWAP)
{
s_start = 0;
s_end = 6;
s_inc = 2;
}
else
#endif
{
s_start = 6;
s_end = 0;
s_inc = -2;
}
 
shift = s_start;
 
for (i = 0; i < png_ptr->width; i++)
{
if (m & mask)
{
value = (*sp >> shift) & 0x3;
*dp &= (png_byte)((0x3f3f >> (6 - shift)) & 0xff);
*dp |= (png_byte)(value << shift);
}
 
if (shift == s_end)
{
shift = s_start;
sp++;
dp++;
}
else
shift += s_inc;
if (m == 1)
m = 0x80;
else
m >>= 1;
}
break;
}
 
case 4: /* png_ptr->row_info.pixel_depth */
{
png_bytep sp;
png_bytep dp;
int s_start, s_end, s_inc;
int m;
int shift;
png_uint_32 i;
int value;
 
sp = png_ptr->row_buf + 1;
dp = row;
m = 0x80;
#if defined(PNG_READ_PACKSWAP_SUPPORTED)
if (png_ptr->transformations & PNG_PACKSWAP)
{
s_start = 0;
s_end = 4;
s_inc = 4;
}
else
#endif
{
s_start = 4;
s_end = 0;
s_inc = -4;
}
shift = s_start;
 
for (i = 0; i < png_ptr->width; i++)
{
if (m & mask)
{
value = (*sp >> shift) & 0xf;
*dp &= (png_byte)((0xf0f >> (4 - shift)) & 0xff);
*dp |= (png_byte)(value << shift);
}
 
if (shift == s_end)
{
shift = s_start;
sp++;
dp++;
}
else
shift += s_inc;
if (m == 1)
m = 0x80;
else
m >>= 1;
}
break;
}
 
case 8: /* png_ptr->row_info.pixel_depth */
{
png_bytep srcptr;
png_bytep dstptr;
 
#if defined(PNG_ASSEMBLER_CODE_SUPPORTED) && defined(PNG_THREAD_UNSAFE_OK)
#if !defined(PNG_1_0_X)
if ((png_ptr->asm_flags & PNG_ASM_FLAG_MMX_READ_COMBINE_ROW)
/* && _mmx_supported */ )
#else
if (_mmx_supported)
#endif
{
png_uint_32 len;
int diff;
int dummy_value_a; // fix 'forbidden register spilled' error
int dummy_value_d;
int dummy_value_c;
int dummy_value_S;
int dummy_value_D;
_unmask = ~mask; // global variable for -fPIC version
srcptr = png_ptr->row_buf + 1;
dstptr = row;
len = png_ptr->width &~7; // reduce to multiple of 8
diff = (int) (png_ptr->width & 7); // amount lost
 
__asm__ __volatile__ (
"movd _unmask, %%mm7 \n\t" // load bit pattern
"psubb %%mm6, %%mm6 \n\t" // zero mm6
"punpcklbw %%mm7, %%mm7 \n\t"
"punpcklwd %%mm7, %%mm7 \n\t"
"punpckldq %%mm7, %%mm7 \n\t" // fill reg with 8 masks
 
"movq _mask8_0, %%mm0 \n\t"
"pand %%mm7, %%mm0 \n\t" // nonzero if keep byte
"pcmpeqb %%mm6, %%mm0 \n\t" // zeros->1s, v versa
 
// preload "movl len, %%ecx \n\t" // load length of line
// preload "movl srcptr, %%esi \n\t" // load source
// preload "movl dstptr, %%edi \n\t" // load dest
 
"cmpl $0, %%ecx \n\t" // len == 0 ?
"je mainloop8end \n\t"
 
"mainloop8: \n\t"
"movq (%%esi), %%mm4 \n\t" // *srcptr
"pand %%mm0, %%mm4 \n\t"
"movq %%mm0, %%mm6 \n\t"
"pandn (%%edi), %%mm6 \n\t" // *dstptr
"por %%mm6, %%mm4 \n\t"
"movq %%mm4, (%%edi) \n\t"
"addl $8, %%esi \n\t" // inc by 8 bytes processed
"addl $8, %%edi \n\t"
"subl $8, %%ecx \n\t" // dec by 8 pixels processed
"ja mainloop8 \n\t"
 
"mainloop8end: \n\t"
// preload "movl diff, %%ecx \n\t" // (diff is in eax)
"movl %%eax, %%ecx \n\t"
"cmpl $0, %%ecx \n\t"
"jz end8 \n\t"
// preload "movl mask, %%edx \n\t"
"sall $24, %%edx \n\t" // make low byte, high byte
 
"secondloop8: \n\t"
"sall %%edx \n\t" // move high bit to CF
"jnc skip8 \n\t" // if CF = 0
"movb (%%esi), %%al \n\t"
"movb %%al, (%%edi) \n\t"
 
"skip8: \n\t"
"incl %%esi \n\t"
"incl %%edi \n\t"
"decl %%ecx \n\t"
"jnz secondloop8 \n\t"
 
"end8: \n\t"
"EMMS \n\t" // DONE
 
: "=a" (dummy_value_a), // output regs (dummy)
"=d" (dummy_value_d),
"=c" (dummy_value_c),
"=S" (dummy_value_S),
"=D" (dummy_value_D)
 
: "3" (srcptr), // esi // input regs
"4" (dstptr), // edi
"0" (diff), // eax
// was (unmask) "b" RESERVED // ebx // Global Offset Table idx
"2" (len), // ecx
"1" (mask) // edx
 
#if 0 /* MMX regs (%mm0, etc.) not supported by gcc 2.7.2.3 or egcs 1.1 */
: "%mm0", "%mm4", "%mm6", "%mm7" // clobber list
#endif
);
}
else /* mmx _not supported - Use modified C routine */
#endif /* PNG_ASSEMBLER_CODE_SUPPORTED */
{
register png_uint_32 i;
png_uint_32 initial_val = png_pass_start[png_ptr->pass];
/* png.c: png_pass_start[] = {0, 4, 0, 2, 0, 1, 0}; */
register int stride = png_pass_inc[png_ptr->pass];
/* png.c: png_pass_inc[] = {8, 8, 4, 4, 2, 2, 1}; */
register int rep_bytes = png_pass_width[png_ptr->pass];
/* png.c: png_pass_width[] = {8, 4, 4, 2, 2, 1, 1}; */
png_uint_32 len = png_ptr->width &~7; /* reduce to mult. of 8 */
int diff = (int) (png_ptr->width & 7); /* amount lost */
register png_uint_32 final_val = len; /* GRR bugfix */
 
srcptr = png_ptr->row_buf + 1 + initial_val;
dstptr = row + initial_val;
 
for (i = initial_val; i < final_val; i += stride)
{
png_memcpy(dstptr, srcptr, rep_bytes);
srcptr += stride;
dstptr += stride;
}
if (diff) /* number of leftover pixels: 3 for pngtest */
{
final_val+=diff /* *BPP1 */ ;
for (; i < final_val; i += stride)
{
if (rep_bytes > (int)(final_val-i))
rep_bytes = (int)(final_val-i);
png_memcpy(dstptr, srcptr, rep_bytes);
srcptr += stride;
dstptr += stride;
}
}
 
} /* end of else (_mmx_supported) */
 
break;
} /* end 8 bpp */
 
case 16: /* png_ptr->row_info.pixel_depth */
{
png_bytep srcptr;
png_bytep dstptr;
 
#if defined(PNG_ASSEMBLER_CODE_SUPPORTED) && defined(PNG_THREAD_UNSAFE_OK)
#if !defined(PNG_1_0_X)
if ((png_ptr->asm_flags & PNG_ASM_FLAG_MMX_READ_COMBINE_ROW)
/* && _mmx_supported */ )
#else
if (_mmx_supported)
#endif
{
png_uint_32 len;
int diff;
int dummy_value_a; // fix 'forbidden register spilled' error
int dummy_value_d;
int dummy_value_c;
int dummy_value_S;
int dummy_value_D;
_unmask = ~mask; // global variable for -fPIC version
srcptr = png_ptr->row_buf + 1;
dstptr = row;
len = png_ptr->width &~7; // reduce to multiple of 8
diff = (int) (png_ptr->width & 7); // amount lost //
 
__asm__ __volatile__ (
"movd _unmask, %%mm7 \n\t" // load bit pattern
"psubb %%mm6, %%mm6 \n\t" // zero mm6
"punpcklbw %%mm7, %%mm7 \n\t"
"punpcklwd %%mm7, %%mm7 \n\t"
"punpckldq %%mm7, %%mm7 \n\t" // fill reg with 8 masks
 
"movq _mask16_0, %%mm0 \n\t"
"movq _mask16_1, %%mm1 \n\t"
 
"pand %%mm7, %%mm0 \n\t"
"pand %%mm7, %%mm1 \n\t"
 
"pcmpeqb %%mm6, %%mm0 \n\t"
"pcmpeqb %%mm6, %%mm1 \n\t"
 
// preload "movl len, %%ecx \n\t" // load length of line
// preload "movl srcptr, %%esi \n\t" // load source
// preload "movl dstptr, %%edi \n\t" // load dest
 
"cmpl $0, %%ecx \n\t"
"jz mainloop16end \n\t"
 
"mainloop16: \n\t"
"movq (%%esi), %%mm4 \n\t"
"pand %%mm0, %%mm4 \n\t"
"movq %%mm0, %%mm6 \n\t"
"movq (%%edi), %%mm7 \n\t"
"pandn %%mm7, %%mm6 \n\t"
"por %%mm6, %%mm4 \n\t"
"movq %%mm4, (%%edi) \n\t"
 
"movq 8(%%esi), %%mm5 \n\t"
"pand %%mm1, %%mm5 \n\t"
"movq %%mm1, %%mm7 \n\t"
"movq 8(%%edi), %%mm6 \n\t"
"pandn %%mm6, %%mm7 \n\t"
"por %%mm7, %%mm5 \n\t"
"movq %%mm5, 8(%%edi) \n\t"
 
"addl $16, %%esi \n\t" // inc by 16 bytes processed
"addl $16, %%edi \n\t"
"subl $8, %%ecx \n\t" // dec by 8 pixels processed
"ja mainloop16 \n\t"
 
"mainloop16end: \n\t"
// preload "movl diff, %%ecx \n\t" // (diff is in eax)
"movl %%eax, %%ecx \n\t"
"cmpl $0, %%ecx \n\t"
"jz end16 \n\t"
// preload "movl mask, %%edx \n\t"
"sall $24, %%edx \n\t" // make low byte, high byte
 
"secondloop16: \n\t"
"sall %%edx \n\t" // move high bit to CF
"jnc skip16 \n\t" // if CF = 0
"movw (%%esi), %%ax \n\t"
"movw %%ax, (%%edi) \n\t"
 
"skip16: \n\t"
"addl $2, %%esi \n\t"
"addl $2, %%edi \n\t"
"decl %%ecx \n\t"
"jnz secondloop16 \n\t"
 
"end16: \n\t"
"EMMS \n\t" // DONE
 
: "=a" (dummy_value_a), // output regs (dummy)
"=c" (dummy_value_c),
"=d" (dummy_value_d),
"=S" (dummy_value_S),
"=D" (dummy_value_D)
 
: "0" (diff), // eax // input regs
// was (unmask) " " RESERVED // ebx // Global Offset Table idx
"1" (len), // ecx
"2" (mask), // edx
"3" (srcptr), // esi
"4" (dstptr) // edi
 
#if 0 /* MMX regs (%mm0, etc.) not supported by gcc 2.7.2.3 or egcs 1.1 */
: "%mm0", "%mm1", "%mm4" // clobber list
, "%mm5", "%mm6", "%mm7"
#endif
);
}
else /* mmx _not supported - Use modified C routine */
#endif /* PNG_ASSEMBLER_CODE_SUPPORTED */
{
register png_uint_32 i;
png_uint_32 initial_val = BPP2 * png_pass_start[png_ptr->pass];
/* png.c: png_pass_start[] = {0, 4, 0, 2, 0, 1, 0}; */
register int stride = BPP2 * png_pass_inc[png_ptr->pass];
/* png.c: png_pass_inc[] = {8, 8, 4, 4, 2, 2, 1}; */
register int rep_bytes = BPP2 * png_pass_width[png_ptr->pass];
/* png.c: png_pass_width[] = {8, 4, 4, 2, 2, 1, 1}; */
png_uint_32 len = png_ptr->width &~7; /* reduce to mult. of 8 */
int diff = (int) (png_ptr->width & 7); /* amount lost */
register png_uint_32 final_val = BPP2 * len; /* GRR bugfix */
 
srcptr = png_ptr->row_buf + 1 + initial_val;
dstptr = row + initial_val;
 
for (i = initial_val; i < final_val; i += stride)
{
png_memcpy(dstptr, srcptr, rep_bytes);
srcptr += stride;
dstptr += stride;
}
if (diff) /* number of leftover pixels: 3 for pngtest */
{
final_val+=diff*BPP2;
for (; i < final_val; i += stride)
{
if (rep_bytes > (int)(final_val-i))
rep_bytes = (int)(final_val-i);
png_memcpy(dstptr, srcptr, rep_bytes);
srcptr += stride;
dstptr += stride;
}
}
} /* end of else (_mmx_supported) */
 
break;
} /* end 16 bpp */
 
case 24: /* png_ptr->row_info.pixel_depth */
{
png_bytep srcptr;
png_bytep dstptr;
 
#if defined(PNG_ASSEMBLER_CODE_SUPPORTED) && defined(PNG_THREAD_UNSAFE_OK)
#if !defined(PNG_1_0_X)
if ((png_ptr->asm_flags & PNG_ASM_FLAG_MMX_READ_COMBINE_ROW)
/* && _mmx_supported */ )
#else
if (_mmx_supported)
#endif
{
png_uint_32 len;
int diff;
int dummy_value_a; // fix 'forbidden register spilled' error
int dummy_value_d;
int dummy_value_c;
int dummy_value_S;
int dummy_value_D;
_unmask = ~mask; // global variable for -fPIC version
srcptr = png_ptr->row_buf + 1;
dstptr = row;
len = png_ptr->width &~7; // reduce to multiple of 8
diff = (int) (png_ptr->width & 7); // amount lost //
 
__asm__ __volatile__ (
"movd _unmask, %%mm7 \n\t" // load bit pattern
"psubb %%mm6, %%mm6 \n\t" // zero mm6
"punpcklbw %%mm7, %%mm7 \n\t"
"punpcklwd %%mm7, %%mm7 \n\t"
"punpckldq %%mm7, %%mm7 \n\t" // fill reg with 8 masks
 
"movq _mask24_0, %%mm0 \n\t"
"movq _mask24_1, %%mm1 \n\t"
"movq _mask24_2, %%mm2 \n\t"
 
"pand %%mm7, %%mm0 \n\t"
"pand %%mm7, %%mm1 \n\t"
"pand %%mm7, %%mm2 \n\t"
 
"pcmpeqb %%mm6, %%mm0 \n\t"
"pcmpeqb %%mm6, %%mm1 \n\t"
"pcmpeqb %%mm6, %%mm2 \n\t"
 
// preload "movl len, %%ecx \n\t" // load length of line
// preload "movl srcptr, %%esi \n\t" // load source
// preload "movl dstptr, %%edi \n\t" // load dest
 
"cmpl $0, %%ecx \n\t"
"jz mainloop24end \n\t"
 
"mainloop24: \n\t"
"movq (%%esi), %%mm4 \n\t"
"pand %%mm0, %%mm4 \n\t"
"movq %%mm0, %%mm6 \n\t"
"movq (%%edi), %%mm7 \n\t"
"pandn %%mm7, %%mm6 \n\t"
"por %%mm6, %%mm4 \n\t"
"movq %%mm4, (%%edi) \n\t"
 
"movq 8(%%esi), %%mm5 \n\t"
"pand %%mm1, %%mm5 \n\t"
"movq %%mm1, %%mm7 \n\t"
"movq 8(%%edi), %%mm6 \n\t"
"pandn %%mm6, %%mm7 \n\t"
"por %%mm7, %%mm5 \n\t"
"movq %%mm5, 8(%%edi) \n\t"
 
"movq 16(%%esi), %%mm6 \n\t"
"pand %%mm2, %%mm6 \n\t"
"movq %%mm2, %%mm4 \n\t"
"movq 16(%%edi), %%mm7 \n\t"
"pandn %%mm7, %%mm4 \n\t"
"por %%mm4, %%mm6 \n\t"
"movq %%mm6, 16(%%edi) \n\t"
 
"addl $24, %%esi \n\t" // inc by 24 bytes processed
"addl $24, %%edi \n\t"
"subl $8, %%ecx \n\t" // dec by 8 pixels processed
 
"ja mainloop24 \n\t"
 
"mainloop24end: \n\t"
// preload "movl diff, %%ecx \n\t" // (diff is in eax)
"movl %%eax, %%ecx \n\t"
"cmpl $0, %%ecx \n\t"
"jz end24 \n\t"
// preload "movl mask, %%edx \n\t"
"sall $24, %%edx \n\t" // make low byte, high byte
 
"secondloop24: \n\t"
"sall %%edx \n\t" // move high bit to CF
"jnc skip24 \n\t" // if CF = 0
"movw (%%esi), %%ax \n\t"
"movw %%ax, (%%edi) \n\t"
"xorl %%eax, %%eax \n\t"
"movb 2(%%esi), %%al \n\t"
"movb %%al, 2(%%edi) \n\t"
 
"skip24: \n\t"
"addl $3, %%esi \n\t"
"addl $3, %%edi \n\t"
"decl %%ecx \n\t"
"jnz secondloop24 \n\t"
 
"end24: \n\t"
"EMMS \n\t" // DONE
 
: "=a" (dummy_value_a), // output regs (dummy)
"=d" (dummy_value_d),
"=c" (dummy_value_c),
"=S" (dummy_value_S),
"=D" (dummy_value_D)
 
: "3" (srcptr), // esi // input regs
"4" (dstptr), // edi
"0" (diff), // eax
// was (unmask) "b" RESERVED // ebx // Global Offset Table idx
"2" (len), // ecx
"1" (mask) // edx
 
#if 0 /* MMX regs (%mm0, etc.) not supported by gcc 2.7.2.3 or egcs 1.1 */
: "%mm0", "%mm1", "%mm2" // clobber list
, "%mm4", "%mm5", "%mm6", "%mm7"
#endif
);
}
else /* mmx _not supported - Use modified C routine */
#endif /* PNG_ASSEMBLER_CODE_SUPPORTED */
{
register png_uint_32 i;
png_uint_32 initial_val = BPP3 * png_pass_start[png_ptr->pass];
/* png.c: png_pass_start[] = {0, 4, 0, 2, 0, 1, 0}; */
register int stride = BPP3 * png_pass_inc[png_ptr->pass];
/* png.c: png_pass_inc[] = {8, 8, 4, 4, 2, 2, 1}; */
register int rep_bytes = BPP3 * png_pass_width[png_ptr->pass];
/* png.c: png_pass_width[] = {8, 4, 4, 2, 2, 1, 1}; */
png_uint_32 len = png_ptr->width &~7; /* reduce to mult. of 8 */
int diff = (int) (png_ptr->width & 7); /* amount lost */
register png_uint_32 final_val = BPP3 * len; /* GRR bugfix */
 
srcptr = png_ptr->row_buf + 1 + initial_val;
dstptr = row + initial_val;
 
for (i = initial_val; i < final_val; i += stride)
{
png_memcpy(dstptr, srcptr, rep_bytes);
srcptr += stride;
dstptr += stride;
}
if (diff) /* number of leftover pixels: 3 for pngtest */
{
final_val+=diff*BPP3;
for (; i < final_val; i += stride)
{
if (rep_bytes > (int)(final_val-i))
rep_bytes = (int)(final_val-i);
png_memcpy(dstptr, srcptr, rep_bytes);
srcptr += stride;
dstptr += stride;
}
}
} /* end of else (_mmx_supported) */
 
break;
} /* end 24 bpp */
 
case 32: /* png_ptr->row_info.pixel_depth */
{
png_bytep srcptr;
png_bytep dstptr;
 
#if defined(PNG_ASSEMBLER_CODE_SUPPORTED) && defined(PNG_THREAD_UNSAFE_OK)
#if !defined(PNG_1_0_X)
if ((png_ptr->asm_flags & PNG_ASM_FLAG_MMX_READ_COMBINE_ROW)
/* && _mmx_supported */ )
#else
if (_mmx_supported)
#endif
{
png_uint_32 len;
int diff;
int dummy_value_a; // fix 'forbidden register spilled' error
int dummy_value_d;
int dummy_value_c;
int dummy_value_S;
int dummy_value_D;
_unmask = ~mask; // global variable for -fPIC version
srcptr = png_ptr->row_buf + 1;
dstptr = row;
len = png_ptr->width &~7; // reduce to multiple of 8
diff = (int) (png_ptr->width & 7); // amount lost //
 
__asm__ __volatile__ (
"movd _unmask, %%mm7 \n\t" // load bit pattern
"psubb %%mm6, %%mm6 \n\t" // zero mm6
"punpcklbw %%mm7, %%mm7 \n\t"
"punpcklwd %%mm7, %%mm7 \n\t"
"punpckldq %%mm7, %%mm7 \n\t" // fill reg with 8 masks
 
"movq _mask32_0, %%mm0 \n\t"
"movq _mask32_1, %%mm1 \n\t"
"movq _mask32_2, %%mm2 \n\t"
"movq _mask32_3, %%mm3 \n\t"
 
"pand %%mm7, %%mm0 \n\t"
"pand %%mm7, %%mm1 \n\t"
"pand %%mm7, %%mm2 \n\t"
"pand %%mm7, %%mm3 \n\t"
 
"pcmpeqb %%mm6, %%mm0 \n\t"
"pcmpeqb %%mm6, %%mm1 \n\t"
"pcmpeqb %%mm6, %%mm2 \n\t"
"pcmpeqb %%mm6, %%mm3 \n\t"
 
// preload "movl len, %%ecx \n\t" // load length of line
// preload "movl srcptr, %%esi \n\t" // load source
// preload "movl dstptr, %%edi \n\t" // load dest
 
"cmpl $0, %%ecx \n\t" // lcr
"jz mainloop32end \n\t"
 
"mainloop32: \n\t"
"movq (%%esi), %%mm4 \n\t"
"pand %%mm0, %%mm4 \n\t"
"movq %%mm0, %%mm6 \n\t"
"movq (%%edi), %%mm7 \n\t"
"pandn %%mm7, %%mm6 \n\t"
"por %%mm6, %%mm4 \n\t"
"movq %%mm4, (%%edi) \n\t"
 
"movq 8(%%esi), %%mm5 \n\t"
"pand %%mm1, %%mm5 \n\t"
"movq %%mm1, %%mm7 \n\t"
"movq 8(%%edi), %%mm6 \n\t"
"pandn %%mm6, %%mm7 \n\t"
"por %%mm7, %%mm5 \n\t"
"movq %%mm5, 8(%%edi) \n\t"
 
"movq 16(%%esi), %%mm6 \n\t"
"pand %%mm2, %%mm6 \n\t"
"movq %%mm2, %%mm4 \n\t"
"movq 16(%%edi), %%mm7 \n\t"
"pandn %%mm7, %%mm4 \n\t"
"por %%mm4, %%mm6 \n\t"
"movq %%mm6, 16(%%edi) \n\t"
 
"movq 24(%%esi), %%mm7 \n\t"
"pand %%mm3, %%mm7 \n\t"
"movq %%mm3, %%mm5 \n\t"
"movq 24(%%edi), %%mm4 \n\t"
"pandn %%mm4, %%mm5 \n\t"
"por %%mm5, %%mm7 \n\t"
"movq %%mm7, 24(%%edi) \n\t"
 
"addl $32, %%esi \n\t" // inc by 32 bytes processed
"addl $32, %%edi \n\t"
"subl $8, %%ecx \n\t" // dec by 8 pixels processed
"ja mainloop32 \n\t"
 
"mainloop32end: \n\t"
// preload "movl diff, %%ecx \n\t" // (diff is in eax)
"movl %%eax, %%ecx \n\t"
"cmpl $0, %%ecx \n\t"
"jz end32 \n\t"
// preload "movl mask, %%edx \n\t"
"sall $24, %%edx \n\t" // low byte => high byte
 
"secondloop32: \n\t"
"sall %%edx \n\t" // move high bit to CF
"jnc skip32 \n\t" // if CF = 0
"movl (%%esi), %%eax \n\t"
"movl %%eax, (%%edi) \n\t"
 
"skip32: \n\t"
"addl $4, %%esi \n\t"
"addl $4, %%edi \n\t"
"decl %%ecx \n\t"
"jnz secondloop32 \n\t"
 
"end32: \n\t"
"EMMS \n\t" // DONE
 
: "=a" (dummy_value_a), // output regs (dummy)
"=d" (dummy_value_d),
"=c" (dummy_value_c),
"=S" (dummy_value_S),
"=D" (dummy_value_D)
 
: "3" (srcptr), // esi // input regs
"4" (dstptr), // edi
"0" (diff), // eax
// was (unmask) "b" RESERVED // ebx // Global Offset Table idx
"2" (len), // ecx
"1" (mask) // edx
 
#if 0 /* MMX regs (%mm0, etc.) not supported by gcc 2.7.2.3 or egcs 1.1 */
: "%mm0", "%mm1", "%mm2", "%mm3" // clobber list
, "%mm4", "%mm5", "%mm6", "%mm7"
#endif
);
}
else /* mmx _not supported - Use modified C routine */
#endif /* PNG_ASSEMBLER_CODE_SUPPORTED */
{
register png_uint_32 i;
png_uint_32 initial_val = BPP4 * png_pass_start[png_ptr->pass];
/* png.c: png_pass_start[] = {0, 4, 0, 2, 0, 1, 0}; */
register int stride = BPP4 * png_pass_inc[png_ptr->pass];
/* png.c: png_pass_inc[] = {8, 8, 4, 4, 2, 2, 1}; */
register int rep_bytes = BPP4 * png_pass_width[png_ptr->pass];
/* png.c: png_pass_width[] = {8, 4, 4, 2, 2, 1, 1}; */
png_uint_32 len = png_ptr->width &~7; /* reduce to mult. of 8 */
int diff = (int) (png_ptr->width & 7); /* amount lost */
register png_uint_32 final_val = BPP4 * len; /* GRR bugfix */
 
srcptr = png_ptr->row_buf + 1 + initial_val;
dstptr = row + initial_val;
 
for (i = initial_val; i < final_val; i += stride)
{
png_memcpy(dstptr, srcptr, rep_bytes);
srcptr += stride;
dstptr += stride;
}
if (diff) /* number of leftover pixels: 3 for pngtest */
{
final_val+=diff*BPP4;
for (; i < final_val; i += stride)
{
if (rep_bytes > (int)(final_val-i))
rep_bytes = (int)(final_val-i);
png_memcpy(dstptr, srcptr, rep_bytes);
srcptr += stride;
dstptr += stride;
}
}
} /* end of else (_mmx_supported) */
 
break;
} /* end 32 bpp */
 
case 48: /* png_ptr->row_info.pixel_depth */
{
png_bytep srcptr;
png_bytep dstptr;
 
#if defined(PNG_ASSEMBLER_CODE_SUPPORTED) && defined(PNG_THREAD_UNSAFE_OK)
#if !defined(PNG_1_0_X)
if ((png_ptr->asm_flags & PNG_ASM_FLAG_MMX_READ_COMBINE_ROW)
/* && _mmx_supported */ )
#else
if (_mmx_supported)
#endif
{
png_uint_32 len;
int diff;
int dummy_value_a; // fix 'forbidden register spilled' error
int dummy_value_d;
int dummy_value_c;
int dummy_value_S;
int dummy_value_D;
_unmask = ~mask; // global variable for -fPIC version
srcptr = png_ptr->row_buf + 1;
dstptr = row;
len = png_ptr->width &~7; // reduce to multiple of 8
diff = (int) (png_ptr->width & 7); // amount lost //
 
__asm__ __volatile__ (
"movd _unmask, %%mm7 \n\t" // load bit pattern
"psubb %%mm6, %%mm6 \n\t" // zero mm6
"punpcklbw %%mm7, %%mm7 \n\t"
"punpcklwd %%mm7, %%mm7 \n\t"
"punpckldq %%mm7, %%mm7 \n\t" // fill reg with 8 masks
 
"movq _mask48_0, %%mm0 \n\t"
"movq _mask48_1, %%mm1 \n\t"
"movq _mask48_2, %%mm2 \n\t"
"movq _mask48_3, %%mm3 \n\t"
"movq _mask48_4, %%mm4 \n\t"
"movq _mask48_5, %%mm5 \n\t"
 
"pand %%mm7, %%mm0 \n\t"
"pand %%mm7, %%mm1 \n\t"
"pand %%mm7, %%mm2 \n\t"
"pand %%mm7, %%mm3 \n\t"
"pand %%mm7, %%mm4 \n\t"
"pand %%mm7, %%mm5 \n\t"
 
"pcmpeqb %%mm6, %%mm0 \n\t"
"pcmpeqb %%mm6, %%mm1 \n\t"
"pcmpeqb %%mm6, %%mm2 \n\t"
"pcmpeqb %%mm6, %%mm3 \n\t"
"pcmpeqb %%mm6, %%mm4 \n\t"
"pcmpeqb %%mm6, %%mm5 \n\t"
 
// preload "movl len, %%ecx \n\t" // load length of line
// preload "movl srcptr, %%esi \n\t" // load source
// preload "movl dstptr, %%edi \n\t" // load dest
 
"cmpl $0, %%ecx \n\t"
"jz mainloop48end \n\t"
 
"mainloop48: \n\t"
"movq (%%esi), %%mm7 \n\t"
"pand %%mm0, %%mm7 \n\t"
"movq %%mm0, %%mm6 \n\t"
"pandn (%%edi), %%mm6 \n\t"
"por %%mm6, %%mm7 \n\t"
"movq %%mm7, (%%edi) \n\t"
 
"movq 8(%%esi), %%mm6 \n\t"
"pand %%mm1, %%mm6 \n\t"
"movq %%mm1, %%mm7 \n\t"
"pandn 8(%%edi), %%mm7 \n\t"
"por %%mm7, %%mm6 \n\t"
"movq %%mm6, 8(%%edi) \n\t"
 
"movq 16(%%esi), %%mm6 \n\t"
"pand %%mm2, %%mm6 \n\t"
"movq %%mm2, %%mm7 \n\t"
"pandn 16(%%edi), %%mm7 \n\t"
"por %%mm7, %%mm6 \n\t"
"movq %%mm6, 16(%%edi) \n\t"
 
"movq 24(%%esi), %%mm7 \n\t"
"pand %%mm3, %%mm7 \n\t"
"movq %%mm3, %%mm6 \n\t"
"pandn 24(%%edi), %%mm6 \n\t"
"por %%mm6, %%mm7 \n\t"
"movq %%mm7, 24(%%edi) \n\t"
 
"movq 32(%%esi), %%mm6 \n\t"
"pand %%mm4, %%mm6 \n\t"
"movq %%mm4, %%mm7 \n\t"
"pandn 32(%%edi), %%mm7 \n\t"
"por %%mm7, %%mm6 \n\t"
"movq %%mm6, 32(%%edi) \n\t"
 
"movq 40(%%esi), %%mm7 \n\t"
"pand %%mm5, %%mm7 \n\t"
"movq %%mm5, %%mm6 \n\t"
"pandn 40(%%edi), %%mm6 \n\t"
"por %%mm6, %%mm7 \n\t"
"movq %%mm7, 40(%%edi) \n\t"
 
"addl $48, %%esi \n\t" // inc by 48 bytes processed
"addl $48, %%edi \n\t"
"subl $8, %%ecx \n\t" // dec by 8 pixels processed
 
"ja mainloop48 \n\t"
 
"mainloop48end: \n\t"
// preload "movl diff, %%ecx \n\t" // (diff is in eax)
"movl %%eax, %%ecx \n\t"
"cmpl $0, %%ecx \n\t"
"jz end48 \n\t"
// preload "movl mask, %%edx \n\t"
"sall $24, %%edx \n\t" // make low byte, high byte
 
"secondloop48: \n\t"
"sall %%edx \n\t" // move high bit to CF
"jnc skip48 \n\t" // if CF = 0
"movl (%%esi), %%eax \n\t"
"movl %%eax, (%%edi) \n\t"
 
"skip48: \n\t"
"addl $4, %%esi \n\t"
"addl $4, %%edi \n\t"
"decl %%ecx \n\t"
"jnz secondloop48 \n\t"
 
"end48: \n\t"
"EMMS \n\t" // DONE
 
: "=a" (dummy_value_a), // output regs (dummy)
"=d" (dummy_value_d),
"=c" (dummy_value_c),
"=S" (dummy_value_S),
"=D" (dummy_value_D)
 
: "3" (srcptr), // esi // input regs
"4" (dstptr), // edi
"0" (diff), // eax
// was (unmask) "b" RESERVED // ebx // Global Offset Table idx
"2" (len), // ecx
"1" (mask) // edx
 
#if 0 /* MMX regs (%mm0, etc.) not supported by gcc 2.7.2.3 or egcs 1.1 */
: "%mm0", "%mm1", "%mm2", "%mm3" // clobber list
, "%mm4", "%mm5", "%mm6", "%mm7"
#endif
);
}
else /* mmx _not supported - Use modified C routine */
#endif /* PNG_ASSEMBLER_CODE_SUPPORTED */
{
register png_uint_32 i;
png_uint_32 initial_val = BPP6 * png_pass_start[png_ptr->pass];
/* png.c: png_pass_start[] = {0, 4, 0, 2, 0, 1, 0}; */
register int stride = BPP6 * png_pass_inc[png_ptr->pass];
/* png.c: png_pass_inc[] = {8, 8, 4, 4, 2, 2, 1}; */
register int rep_bytes = BPP6 * png_pass_width[png_ptr->pass];
/* png.c: png_pass_width[] = {8, 4, 4, 2, 2, 1, 1}; */
png_uint_32 len = png_ptr->width &~7; /* reduce to mult. of 8 */
int diff = (int) (png_ptr->width & 7); /* amount lost */
register png_uint_32 final_val = BPP6 * len; /* GRR bugfix */
 
srcptr = png_ptr->row_buf + 1 + initial_val;
dstptr = row + initial_val;
 
for (i = initial_val; i < final_val; i += stride)
{
png_memcpy(dstptr, srcptr, rep_bytes);
srcptr += stride;
dstptr += stride;
}
if (diff) /* number of leftover pixels: 3 for pngtest */
{
final_val+=diff*BPP6;
for (; i < final_val; i += stride)
{
if (rep_bytes > (int)(final_val-i))
rep_bytes = (int)(final_val-i);
png_memcpy(dstptr, srcptr, rep_bytes);
srcptr += stride;
dstptr += stride;
}
}
} /* end of else (_mmx_supported) */
 
break;
} /* end 48 bpp */
 
case 64: /* png_ptr->row_info.pixel_depth */
{
png_bytep srcptr;
png_bytep dstptr;
register png_uint_32 i;
png_uint_32 initial_val = BPP8 * png_pass_start[png_ptr->pass];
/* png.c: png_pass_start[] = {0, 4, 0, 2, 0, 1, 0}; */
register int stride = BPP8 * png_pass_inc[png_ptr->pass];
/* png.c: png_pass_inc[] = {8, 8, 4, 4, 2, 2, 1}; */
register int rep_bytes = BPP8 * png_pass_width[png_ptr->pass];
/* png.c: png_pass_width[] = {8, 4, 4, 2, 2, 1, 1}; */
png_uint_32 len = png_ptr->width &~7; /* reduce to mult. of 8 */
int diff = (int) (png_ptr->width & 7); /* amount lost */
register png_uint_32 final_val = BPP8 * len; /* GRR bugfix */
 
srcptr = png_ptr->row_buf + 1 + initial_val;
dstptr = row + initial_val;
 
for (i = initial_val; i < final_val; i += stride)
{
png_memcpy(dstptr, srcptr, rep_bytes);
srcptr += stride;
dstptr += stride;
}
if (diff) /* number of leftover pixels: 3 for pngtest */
{
final_val+=diff*BPP8;
for (; i < final_val; i += stride)
{
if (rep_bytes > (int)(final_val-i))
rep_bytes = (int)(final_val-i);
png_memcpy(dstptr, srcptr, rep_bytes);
srcptr += stride;
dstptr += stride;
}
}
 
break;
} /* end 64 bpp */
 
default: /* png_ptr->row_info.pixel_depth != 1,2,4,8,16,24,32,48,64 */
{
/* this should never happen */
png_warning(png_ptr, "Invalid row_info.pixel_depth in pnggccrd");
break;
}
} /* end switch (png_ptr->row_info.pixel_depth) */
 
} /* end if (non-trivial mask) */
 
} /* end png_combine_row() */
 
#endif /* PNG_HAVE_ASSEMBLER_COMBINE_ROW */
 
 
 
 
/*===========================================================================*/
/* */
/* P N G _ D O _ R E A D _ I N T E R L A C E */
/* */
/*===========================================================================*/
 
#if defined(PNG_READ_INTERLACING_SUPPORTED)
#if defined(PNG_HAVE_ASSEMBLER_READ_INTERLACE)
 
/* png_do_read_interlace() is called after any 16-bit to 8-bit conversion
* has taken place. [GRR: what other steps come before and/or after?]
*/
 
void /* PRIVATE */
png_do_read_interlace(png_structp png_ptr)
{
png_row_infop row_info = &(png_ptr->row_info);
png_bytep row = png_ptr->row_buf + 1;
int pass = png_ptr->pass;
#if defined(PNG_READ_PACKSWAP_SUPPORTED)
png_uint_32 transformations = png_ptr->transformations;
#endif
 
png_debug(1, "in png_do_read_interlace (pnggccrd.c)\n");
 
#if defined(PNG_ASSEMBLER_CODE_SUPPORTED)
if (_mmx_supported == 2) {
#if !defined(PNG_1_0_X)
/* this should have happened in png_init_mmx_flags() already */
png_warning(png_ptr, "asm_flags may not have been initialized");
#endif
png_mmx_support();
}
#endif
 
if (row != NULL && row_info != NULL)
{
png_uint_32 final_width;
 
final_width = row_info->width * png_pass_inc[pass];
 
switch (row_info->pixel_depth)
{
case 1:
{
png_bytep sp, dp;
int sshift, dshift;
int s_start, s_end, s_inc;
png_byte v;
png_uint_32 i;
int j;
 
sp = row + (png_size_t)((row_info->width - 1) >> 3);
dp = row + (png_size_t)((final_width - 1) >> 3);
#if defined(PNG_READ_PACKSWAP_SUPPORTED)
if (transformations & PNG_PACKSWAP)
{
sshift = (int)((row_info->width + 7) & 7);
dshift = (int)((final_width + 7) & 7);
s_start = 7;
s_end = 0;
s_inc = -1;
}
else
#endif
{
sshift = 7 - (int)((row_info->width + 7) & 7);
dshift = 7 - (int)((final_width + 7) & 7);
s_start = 0;
s_end = 7;
s_inc = 1;
}
 
for (i = row_info->width; i; i--)
{
v = (png_byte)((*sp >> sshift) & 0x1);
for (j = 0; j < png_pass_inc[pass]; j++)
{
*dp &= (png_byte)((0x7f7f >> (7 - dshift)) & 0xff);
*dp |= (png_byte)(v << dshift);
if (dshift == s_end)
{
dshift = s_start;
dp--;
}
else
dshift += s_inc;
}
if (sshift == s_end)
{
sshift = s_start;
sp--;
}
else
sshift += s_inc;
}
break;
}
 
case 2:
{
png_bytep sp, dp;
int sshift, dshift;
int s_start, s_end, s_inc;
png_uint_32 i;
 
sp = row + (png_size_t)((row_info->width - 1) >> 2);
dp = row + (png_size_t)((final_width - 1) >> 2);
#if defined(PNG_READ_PACKSWAP_SUPPORTED)
if (transformations & PNG_PACKSWAP)
{
sshift = (png_size_t)(((row_info->width + 3) & 3) << 1);
dshift = (png_size_t)(((final_width + 3) & 3) << 1);
s_start = 6;
s_end = 0;
s_inc = -2;
}
else
#endif
{
sshift = (png_size_t)((3 - ((row_info->width + 3) & 3)) << 1);
dshift = (png_size_t)((3 - ((final_width + 3) & 3)) << 1);
s_start = 0;
s_end = 6;
s_inc = 2;
}
 
for (i = row_info->width; i; i--)
{
png_byte v;
int j;
 
v = (png_byte)((*sp >> sshift) & 0x3);
for (j = 0; j < png_pass_inc[pass]; j++)
{
*dp &= (png_byte)((0x3f3f >> (6 - dshift)) & 0xff);
*dp |= (png_byte)(v << dshift);
if (dshift == s_end)
{
dshift = s_start;
dp--;
}
else
dshift += s_inc;
}
if (sshift == s_end)
{
sshift = s_start;
sp--;
}
else
sshift += s_inc;
}
break;
}
 
case 4:
{
png_bytep sp, dp;
int sshift, dshift;
int s_start, s_end, s_inc;
png_uint_32 i;
 
sp = row + (png_size_t)((row_info->width - 1) >> 1);
dp = row + (png_size_t)((final_width - 1) >> 1);
#if defined(PNG_READ_PACKSWAP_SUPPORTED)
if (transformations & PNG_PACKSWAP)
{
sshift = (png_size_t)(((row_info->width + 1) & 1) << 2);
dshift = (png_size_t)(((final_width + 1) & 1) << 2);
s_start = 4;
s_end = 0;
s_inc = -4;
}
else
#endif
{
sshift = (png_size_t)((1 - ((row_info->width + 1) & 1)) << 2);
dshift = (png_size_t)((1 - ((final_width + 1) & 1)) << 2);
s_start = 0;
s_end = 4;
s_inc = 4;
}
 
for (i = row_info->width; i; i--)
{
png_byte v;
int j;
 
v = (png_byte)((*sp >> sshift) & 0xf);
for (j = 0; j < png_pass_inc[pass]; j++)
{
*dp &= (png_byte)((0xf0f >> (4 - dshift)) & 0xff);
*dp |= (png_byte)(v << dshift);
if (dshift == s_end)
{
dshift = s_start;
dp--;
}
else
dshift += s_inc;
}
if (sshift == s_end)
{
sshift = s_start;
sp--;
}
else
sshift += s_inc;
}
break;
}
 
/*====================================================================*/
 
default: /* 8-bit or larger (this is where the routine is modified) */
{
#if 0
// static unsigned long long _const4 = 0x0000000000FFFFFFLL; no good
// static unsigned long long const4 = 0x0000000000FFFFFFLL; no good
// unsigned long long _const4 = 0x0000000000FFFFFFLL; no good
// unsigned long long const4 = 0x0000000000FFFFFFLL; no good
#endif
png_bytep sptr, dp;
png_uint_32 i;
png_size_t pixel_bytes;
int width = (int)row_info->width;
 
pixel_bytes = (row_info->pixel_depth >> 3);
 
/* point sptr at the last pixel in the pre-expanded row: */
sptr = row + (width - 1) * pixel_bytes;
 
/* point dp at the last pixel position in the expanded row: */
dp = row + (final_width - 1) * pixel_bytes;
 
/* New code by Nirav Chhatrapati - Intel Corporation */
 
#if defined(PNG_ASSEMBLER_CODE_SUPPORTED)
#if !defined(PNG_1_0_X)
if ((png_ptr->asm_flags & PNG_ASM_FLAG_MMX_READ_INTERLACE)
/* && _mmx_supported */ )
#else
if (_mmx_supported)
#endif
{
//--------------------------------------------------------------
if (pixel_bytes == 3)
{
if (((pass == 0) || (pass == 1)) && width)
{
int dummy_value_c; // fix 'forbidden register spilled'
int dummy_value_S;
int dummy_value_D;
 
__asm__ __volatile__ (
"subl $21, %%edi \n\t"
// (png_pass_inc[pass] - 1)*pixel_bytes
 
".loop3_pass0: \n\t"
"movd (%%esi), %%mm0 \n\t" // x x x x x 2 1 0
"pand _const4, %%mm0 \n\t" // z z z z z 2 1 0
"movq %%mm0, %%mm1 \n\t" // z z z z z 2 1 0
"psllq $16, %%mm0 \n\t" // z z z 2 1 0 z z
"movq %%mm0, %%mm2 \n\t" // z z z 2 1 0 z z
"psllq $24, %%mm0 \n\t" // 2 1 0 z z z z z
"psrlq $8, %%mm1 \n\t" // z z z z z z 2 1
"por %%mm2, %%mm0 \n\t" // 2 1 0 2 1 0 z z
"por %%mm1, %%mm0 \n\t" // 2 1 0 2 1 0 2 1
"movq %%mm0, %%mm3 \n\t" // 2 1 0 2 1 0 2 1
"psllq $16, %%mm0 \n\t" // 0 2 1 0 2 1 z z
"movq %%mm3, %%mm4 \n\t" // 2 1 0 2 1 0 2 1
"punpckhdq %%mm0, %%mm3 \n\t" // 0 2 1 0 2 1 0 2
"movq %%mm4, 16(%%edi) \n\t"
"psrlq $32, %%mm0 \n\t" // z z z z 0 2 1 0
"movq %%mm3, 8(%%edi) \n\t"
"punpckldq %%mm4, %%mm0 \n\t" // 1 0 2 1 0 2 1 0
"subl $3, %%esi \n\t"
"movq %%mm0, (%%edi) \n\t"
"subl $24, %%edi \n\t"
"decl %%ecx \n\t"
"jnz .loop3_pass0 \n\t"
"EMMS \n\t" // DONE
 
: "=c" (dummy_value_c), // output regs (dummy)
"=S" (dummy_value_S),
"=D" (dummy_value_D)
 
: "1" (sptr), // esi // input regs
"2" (dp), // edi
"0" (width) // ecx
// doesn't work "i" (0x0000000000FFFFFFLL) // %1 (a.k.a. _const4)
 
#if 0 /* %mm0, ..., %mm4 not supported by gcc 2.7.2.3 or egcs 1.1 */
: "%mm0", "%mm1", "%mm2" // clobber list
, "%mm3", "%mm4"
#endif
);
}
else if (((pass == 2) || (pass == 3)) && width)
{
int dummy_value_c; // fix 'forbidden register spilled'
int dummy_value_S;
int dummy_value_D;
 
__asm__ __volatile__ (
"subl $9, %%edi \n\t"
// (png_pass_inc[pass] - 1)*pixel_bytes
 
".loop3_pass2: \n\t"
"movd (%%esi), %%mm0 \n\t" // x x x x x 2 1 0
"pand _const4, %%mm0 \n\t" // z z z z z 2 1 0
"movq %%mm0, %%mm1 \n\t" // z z z z z 2 1 0
"psllq $16, %%mm0 \n\t" // z z z 2 1 0 z z
"movq %%mm0, %%mm2 \n\t" // z z z 2 1 0 z z
"psllq $24, %%mm0 \n\t" // 2 1 0 z z z z z
"psrlq $8, %%mm1 \n\t" // z z z z z z 2 1
"por %%mm2, %%mm0 \n\t" // 2 1 0 2 1 0 z z
"por %%mm1, %%mm0 \n\t" // 2 1 0 2 1 0 2 1
"movq %%mm0, 4(%%edi) \n\t"
"psrlq $16, %%mm0 \n\t" // z z 2 1 0 2 1 0
"subl $3, %%esi \n\t"
"movd %%mm0, (%%edi) \n\t"
"subl $12, %%edi \n\t"
"decl %%ecx \n\t"
"jnz .loop3_pass2 \n\t"
"EMMS \n\t" // DONE
 
: "=c" (dummy_value_c), // output regs (dummy)
"=S" (dummy_value_S),
"=D" (dummy_value_D)
 
: "1" (sptr), // esi // input regs
"2" (dp), // edi
"0" (width) // ecx
 
#if 0 /* %mm0, ..., %mm2 not supported by gcc 2.7.2.3 or egcs 1.1 */
: "%mm0", "%mm1", "%mm2" // clobber list
#endif
);
}
else if (width) /* && ((pass == 4) || (pass == 5)) */
{
int width_mmx = ((width >> 1) << 1) - 8; // GRR: huh?
if (width_mmx < 0)
width_mmx = 0;
width -= width_mmx; // 8 or 9 pix, 24 or 27 bytes
if (width_mmx)
{
// png_pass_inc[] = {8, 8, 4, 4, 2, 2, 1};
// sptr points at last pixel in pre-expanded row
// dp points at last pixel position in expanded row
int dummy_value_c; // fix 'forbidden register spilled'
int dummy_value_S;
int dummy_value_D;
 
__asm__ __volatile__ (
"subl $3, %%esi \n\t"
"subl $9, %%edi \n\t"
// (png_pass_inc[pass] + 1)*pixel_bytes
 
".loop3_pass4: \n\t"
"movq (%%esi), %%mm0 \n\t" // x x 5 4 3 2 1 0
"movq %%mm0, %%mm1 \n\t" // x x 5 4 3 2 1 0
"movq %%mm0, %%mm2 \n\t" // x x 5 4 3 2 1 0
"psllq $24, %%mm0 \n\t" // 4 3 2 1 0 z z z
"pand _const4, %%mm1 \n\t" // z z z z z 2 1 0
"psrlq $24, %%mm2 \n\t" // z z z x x 5 4 3
"por %%mm1, %%mm0 \n\t" // 4 3 2 1 0 2 1 0
"movq %%mm2, %%mm3 \n\t" // z z z x x 5 4 3
"psllq $8, %%mm2 \n\t" // z z x x 5 4 3 z
"movq %%mm0, (%%edi) \n\t"
"psrlq $16, %%mm3 \n\t" // z z z z z x x 5
"pand _const6, %%mm3 \n\t" // z z z z z z z 5
"por %%mm3, %%mm2 \n\t" // z z x x 5 4 3 5
"subl $6, %%esi \n\t"
"movd %%mm2, 8(%%edi) \n\t"
"subl $12, %%edi \n\t"
"subl $2, %%ecx \n\t"
"jnz .loop3_pass4 \n\t"
"EMMS \n\t" // DONE
 
: "=c" (dummy_value_c), // output regs (dummy)
"=S" (dummy_value_S),
"=D" (dummy_value_D)
 
: "1" (sptr), // esi // input regs
"2" (dp), // edi
"0" (width_mmx) // ecx
 
#if 0 /* %mm0, ..., %mm3 not supported by gcc 2.7.2.3 or egcs 1.1 */
: "%mm0", "%mm1" // clobber list
, "%mm2", "%mm3"
#endif
);
}
 
sptr -= width_mmx*3;
dp -= width_mmx*6;
for (i = width; i; i--)
{
png_byte v[8];
int j;
 
png_memcpy(v, sptr, 3);
for (j = 0; j < png_pass_inc[pass]; j++)
{
png_memcpy(dp, v, 3);
dp -= 3;
}
sptr -= 3;
}
}
} /* end of pixel_bytes == 3 */
 
//--------------------------------------------------------------
else if (pixel_bytes == 1)
{
if (((pass == 0) || (pass == 1)) && width)
{
int width_mmx = ((width >> 2) << 2);
width -= width_mmx; // 0-3 pixels => 0-3 bytes
if (width_mmx)
{
int dummy_value_c; // fix 'forbidden register spilled'
int dummy_value_S;
int dummy_value_D;
 
__asm__ __volatile__ (
"subl $3, %%esi \n\t"
"subl $31, %%edi \n\t"
 
".loop1_pass0: \n\t"
"movd (%%esi), %%mm0 \n\t" // x x x x 3 2 1 0
"movq %%mm0, %%mm1 \n\t" // x x x x 3 2 1 0
"punpcklbw %%mm0, %%mm0 \n\t" // 3 3 2 2 1 1 0 0
"movq %%mm0, %%mm2 \n\t" // 3 3 2 2 1 1 0 0
"punpcklwd %%mm0, %%mm0 \n\t" // 1 1 1 1 0 0 0 0
"movq %%mm0, %%mm3 \n\t" // 1 1 1 1 0 0 0 0
"punpckldq %%mm0, %%mm0 \n\t" // 0 0 0 0 0 0 0 0
"punpckhdq %%mm3, %%mm3 \n\t" // 1 1 1 1 1 1 1 1
"movq %%mm0, (%%edi) \n\t"
"punpckhwd %%mm2, %%mm2 \n\t" // 3 3 3 3 2 2 2 2
"movq %%mm3, 8(%%edi) \n\t"
"movq %%mm2, %%mm4 \n\t" // 3 3 3 3 2 2 2 2
"punpckldq %%mm2, %%mm2 \n\t" // 2 2 2 2 2 2 2 2
"punpckhdq %%mm4, %%mm4 \n\t" // 3 3 3 3 3 3 3 3
"movq %%mm2, 16(%%edi) \n\t"
"subl $4, %%esi \n\t"
"movq %%mm4, 24(%%edi) \n\t"
"subl $32, %%edi \n\t"
"subl $4, %%ecx \n\t"
"jnz .loop1_pass0 \n\t"
"EMMS \n\t" // DONE
 
: "=c" (dummy_value_c), // output regs (dummy)
"=S" (dummy_value_S),
"=D" (dummy_value_D)
 
: "1" (sptr), // esi // input regs
"2" (dp), // edi
"0" (width_mmx) // ecx
 
#if 0 /* %mm0, ..., %mm4 not supported by gcc 2.7.2.3 or egcs 1.1 */
: "%mm0", "%mm1", "%mm2" // clobber list
, "%mm3", "%mm4"
#endif
);
}
 
sptr -= width_mmx;
dp -= width_mmx*8;
for (i = width; i; i--)
{
int j;
 
/* I simplified this part in version 1.0.4e
* here and in several other instances where
* pixel_bytes == 1 -- GR-P
*
* Original code:
*
* png_byte v[8];
* png_memcpy(v, sptr, pixel_bytes);
* for (j = 0; j < png_pass_inc[pass]; j++)
* {
* png_memcpy(dp, v, pixel_bytes);
* dp -= pixel_bytes;
* }
* sptr -= pixel_bytes;
*
* Replacement code is in the next three lines:
*/
 
for (j = 0; j < png_pass_inc[pass]; j++)
{
*dp-- = *sptr;
}
--sptr;
}
}
else if (((pass == 2) || (pass == 3)) && width)
{
int width_mmx = ((width >> 2) << 2);
width -= width_mmx; // 0-3 pixels => 0-3 bytes
if (width_mmx)
{
int dummy_value_c; // fix 'forbidden register spilled'
int dummy_value_S;
int dummy_value_D;
 
__asm__ __volatile__ (
"subl $3, %%esi \n\t"
"subl $15, %%edi \n\t"
 
".loop1_pass2: \n\t"
"movd (%%esi), %%mm0 \n\t" // x x x x 3 2 1 0
"punpcklbw %%mm0, %%mm0 \n\t" // 3 3 2 2 1 1 0 0
"movq %%mm0, %%mm1 \n\t" // 3 3 2 2 1 1 0 0
"punpcklwd %%mm0, %%mm0 \n\t" // 1 1 1 1 0 0 0 0
"punpckhwd %%mm1, %%mm1 \n\t" // 3 3 3 3 2 2 2 2
"movq %%mm0, (%%edi) \n\t"
"subl $4, %%esi \n\t"
"movq %%mm1, 8(%%edi) \n\t"
"subl $16, %%edi \n\t"
"subl $4, %%ecx \n\t"
"jnz .loop1_pass2 \n\t"
"EMMS \n\t" // DONE
 
: "=c" (dummy_value_c), // output regs (dummy)
"=S" (dummy_value_S),
"=D" (dummy_value_D)
 
: "1" (sptr), // esi // input regs
"2" (dp), // edi
"0" (width_mmx) // ecx
 
#if 0 /* %mm0, %mm1 not supported by gcc 2.7.2.3 or egcs 1.1 */
: "%mm0", "%mm1" // clobber list
#endif
);
}
 
sptr -= width_mmx;
dp -= width_mmx*4;
for (i = width; i; i--)
{
int j;
 
for (j = 0; j < png_pass_inc[pass]; j++)
{
*dp-- = *sptr;
}
--sptr;
}
}
else if (width) /* && ((pass == 4) || (pass == 5)) */
{
int width_mmx = ((width >> 3) << 3);
width -= width_mmx; // 0-3 pixels => 0-3 bytes
if (width_mmx)
{
int dummy_value_c; // fix 'forbidden register spilled'
int dummy_value_S;
int dummy_value_D;
 
__asm__ __volatile__ (
"subl $7, %%esi \n\t"
"subl $15, %%edi \n\t"
 
".loop1_pass4: \n\t"
"movq (%%esi), %%mm0 \n\t" // 7 6 5 4 3 2 1 0
"movq %%mm0, %%mm1 \n\t" // 7 6 5 4 3 2 1 0
"punpcklbw %%mm0, %%mm0 \n\t" // 3 3 2 2 1 1 0 0
"punpckhbw %%mm1, %%mm1 \n\t" // 7 7 6 6 5 5 4 4
"movq %%mm1, 8(%%edi) \n\t"
"subl $8, %%esi \n\t"
"movq %%mm0, (%%edi) \n\t"
"subl $16, %%edi \n\t"
"subl $8, %%ecx \n\t"
"jnz .loop1_pass4 \n\t"
"EMMS \n\t" // DONE
 
: "=c" (dummy_value_c), // output regs (none)
"=S" (dummy_value_S),
"=D" (dummy_value_D)
 
: "1" (sptr), // esi // input regs
"2" (dp), // edi
"0" (width_mmx) // ecx
 
#if 0 /* %mm0, %mm1 not supported by gcc 2.7.2.3 or egcs 1.1 */
: "%mm0", "%mm1" // clobber list
#endif
);
}
 
sptr -= width_mmx;
dp -= width_mmx*2;
for (i = width; i; i--)
{
int j;
 
for (j = 0; j < png_pass_inc[pass]; j++)
{
*dp-- = *sptr;
}
--sptr;
}
}
} /* end of pixel_bytes == 1 */
 
//--------------------------------------------------------------
else if (pixel_bytes == 2)
{
if (((pass == 0) || (pass == 1)) && width)
{
int width_mmx = ((width >> 1) << 1);
width -= width_mmx; // 0,1 pixels => 0,2 bytes
if (width_mmx)
{
int dummy_value_c; // fix 'forbidden register spilled'
int dummy_value_S;
int dummy_value_D;
 
__asm__ __volatile__ (
"subl $2, %%esi \n\t"
"subl $30, %%edi \n\t"
 
".loop2_pass0: \n\t"
"movd (%%esi), %%mm0 \n\t" // x x x x 3 2 1 0
"punpcklwd %%mm0, %%mm0 \n\t" // 3 2 3 2 1 0 1 0
"movq %%mm0, %%mm1 \n\t" // 3 2 3 2 1 0 1 0
"punpckldq %%mm0, %%mm0 \n\t" // 1 0 1 0 1 0 1 0
"punpckhdq %%mm1, %%mm1 \n\t" // 3 2 3 2 3 2 3 2
"movq %%mm0, (%%edi) \n\t"
"movq %%mm0, 8(%%edi) \n\t"
"movq %%mm1, 16(%%edi) \n\t"
"subl $4, %%esi \n\t"
"movq %%mm1, 24(%%edi) \n\t"
"subl $32, %%edi \n\t"
"subl $2, %%ecx \n\t"
"jnz .loop2_pass0 \n\t"
"EMMS \n\t" // DONE
 
: "=c" (dummy_value_c), // output regs (dummy)
"=S" (dummy_value_S),
"=D" (dummy_value_D)
 
: "1" (sptr), // esi // input regs
"2" (dp), // edi
"0" (width_mmx) // ecx
 
#if 0 /* %mm0, %mm1 not supported by gcc 2.7.2.3 or egcs 1.1 */
: "%mm0", "%mm1" // clobber list
#endif
);
}
 
sptr -= (width_mmx*2 - 2); // sign fixed
dp -= (width_mmx*16 - 2); // sign fixed
for (i = width; i; i--)
{
png_byte v[8];
int j;
sptr -= 2;
png_memcpy(v, sptr, 2);
for (j = 0; j < png_pass_inc[pass]; j++)
{
dp -= 2;
png_memcpy(dp, v, 2);
}
}
}
else if (((pass == 2) || (pass == 3)) && width)
{
int width_mmx = ((width >> 1) << 1) ;
width -= width_mmx; // 0,1 pixels => 0,2 bytes
if (width_mmx)
{
int dummy_value_c; // fix 'forbidden register spilled'
int dummy_value_S;
int dummy_value_D;
 
__asm__ __volatile__ (
"subl $2, %%esi \n\t"
"subl $14, %%edi \n\t"
 
".loop2_pass2: \n\t"
"movd (%%esi), %%mm0 \n\t" // x x x x 3 2 1 0
"punpcklwd %%mm0, %%mm0 \n\t" // 3 2 3 2 1 0 1 0
"movq %%mm0, %%mm1 \n\t" // 3 2 3 2 1 0 1 0
"punpckldq %%mm0, %%mm0 \n\t" // 1 0 1 0 1 0 1 0
"punpckhdq %%mm1, %%mm1 \n\t" // 3 2 3 2 3 2 3 2
"movq %%mm0, (%%edi) \n\t"
"subl $4, %%esi \n\t"
"movq %%mm1, 8(%%edi) \n\t"
"subl $16, %%edi \n\t"
"subl $2, %%ecx \n\t"
"jnz .loop2_pass2 \n\t"
"EMMS \n\t" // DONE
 
: "=c" (dummy_value_c), // output regs (dummy)
"=S" (dummy_value_S),
"=D" (dummy_value_D)
 
: "1" (sptr), // esi // input regs
"2" (dp), // edi
"0" (width_mmx) // ecx
 
#if 0 /* %mm0, %mm1 not supported by gcc 2.7.2.3 or egcs 1.1 */
: "%mm0", "%mm1" // clobber list
#endif
);
}
 
sptr -= (width_mmx*2 - 2); // sign fixed
dp -= (width_mmx*8 - 2); // sign fixed
for (i = width; i; i--)
{
png_byte v[8];
int j;
sptr -= 2;
png_memcpy(v, sptr, 2);
for (j = 0; j < png_pass_inc[pass]; j++)
{
dp -= 2;
png_memcpy(dp, v, 2);
}
}
}
else if (width) // pass == 4 or 5
{
int width_mmx = ((width >> 1) << 1) ;
width -= width_mmx; // 0,1 pixels => 0,2 bytes
if (width_mmx)
{
int dummy_value_c; // fix 'forbidden register spilled'
int dummy_value_S;
int dummy_value_D;
 
__asm__ __volatile__ (
"subl $2, %%esi \n\t"
"subl $6, %%edi \n\t"
 
".loop2_pass4: \n\t"
"movd (%%esi), %%mm0 \n\t" // x x x x 3 2 1 0
"punpcklwd %%mm0, %%mm0 \n\t" // 3 2 3 2 1 0 1 0
"subl $4, %%esi \n\t"
"movq %%mm0, (%%edi) \n\t"
"subl $8, %%edi \n\t"
"subl $2, %%ecx \n\t"
"jnz .loop2_pass4 \n\t"
"EMMS \n\t" // DONE
 
: "=c" (dummy_value_c), // output regs (dummy)
"=S" (dummy_value_S),
"=D" (dummy_value_D)
 
: "1" (sptr), // esi // input regs
"2" (dp), // edi
"0" (width_mmx) // ecx
 
#if 0 /* %mm0 not supported by gcc 2.7.2.3 or egcs 1.1 */
: "%mm0" // clobber list
#endif
);
}
 
sptr -= (width_mmx*2 - 2); // sign fixed
dp -= (width_mmx*4 - 2); // sign fixed
for (i = width; i; i--)
{
png_byte v[8];
int j;
sptr -= 2;
png_memcpy(v, sptr, 2);
for (j = 0; j < png_pass_inc[pass]; j++)
{
dp -= 2;
png_memcpy(dp, v, 2);
}
}
}
} /* end of pixel_bytes == 2 */
 
//--------------------------------------------------------------
else if (pixel_bytes == 4)
{
if (((pass == 0) || (pass == 1)) && width)
{
int width_mmx = ((width >> 1) << 1);
width -= width_mmx; // 0,1 pixels => 0,4 bytes
if (width_mmx)
{
int dummy_value_c; // fix 'forbidden register spilled'
int dummy_value_S;
int dummy_value_D;
 
__asm__ __volatile__ (
"subl $4, %%esi \n\t"
"subl $60, %%edi \n\t"
 
".loop4_pass0: \n\t"
"movq (%%esi), %%mm0 \n\t" // 7 6 5 4 3 2 1 0
"movq %%mm0, %%mm1 \n\t" // 7 6 5 4 3 2 1 0
"punpckldq %%mm0, %%mm0 \n\t" // 3 2 1 0 3 2 1 0
"punpckhdq %%mm1, %%mm1 \n\t" // 7 6 5 4 7 6 5 4
"movq %%mm0, (%%edi) \n\t"
"movq %%mm0, 8(%%edi) \n\t"
"movq %%mm0, 16(%%edi) \n\t"
"movq %%mm0, 24(%%edi) \n\t"
"movq %%mm1, 32(%%edi) \n\t"
"movq %%mm1, 40(%%edi) \n\t"
"movq %%mm1, 48(%%edi) \n\t"
"subl $8, %%esi \n\t"
"movq %%mm1, 56(%%edi) \n\t"
"subl $64, %%edi \n\t"
"subl $2, %%ecx \n\t"
"jnz .loop4_pass0 \n\t"
"EMMS \n\t" // DONE
 
: "=c" (dummy_value_c), // output regs (dummy)
"=S" (dummy_value_S),
"=D" (dummy_value_D)
 
: "1" (sptr), // esi // input regs
"2" (dp), // edi
"0" (width_mmx) // ecx
 
#if 0 /* %mm0, %mm1 not supported by gcc 2.7.2.3 or egcs 1.1 */
: "%mm0", "%mm1" // clobber list
#endif
);
}
 
sptr -= (width_mmx*4 - 4); // sign fixed
dp -= (width_mmx*32 - 4); // sign fixed
for (i = width; i; i--)
{
png_byte v[8];
int j;
sptr -= 4;
png_memcpy(v, sptr, 4);
for (j = 0; j < png_pass_inc[pass]; j++)
{
dp -= 4;
png_memcpy(dp, v, 4);
}
}
}
else if (((pass == 2) || (pass == 3)) && width)
{
int width_mmx = ((width >> 1) << 1);
width -= width_mmx; // 0,1 pixels => 0,4 bytes
if (width_mmx)
{
int dummy_value_c; // fix 'forbidden register spilled'
int dummy_value_S;
int dummy_value_D;
 
__asm__ __volatile__ (
"subl $4, %%esi \n\t"
"subl $28, %%edi \n\t"
 
".loop4_pass2: \n\t"
"movq (%%esi), %%mm0 \n\t" // 7 6 5 4 3 2 1 0
"movq %%mm0, %%mm1 \n\t" // 7 6 5 4 3 2 1 0
"punpckldq %%mm0, %%mm0 \n\t" // 3 2 1 0 3 2 1 0
"punpckhdq %%mm1, %%mm1 \n\t" // 7 6 5 4 7 6 5 4
"movq %%mm0, (%%edi) \n\t"
"movq %%mm0, 8(%%edi) \n\t"
"movq %%mm1, 16(%%edi) \n\t"
"movq %%mm1, 24(%%edi) \n\t"
"subl $8, %%esi \n\t"
"subl $32, %%edi \n\t"
"subl $2, %%ecx \n\t"
"jnz .loop4_pass2 \n\t"
"EMMS \n\t" // DONE
 
: "=c" (dummy_value_c), // output regs (dummy)
"=S" (dummy_value_S),
"=D" (dummy_value_D)
 
: "1" (sptr), // esi // input regs
"2" (dp), // edi
"0" (width_mmx) // ecx
 
#if 0 /* %mm0, %mm1 not supported by gcc 2.7.2.3 or egcs 1.1 */
: "%mm0", "%mm1" // clobber list
#endif
);
}
 
sptr -= (width_mmx*4 - 4); // sign fixed
dp -= (width_mmx*16 - 4); // sign fixed
for (i = width; i; i--)
{
png_byte v[8];
int j;
sptr -= 4;
png_memcpy(v, sptr, 4);
for (j = 0; j < png_pass_inc[pass]; j++)
{
dp -= 4;
png_memcpy(dp, v, 4);
}
}
}
else if (width) // pass == 4 or 5
{
int width_mmx = ((width >> 1) << 1) ;
width -= width_mmx; // 0,1 pixels => 0,4 bytes
if (width_mmx)
{
int dummy_value_c; // fix 'forbidden register spilled'
int dummy_value_S;
int dummy_value_D;
 
__asm__ __volatile__ (
"subl $4, %%esi \n\t"
"subl $12, %%edi \n\t"
 
".loop4_pass4: \n\t"
"movq (%%esi), %%mm0 \n\t" // 7 6 5 4 3 2 1 0
"movq %%mm0, %%mm1 \n\t" // 7 6 5 4 3 2 1 0
"punpckldq %%mm0, %%mm0 \n\t" // 3 2 1 0 3 2 1 0
"punpckhdq %%mm1, %%mm1 \n\t" // 7 6 5 4 7 6 5 4
"movq %%mm0, (%%edi) \n\t"
"subl $8, %%esi \n\t"
"movq %%mm1, 8(%%edi) \n\t"
"subl $16, %%edi \n\t"
"subl $2, %%ecx \n\t"
"jnz .loop4_pass4 \n\t"
"EMMS \n\t" // DONE
 
: "=c" (dummy_value_c), // output regs (dummy)
"=S" (dummy_value_S),
"=D" (dummy_value_D)
 
: "1" (sptr), // esi // input regs
"2" (dp), // edi
"0" (width_mmx) // ecx
 
#if 0 /* %mm0, %mm1 not supported by gcc 2.7.2.3 or egcs 1.1 */
: "%mm0", "%mm1" // clobber list
#endif
);
}
 
sptr -= (width_mmx*4 - 4); // sign fixed
dp -= (width_mmx*8 - 4); // sign fixed
for (i = width; i; i--)
{
png_byte v[8];
int j;
sptr -= 4;
png_memcpy(v, sptr, 4);
for (j = 0; j < png_pass_inc[pass]; j++)
{
dp -= 4;
png_memcpy(dp, v, 4);
}
}
}
} /* end of pixel_bytes == 4 */
 
//--------------------------------------------------------------
else if (pixel_bytes == 8)
{
// GRR TEST: should work, but needs testing (special 64-bit version of rpng2?)
// GRR NOTE: no need to combine passes here!
if (((pass == 0) || (pass == 1)) && width)
{
int dummy_value_c; // fix 'forbidden register spilled'
int dummy_value_S;
int dummy_value_D;
 
// source is 8-byte RRGGBBAA
// dest is 64-byte RRGGBBAA RRGGBBAA RRGGBBAA RRGGBBAA ...
__asm__ __volatile__ (
"subl $56, %%edi \n\t" // start of last block
 
".loop8_pass0: \n\t"
"movq (%%esi), %%mm0 \n\t" // 7 6 5 4 3 2 1 0
"movq %%mm0, (%%edi) \n\t"
"movq %%mm0, 8(%%edi) \n\t"
"movq %%mm0, 16(%%edi) \n\t"
"movq %%mm0, 24(%%edi) \n\t"
"movq %%mm0, 32(%%edi) \n\t"
"movq %%mm0, 40(%%edi) \n\t"
"movq %%mm0, 48(%%edi) \n\t"
"subl $8, %%esi \n\t"
"movq %%mm0, 56(%%edi) \n\t"
"subl $64, %%edi \n\t"
"decl %%ecx \n\t"
"jnz .loop8_pass0 \n\t"
"EMMS \n\t" // DONE
 
: "=c" (dummy_value_c), // output regs (dummy)
"=S" (dummy_value_S),
"=D" (dummy_value_D)
 
: "1" (sptr), // esi // input regs
"2" (dp), // edi
"0" (width) // ecx
 
#if 0 /* %mm0 not supported by gcc 2.7.2.3 or egcs 1.1 */
: "%mm0" // clobber list
#endif
);
}
else if (((pass == 2) || (pass == 3)) && width)
{
// source is 8-byte RRGGBBAA
// dest is 32-byte RRGGBBAA RRGGBBAA RRGGBBAA RRGGBBAA
// (recall that expansion is _in place_: sptr and dp
// both point at locations within same row buffer)
{
int dummy_value_c; // fix 'forbidden register spilled'
int dummy_value_S;
int dummy_value_D;
 
__asm__ __volatile__ (
"subl $24, %%edi \n\t" // start of last block
 
".loop8_pass2: \n\t"
"movq (%%esi), %%mm0 \n\t" // 7 6 5 4 3 2 1 0
"movq %%mm0, (%%edi) \n\t"
"movq %%mm0, 8(%%edi) \n\t"
"movq %%mm0, 16(%%edi) \n\t"
"subl $8, %%esi \n\t"
"movq %%mm0, 24(%%edi) \n\t"
"subl $32, %%edi \n\t"
"decl %%ecx \n\t"
"jnz .loop8_pass2 \n\t"
"EMMS \n\t" // DONE
 
: "=c" (dummy_value_c), // output regs (dummy)
"=S" (dummy_value_S),
"=D" (dummy_value_D)
 
: "1" (sptr), // esi // input regs
"2" (dp), // edi
"0" (width) // ecx
 
#if 0 /* %mm0 not supported by gcc 2.7.2.3 or egcs 1.1 */
: "%mm0" // clobber list
#endif
);
}
}
else if (width) // pass == 4 or 5
{
// source is 8-byte RRGGBBAA
// dest is 16-byte RRGGBBAA RRGGBBAA
{
int dummy_value_c; // fix 'forbidden register spilled'
int dummy_value_S;
int dummy_value_D;
 
__asm__ __volatile__ (
"subl $8, %%edi \n\t" // start of last block
 
".loop8_pass4: \n\t"
"movq (%%esi), %%mm0 \n\t" // 7 6 5 4 3 2 1 0
"movq %%mm0, (%%edi) \n\t"
"subl $8, %%esi \n\t"
"movq %%mm0, 8(%%edi) \n\t"
"subl $16, %%edi \n\t"
"decl %%ecx \n\t"
"jnz .loop8_pass4 \n\t"
"EMMS \n\t" // DONE
 
: "=c" (dummy_value_c), // output regs (dummy)
"=S" (dummy_value_S),
"=D" (dummy_value_D)
 
: "1" (sptr), // esi // input regs
"2" (dp), // edi
"0" (width) // ecx
 
#if 0 /* %mm0 not supported by gcc 2.7.2.3 or egcs 1.1 */
: "%mm0" // clobber list
#endif
);
}
}
 
} /* end of pixel_bytes == 8 */
 
//--------------------------------------------------------------
else if (pixel_bytes == 6)
{
for (i = width; i; i--)
{
png_byte v[8];
int j;
png_memcpy(v, sptr, 6);
for (j = 0; j < png_pass_inc[pass]; j++)
{
png_memcpy(dp, v, 6);
dp -= 6;
}
sptr -= 6;
}
} /* end of pixel_bytes == 6 */
 
//--------------------------------------------------------------
else
{
for (i = width; i; i--)
{
png_byte v[8];
int j;
png_memcpy(v, sptr, pixel_bytes);
for (j = 0; j < png_pass_inc[pass]; j++)
{
png_memcpy(dp, v, pixel_bytes);
dp -= pixel_bytes;
}
sptr-= pixel_bytes;
}
}
} // end of _mmx_supported ========================================
 
else /* MMX not supported: use modified C code - takes advantage
* of inlining of png_memcpy for a constant */
/* GRR 19991007: does it? or should pixel_bytes in each
* block be replaced with immediate value (e.g., 1)? */
/* GRR 19991017: replaced with constants in each case */
#endif /* PNG_ASSEMBLER_CODE_SUPPORTED */
{
if (pixel_bytes == 1)
{
for (i = width; i; i--)
{
int j;
for (j = 0; j < png_pass_inc[pass]; j++)
{
*dp-- = *sptr;
}
--sptr;
}
}
else if (pixel_bytes == 3)
{
for (i = width; i; i--)
{
png_byte v[8];
int j;
png_memcpy(v, sptr, 3);
for (j = 0; j < png_pass_inc[pass]; j++)
{
png_memcpy(dp, v, 3);
dp -= 3;
}
sptr -= 3;
}
}
else if (pixel_bytes == 2)
{
for (i = width; i; i--)
{
png_byte v[8];
int j;
png_memcpy(v, sptr, 2);
for (j = 0; j < png_pass_inc[pass]; j++)
{
png_memcpy(dp, v, 2);
dp -= 2;
}
sptr -= 2;
}
}
else if (pixel_bytes == 4)
{
for (i = width; i; i--)
{
png_byte v[8];
int j;
png_memcpy(v, sptr, 4);
for (j = 0; j < png_pass_inc[pass]; j++)
{
#ifdef PNG_DEBUG
if (dp < row || dp+3 > row+png_ptr->row_buf_size)
{
printf("dp out of bounds: row=%d, dp=%d, rp=%d\n",
row, dp, row+png_ptr->row_buf_size);
printf("row_buf=%d\n",png_ptr->row_buf_size);
}
#endif
png_memcpy(dp, v, 4);
dp -= 4;
}
sptr -= 4;
}
}
else if (pixel_bytes == 6)
{
for (i = width; i; i--)
{
png_byte v[8];
int j;
png_memcpy(v, sptr, 6);
for (j = 0; j < png_pass_inc[pass]; j++)
{
png_memcpy(dp, v, 6);
dp -= 6;
}
sptr -= 6;
}
}
else if (pixel_bytes == 8)
{
for (i = width; i; i--)
{
png_byte v[8];
int j;
png_memcpy(v, sptr, 8);
for (j = 0; j < png_pass_inc[pass]; j++)
{
png_memcpy(dp, v, 8);
dp -= 8;
}
sptr -= 8;
}
}
else /* GRR: should never be reached */
{
for (i = width; i; i--)
{
png_byte v[8];
int j;
png_memcpy(v, sptr, pixel_bytes);
for (j = 0; j < png_pass_inc[pass]; j++)
{
png_memcpy(dp, v, pixel_bytes);
dp -= pixel_bytes;
}
sptr -= pixel_bytes;
}
}
 
} /* end if (MMX not supported) */
break;
}
} /* end switch (row_info->pixel_depth) */
 
row_info->width = final_width;
row_info->rowbytes = ((final_width *
(png_uint_32)row_info->pixel_depth + 7) >> 3);
}
 
} /* end png_do_read_interlace() */
 
#endif /* PNG_HAVE_ASSEMBLER_READ_INTERLACE */
#endif /* PNG_READ_INTERLACING_SUPPORTED */
 
 
 
#if defined(PNG_HAVE_ASSEMBLER_READ_FILTER_ROW)
#if defined(PNG_ASSEMBLER_CODE_SUPPORTED)
 
// These variables are utilized in the functions below. They are declared
// globally here to ensure alignment on 8-byte boundaries.
 
union uAll {
long long use;
double align;
} _LBCarryMask = {0x0101010101010101LL},
_HBClearMask = {0x7f7f7f7f7f7f7f7fLL},
_ActiveMask, _ActiveMask2, _ActiveMaskEnd, _ShiftBpp, _ShiftRem;
 
#ifdef PNG_THREAD_UNSAFE_OK
//===========================================================================//
// //
// P N G _ R E A D _ F I L T E R _ R O W _ M M X _ A V G //
// //
//===========================================================================//
 
// Optimized code for PNG Average filter decoder
 
static void /* PRIVATE */
png_read_filter_row_mmx_avg(png_row_infop row_info, png_bytep row,
png_bytep prev_row)
{
int bpp;
int dummy_value_c; // fix 'forbidden register 2 (cx) was spilled' error
int dummy_value_S;
int dummy_value_D;
 
bpp = (row_info->pixel_depth + 7) >> 3; // get # bytes per pixel
_FullLength = row_info->rowbytes; // # of bytes to filter
 
__asm__ __volatile__ (
// initialize address pointers and offset
#ifdef __PIC__
"pushl %%ebx \n\t" // save index to Global Offset Table
#endif
//pre "movl row, %%edi \n\t" // edi: Avg(x)
"xorl %%ebx, %%ebx \n\t" // ebx: x
"movl %%edi, %%edx \n\t"
//pre "movl prev_row, %%esi \n\t" // esi: Prior(x)
//pre "subl bpp, %%edx \n\t" // (bpp is preloaded into ecx)
"subl %%ecx, %%edx \n\t" // edx: Raw(x-bpp)
 
"xorl %%eax,%%eax \n\t"
 
// Compute the Raw value for the first bpp bytes
// Raw(x) = Avg(x) + (Prior(x)/2)
"avg_rlp: \n\t"
"movb (%%esi,%%ebx,),%%al \n\t" // load al with Prior(x)
"incl %%ebx \n\t"
"shrb %%al \n\t" // divide by 2
"addb -1(%%edi,%%ebx,),%%al \n\t" // add Avg(x); -1 to offset inc ebx
//pre "cmpl bpp, %%ebx \n\t" // (bpp is preloaded into ecx)
"cmpl %%ecx, %%ebx \n\t"
"movb %%al,-1(%%edi,%%ebx,) \n\t" // write Raw(x); -1 to offset inc ebx
"jb avg_rlp \n\t" // mov does not affect flags
 
// get # of bytes to alignment
"movl %%edi, _dif \n\t" // take start of row
"addl %%ebx, _dif \n\t" // add bpp
"addl $0xf, _dif \n\t" // add 7+8 to incr past alignment bdry
"andl $0xfffffff8, _dif \n\t" // mask to alignment boundary
"subl %%edi, _dif \n\t" // subtract from start => value ebx at
"jz avg_go \n\t" // alignment
 
// fix alignment
// Compute the Raw value for the bytes up to the alignment boundary
// Raw(x) = Avg(x) + ((Raw(x-bpp) + Prior(x))/2)
"xorl %%ecx, %%ecx \n\t"
 
"avg_lp1: \n\t"
"xorl %%eax, %%eax \n\t"
"movb (%%esi,%%ebx,), %%cl \n\t" // load cl with Prior(x)
"movb (%%edx,%%ebx,), %%al \n\t" // load al with Raw(x-bpp)
"addw %%cx, %%ax \n\t"
"incl %%ebx \n\t"
"shrw %%ax \n\t" // divide by 2
"addb -1(%%edi,%%ebx,), %%al \n\t" // add Avg(x); -1 to offset inc ebx
"cmpl _dif, %%ebx \n\t" // check if at alignment boundary
"movb %%al, -1(%%edi,%%ebx,) \n\t" // write Raw(x); -1 to offset inc ebx
"jb avg_lp1 \n\t" // repeat until at alignment boundary
 
"avg_go: \n\t"
"movl _FullLength, %%eax \n\t"
"movl %%eax, %%ecx \n\t"
"subl %%ebx, %%eax \n\t" // subtract alignment fix
"andl $0x00000007, %%eax \n\t" // calc bytes over mult of 8
"subl %%eax, %%ecx \n\t" // drop over bytes from original length
"movl %%ecx, _MMXLength \n\t"
#ifdef __PIC__
"popl %%ebx \n\t" // restore index to Global Offset Table
#endif
 
: "=c" (dummy_value_c), // output regs (dummy)
"=S" (dummy_value_S),
"=D" (dummy_value_D)
 
: "0" (bpp), // ecx // input regs
"1" (prev_row), // esi
"2" (row) // edi
 
: "%eax", "%edx" // clobber list
#ifndef __PIC__
, "%ebx"
#endif
// GRR: INCLUDE "memory" as clobbered? (_dif, _MMXLength)
// (seems to work fine without...)
);
 
// now do the math for the rest of the row
switch (bpp)
{
case 3:
{
_ActiveMask.use = 0x0000000000ffffffLL;
_ShiftBpp.use = 24; // == 3 * 8
_ShiftRem.use = 40; // == 64 - 24
 
__asm__ __volatile__ (
// re-init address pointers and offset
"movq _ActiveMask, %%mm7 \n\t"
"movl _dif, %%ecx \n\t" // ecx: x = offset to
"movq _LBCarryMask, %%mm5 \n\t" // alignment boundary
// preload "movl row, %%edi \n\t" // edi: Avg(x)
"movq _HBClearMask, %%mm4 \n\t"
// preload "movl prev_row, %%esi \n\t" // esi: Prior(x)
 
// prime the pump: load the first Raw(x-bpp) data set
"movq -8(%%edi,%%ecx,), %%mm2 \n\t" // load previous aligned 8 bytes
// (correct pos. in loop below)
"avg_3lp: \n\t"
"movq (%%edi,%%ecx,), %%mm0 \n\t" // load mm0 with Avg(x)
"movq %%mm5, %%mm3 \n\t"
"psrlq _ShiftRem, %%mm2 \n\t" // correct position Raw(x-bpp)
// data
"movq (%%esi,%%ecx,), %%mm1 \n\t" // load mm1 with Prior(x)
"movq %%mm7, %%mm6 \n\t"
"pand %%mm1, %%mm3 \n\t" // get lsb for each prev_row byte
"psrlq $1, %%mm1 \n\t" // divide prev_row bytes by 2
"pand %%mm4, %%mm1 \n\t" // clear invalid bit 7 of each
// byte
"paddb %%mm1, %%mm0 \n\t" // add (Prev_row/2) to Avg for
// each byte
// add 1st active group (Raw(x-bpp)/2) to average with LBCarry
"movq %%mm3, %%mm1 \n\t" // now use mm1 for getting
// LBCarrys
"pand %%mm2, %%mm1 \n\t" // get LBCarrys for each byte
// where both
// lsb's were == 1 (only valid for active group)
"psrlq $1, %%mm2 \n\t" // divide raw bytes by 2
"pand %%mm4, %%mm2 \n\t" // clear invalid bit 7 of each
// byte
"paddb %%mm1, %%mm2 \n\t" // add LBCarrys to (Raw(x-bpp)/2)
// for each byte
"pand %%mm6, %%mm2 \n\t" // leave only Active Group 1
// bytes to add to Avg
"paddb %%mm2, %%mm0 \n\t" // add (Raw/2) + LBCarrys to
// Avg for each Active
// byte
// add 2nd active group (Raw(x-bpp)/2) to average with _LBCarry
"psllq _ShiftBpp, %%mm6 \n\t" // shift the mm6 mask to cover
// bytes 3-5
"movq %%mm0, %%mm2 \n\t" // mov updated Raws to mm2
"psllq _ShiftBpp, %%mm2 \n\t" // shift data to pos. correctly
"movq %%mm3, %%mm1 \n\t" // now use mm1 for getting
// LBCarrys
"pand %%mm2, %%mm1 \n\t" // get LBCarrys for each byte
// where both
// lsb's were == 1 (only valid for active group)
"psrlq $1, %%mm2 \n\t" // divide raw bytes by 2
"pand %%mm4, %%mm2 \n\t" // clear invalid bit 7 of each
// byte
"paddb %%mm1, %%mm2 \n\t" // add LBCarrys to (Raw(x-bpp)/2)
// for each byte
"pand %%mm6, %%mm2 \n\t" // leave only Active Group 2
// bytes to add to Avg
"paddb %%mm2, %%mm0 \n\t" // add (Raw/2) + LBCarrys to
// Avg for each Active
// byte
 
// add 3rd active group (Raw(x-bpp)/2) to average with _LBCarry
"psllq _ShiftBpp, %%mm6 \n\t" // shift mm6 mask to cover last
// two
// bytes
"movq %%mm0, %%mm2 \n\t" // mov updated Raws to mm2
"psllq _ShiftBpp, %%mm2 \n\t" // shift data to pos. correctly
// Data only needs to be shifted once here to
// get the correct x-bpp offset.
"movq %%mm3, %%mm1 \n\t" // now use mm1 for getting
// LBCarrys
"pand %%mm2, %%mm1 \n\t" // get LBCarrys for each byte
// where both
// lsb's were == 1 (only valid for active group)
"psrlq $1, %%mm2 \n\t" // divide raw bytes by 2
"pand %%mm4, %%mm2 \n\t" // clear invalid bit 7 of each
// byte
"paddb %%mm1, %%mm2 \n\t" // add LBCarrys to (Raw(x-bpp)/2)
// for each byte
"pand %%mm6, %%mm2 \n\t" // leave only Active Group 2
// bytes to add to Avg
"addl $8, %%ecx \n\t"
"paddb %%mm2, %%mm0 \n\t" // add (Raw/2) + LBCarrys to
// Avg for each Active
// byte
// now ready to write back to memory
"movq %%mm0, -8(%%edi,%%ecx,) \n\t"
// move updated Raw(x) to use as Raw(x-bpp) for next loop
"cmpl _MMXLength, %%ecx \n\t"
"movq %%mm0, %%mm2 \n\t" // mov updated Raw(x) to mm2
"jb avg_3lp \n\t"
 
: "=S" (dummy_value_S), // output regs (dummy)
"=D" (dummy_value_D)
 
: "0" (prev_row), // esi // input regs
"1" (row) // edi
 
: "%ecx" // clobber list
#if 0 /* %mm0, ..., %mm7 not supported by gcc 2.7.2.3 or egcs 1.1 */
, "%mm0", "%mm1", "%mm2", "%mm3"
, "%mm4", "%mm5", "%mm6", "%mm7"
#endif
);
}
break; // end 3 bpp
 
case 6:
case 4:
//case 7: // who wrote this? PNG doesn't support 5 or 7 bytes/pixel
//case 5: // GRR BOGUS
{
_ActiveMask.use = 0xffffffffffffffffLL; // use shift below to clear
// appropriate inactive bytes
_ShiftBpp.use = bpp << 3;
_ShiftRem.use = 64 - _ShiftBpp.use;
 
__asm__ __volatile__ (
"movq _HBClearMask, %%mm4 \n\t"
 
// re-init address pointers and offset
"movl _dif, %%ecx \n\t" // ecx: x = offset to
// alignment boundary
 
// load _ActiveMask and clear all bytes except for 1st active group
"movq _ActiveMask, %%mm7 \n\t"
// preload "movl row, %%edi \n\t" // edi: Avg(x)
"psrlq _ShiftRem, %%mm7 \n\t"
// preload "movl prev_row, %%esi \n\t" // esi: Prior(x)
"movq %%mm7, %%mm6 \n\t"
"movq _LBCarryMask, %%mm5 \n\t"
"psllq _ShiftBpp, %%mm6 \n\t" // create mask for 2nd active
// group
 
// prime the pump: load the first Raw(x-bpp) data set
"movq -8(%%edi,%%ecx,), %%mm2 \n\t" // load previous aligned 8 bytes
// (we correct pos. in loop below)
"avg_4lp: \n\t"
"movq (%%edi,%%ecx,), %%mm0 \n\t"
"psrlq _ShiftRem, %%mm2 \n\t" // shift data to pos. correctly
"movq (%%esi,%%ecx,), %%mm1 \n\t"
// add (Prev_row/2) to average
"movq %%mm5, %%mm3 \n\t"
"pand %%mm1, %%mm3 \n\t" // get lsb for each prev_row byte
"psrlq $1, %%mm1 \n\t" // divide prev_row bytes by 2
"pand %%mm4, %%mm1 \n\t" // clear invalid bit 7 of each
// byte
"paddb %%mm1, %%mm0 \n\t" // add (Prev_row/2) to Avg for
// each byte
// add 1st active group (Raw(x-bpp)/2) to average with _LBCarry
"movq %%mm3, %%mm1 \n\t" // now use mm1 for getting
// LBCarrys
"pand %%mm2, %%mm1 \n\t" // get LBCarrys for each byte
// where both
// lsb's were == 1 (only valid for active group)
"psrlq $1, %%mm2 \n\t" // divide raw bytes by 2
"pand %%mm4, %%mm2 \n\t" // clear invalid bit 7 of each
// byte
"paddb %%mm1, %%mm2 \n\t" // add LBCarrys to (Raw(x-bpp)/2)
// for each byte
"pand %%mm7, %%mm2 \n\t" // leave only Active Group 1
// bytes to add to Avg
"paddb %%mm2, %%mm0 \n\t" // add (Raw/2) + LBCarrys to Avg
// for each Active
// byte
// add 2nd active group (Raw(x-bpp)/2) to average with _LBCarry
"movq %%mm0, %%mm2 \n\t" // mov updated Raws to mm2
"psllq _ShiftBpp, %%mm2 \n\t" // shift data to pos. correctly
"addl $8, %%ecx \n\t"
"movq %%mm3, %%mm1 \n\t" // now use mm1 for getting
// LBCarrys
"pand %%mm2, %%mm1 \n\t" // get LBCarrys for each byte
// where both
// lsb's were == 1 (only valid for active group)
"psrlq $1, %%mm2 \n\t" // divide raw bytes by 2
"pand %%mm4, %%mm2 \n\t" // clear invalid bit 7 of each
// byte
"paddb %%mm1, %%mm2 \n\t" // add LBCarrys to (Raw(x-bpp)/2)
// for each byte
"pand %%mm6, %%mm2 \n\t" // leave only Active Group 2
// bytes to add to Avg
"paddb %%mm2, %%mm0 \n\t" // add (Raw/2) + LBCarrys to
// Avg for each Active
// byte
"cmpl _MMXLength, %%ecx \n\t"
// now ready to write back to memory
"movq %%mm0, -8(%%edi,%%ecx,) \n\t"
// prep Raw(x-bpp) for next loop
"movq %%mm0, %%mm2 \n\t" // mov updated Raws to mm2
"jb avg_4lp \n\t"
 
: "=S" (dummy_value_S), // output regs (dummy)
"=D" (dummy_value_D)
 
: "0" (prev_row), // esi // input regs
"1" (row) // edi
 
: "%ecx" // clobber list
#if 0 /* %mm0, ..., %mm7 not supported by gcc 2.7.2.3 or egcs 1.1 */
, "%mm0", "%mm1", "%mm2", "%mm3"
, "%mm4", "%mm5", "%mm6", "%mm7"
#endif
);
}
break; // end 4,6 bpp
 
case 2:
{
_ActiveMask.use = 0x000000000000ffffLL;
_ShiftBpp.use = 16; // == 2 * 8
_ShiftRem.use = 48; // == 64 - 16
 
__asm__ __volatile__ (
// load _ActiveMask
"movq _ActiveMask, %%mm7 \n\t"
// re-init address pointers and offset
"movl _dif, %%ecx \n\t" // ecx: x = offset to alignment
// boundary
"movq _LBCarryMask, %%mm5 \n\t"
// preload "movl row, %%edi \n\t" // edi: Avg(x)
"movq _HBClearMask, %%mm4 \n\t"
// preload "movl prev_row, %%esi \n\t" // esi: Prior(x)
 
// prime the pump: load the first Raw(x-bpp) data set
"movq -8(%%edi,%%ecx,), %%mm2 \n\t" // load previous aligned 8 bytes
// (we correct pos. in loop below)
"avg_2lp: \n\t"
"movq (%%edi,%%ecx,), %%mm0 \n\t"
"psrlq _ShiftRem, %%mm2 \n\t" // shift data to pos. correctly
"movq (%%esi,%%ecx,), %%mm1 \n\t" // (GRR BUGFIX: was psllq)
// add (Prev_row/2) to average
"movq %%mm5, %%mm3 \n\t"
"pand %%mm1, %%mm3 \n\t" // get lsb for each prev_row byte
"psrlq $1, %%mm1 \n\t" // divide prev_row bytes by 2
"pand %%mm4, %%mm1 \n\t" // clear invalid bit 7 of each
// byte
"movq %%mm7, %%mm6 \n\t"
"paddb %%mm1, %%mm0 \n\t" // add (Prev_row/2) to Avg for
// each byte
 
// add 1st active group (Raw(x-bpp)/2) to average with _LBCarry
"movq %%mm3, %%mm1 \n\t" // now use mm1 for getting
// LBCarrys
"pand %%mm2, %%mm1 \n\t" // get LBCarrys for each byte
// where both
// lsb's were == 1 (only valid
// for active group)
"psrlq $1, %%mm2 \n\t" // divide raw bytes by 2
"pand %%mm4, %%mm2 \n\t" // clear invalid bit 7 of each
// byte
"paddb %%mm1, %%mm2 \n\t" // add LBCarrys to (Raw(x-bpp)/2)
// for each byte
"pand %%mm6, %%mm2 \n\t" // leave only Active Group 1
// bytes to add to Avg
"paddb %%mm2, %%mm0 \n\t" // add (Raw/2) + LBCarrys to Avg
// for each Active byte
 
// add 2nd active group (Raw(x-bpp)/2) to average with _LBCarry
"psllq _ShiftBpp, %%mm6 \n\t" // shift the mm6 mask to cover
// bytes 2 & 3
"movq %%mm0, %%mm2 \n\t" // mov updated Raws to mm2
"psllq _ShiftBpp, %%mm2 \n\t" // shift data to pos. correctly
"movq %%mm3, %%mm1 \n\t" // now use mm1 for getting
// LBCarrys
"pand %%mm2, %%mm1 \n\t" // get LBCarrys for each byte
// where both
// lsb's were == 1 (only valid
// for active group)
"psrlq $1, %%mm2 \n\t" // divide raw bytes by 2
"pand %%mm4, %%mm2 \n\t" // clear invalid bit 7 of each
// byte
"paddb %%mm1, %%mm2 \n\t" // add LBCarrys to (Raw(x-bpp)/2)
// for each byte
"pand %%mm6, %%mm2 \n\t" // leave only Active Group 2
// bytes to add to Avg
"paddb %%mm2, %%mm0 \n\t" // add (Raw/2) + LBCarrys to
// Avg for each Active byte
 
// add 3rd active group (Raw(x-bpp)/2) to average with _LBCarry
"psllq _ShiftBpp, %%mm6 \n\t" // shift the mm6 mask to cover
// bytes 4 & 5
"movq %%mm0, %%mm2 \n\t" // mov updated Raws to mm2
"psllq _ShiftBpp, %%mm2 \n\t" // shift data to pos. correctly
"movq %%mm3, %%mm1 \n\t" // now use mm1 for getting
// LBCarrys
"pand %%mm2, %%mm1 \n\t" // get LBCarrys for each byte
// where both lsb's were == 1
// (only valid for active group)
"psrlq $1, %%mm2 \n\t" // divide raw bytes by 2
"pand %%mm4, %%mm2 \n\t" // clear invalid bit 7 of each
// byte
"paddb %%mm1, %%mm2 \n\t" // add LBCarrys to (Raw(x-bpp)/2)
// for each byte
"pand %%mm6, %%mm2 \n\t" // leave only Active Group 2
// bytes to add to Avg
"paddb %%mm2, %%mm0 \n\t" // add (Raw/2) + LBCarrys to
// Avg for each Active byte
 
// add 4th active group (Raw(x-bpp)/2) to average with _LBCarry
"psllq _ShiftBpp, %%mm6 \n\t" // shift the mm6 mask to cover
// bytes 6 & 7
"movq %%mm0, %%mm2 \n\t" // mov updated Raws to mm2
"psllq _ShiftBpp, %%mm2 \n\t" // shift data to pos. correctly
"addl $8, %%ecx \n\t"
"movq %%mm3, %%mm1 \n\t" // now use mm1 for getting
// LBCarrys
"pand %%mm2, %%mm1 \n\t" // get LBCarrys for each byte
// where both
// lsb's were == 1 (only valid
// for active group)
"psrlq $1, %%mm2 \n\t" // divide raw bytes by 2
"pand %%mm4, %%mm2 \n\t" // clear invalid bit 7 of each
// byte
"paddb %%mm1, %%mm2 \n\t" // add LBCarrys to (Raw(x-bpp)/2)
// for each byte
"pand %%mm6, %%mm2 \n\t" // leave only Active Group 2
// bytes to add to Avg
"paddb %%mm2, %%mm0 \n\t" // add (Raw/2) + LBCarrys to
// Avg for each Active byte
 
"cmpl _MMXLength, %%ecx \n\t"
// now ready to write back to memory
"movq %%mm0, -8(%%edi,%%ecx,) \n\t"
// prep Raw(x-bpp) for next loop
"movq %%mm0, %%mm2 \n\t" // mov updated Raws to mm2
"jb avg_2lp \n\t"
 
: "=S" (dummy_value_S), // output regs (dummy)
"=D" (dummy_value_D)
 
: "0" (prev_row), // esi // input regs
"1" (row) // edi
 
: "%ecx" // clobber list
#if 0 /* %mm0, ..., %mm7 not supported by gcc 2.7.2.3 or egcs 1.1 */
, "%mm0", "%mm1", "%mm2", "%mm3"
, "%mm4", "%mm5", "%mm6", "%mm7"
#endif
);
}
break; // end 2 bpp
 
case 1:
{
__asm__ __volatile__ (
// re-init address pointers and offset
#ifdef __PIC__
"pushl %%ebx \n\t" // save Global Offset Table index
#endif
"movl _dif, %%ebx \n\t" // ebx: x = offset to alignment
// boundary
// preload "movl row, %%edi \n\t" // edi: Avg(x)
"cmpl _FullLength, %%ebx \n\t" // test if offset at end of array
"jnb avg_1end \n\t"
// do Paeth decode for remaining bytes
// preload "movl prev_row, %%esi \n\t" // esi: Prior(x)
"movl %%edi, %%edx \n\t"
// preload "subl bpp, %%edx \n\t" // (bpp is preloaded into ecx)
"subl %%ecx, %%edx \n\t" // edx: Raw(x-bpp)
"xorl %%ecx, %%ecx \n\t" // zero ecx before using cl & cx
// in loop below
"avg_1lp: \n\t"
// Raw(x) = Avg(x) + ((Raw(x-bpp) + Prior(x))/2)
"xorl %%eax, %%eax \n\t"
"movb (%%esi,%%ebx,), %%cl \n\t" // load cl with Prior(x)
"movb (%%edx,%%ebx,), %%al \n\t" // load al with Raw(x-bpp)
"addw %%cx, %%ax \n\t"
"incl %%ebx \n\t"
"shrw %%ax \n\t" // divide by 2
"addb -1(%%edi,%%ebx,), %%al \n\t" // add Avg(x); -1 to offset
// inc ebx
"cmpl _FullLength, %%ebx \n\t" // check if at end of array
"movb %%al, -1(%%edi,%%ebx,) \n\t" // write back Raw(x);
// mov does not affect flags; -1 to offset inc ebx
"jb avg_1lp \n\t"
 
"avg_1end: \n\t"
#ifdef __PIC__
"popl %%ebx \n\t" // Global Offset Table index
#endif
 
: "=c" (dummy_value_c), // output regs (dummy)
"=S" (dummy_value_S),
"=D" (dummy_value_D)
 
: "0" (bpp), // ecx // input regs
"1" (prev_row), // esi
"2" (row) // edi
 
: "%eax", "%edx" // clobber list
#ifndef __PIC__
, "%ebx"
#endif
);
}
return; // end 1 bpp
 
case 8:
{
__asm__ __volatile__ (
// re-init address pointers and offset
"movl _dif, %%ecx \n\t" // ecx: x == offset to alignment
"movq _LBCarryMask, %%mm5 \n\t" // boundary
// preload "movl row, %%edi \n\t" // edi: Avg(x)
"movq _HBClearMask, %%mm4 \n\t"
// preload "movl prev_row, %%esi \n\t" // esi: Prior(x)
 
// prime the pump: load the first Raw(x-bpp) data set
"movq -8(%%edi,%%ecx,), %%mm2 \n\t" // load previous aligned 8 bytes
// (NO NEED to correct pos. in loop below)
 
"avg_8lp: \n\t"
"movq (%%edi,%%ecx,), %%mm0 \n\t"
"movq %%mm5, %%mm3 \n\t"
"movq (%%esi,%%ecx,), %%mm1 \n\t"
"addl $8, %%ecx \n\t"
"pand %%mm1, %%mm3 \n\t" // get lsb for each prev_row byte
"psrlq $1, %%mm1 \n\t" // divide prev_row bytes by 2
"pand %%mm2, %%mm3 \n\t" // get LBCarrys for each byte
// where both lsb's were == 1
"psrlq $1, %%mm2 \n\t" // divide raw bytes by 2
"pand %%mm4, %%mm1 \n\t" // clear invalid bit 7, each byte
"paddb %%mm3, %%mm0 \n\t" // add LBCarrys to Avg, each byte
"pand %%mm4, %%mm2 \n\t" // clear invalid bit 7, each byte
"paddb %%mm1, %%mm0 \n\t" // add (Prev_row/2) to Avg, each
"paddb %%mm2, %%mm0 \n\t" // add (Raw/2) to Avg for each
"cmpl _MMXLength, %%ecx \n\t"
"movq %%mm0, -8(%%edi,%%ecx,) \n\t"
"movq %%mm0, %%mm2 \n\t" // reuse as Raw(x-bpp)
"jb avg_8lp \n\t"
 
: "=S" (dummy_value_S), // output regs (dummy)
"=D" (dummy_value_D)
 
: "0" (prev_row), // esi // input regs
"1" (row) // edi
 
: "%ecx" // clobber list
#if 0 /* %mm0, ..., %mm5 not supported by gcc 2.7.2.3 or egcs 1.1 */
, "%mm0", "%mm1", "%mm2"
, "%mm3", "%mm4", "%mm5"
#endif
);
}
break; // end 8 bpp
 
default: // bpp greater than 8 (!= 1,2,3,4,[5],6,[7],8)
{
 
#ifdef PNG_DEBUG
// GRR: PRINT ERROR HERE: SHOULD NEVER BE REACHED
png_debug(1,
"Internal logic error in pnggccrd (png_read_filter_row_mmx_avg())\n");
#endif
 
#if 0
__asm__ __volatile__ (
"movq _LBCarryMask, %%mm5 \n\t"
// re-init address pointers and offset
"movl _dif, %%ebx \n\t" // ebx: x = offset to
// alignment boundary
"movl row, %%edi \n\t" // edi: Avg(x)
"movq _HBClearMask, %%mm4 \n\t"
"movl %%edi, %%edx \n\t"
"movl prev_row, %%esi \n\t" // esi: Prior(x)
"subl bpp, %%edx \n\t" // edx: Raw(x-bpp)
"avg_Alp: \n\t"
"movq (%%edi,%%ebx,), %%mm0 \n\t"
"movq %%mm5, %%mm3 \n\t"
"movq (%%esi,%%ebx,), %%mm1 \n\t"
"pand %%mm1, %%mm3 \n\t" // get lsb for each prev_row byte
"movq (%%edx,%%ebx,), %%mm2 \n\t"
"psrlq $1, %%mm1 \n\t" // divide prev_row bytes by 2
"pand %%mm2, %%mm3 \n\t" // get LBCarrys for each byte
// where both lsb's were == 1
"psrlq $1, %%mm2 \n\t" // divide raw bytes by 2
"pand %%mm4, %%mm1 \n\t" // clear invalid bit 7 of each
// byte
"paddb %%mm3, %%mm0 \n\t" // add LBCarrys to Avg for each
// byte
"pand %%mm4, %%mm2 \n\t" // clear invalid bit 7 of each
// byte
"paddb %%mm1, %%mm0 \n\t" // add (Prev_row/2) to Avg for
// each byte
"addl $8, %%ebx \n\t"
"paddb %%mm2, %%mm0 \n\t" // add (Raw/2) to Avg for each
// byte
"cmpl _MMXLength, %%ebx \n\t"
"movq %%mm0, -8(%%edi,%%ebx,) \n\t"
"jb avg_Alp \n\t"
 
: // FIXASM: output regs/vars go here, e.g.: "=m" (memory_var)
 
: // FIXASM: input regs, e.g.: "c" (count), "S" (src), "D" (dest)
 
: "%ebx", "%edx", "%edi", "%esi" // CHECKASM: clobber list
);
#endif /* 0 - NEVER REACHED */
}
break;
 
} // end switch (bpp)
 
__asm__ __volatile__ (
// MMX acceleration complete; now do clean-up
// check if any remaining bytes left to decode
#ifdef __PIC__
"pushl %%ebx \n\t" // save index to Global Offset Table
#endif
"movl _MMXLength, %%ebx \n\t" // ebx: x == offset bytes after MMX
//pre "movl row, %%edi \n\t" // edi: Avg(x)
"cmpl _FullLength, %%ebx \n\t" // test if offset at end of array
"jnb avg_end \n\t"
 
// do Avg decode for remaining bytes
//pre "movl prev_row, %%esi \n\t" // esi: Prior(x)
"movl %%edi, %%edx \n\t"
//pre "subl bpp, %%edx \n\t" // (bpp is preloaded into ecx)
"subl %%ecx, %%edx \n\t" // edx: Raw(x-bpp)
"xorl %%ecx, %%ecx \n\t" // zero ecx before using cl & cx below
 
"avg_lp2: \n\t"
// Raw(x) = Avg(x) + ((Raw(x-bpp) + Prior(x))/2)
"xorl %%eax, %%eax \n\t"
"movb (%%esi,%%ebx,), %%cl \n\t" // load cl with Prior(x)
"movb (%%edx,%%ebx,), %%al \n\t" // load al with Raw(x-bpp)
"addw %%cx, %%ax \n\t"
"incl %%ebx \n\t"
"shrw %%ax \n\t" // divide by 2
"addb -1(%%edi,%%ebx,), %%al \n\t" // add Avg(x); -1 to offset inc ebx
"cmpl _FullLength, %%ebx \n\t" // check if at end of array
"movb %%al, -1(%%edi,%%ebx,) \n\t" // write back Raw(x) [mov does not
"jb avg_lp2 \n\t" // affect flags; -1 to offset inc ebx]
 
"avg_end: \n\t"
"EMMS \n\t" // end MMX; prep for poss. FP instrs.
#ifdef __PIC__
"popl %%ebx \n\t" // restore index to Global Offset Table
#endif
 
: "=c" (dummy_value_c), // output regs (dummy)
"=S" (dummy_value_S),
"=D" (dummy_value_D)
 
: "0" (bpp), // ecx // input regs
"1" (prev_row), // esi
"2" (row) // edi
 
: "%eax", "%edx" // clobber list
#ifndef __PIC__
, "%ebx"
#endif
);
 
} /* end png_read_filter_row_mmx_avg() */
#endif
 
 
 
#ifdef PNG_THREAD_UNSAFE_OK
//===========================================================================//
// //
// P N G _ R E A D _ F I L T E R _ R O W _ M M X _ P A E T H //
// //
//===========================================================================//
 
// Optimized code for PNG Paeth filter decoder
 
static void /* PRIVATE */
png_read_filter_row_mmx_paeth(png_row_infop row_info, png_bytep row,
png_bytep prev_row)
{
int bpp;
int dummy_value_c; // fix 'forbidden register 2 (cx) was spilled' error
int dummy_value_S;
int dummy_value_D;
 
bpp = (row_info->pixel_depth + 7) >> 3; // Get # bytes per pixel
_FullLength = row_info->rowbytes; // # of bytes to filter
 
__asm__ __volatile__ (
#ifdef __PIC__
"pushl %%ebx \n\t" // save index to Global Offset Table
#endif
"xorl %%ebx, %%ebx \n\t" // ebx: x offset
//pre "movl row, %%edi \n\t"
"xorl %%edx, %%edx \n\t" // edx: x-bpp offset
//pre "movl prev_row, %%esi \n\t"
"xorl %%eax, %%eax \n\t"
 
// Compute the Raw value for the first bpp bytes
// Note: the formula works out to be always
// Paeth(x) = Raw(x) + Prior(x) where x < bpp
"paeth_rlp: \n\t"
"movb (%%edi,%%ebx,), %%al \n\t"
"addb (%%esi,%%ebx,), %%al \n\t"
"incl %%ebx \n\t"
//pre "cmpl bpp, %%ebx \n\t" (bpp is preloaded into ecx)
"cmpl %%ecx, %%ebx \n\t"
"movb %%al, -1(%%edi,%%ebx,) \n\t"
"jb paeth_rlp \n\t"
// get # of bytes to alignment
"movl %%edi, _dif \n\t" // take start of row
"addl %%ebx, _dif \n\t" // add bpp
"xorl %%ecx, %%ecx \n\t"
"addl $0xf, _dif \n\t" // add 7 + 8 to incr past alignment
// boundary
"andl $0xfffffff8, _dif \n\t" // mask to alignment boundary
"subl %%edi, _dif \n\t" // subtract from start ==> value ebx
// at alignment
"jz paeth_go \n\t"
// fix alignment
 
"paeth_lp1: \n\t"
"xorl %%eax, %%eax \n\t"
// pav = p - a = (a + b - c) - a = b - c
"movb (%%esi,%%ebx,), %%al \n\t" // load Prior(x) into al
"movb (%%esi,%%edx,), %%cl \n\t" // load Prior(x-bpp) into cl
"subl %%ecx, %%eax \n\t" // subtract Prior(x-bpp)
"movl %%eax, _patemp \n\t" // Save pav for later use
"xorl %%eax, %%eax \n\t"
// pbv = p - b = (a + b - c) - b = a - c
"movb (%%edi,%%edx,), %%al \n\t" // load Raw(x-bpp) into al
"subl %%ecx, %%eax \n\t" // subtract Prior(x-bpp)
"movl %%eax, %%ecx \n\t"
// pcv = p - c = (a + b - c) -c = (a - c) + (b - c) = pav + pbv
"addl _patemp, %%eax \n\t" // pcv = pav + pbv
// pc = abs(pcv)
"testl $0x80000000, %%eax \n\t"
"jz paeth_pca \n\t"
"negl %%eax \n\t" // reverse sign of neg values
 
"paeth_pca: \n\t"
"movl %%eax, _pctemp \n\t" // save pc for later use
// pb = abs(pbv)
"testl $0x80000000, %%ecx \n\t"
"jz paeth_pba \n\t"
"negl %%ecx \n\t" // reverse sign of neg values
 
"paeth_pba: \n\t"
"movl %%ecx, _pbtemp \n\t" // save pb for later use
// pa = abs(pav)
"movl _patemp, %%eax \n\t"
"testl $0x80000000, %%eax \n\t"
"jz paeth_paa \n\t"
"negl %%eax \n\t" // reverse sign of neg values
 
"paeth_paa: \n\t"
"movl %%eax, _patemp \n\t" // save pa for later use
// test if pa <= pb
"cmpl %%ecx, %%eax \n\t"
"jna paeth_abb \n\t"
// pa > pb; now test if pb <= pc
"cmpl _pctemp, %%ecx \n\t"
"jna paeth_bbc \n\t"
// pb > pc; Raw(x) = Paeth(x) + Prior(x-bpp)
"movb (%%esi,%%edx,), %%cl \n\t" // load Prior(x-bpp) into cl
"jmp paeth_paeth \n\t"
 
"paeth_bbc: \n\t"
// pb <= pc; Raw(x) = Paeth(x) + Prior(x)
"movb (%%esi,%%ebx,), %%cl \n\t" // load Prior(x) into cl
"jmp paeth_paeth \n\t"
 
"paeth_abb: \n\t"
// pa <= pb; now test if pa <= pc
"cmpl _pctemp, %%eax \n\t"
"jna paeth_abc \n\t"
// pa > pc; Raw(x) = Paeth(x) + Prior(x-bpp)
"movb (%%esi,%%edx,), %%cl \n\t" // load Prior(x-bpp) into cl
"jmp paeth_paeth \n\t"
 
"paeth_abc: \n\t"
// pa <= pc; Raw(x) = Paeth(x) + Raw(x-bpp)
"movb (%%edi,%%edx,), %%cl \n\t" // load Raw(x-bpp) into cl
 
"paeth_paeth: \n\t"
"incl %%ebx \n\t"
"incl %%edx \n\t"
// Raw(x) = (Paeth(x) + Paeth_Predictor( a, b, c )) mod 256
"addb %%cl, -1(%%edi,%%ebx,) \n\t"
"cmpl _dif, %%ebx \n\t"
"jb paeth_lp1 \n\t"
 
"paeth_go: \n\t"
"movl _FullLength, %%ecx \n\t"
"movl %%ecx, %%eax \n\t"
"subl %%ebx, %%eax \n\t" // subtract alignment fix
"andl $0x00000007, %%eax \n\t" // calc bytes over mult of 8
"subl %%eax, %%ecx \n\t" // drop over bytes from original length
"movl %%ecx, _MMXLength \n\t"
#ifdef __PIC__
"popl %%ebx \n\t" // restore index to Global Offset Table
#endif
 
: "=c" (dummy_value_c), // output regs (dummy)
"=S" (dummy_value_S),
"=D" (dummy_value_D)
 
: "0" (bpp), // ecx // input regs
"1" (prev_row), // esi
"2" (row) // edi
 
: "%eax", "%edx" // clobber list
#ifndef __PIC__
, "%ebx"
#endif
);
 
// now do the math for the rest of the row
switch (bpp)
{
case 3:
{
_ActiveMask.use = 0x0000000000ffffffLL;
_ActiveMaskEnd.use = 0xffff000000000000LL;
_ShiftBpp.use = 24; // == bpp(3) * 8
_ShiftRem.use = 40; // == 64 - 24
 
__asm__ __volatile__ (
"movl _dif, %%ecx \n\t"
// preload "movl row, %%edi \n\t"
// preload "movl prev_row, %%esi \n\t"
"pxor %%mm0, %%mm0 \n\t"
// prime the pump: load the first Raw(x-bpp) data set
"movq -8(%%edi,%%ecx,), %%mm1 \n\t"
"paeth_3lp: \n\t"
"psrlq _ShiftRem, %%mm1 \n\t" // shift last 3 bytes to 1st
// 3 bytes
"movq (%%esi,%%ecx,), %%mm2 \n\t" // load b=Prior(x)
"punpcklbw %%mm0, %%mm1 \n\t" // unpack High bytes of a
"movq -8(%%esi,%%ecx,), %%mm3 \n\t" // prep c=Prior(x-bpp) bytes
"punpcklbw %%mm0, %%mm2 \n\t" // unpack High bytes of b
"psrlq _ShiftRem, %%mm3 \n\t" // shift last 3 bytes to 1st
// 3 bytes
// pav = p - a = (a + b - c) - a = b - c
"movq %%mm2, %%mm4 \n\t"
"punpcklbw %%mm0, %%mm3 \n\t" // unpack High bytes of c
// pbv = p - b = (a + b - c) - b = a - c
"movq %%mm1, %%mm5 \n\t"
"psubw %%mm3, %%mm4 \n\t"
"pxor %%mm7, %%mm7 \n\t"
// pcv = p - c = (a + b - c) -c = (a - c) + (b - c) = pav + pbv
"movq %%mm4, %%mm6 \n\t"
"psubw %%mm3, %%mm5 \n\t"
 
// pa = abs(p-a) = abs(pav)
// pb = abs(p-b) = abs(pbv)
// pc = abs(p-c) = abs(pcv)
"pcmpgtw %%mm4, %%mm0 \n\t" // create mask pav bytes < 0
"paddw %%mm5, %%mm6 \n\t"
"pand %%mm4, %%mm0 \n\t" // only pav bytes < 0 in mm7
"pcmpgtw %%mm5, %%mm7 \n\t" // create mask pbv bytes < 0
"psubw %%mm0, %%mm4 \n\t"
"pand %%mm5, %%mm7 \n\t" // only pbv bytes < 0 in mm0
"psubw %%mm0, %%mm4 \n\t"
"psubw %%mm7, %%mm5 \n\t"
"pxor %%mm0, %%mm0 \n\t"
"pcmpgtw %%mm6, %%mm0 \n\t" // create mask pcv bytes < 0
"pand %%mm6, %%mm0 \n\t" // only pav bytes < 0 in mm7
"psubw %%mm7, %%mm5 \n\t"
"psubw %%mm0, %%mm6 \n\t"
// test pa <= pb
"movq %%mm4, %%mm7 \n\t"
"psubw %%mm0, %%mm6 \n\t"
"pcmpgtw %%mm5, %%mm7 \n\t" // pa > pb?
"movq %%mm7, %%mm0 \n\t"
// use mm7 mask to merge pa & pb
"pand %%mm7, %%mm5 \n\t"
// use mm0 mask copy to merge a & b
"pand %%mm0, %%mm2 \n\t"
"pandn %%mm4, %%mm7 \n\t"
"pandn %%mm1, %%mm0 \n\t"
"paddw %%mm5, %%mm7 \n\t"
"paddw %%mm2, %%mm0 \n\t"
// test ((pa <= pb)? pa:pb) <= pc
"pcmpgtw %%mm6, %%mm7 \n\t" // pab > pc?
"pxor %%mm1, %%mm1 \n\t"
"pand %%mm7, %%mm3 \n\t"
"pandn %%mm0, %%mm7 \n\t"
"paddw %%mm3, %%mm7 \n\t"
"pxor %%mm0, %%mm0 \n\t"
"packuswb %%mm1, %%mm7 \n\t"
"movq (%%esi,%%ecx,), %%mm3 \n\t" // load c=Prior(x-bpp)
"pand _ActiveMask, %%mm7 \n\t"
"movq %%mm3, %%mm2 \n\t" // load b=Prior(x) step 1
"paddb (%%edi,%%ecx,), %%mm7 \n\t" // add Paeth predictor with Raw(x)
"punpcklbw %%mm0, %%mm3 \n\t" // unpack High bytes of c
"movq %%mm7, (%%edi,%%ecx,) \n\t" // write back updated value
"movq %%mm7, %%mm1 \n\t" // now mm1 will be used as
// Raw(x-bpp)
// now do Paeth for 2nd set of bytes (3-5)
"psrlq _ShiftBpp, %%mm2 \n\t" // load b=Prior(x) step 2
"punpcklbw %%mm0, %%mm1 \n\t" // unpack High bytes of a
"pxor %%mm7, %%mm7 \n\t"
"punpcklbw %%mm0, %%mm2 \n\t" // unpack High bytes of b
// pbv = p - b = (a + b - c) - b = a - c
"movq %%mm1, %%mm5 \n\t"
// pav = p - a = (a + b - c) - a = b - c
"movq %%mm2, %%mm4 \n\t"
"psubw %%mm3, %%mm5 \n\t"
"psubw %%mm3, %%mm4 \n\t"
// pcv = p - c = (a + b - c) -c = (a - c) + (b - c) =
// pav + pbv = pbv + pav
"movq %%mm5, %%mm6 \n\t"
"paddw %%mm4, %%mm6 \n\t"
 
// pa = abs(p-a) = abs(pav)
// pb = abs(p-b) = abs(pbv)
// pc = abs(p-c) = abs(pcv)
"pcmpgtw %%mm5, %%mm0 \n\t" // create mask pbv bytes < 0
"pcmpgtw %%mm4, %%mm7 \n\t" // create mask pav bytes < 0
"pand %%mm5, %%mm0 \n\t" // only pbv bytes < 0 in mm0
"pand %%mm4, %%mm7 \n\t" // only pav bytes < 0 in mm7
"psubw %%mm0, %%mm5 \n\t"
"psubw %%mm7, %%mm4 \n\t"
"psubw %%mm0, %%mm5 \n\t"
"psubw %%mm7, %%mm4 \n\t"
"pxor %%mm0, %%mm0 \n\t"
"pcmpgtw %%mm6, %%mm0 \n\t" // create mask pcv bytes < 0
"pand %%mm6, %%mm0 \n\t" // only pav bytes < 0 in mm7
"psubw %%mm0, %%mm6 \n\t"
// test pa <= pb
"movq %%mm4, %%mm7 \n\t"
"psubw %%mm0, %%mm6 \n\t"
"pcmpgtw %%mm5, %%mm7 \n\t" // pa > pb?
"movq %%mm7, %%mm0 \n\t"
// use mm7 mask to merge pa & pb
"pand %%mm7, %%mm5 \n\t"
// use mm0 mask copy to merge a & b
"pand %%mm0, %%mm2 \n\t"
"pandn %%mm4, %%mm7 \n\t"
"pandn %%mm1, %%mm0 \n\t"
"paddw %%mm5, %%mm7 \n\t"
"paddw %%mm2, %%mm0 \n\t"
// test ((pa <= pb)? pa:pb) <= pc
"pcmpgtw %%mm6, %%mm7 \n\t" // pab > pc?
"movq (%%esi,%%ecx,), %%mm2 \n\t" // load b=Prior(x)
"pand %%mm7, %%mm3 \n\t"
"pandn %%mm0, %%mm7 \n\t"
"pxor %%mm1, %%mm1 \n\t"
"paddw %%mm3, %%mm7 \n\t"
"pxor %%mm0, %%mm0 \n\t"
"packuswb %%mm1, %%mm7 \n\t"
"movq %%mm2, %%mm3 \n\t" // load c=Prior(x-bpp) step 1
"pand _ActiveMask, %%mm7 \n\t"
"punpckhbw %%mm0, %%mm2 \n\t" // unpack High bytes of b
"psllq _ShiftBpp, %%mm7 \n\t" // shift bytes to 2nd group of
// 3 bytes
// pav = p - a = (a + b - c) - a = b - c
"movq %%mm2, %%mm4 \n\t"
"paddb (%%edi,%%ecx,), %%mm7 \n\t" // add Paeth predictor with Raw(x)
"psllq _ShiftBpp, %%mm3 \n\t" // load c=Prior(x-bpp) step 2
"movq %%mm7, (%%edi,%%ecx,) \n\t" // write back updated value
"movq %%mm7, %%mm1 \n\t"
"punpckhbw %%mm0, %%mm3 \n\t" // unpack High bytes of c
"psllq _ShiftBpp, %%mm1 \n\t" // shift bytes
// now mm1 will be used as Raw(x-bpp)
// now do Paeth for 3rd, and final, set of bytes (6-7)
"pxor %%mm7, %%mm7 \n\t"
"punpckhbw %%mm0, %%mm1 \n\t" // unpack High bytes of a
"psubw %%mm3, %%mm4 \n\t"
// pbv = p - b = (a + b - c) - b = a - c
"movq %%mm1, %%mm5 \n\t"
// pcv = p - c = (a + b - c) -c = (a - c) + (b - c) = pav + pbv
"movq %%mm4, %%mm6 \n\t"
"psubw %%mm3, %%mm5 \n\t"
"pxor %%mm0, %%mm0 \n\t"
"paddw %%mm5, %%mm6 \n\t"
 
// pa = abs(p-a) = abs(pav)
// pb = abs(p-b) = abs(pbv)
// pc = abs(p-c) = abs(pcv)
"pcmpgtw %%mm4, %%mm0 \n\t" // create mask pav bytes < 0
"pcmpgtw %%mm5, %%mm7 \n\t" // create mask pbv bytes < 0
"pand %%mm4, %%mm0 \n\t" // only pav bytes < 0 in mm7
"pand %%mm5, %%mm7 \n\t" // only pbv bytes < 0 in mm0
"psubw %%mm0, %%mm4 \n\t"
"psubw %%mm7, %%mm5 \n\t"
"psubw %%mm0, %%mm4 \n\t"
"psubw %%mm7, %%mm5 \n\t"
"pxor %%mm0, %%mm0 \n\t"
"pcmpgtw %%mm6, %%mm0 \n\t" // create mask pcv bytes < 0
"pand %%mm6, %%mm0 \n\t" // only pav bytes < 0 in mm7
"psubw %%mm0, %%mm6 \n\t"
// test pa <= pb
"movq %%mm4, %%mm7 \n\t"
"psubw %%mm0, %%mm6 \n\t"
"pcmpgtw %%mm5, %%mm7 \n\t" // pa > pb?
"movq %%mm7, %%mm0 \n\t"
// use mm0 mask copy to merge a & b
"pand %%mm0, %%mm2 \n\t"
// use mm7 mask to merge pa & pb
"pand %%mm7, %%mm5 \n\t"
"pandn %%mm1, %%mm0 \n\t"
"pandn %%mm4, %%mm7 \n\t"
"paddw %%mm2, %%mm0 \n\t"
"paddw %%mm5, %%mm7 \n\t"
// test ((pa <= pb)? pa:pb) <= pc
"pcmpgtw %%mm6, %%mm7 \n\t" // pab > pc?
"pand %%mm7, %%mm3 \n\t"
"pandn %%mm0, %%mm7 \n\t"
"paddw %%mm3, %%mm7 \n\t"
"pxor %%mm1, %%mm1 \n\t"
"packuswb %%mm7, %%mm1 \n\t"
// step ecx to next set of 8 bytes and repeat loop til done
"addl $8, %%ecx \n\t"
"pand _ActiveMaskEnd, %%mm1 \n\t"
"paddb -8(%%edi,%%ecx,), %%mm1 \n\t" // add Paeth predictor with
// Raw(x)
 
"cmpl _MMXLength, %%ecx \n\t"
"pxor %%mm0, %%mm0 \n\t" // pxor does not affect flags
"movq %%mm1, -8(%%edi,%%ecx,) \n\t" // write back updated value
// mm1 will be used as Raw(x-bpp) next loop
// mm3 ready to be used as Prior(x-bpp) next loop
"jb paeth_3lp \n\t"
 
: "=S" (dummy_value_S), // output regs (dummy)
"=D" (dummy_value_D)
 
: "0" (prev_row), // esi // input regs
"1" (row) // edi
 
: "%ecx" // clobber list
#if 0 /* %mm0, ..., %mm7 not supported by gcc 2.7.2.3 or egcs 1.1 */
, "%mm0", "%mm1", "%mm2", "%mm3"
, "%mm4", "%mm5", "%mm6", "%mm7"
#endif
);
}
break; // end 3 bpp
 
case 6:
//case 7: // GRR BOGUS
//case 5: // GRR BOGUS
{
_ActiveMask.use = 0x00000000ffffffffLL;
_ActiveMask2.use = 0xffffffff00000000LL;
_ShiftBpp.use = bpp << 3; // == bpp * 8
_ShiftRem.use = 64 - _ShiftBpp.use;
 
__asm__ __volatile__ (
"movl _dif, %%ecx \n\t"
// preload "movl row, %%edi \n\t"
// preload "movl prev_row, %%esi \n\t"
// prime the pump: load the first Raw(x-bpp) data set
"movq -8(%%edi,%%ecx,), %%mm1 \n\t"
"pxor %%mm0, %%mm0 \n\t"
 
"paeth_6lp: \n\t"
// must shift to position Raw(x-bpp) data
"psrlq _ShiftRem, %%mm1 \n\t"
// do first set of 4 bytes
"movq -8(%%esi,%%ecx,), %%mm3 \n\t" // read c=Prior(x-bpp) bytes
"punpcklbw %%mm0, %%mm1 \n\t" // unpack Low bytes of a
"movq (%%esi,%%ecx,), %%mm2 \n\t" // load b=Prior(x)
"punpcklbw %%mm0, %%mm2 \n\t" // unpack Low bytes of b
// must shift to position Prior(x-bpp) data
"psrlq _ShiftRem, %%mm3 \n\t"
// pav = p - a = (a + b - c) - a = b - c
"movq %%mm2, %%mm4 \n\t"
"punpcklbw %%mm0, %%mm3 \n\t" // unpack Low bytes of c
// pbv = p - b = (a + b - c) - b = a - c
"movq %%mm1, %%mm5 \n\t"
"psubw %%mm3, %%mm4 \n\t"
"pxor %%mm7, %%mm7 \n\t"
// pcv = p - c = (a + b - c) -c = (a - c) + (b - c) = pav + pbv
"movq %%mm4, %%mm6 \n\t"
"psubw %%mm3, %%mm5 \n\t"
// pa = abs(p-a) = abs(pav)
// pb = abs(p-b) = abs(pbv)
// pc = abs(p-c) = abs(pcv)
"pcmpgtw %%mm4, %%mm0 \n\t" // create mask pav bytes < 0
"paddw %%mm5, %%mm6 \n\t"
"pand %%mm4, %%mm0 \n\t" // only pav bytes < 0 in mm7
"pcmpgtw %%mm5, %%mm7 \n\t" // create mask pbv bytes < 0
"psubw %%mm0, %%mm4 \n\t"
"pand %%mm5, %%mm7 \n\t" // only pbv bytes < 0 in mm0
"psubw %%mm0, %%mm4 \n\t"
"psubw %%mm7, %%mm5 \n\t"
"pxor %%mm0, %%mm0 \n\t"
"pcmpgtw %%mm6, %%mm0 \n\t" // create mask pcv bytes < 0
"pand %%mm6, %%mm0 \n\t" // only pav bytes < 0 in mm7
"psubw %%mm7, %%mm5 \n\t"
"psubw %%mm0, %%mm6 \n\t"
// test pa <= pb
"movq %%mm4, %%mm7 \n\t"
"psubw %%mm0, %%mm6 \n\t"
"pcmpgtw %%mm5, %%mm7 \n\t" // pa > pb?
"movq %%mm7, %%mm0 \n\t"
// use mm7 mask to merge pa & pb
"pand %%mm7, %%mm5 \n\t"
// use mm0 mask copy to merge a & b
"pand %%mm0, %%mm2 \n\t"
"pandn %%mm4, %%mm7 \n\t"
"pandn %%mm1, %%mm0 \n\t"
"paddw %%mm5, %%mm7 \n\t"
"paddw %%mm2, %%mm0 \n\t"
// test ((pa <= pb)? pa:pb) <= pc
"pcmpgtw %%mm6, %%mm7 \n\t" // pab > pc?
"pxor %%mm1, %%mm1 \n\t"
"pand %%mm7, %%mm3 \n\t"
"pandn %%mm0, %%mm7 \n\t"
"paddw %%mm3, %%mm7 \n\t"
"pxor %%mm0, %%mm0 \n\t"
"packuswb %%mm1, %%mm7 \n\t"
"movq -8(%%esi,%%ecx,), %%mm3 \n\t" // load c=Prior(x-bpp)
"pand _ActiveMask, %%mm7 \n\t"
"psrlq _ShiftRem, %%mm3 \n\t"
"movq (%%esi,%%ecx,), %%mm2 \n\t" // load b=Prior(x) step 1
"paddb (%%edi,%%ecx,), %%mm7 \n\t" // add Paeth predictor and Raw(x)
"movq %%mm2, %%mm6 \n\t"
"movq %%mm7, (%%edi,%%ecx,) \n\t" // write back updated value
"movq -8(%%edi,%%ecx,), %%mm1 \n\t"
"psllq _ShiftBpp, %%mm6 \n\t"
"movq %%mm7, %%mm5 \n\t"
"psrlq _ShiftRem, %%mm1 \n\t"
"por %%mm6, %%mm3 \n\t"
"psllq _ShiftBpp, %%mm5 \n\t"
"punpckhbw %%mm0, %%mm3 \n\t" // unpack High bytes of c
"por %%mm5, %%mm1 \n\t"
// do second set of 4 bytes
"punpckhbw %%mm0, %%mm2 \n\t" // unpack High bytes of b
"punpckhbw %%mm0, %%mm1 \n\t" // unpack High bytes of a
// pav = p - a = (a + b - c) - a = b - c
"movq %%mm2, %%mm4 \n\t"
// pbv = p - b = (a + b - c) - b = a - c
"movq %%mm1, %%mm5 \n\t"
"psubw %%mm3, %%mm4 \n\t"
"pxor %%mm7, %%mm7 \n\t"
// pcv = p - c = (a + b - c) -c = (a - c) + (b - c) = pav + pbv
"movq %%mm4, %%mm6 \n\t"
"psubw %%mm3, %%mm5 \n\t"
// pa = abs(p-a) = abs(pav)
// pb = abs(p-b) = abs(pbv)
// pc = abs(p-c) = abs(pcv)
"pcmpgtw %%mm4, %%mm0 \n\t" // create mask pav bytes < 0
"paddw %%mm5, %%mm6 \n\t"
"pand %%mm4, %%mm0 \n\t" // only pav bytes < 0 in mm7
"pcmpgtw %%mm5, %%mm7 \n\t" // create mask pbv bytes < 0
"psubw %%mm0, %%mm4 \n\t"
"pand %%mm5, %%mm7 \n\t" // only pbv bytes < 0 in mm0
"psubw %%mm0, %%mm4 \n\t"
"psubw %%mm7, %%mm5 \n\t"
"pxor %%mm0, %%mm0 \n\t"
"pcmpgtw %%mm6, %%mm0 \n\t" // create mask pcv bytes < 0
"pand %%mm6, %%mm0 \n\t" // only pav bytes < 0 in mm7
"psubw %%mm7, %%mm5 \n\t"
"psubw %%mm0, %%mm6 \n\t"
// test pa <= pb
"movq %%mm4, %%mm7 \n\t"
"psubw %%mm0, %%mm6 \n\t"
"pcmpgtw %%mm5, %%mm7 \n\t" // pa > pb?
"movq %%mm7, %%mm0 \n\t"
// use mm7 mask to merge pa & pb
"pand %%mm7, %%mm5 \n\t"
// use mm0 mask copy to merge a & b
"pand %%mm0, %%mm2 \n\t"
"pandn %%mm4, %%mm7 \n\t"
"pandn %%mm1, %%mm0 \n\t"
"paddw %%mm5, %%mm7 \n\t"
"paddw %%mm2, %%mm0 \n\t"
// test ((pa <= pb)? pa:pb) <= pc
"pcmpgtw %%mm6, %%mm7 \n\t" // pab > pc?
"pxor %%mm1, %%mm1 \n\t"
"pand %%mm7, %%mm3 \n\t"
"pandn %%mm0, %%mm7 \n\t"
"pxor %%mm1, %%mm1 \n\t"
"paddw %%mm3, %%mm7 \n\t"
"pxor %%mm0, %%mm0 \n\t"
// step ecx to next set of 8 bytes and repeat loop til done
"addl $8, %%ecx \n\t"
"packuswb %%mm7, %%mm1 \n\t"
"paddb -8(%%edi,%%ecx,), %%mm1 \n\t" // add Paeth predictor with Raw(x)
"cmpl _MMXLength, %%ecx \n\t"
"movq %%mm1, -8(%%edi,%%ecx,) \n\t" // write back updated value
// mm1 will be used as Raw(x-bpp) next loop
"jb paeth_6lp \n\t"
 
: "=S" (dummy_value_S), // output regs (dummy)
"=D" (dummy_value_D)
 
: "0" (prev_row), // esi // input regs
"1" (row) // edi
 
: "%ecx" // clobber list
#if 0 /* %mm0, ..., %mm7 not supported by gcc 2.7.2.3 or egcs 1.1 */
, "%mm0", "%mm1", "%mm2", "%mm3"
, "%mm4", "%mm5", "%mm6", "%mm7"
#endif
);
}
break; // end 6 bpp
 
case 4:
{
_ActiveMask.use = 0x00000000ffffffffLL;
 
__asm__ __volatile__ (
"movl _dif, %%ecx \n\t"
// preload "movl row, %%edi \n\t"
// preload "movl prev_row, %%esi \n\t"
"pxor %%mm0, %%mm0 \n\t"
// prime the pump: load the first Raw(x-bpp) data set
"movq -8(%%edi,%%ecx,), %%mm1 \n\t" // only time should need to read
// a=Raw(x-bpp) bytes
"paeth_4lp: \n\t"
// do first set of 4 bytes
"movq -8(%%esi,%%ecx,), %%mm3 \n\t" // read c=Prior(x-bpp) bytes
"punpckhbw %%mm0, %%mm1 \n\t" // unpack Low bytes of a
"movq (%%esi,%%ecx,), %%mm2 \n\t" // load b=Prior(x)
"punpcklbw %%mm0, %%mm2 \n\t" // unpack High bytes of b
// pav = p - a = (a + b - c) - a = b - c
"movq %%mm2, %%mm4 \n\t"
"punpckhbw %%mm0, %%mm3 \n\t" // unpack High bytes of c
// pbv = p - b = (a + b - c) - b = a - c
"movq %%mm1, %%mm5 \n\t"
"psubw %%mm3, %%mm4 \n\t"
"pxor %%mm7, %%mm7 \n\t"
// pcv = p - c = (a + b - c) -c = (a - c) + (b - c) = pav + pbv
"movq %%mm4, %%mm6 \n\t"
"psubw %%mm3, %%mm5 \n\t"
// pa = abs(p-a) = abs(pav)
// pb = abs(p-b) = abs(pbv)
// pc = abs(p-c) = abs(pcv)
"pcmpgtw %%mm4, %%mm0 \n\t" // create mask pav bytes < 0
"paddw %%mm5, %%mm6 \n\t"
"pand %%mm4, %%mm0 \n\t" // only pav bytes < 0 in mm7
"pcmpgtw %%mm5, %%mm7 \n\t" // create mask pbv bytes < 0
"psubw %%mm0, %%mm4 \n\t"
"pand %%mm5, %%mm7 \n\t" // only pbv bytes < 0 in mm0
"psubw %%mm0, %%mm4 \n\t"
"psubw %%mm7, %%mm5 \n\t"
"pxor %%mm0, %%mm0 \n\t"
"pcmpgtw %%mm6, %%mm0 \n\t" // create mask pcv bytes < 0
"pand %%mm6, %%mm0 \n\t" // only pav bytes < 0 in mm7
"psubw %%mm7, %%mm5 \n\t"
"psubw %%mm0, %%mm6 \n\t"
// test pa <= pb
"movq %%mm4, %%mm7 \n\t"
"psubw %%mm0, %%mm6 \n\t"
"pcmpgtw %%mm5, %%mm7 \n\t" // pa > pb?
"movq %%mm7, %%mm0 \n\t"
// use mm7 mask to merge pa & pb
"pand %%mm7, %%mm5 \n\t"
// use mm0 mask copy to merge a & b
"pand %%mm0, %%mm2 \n\t"
"pandn %%mm4, %%mm7 \n\t"
"pandn %%mm1, %%mm0 \n\t"
"paddw %%mm5, %%mm7 \n\t"
"paddw %%mm2, %%mm0 \n\t"
// test ((pa <= pb)? pa:pb) <= pc
"pcmpgtw %%mm6, %%mm7 \n\t" // pab > pc?
"pxor %%mm1, %%mm1 \n\t"
"pand %%mm7, %%mm3 \n\t"
"pandn %%mm0, %%mm7 \n\t"
"paddw %%mm3, %%mm7 \n\t"
"pxor %%mm0, %%mm0 \n\t"
"packuswb %%mm1, %%mm7 \n\t"
"movq (%%esi,%%ecx,), %%mm3 \n\t" // load c=Prior(x-bpp)
"pand _ActiveMask, %%mm7 \n\t"
"movq %%mm3, %%mm2 \n\t" // load b=Prior(x) step 1
"paddb (%%edi,%%ecx,), %%mm7 \n\t" // add Paeth predictor with Raw(x)
"punpcklbw %%mm0, %%mm3 \n\t" // unpack High bytes of c
"movq %%mm7, (%%edi,%%ecx,) \n\t" // write back updated value
"movq %%mm7, %%mm1 \n\t" // now mm1 will be used as Raw(x-bpp)
// do second set of 4 bytes
"punpckhbw %%mm0, %%mm2 \n\t" // unpack Low bytes of b
"punpcklbw %%mm0, %%mm1 \n\t" // unpack Low bytes of a
// pav = p - a = (a + b - c) - a = b - c
"movq %%mm2, %%mm4 \n\t"
// pbv = p - b = (a + b - c) - b = a - c
"movq %%mm1, %%mm5 \n\t"
"psubw %%mm3, %%mm4 \n\t"
"pxor %%mm7, %%mm7 \n\t"
// pcv = p - c = (a + b - c) -c = (a - c) + (b - c) = pav + pbv
"movq %%mm4, %%mm6 \n\t"
"psubw %%mm3, %%mm5 \n\t"
// pa = abs(p-a) = abs(pav)
// pb = abs(p-b) = abs(pbv)
// pc = abs(p-c) = abs(pcv)
"pcmpgtw %%mm4, %%mm0 \n\t" // create mask pav bytes < 0
"paddw %%mm5, %%mm6 \n\t"
"pand %%mm4, %%mm0 \n\t" // only pav bytes < 0 in mm7
"pcmpgtw %%mm5, %%mm7 \n\t" // create mask pbv bytes < 0
"psubw %%mm0, %%mm4 \n\t"
"pand %%mm5, %%mm7 \n\t" // only pbv bytes < 0 in mm0
"psubw %%mm0, %%mm4 \n\t"
"psubw %%mm7, %%mm5 \n\t"
"pxor %%mm0, %%mm0 \n\t"
"pcmpgtw %%mm6, %%mm0 \n\t" // create mask pcv bytes < 0
"pand %%mm6, %%mm0 \n\t" // only pav bytes < 0 in mm7
"psubw %%mm7, %%mm5 \n\t"
"psubw %%mm0, %%mm6 \n\t"
// test pa <= pb
"movq %%mm4, %%mm7 \n\t"
"psubw %%mm0, %%mm6 \n\t"
"pcmpgtw %%mm5, %%mm7 \n\t" // pa > pb?
"movq %%mm7, %%mm0 \n\t"
// use mm7 mask to merge pa & pb
"pand %%mm7, %%mm5 \n\t"
// use mm0 mask copy to merge a & b
"pand %%mm0, %%mm2 \n\t"
"pandn %%mm4, %%mm7 \n\t"
"pandn %%mm1, %%mm0 \n\t"
"paddw %%mm5, %%mm7 \n\t"
"paddw %%mm2, %%mm0 \n\t"
// test ((pa <= pb)? pa:pb) <= pc
"pcmpgtw %%mm6, %%mm7 \n\t" // pab > pc?
"pxor %%mm1, %%mm1 \n\t"
"pand %%mm7, %%mm3 \n\t"
"pandn %%mm0, %%mm7 \n\t"
"pxor %%mm1, %%mm1 \n\t"
"paddw %%mm3, %%mm7 \n\t"
"pxor %%mm0, %%mm0 \n\t"
// step ecx to next set of 8 bytes and repeat loop til done
"addl $8, %%ecx \n\t"
"packuswb %%mm7, %%mm1 \n\t"
"paddb -8(%%edi,%%ecx,), %%mm1 \n\t" // add predictor with Raw(x)
"cmpl _MMXLength, %%ecx \n\t"
"movq %%mm1, -8(%%edi,%%ecx,) \n\t" // write back updated value
// mm1 will be used as Raw(x-bpp) next loop
"jb paeth_4lp \n\t"
 
: "=S" (dummy_value_S), // output regs (dummy)
"=D" (dummy_value_D)
 
: "0" (prev_row), // esi // input regs
"1" (row) // edi
 
: "%ecx" // clobber list
#if 0 /* %mm0, ..., %mm7 not supported by gcc 2.7.2.3 or egcs 1.1 */
, "%mm0", "%mm1", "%mm2", "%mm3"
, "%mm4", "%mm5", "%mm6", "%mm7"
#endif
);
}
break; // end 4 bpp
 
case 8: // bpp == 8
{
_ActiveMask.use = 0x00000000ffffffffLL;
 
__asm__ __volatile__ (
"movl _dif, %%ecx \n\t"
// preload "movl row, %%edi \n\t"
// preload "movl prev_row, %%esi \n\t"
"pxor %%mm0, %%mm0 \n\t"
// prime the pump: load the first Raw(x-bpp) data set
"movq -8(%%edi,%%ecx,), %%mm1 \n\t" // only time should need to read
// a=Raw(x-bpp) bytes
"paeth_8lp: \n\t"
// do first set of 4 bytes
"movq -8(%%esi,%%ecx,), %%mm3 \n\t" // read c=Prior(x-bpp) bytes
"punpcklbw %%mm0, %%mm1 \n\t" // unpack Low bytes of a
"movq (%%esi,%%ecx,), %%mm2 \n\t" // load b=Prior(x)
"punpcklbw %%mm0, %%mm2 \n\t" // unpack Low bytes of b
// pav = p - a = (a + b - c) - a = b - c
"movq %%mm2, %%mm4 \n\t"
"punpcklbw %%mm0, %%mm3 \n\t" // unpack Low bytes of c
// pbv = p - b = (a + b - c) - b = a - c
"movq %%mm1, %%mm5 \n\t"
"psubw %%mm3, %%mm4 \n\t"
"pxor %%mm7, %%mm7 \n\t"
// pcv = p - c = (a + b - c) -c = (a - c) + (b - c) = pav + pbv
"movq %%mm4, %%mm6 \n\t"
"psubw %%mm3, %%mm5 \n\t"
// pa = abs(p-a) = abs(pav)
// pb = abs(p-b) = abs(pbv)
// pc = abs(p-c) = abs(pcv)
"pcmpgtw %%mm4, %%mm0 \n\t" // create mask pav bytes < 0
"paddw %%mm5, %%mm6 \n\t"
"pand %%mm4, %%mm0 \n\t" // only pav bytes < 0 in mm7
"pcmpgtw %%mm5, %%mm7 \n\t" // create mask pbv bytes < 0
"psubw %%mm0, %%mm4 \n\t"
"pand %%mm5, %%mm7 \n\t" // only pbv bytes < 0 in mm0
"psubw %%mm0, %%mm4 \n\t"
"psubw %%mm7, %%mm5 \n\t"
"pxor %%mm0, %%mm0 \n\t"
"pcmpgtw %%mm6, %%mm0 \n\t" // create mask pcv bytes < 0
"pand %%mm6, %%mm0 \n\t" // only pav bytes < 0 in mm7
"psubw %%mm7, %%mm5 \n\t"
"psubw %%mm0, %%mm6 \n\t"
// test pa <= pb
"movq %%mm4, %%mm7 \n\t"
"psubw %%mm0, %%mm6 \n\t"
"pcmpgtw %%mm5, %%mm7 \n\t" // pa > pb?
"movq %%mm7, %%mm0 \n\t"
// use mm7 mask to merge pa & pb
"pand %%mm7, %%mm5 \n\t"
// use mm0 mask copy to merge a & b
"pand %%mm0, %%mm2 \n\t"
"pandn %%mm4, %%mm7 \n\t"
"pandn %%mm1, %%mm0 \n\t"
"paddw %%mm5, %%mm7 \n\t"
"paddw %%mm2, %%mm0 \n\t"
// test ((pa <= pb)? pa:pb) <= pc
"pcmpgtw %%mm6, %%mm7 \n\t" // pab > pc?
"pxor %%mm1, %%mm1 \n\t"
"pand %%mm7, %%mm3 \n\t"
"pandn %%mm0, %%mm7 \n\t"
"paddw %%mm3, %%mm7 \n\t"
"pxor %%mm0, %%mm0 \n\t"
"packuswb %%mm1, %%mm7 \n\t"
"movq -8(%%esi,%%ecx,), %%mm3 \n\t" // read c=Prior(x-bpp) bytes
"pand _ActiveMask, %%mm7 \n\t"
"movq (%%esi,%%ecx,), %%mm2 \n\t" // load b=Prior(x)
"paddb (%%edi,%%ecx,), %%mm7 \n\t" // add Paeth predictor with Raw(x)
"punpckhbw %%mm0, %%mm3 \n\t" // unpack High bytes of c
"movq %%mm7, (%%edi,%%ecx,) \n\t" // write back updated value
"movq -8(%%edi,%%ecx,), %%mm1 \n\t" // read a=Raw(x-bpp) bytes
 
// do second set of 4 bytes
"punpckhbw %%mm0, %%mm2 \n\t" // unpack High bytes of b
"punpckhbw %%mm0, %%mm1 \n\t" // unpack High bytes of a
// pav = p - a = (a + b - c) - a = b - c
"movq %%mm2, %%mm4 \n\t"
// pbv = p - b = (a + b - c) - b = a - c
"movq %%mm1, %%mm5 \n\t"
"psubw %%mm3, %%mm4 \n\t"
"pxor %%mm7, %%mm7 \n\t"
// pcv = p - c = (a + b - c) -c = (a - c) + (b - c) = pav + pbv
"movq %%mm4, %%mm6 \n\t"
"psubw %%mm3, %%mm5 \n\t"
// pa = abs(p-a) = abs(pav)
// pb = abs(p-b) = abs(pbv)
// pc = abs(p-c) = abs(pcv)
"pcmpgtw %%mm4, %%mm0 \n\t" // create mask pav bytes < 0
"paddw %%mm5, %%mm6 \n\t"
"pand %%mm4, %%mm0 \n\t" // only pav bytes < 0 in mm7
"pcmpgtw %%mm5, %%mm7 \n\t" // create mask pbv bytes < 0
"psubw %%mm0, %%mm4 \n\t"
"pand %%mm5, %%mm7 \n\t" // only pbv bytes < 0 in mm0
"psubw %%mm0, %%mm4 \n\t"
"psubw %%mm7, %%mm5 \n\t"
"pxor %%mm0, %%mm0 \n\t"
"pcmpgtw %%mm6, %%mm0 \n\t" // create mask pcv bytes < 0
"pand %%mm6, %%mm0 \n\t" // only pav bytes < 0 in mm7
"psubw %%mm7, %%mm5 \n\t"
"psubw %%mm0, %%mm6 \n\t"
// test pa <= pb
"movq %%mm4, %%mm7 \n\t"
"psubw %%mm0, %%mm6 \n\t"
"pcmpgtw %%mm5, %%mm7 \n\t" // pa > pb?
"movq %%mm7, %%mm0 \n\t"
// use mm7 mask to merge pa & pb
"pand %%mm7, %%mm5 \n\t"
// use mm0 mask copy to merge a & b
"pand %%mm0, %%mm2 \n\t"
"pandn %%mm4, %%mm7 \n\t"
"pandn %%mm1, %%mm0 \n\t"
"paddw %%mm5, %%mm7 \n\t"
"paddw %%mm2, %%mm0 \n\t"
// test ((pa <= pb)? pa:pb) <= pc
"pcmpgtw %%mm6, %%mm7 \n\t" // pab > pc?
"pxor %%mm1, %%mm1 \n\t"
"pand %%mm7, %%mm3 \n\t"
"pandn %%mm0, %%mm7 \n\t"
"pxor %%mm1, %%mm1 \n\t"
"paddw %%mm3, %%mm7 \n\t"
"pxor %%mm0, %%mm0 \n\t"
// step ecx to next set of 8 bytes and repeat loop til done
"addl $8, %%ecx \n\t"
"packuswb %%mm7, %%mm1 \n\t"
"paddb -8(%%edi,%%ecx,), %%mm1 \n\t" // add Paeth predictor with Raw(x)
"cmpl _MMXLength, %%ecx \n\t"
"movq %%mm1, -8(%%edi,%%ecx,) \n\t" // write back updated value
// mm1 will be used as Raw(x-bpp) next loop
"jb paeth_8lp \n\t"
 
: "=S" (dummy_value_S), // output regs (dummy)
"=D" (dummy_value_D)
 
: "0" (prev_row), // esi // input regs
"1" (row) // edi
 
: "%ecx" // clobber list
#if 0 /* %mm0, ..., %mm7 not supported by gcc 2.7.2.3 or egcs 1.1 */
, "%mm0", "%mm1", "%mm2", "%mm3"
, "%mm4", "%mm5", "%mm6", "%mm7"
#endif
);
}
break; // end 8 bpp
 
case 1: // bpp = 1
case 2: // bpp = 2
default: // bpp > 8
{
__asm__ __volatile__ (
#ifdef __PIC__
"pushl %%ebx \n\t" // save Global Offset Table index
#endif
"movl _dif, %%ebx \n\t"
"cmpl _FullLength, %%ebx \n\t"
"jnb paeth_dend \n\t"
 
// preload "movl row, %%edi \n\t"
// preload "movl prev_row, %%esi \n\t"
// do Paeth decode for remaining bytes
"movl %%ebx, %%edx \n\t"
// preload "subl bpp, %%edx \n\t" // (bpp is preloaded into ecx)
"subl %%ecx, %%edx \n\t" // edx = ebx - bpp
"xorl %%ecx, %%ecx \n\t" // zero ecx before using cl & cx
 
"paeth_dlp: \n\t"
"xorl %%eax, %%eax \n\t"
// pav = p - a = (a + b - c) - a = b - c
"movb (%%esi,%%ebx,), %%al \n\t" // load Prior(x) into al
"movb (%%esi,%%edx,), %%cl \n\t" // load Prior(x-bpp) into cl
"subl %%ecx, %%eax \n\t" // subtract Prior(x-bpp)
"movl %%eax, _patemp \n\t" // Save pav for later use
"xorl %%eax, %%eax \n\t"
// pbv = p - b = (a + b - c) - b = a - c
"movb (%%edi,%%edx,), %%al \n\t" // load Raw(x-bpp) into al
"subl %%ecx, %%eax \n\t" // subtract Prior(x-bpp)
"movl %%eax, %%ecx \n\t"
// pcv = p - c = (a + b - c) -c = (a - c) + (b - c) = pav + pbv
"addl _patemp, %%eax \n\t" // pcv = pav + pbv
// pc = abs(pcv)
"testl $0x80000000, %%eax \n\t"
"jz paeth_dpca \n\t"
"negl %%eax \n\t" // reverse sign of neg values
 
"paeth_dpca: \n\t"
"movl %%eax, _pctemp \n\t" // save pc for later use
// pb = abs(pbv)
"testl $0x80000000, %%ecx \n\t"
"jz paeth_dpba \n\t"
"negl %%ecx \n\t" // reverse sign of neg values
 
"paeth_dpba: \n\t"
"movl %%ecx, _pbtemp \n\t" // save pb for later use
// pa = abs(pav)
"movl _patemp, %%eax \n\t"
"testl $0x80000000, %%eax \n\t"
"jz paeth_dpaa \n\t"
"negl %%eax \n\t" // reverse sign of neg values
 
"paeth_dpaa: \n\t"
"movl %%eax, _patemp \n\t" // save pa for later use
// test if pa <= pb
"cmpl %%ecx, %%eax \n\t"
"jna paeth_dabb \n\t"
// pa > pb; now test if pb <= pc
"cmpl _pctemp, %%ecx \n\t"
"jna paeth_dbbc \n\t"
// pb > pc; Raw(x) = Paeth(x) + Prior(x-bpp)
"movb (%%esi,%%edx,), %%cl \n\t" // load Prior(x-bpp) into cl
"jmp paeth_dpaeth \n\t"
 
"paeth_dbbc: \n\t"
// pb <= pc; Raw(x) = Paeth(x) + Prior(x)
"movb (%%esi,%%ebx,), %%cl \n\t" // load Prior(x) into cl
"jmp paeth_dpaeth \n\t"
 
"paeth_dabb: \n\t"
// pa <= pb; now test if pa <= pc
"cmpl _pctemp, %%eax \n\t"
"jna paeth_dabc \n\t"
// pa > pc; Raw(x) = Paeth(x) + Prior(x-bpp)
"movb (%%esi,%%edx,), %%cl \n\t" // load Prior(x-bpp) into cl
"jmp paeth_dpaeth \n\t"
 
"paeth_dabc: \n\t"
// pa <= pc; Raw(x) = Paeth(x) + Raw(x-bpp)
"movb (%%edi,%%edx,), %%cl \n\t" // load Raw(x-bpp) into cl
 
"paeth_dpaeth: \n\t"
"incl %%ebx \n\t"
"incl %%edx \n\t"
// Raw(x) = (Paeth(x) + Paeth_Predictor( a, b, c )) mod 256
"addb %%cl, -1(%%edi,%%ebx,) \n\t"
"cmpl _FullLength, %%ebx \n\t"
"jb paeth_dlp \n\t"
 
"paeth_dend: \n\t"
#ifdef __PIC__
"popl %%ebx \n\t" // index to Global Offset Table
#endif
 
: "=c" (dummy_value_c), // output regs (dummy)
"=S" (dummy_value_S),
"=D" (dummy_value_D)
 
: "0" (bpp), // ecx // input regs
"1" (prev_row), // esi
"2" (row) // edi
 
: "%eax", "%edx" // clobber list
#ifndef __PIC__
, "%ebx"
#endif
);
}
return; // No need to go further with this one
 
} // end switch (bpp)
 
__asm__ __volatile__ (
// MMX acceleration complete; now do clean-up
// check if any remaining bytes left to decode
#ifdef __PIC__
"pushl %%ebx \n\t" // save index to Global Offset Table
#endif
"movl _MMXLength, %%ebx \n\t"
"cmpl _FullLength, %%ebx \n\t"
"jnb paeth_end \n\t"
//pre "movl row, %%edi \n\t"
//pre "movl prev_row, %%esi \n\t"
// do Paeth decode for remaining bytes
"movl %%ebx, %%edx \n\t"
//pre "subl bpp, %%edx \n\t" // (bpp is preloaded into ecx)
"subl %%ecx, %%edx \n\t" // edx = ebx - bpp
"xorl %%ecx, %%ecx \n\t" // zero ecx before using cl & cx below
 
"paeth_lp2: \n\t"
"xorl %%eax, %%eax \n\t"
// pav = p - a = (a + b - c) - a = b - c
"movb (%%esi,%%ebx,), %%al \n\t" // load Prior(x) into al
"movb (%%esi,%%edx,), %%cl \n\t" // load Prior(x-bpp) into cl
"subl %%ecx, %%eax \n\t" // subtract Prior(x-bpp)
"movl %%eax, _patemp \n\t" // Save pav for later use
"xorl %%eax, %%eax \n\t"
// pbv = p - b = (a + b - c) - b = a - c
"movb (%%edi,%%edx,), %%al \n\t" // load Raw(x-bpp) into al
"subl %%ecx, %%eax \n\t" // subtract Prior(x-bpp)
"movl %%eax, %%ecx \n\t"
// pcv = p - c = (a + b - c) -c = (a - c) + (b - c) = pav + pbv
"addl _patemp, %%eax \n\t" // pcv = pav + pbv
// pc = abs(pcv)
"testl $0x80000000, %%eax \n\t"
"jz paeth_pca2 \n\t"
"negl %%eax \n\t" // reverse sign of neg values
 
"paeth_pca2: \n\t"
"movl %%eax, _pctemp \n\t" // save pc for later use
// pb = abs(pbv)
"testl $0x80000000, %%ecx \n\t"
"jz paeth_pba2 \n\t"
"negl %%ecx \n\t" // reverse sign of neg values
 
"paeth_pba2: \n\t"
"movl %%ecx, _pbtemp \n\t" // save pb for later use
// pa = abs(pav)
"movl _patemp, %%eax \n\t"
"testl $0x80000000, %%eax \n\t"
"jz paeth_paa2 \n\t"
"negl %%eax \n\t" // reverse sign of neg values
 
"paeth_paa2: \n\t"
"movl %%eax, _patemp \n\t" // save pa for later use
// test if pa <= pb
"cmpl %%ecx, %%eax \n\t"
"jna paeth_abb2 \n\t"
// pa > pb; now test if pb <= pc
"cmpl _pctemp, %%ecx \n\t"
"jna paeth_bbc2 \n\t"
// pb > pc; Raw(x) = Paeth(x) + Prior(x-bpp)
"movb (%%esi,%%edx,), %%cl \n\t" // load Prior(x-bpp) into cl
"jmp paeth_paeth2 \n\t"
 
"paeth_bbc2: \n\t"
// pb <= pc; Raw(x) = Paeth(x) + Prior(x)
"movb (%%esi,%%ebx,), %%cl \n\t" // load Prior(x) into cl
"jmp paeth_paeth2 \n\t"
 
"paeth_abb2: \n\t"
// pa <= pb; now test if pa <= pc
"cmpl _pctemp, %%eax \n\t"
"jna paeth_abc2 \n\t"
// pa > pc; Raw(x) = Paeth(x) + Prior(x-bpp)
"movb (%%esi,%%edx,), %%cl \n\t" // load Prior(x-bpp) into cl
"jmp paeth_paeth2 \n\t"
 
"paeth_abc2: \n\t"
// pa <= pc; Raw(x) = Paeth(x) + Raw(x-bpp)
"movb (%%edi,%%edx,), %%cl \n\t" // load Raw(x-bpp) into cl
 
"paeth_paeth2: \n\t"
"incl %%ebx \n\t"
"incl %%edx \n\t"
// Raw(x) = (Paeth(x) + Paeth_Predictor( a, b, c )) mod 256
"addb %%cl, -1(%%edi,%%ebx,) \n\t"
"cmpl _FullLength, %%ebx \n\t"
"jb paeth_lp2 \n\t"
 
"paeth_end: \n\t"
"EMMS \n\t" // end MMX; prep for poss. FP instrs.
#ifdef __PIC__
"popl %%ebx \n\t" // restore index to Global Offset Table
#endif
 
: "=c" (dummy_value_c), // output regs (dummy)
"=S" (dummy_value_S),
"=D" (dummy_value_D)
 
: "0" (bpp), // ecx // input regs
"1" (prev_row), // esi
"2" (row) // edi
 
: "%eax", "%edx" // clobber list (no input regs!)
#ifndef __PIC__
, "%ebx"
#endif
);
 
} /* end png_read_filter_row_mmx_paeth() */
#endif
 
 
 
 
#ifdef PNG_THREAD_UNSAFE_OK
//===========================================================================//
// //
// P N G _ R E A D _ F I L T E R _ R O W _ M M X _ S U B //
// //
//===========================================================================//
 
// Optimized code for PNG Sub filter decoder
 
static void /* PRIVATE */
png_read_filter_row_mmx_sub(png_row_infop row_info, png_bytep row)
{
int bpp;
int dummy_value_a;
int dummy_value_D;
 
bpp = (row_info->pixel_depth + 7) >> 3; // calc number of bytes per pixel
_FullLength = row_info->rowbytes - bpp; // number of bytes to filter
 
__asm__ __volatile__ (
//pre "movl row, %%edi \n\t"
"movl %%edi, %%esi \n\t" // lp = row
//pre "movl bpp, %%eax \n\t"
"addl %%eax, %%edi \n\t" // rp = row + bpp
//irr "xorl %%eax, %%eax \n\t"
// get # of bytes to alignment
"movl %%edi, _dif \n\t" // take start of row
"addl $0xf, _dif \n\t" // add 7 + 8 to incr past
// alignment boundary
"xorl %%ecx, %%ecx \n\t"
"andl $0xfffffff8, _dif \n\t" // mask to alignment boundary
"subl %%edi, _dif \n\t" // subtract from start ==> value
"jz sub_go \n\t" // ecx at alignment
 
"sub_lp1: \n\t" // fix alignment
"movb (%%esi,%%ecx,), %%al \n\t"
"addb %%al, (%%edi,%%ecx,) \n\t"
"incl %%ecx \n\t"
"cmpl _dif, %%ecx \n\t"
"jb sub_lp1 \n\t"
 
"sub_go: \n\t"
"movl _FullLength, %%eax \n\t"
"movl %%eax, %%edx \n\t"
"subl %%ecx, %%edx \n\t" // subtract alignment fix
"andl $0x00000007, %%edx \n\t" // calc bytes over mult of 8
"subl %%edx, %%eax \n\t" // drop over bytes from length
"movl %%eax, _MMXLength \n\t"
 
: "=a" (dummy_value_a), // 0 // output regs (dummy)
"=D" (dummy_value_D) // 1
 
: "0" (bpp), // eax // input regs
"1" (row) // edi
 
: "%ebx", "%ecx", "%edx" // clobber list
, "%esi"
 
#if 0 /* MMX regs (%mm0, etc.) not supported by gcc 2.7.2.3 or egcs 1.1 */
, "%mm0", "%mm1", "%mm2", "%mm3"
, "%mm4", "%mm5", "%mm6", "%mm7"
#endif
);
 
// now do the math for the rest of the row
switch (bpp)
{
case 3:
{
_ActiveMask.use = 0x0000ffffff000000LL;
_ShiftBpp.use = 24; // == 3 * 8
_ShiftRem.use = 40; // == 64 - 24
 
__asm__ __volatile__ (
// preload "movl row, %%edi \n\t"
"movq _ActiveMask, %%mm7 \n\t" // load _ActiveMask for 2nd
// active byte group
"movl %%edi, %%esi \n\t" // lp = row
// preload "movl bpp, %%eax \n\t"
"addl %%eax, %%edi \n\t" // rp = row + bpp
"movq %%mm7, %%mm6 \n\t"
"movl _dif, %%edx \n\t"
"psllq _ShiftBpp, %%mm6 \n\t" // move mask in mm6 to cover
// 3rd active byte group
// prime the pump: load the first Raw(x-bpp) data set
"movq -8(%%edi,%%edx,), %%mm1 \n\t"
 
"sub_3lp: \n\t" // shift data for adding first
"psrlq _ShiftRem, %%mm1 \n\t" // bpp bytes (no need for mask;
// shift clears inactive bytes)
// add 1st active group
"movq (%%edi,%%edx,), %%mm0 \n\t"
"paddb %%mm1, %%mm0 \n\t"
 
// add 2nd active group
"movq %%mm0, %%mm1 \n\t" // mov updated Raws to mm1
"psllq _ShiftBpp, %%mm1 \n\t" // shift data to pos. correctly
"pand %%mm7, %%mm1 \n\t" // mask to use 2nd active group
"paddb %%mm1, %%mm0 \n\t"
 
// add 3rd active group
"movq %%mm0, %%mm1 \n\t" // mov updated Raws to mm1
"psllq _ShiftBpp, %%mm1 \n\t" // shift data to pos. correctly
"pand %%mm6, %%mm1 \n\t" // mask to use 3rd active group
"addl $8, %%edx \n\t"
"paddb %%mm1, %%mm0 \n\t"
 
"cmpl _MMXLength, %%edx \n\t"
"movq %%mm0, -8(%%edi,%%edx,) \n\t" // write updated Raws to array
"movq %%mm0, %%mm1 \n\t" // prep 1st add at top of loop
"jb sub_3lp \n\t"
 
: "=a" (dummy_value_a), // 0 // output regs (dummy)
"=D" (dummy_value_D) // 1
 
: "0" (bpp), // eax // input regs
"1" (row) // edi
 
: "%edx", "%esi" // clobber list
#if 0 /* MMX regs (%mm0, etc.) not supported by gcc 2.7.2.3 or egcs 1.1 */
, "%mm0", "%mm1", "%mm6", "%mm7"
#endif
);
}
break;
 
case 1:
{
__asm__ __volatile__ (
"movl _dif, %%edx \n\t"
// preload "movl row, %%edi \n\t"
"cmpl _FullLength, %%edx \n\t"
"jnb sub_1end \n\t"
"movl %%edi, %%esi \n\t" // lp = row
"xorl %%eax, %%eax \n\t"
// preload "movl bpp, %%eax \n\t"
"addl %%eax, %%edi \n\t" // rp = row + bpp
 
"sub_1lp: \n\t"
"movb (%%esi,%%edx,), %%al \n\t"
"addb %%al, (%%edi,%%edx,) \n\t"
"incl %%edx \n\t"
"cmpl _FullLength, %%edx \n\t"
"jb sub_1lp \n\t"
 
"sub_1end: \n\t"
 
: "=a" (dummy_value_a), // 0 // output regs (dummy)
"=D" (dummy_value_D) // 1
 
: "0" (bpp), // eax // input regs
"1" (row) // edi
 
: "%edx", "%esi" // clobber list
);
}
return;
 
case 6:
case 4:
//case 7: // GRR BOGUS
//case 5: // GRR BOGUS
{
_ShiftBpp.use = bpp << 3;
_ShiftRem.use = 64 - _ShiftBpp.use;
 
__asm__ __volatile__ (
// preload "movl row, %%edi \n\t"
"movl _dif, %%edx \n\t"
"movl %%edi, %%esi \n\t" // lp = row
// preload "movl bpp, %%eax \n\t"
"addl %%eax, %%edi \n\t" // rp = row + bpp
 
// prime the pump: load the first Raw(x-bpp) data set
"movq -8(%%edi,%%edx,), %%mm1 \n\t"
 
"sub_4lp: \n\t" // shift data for adding first
"psrlq _ShiftRem, %%mm1 \n\t" // bpp bytes (no need for mask;
// shift clears inactive bytes)
"movq (%%edi,%%edx,), %%mm0 \n\t"
"paddb %%mm1, %%mm0 \n\t"
 
// add 2nd active group
"movq %%mm0, %%mm1 \n\t" // mov updated Raws to mm1
"psllq _ShiftBpp, %%mm1 \n\t" // shift data to pos. correctly
"addl $8, %%edx \n\t"
"paddb %%mm1, %%mm0 \n\t"
 
"cmpl _MMXLength, %%edx \n\t"
"movq %%mm0, -8(%%edi,%%edx,) \n\t"
"movq %%mm0, %%mm1 \n\t" // prep 1st add at top of loop
"jb sub_4lp \n\t"
 
: "=a" (dummy_value_a), // 0 // output regs (dummy)
"=D" (dummy_value_D) // 1
 
: "0" (bpp), // eax // input regs
"1" (row) // edi
 
: "%edx", "%esi" // clobber list
#if 0 /* MMX regs (%mm0, etc.) not supported by gcc 2.7.2.3 or egcs 1.1 */
, "%mm0", "%mm1"
#endif
);
}
break;
 
case 2:
{
_ActiveMask.use = 0x00000000ffff0000LL;
_ShiftBpp.use = 16; // == 2 * 8
_ShiftRem.use = 48; // == 64 - 16
 
__asm__ __volatile__ (
"movq _ActiveMask, %%mm7 \n\t" // load _ActiveMask for 2nd
// active byte group
"movl _dif, %%edx \n\t"
"movq %%mm7, %%mm6 \n\t"
// preload "movl row, %%edi \n\t"
"psllq _ShiftBpp, %%mm6 \n\t" // move mask in mm6 to cover
// 3rd active byte group
"movl %%edi, %%esi \n\t" // lp = row
"movq %%mm6, %%mm5 \n\t"
// preload "movl bpp, %%eax \n\t"
"addl %%eax, %%edi \n\t" // rp = row + bpp
"psllq _ShiftBpp, %%mm5 \n\t" // move mask in mm5 to cover
// 4th active byte group
// prime the pump: load the first Raw(x-bpp) data set
"movq -8(%%edi,%%edx,), %%mm1 \n\t"
 
"sub_2lp: \n\t" // shift data for adding first
"psrlq _ShiftRem, %%mm1 \n\t" // bpp bytes (no need for mask;
// shift clears inactive bytes)
// add 1st active group
"movq (%%edi,%%edx,), %%mm0 \n\t"
"paddb %%mm1, %%mm0 \n\t"
 
// add 2nd active group
"movq %%mm0, %%mm1 \n\t" // mov updated Raws to mm1
"psllq _ShiftBpp, %%mm1 \n\t" // shift data to pos. correctly
"pand %%mm7, %%mm1 \n\t" // mask to use 2nd active group
"paddb %%mm1, %%mm0 \n\t"
 
// add 3rd active group
"movq %%mm0, %%mm1 \n\t" // mov updated Raws to mm1
"psllq _ShiftBpp, %%mm1 \n\t" // shift data to pos. correctly
"pand %%mm6, %%mm1 \n\t" // mask to use 3rd active group
"paddb %%mm1, %%mm0 \n\t"
 
// add 4th active group
"movq %%mm0, %%mm1 \n\t" // mov updated Raws to mm1
"psllq _ShiftBpp, %%mm1 \n\t" // shift data to pos. correctly
"pand %%mm5, %%mm1 \n\t" // mask to use 4th active group
"addl $8, %%edx \n\t"
"paddb %%mm1, %%mm0 \n\t"
"cmpl _MMXLength, %%edx \n\t"
"movq %%mm0, -8(%%edi,%%edx,) \n\t" // write updated Raws to array
"movq %%mm0, %%mm1 \n\t" // prep 1st add at top of loop
"jb sub_2lp \n\t"
 
: "=a" (dummy_value_a), // 0 // output regs (dummy)
"=D" (dummy_value_D) // 1
 
: "0" (bpp), // eax // input regs
"1" (row) // edi
 
: "%edx", "%esi" // clobber list
#if 0 /* MMX regs (%mm0, etc.) not supported by gcc 2.7.2.3 or egcs 1.1 */
, "%mm0", "%mm1", "%mm5", "%mm6", "%mm7"
#endif
);
}
break;
 
case 8:
{
__asm__ __volatile__ (
// preload "movl row, %%edi \n\t"
"movl _dif, %%edx \n\t"
"movl %%edi, %%esi \n\t" // lp = row
// preload "movl bpp, %%eax \n\t"
"addl %%eax, %%edi \n\t" // rp = row + bpp
"movl _MMXLength, %%ecx \n\t"
 
// prime the pump: load the first Raw(x-bpp) data set
"movq -8(%%edi,%%edx,), %%mm7 \n\t"
"andl $0x0000003f, %%ecx \n\t" // calc bytes over mult of 64
 
"sub_8lp: \n\t"
"movq (%%edi,%%edx,), %%mm0 \n\t" // load Sub(x) for 1st 8 bytes
"paddb %%mm7, %%mm0 \n\t"
"movq 8(%%edi,%%edx,), %%mm1 \n\t" // load Sub(x) for 2nd 8 bytes
"movq %%mm0, (%%edi,%%edx,) \n\t" // write Raw(x) for 1st 8 bytes
 
// Now mm0 will be used as Raw(x-bpp) for the 2nd group of 8 bytes.
// This will be repeated for each group of 8 bytes with the 8th
// group being used as the Raw(x-bpp) for the 1st group of the
// next loop.
 
"paddb %%mm0, %%mm1 \n\t"
"movq 16(%%edi,%%edx,), %%mm2 \n\t" // load Sub(x) for 3rd 8 bytes
"movq %%mm1, 8(%%edi,%%edx,) \n\t" // write Raw(x) for 2nd 8 bytes
"paddb %%mm1, %%mm2 \n\t"
"movq 24(%%edi,%%edx,), %%mm3 \n\t" // load Sub(x) for 4th 8 bytes
"movq %%mm2, 16(%%edi,%%edx,) \n\t" // write Raw(x) for 3rd 8 bytes
"paddb %%mm2, %%mm3 \n\t"
"movq 32(%%edi,%%edx,), %%mm4 \n\t" // load Sub(x) for 5th 8 bytes
"movq %%mm3, 24(%%edi,%%edx,) \n\t" // write Raw(x) for 4th 8 bytes
"paddb %%mm3, %%mm4 \n\t"
"movq 40(%%edi,%%edx,), %%mm5 \n\t" // load Sub(x) for 6th 8 bytes
"movq %%mm4, 32(%%edi,%%edx,) \n\t" // write Raw(x) for 5th 8 bytes
"paddb %%mm4, %%mm5 \n\t"
"movq 48(%%edi,%%edx,), %%mm6 \n\t" // load Sub(x) for 7th 8 bytes
"movq %%mm5, 40(%%edi,%%edx,) \n\t" // write Raw(x) for 6th 8 bytes
"paddb %%mm5, %%mm6 \n\t"
"movq 56(%%edi,%%edx,), %%mm7 \n\t" // load Sub(x) for 8th 8 bytes
"movq %%mm6, 48(%%edi,%%edx,) \n\t" // write Raw(x) for 7th 8 bytes
"addl $64, %%edx \n\t"
"paddb %%mm6, %%mm7 \n\t"
"cmpl %%ecx, %%edx \n\t"
"movq %%mm7, -8(%%edi,%%edx,) \n\t" // write Raw(x) for 8th 8 bytes
"jb sub_8lp \n\t"
 
"cmpl _MMXLength, %%edx \n\t"
"jnb sub_8lt8 \n\t"
 
"sub_8lpA: \n\t"
"movq (%%edi,%%edx,), %%mm0 \n\t"
"addl $8, %%edx \n\t"
"paddb %%mm7, %%mm0 \n\t"
"cmpl _MMXLength, %%edx \n\t"
"movq %%mm0, -8(%%edi,%%edx,) \n\t" // -8 to offset early addl edx
"movq %%mm0, %%mm7 \n\t" // move calculated Raw(x) data
// to mm1 to be new Raw(x-bpp)
// for next loop
"jb sub_8lpA \n\t"
 
"sub_8lt8: \n\t"
 
: "=a" (dummy_value_a), // 0 // output regs (dummy)
"=D" (dummy_value_D) // 1
 
: "0" (bpp), // eax // input regs
"1" (row) // edi
 
: "%ecx", "%edx", "%esi" // clobber list
#if 0 /* MMX regs (%mm0, etc.) not supported by gcc 2.7.2.3 or egcs 1.1 */
, "%mm0", "%mm1", "%mm2", "%mm3", "%mm4", "%mm5", "%mm6", "%mm7"
#endif
);
}
break;
 
default: // bpp greater than 8 bytes GRR BOGUS
{
__asm__ __volatile__ (
"movl _dif, %%edx \n\t"
// preload "movl row, %%edi \n\t"
"movl %%edi, %%esi \n\t" // lp = row
// preload "movl bpp, %%eax \n\t"
"addl %%eax, %%edi \n\t" // rp = row + bpp
 
"sub_Alp: \n\t"
"movq (%%edi,%%edx,), %%mm0 \n\t"
"movq (%%esi,%%edx,), %%mm1 \n\t"
"addl $8, %%edx \n\t"
"paddb %%mm1, %%mm0 \n\t"
"cmpl _MMXLength, %%edx \n\t"
"movq %%mm0, -8(%%edi,%%edx,) \n\t" // mov does not affect flags;
// -8 to offset addl edx
"jb sub_Alp \n\t"
 
: "=a" (dummy_value_a), // 0 // output regs (dummy)
"=D" (dummy_value_D) // 1
 
: "0" (bpp), // eax // input regs
"1" (row) // edi
 
: "%edx", "%esi" // clobber list
#if 0 /* MMX regs (%mm0, etc.) not supported by gcc 2.7.2.3 or egcs 1.1 */
, "%mm0", "%mm1"
#endif
);
}
break;
 
} // end switch (bpp)
 
__asm__ __volatile__ (
"movl _MMXLength, %%edx \n\t"
//pre "movl row, %%edi \n\t"
"cmpl _FullLength, %%edx \n\t"
"jnb sub_end \n\t"
 
"movl %%edi, %%esi \n\t" // lp = row
//pre "movl bpp, %%eax \n\t"
"addl %%eax, %%edi \n\t" // rp = row + bpp
"xorl %%eax, %%eax \n\t"
 
"sub_lp2: \n\t"
"movb (%%esi,%%edx,), %%al \n\t"
"addb %%al, (%%edi,%%edx,) \n\t"
"incl %%edx \n\t"
"cmpl _FullLength, %%edx \n\t"
"jb sub_lp2 \n\t"
 
"sub_end: \n\t"
"EMMS \n\t" // end MMX instructions
 
: "=a" (dummy_value_a), // 0 // output regs (dummy)
"=D" (dummy_value_D) // 1
 
: "0" (bpp), // eax // input regs
"1" (row) // edi
 
: "%edx", "%esi" // clobber list
);
 
} // end of png_read_filter_row_mmx_sub()
#endif
 
 
 
 
//===========================================================================//
// //
// P N G _ R E A D _ F I L T E R _ R O W _ M M X _ U P //
// //
//===========================================================================//
 
// Optimized code for PNG Up filter decoder
 
static void /* PRIVATE */
png_read_filter_row_mmx_up(png_row_infop row_info, png_bytep row,
png_bytep prev_row)
{
png_uint_32 len;
int dummy_value_d; // fix 'forbidden register 3 (dx) was spilled' error
int dummy_value_S;
int dummy_value_D;
 
len = row_info->rowbytes; // number of bytes to filter
 
__asm__ __volatile__ (
//pre "movl row, %%edi \n\t"
// get # of bytes to alignment
#ifdef __PIC__
"pushl %%ebx \n\t"
#endif
"movl %%edi, %%ecx \n\t"
"xorl %%ebx, %%ebx \n\t"
"addl $0x7, %%ecx \n\t"
"xorl %%eax, %%eax \n\t"
"andl $0xfffffff8, %%ecx \n\t"
//pre "movl prev_row, %%esi \n\t"
"subl %%edi, %%ecx \n\t"
"jz up_go \n\t"
 
"up_lp1: \n\t" // fix alignment
"movb (%%edi,%%ebx,), %%al \n\t"
"addb (%%esi,%%ebx,), %%al \n\t"
"incl %%ebx \n\t"
"cmpl %%ecx, %%ebx \n\t"
"movb %%al, -1(%%edi,%%ebx,) \n\t" // mov does not affect flags; -1 to
"jb up_lp1 \n\t" // offset incl ebx
 
"up_go: \n\t"
//pre "movl len, %%edx \n\t"
"movl %%edx, %%ecx \n\t"
"subl %%ebx, %%edx \n\t" // subtract alignment fix
"andl $0x0000003f, %%edx \n\t" // calc bytes over mult of 64
"subl %%edx, %%ecx \n\t" // drop over bytes from length
 
// unrolled loop - use all MMX registers and interleave to reduce
// number of branch instructions (loops) and reduce partial stalls
"up_loop: \n\t"
"movq (%%esi,%%ebx,), %%mm1 \n\t"
"movq (%%edi,%%ebx,), %%mm0 \n\t"
"movq 8(%%esi,%%ebx,), %%mm3 \n\t"
"paddb %%mm1, %%mm0 \n\t"
"movq 8(%%edi,%%ebx,), %%mm2 \n\t"
"movq %%mm0, (%%edi,%%ebx,) \n\t"
"paddb %%mm3, %%mm2 \n\t"
"movq 16(%%esi,%%ebx,), %%mm5 \n\t"
"movq %%mm2, 8(%%edi,%%ebx,) \n\t"
"movq 16(%%edi,%%ebx,), %%mm4 \n\t"
"movq 24(%%esi,%%ebx,), %%mm7 \n\t"
"paddb %%mm5, %%mm4 \n\t"
"movq 24(%%edi,%%ebx,), %%mm6 \n\t"
"movq %%mm4, 16(%%edi,%%ebx,) \n\t"
"paddb %%mm7, %%mm6 \n\t"
"movq 32(%%esi,%%ebx,), %%mm1 \n\t"
"movq %%mm6, 24(%%edi,%%ebx,) \n\t"
"movq 32(%%edi,%%ebx,), %%mm0 \n\t"
"movq 40(%%esi,%%ebx,), %%mm3 \n\t"
"paddb %%mm1, %%mm0 \n\t"
"movq 40(%%edi,%%ebx,), %%mm2 \n\t"
"movq %%mm0, 32(%%edi,%%ebx,) \n\t"
"paddb %%mm3, %%mm2 \n\t"
"movq 48(%%esi,%%ebx,), %%mm5 \n\t"
"movq %%mm2, 40(%%edi,%%ebx,) \n\t"
"movq 48(%%edi,%%ebx,), %%mm4 \n\t"
"movq 56(%%esi,%%ebx,), %%mm7 \n\t"
"paddb %%mm5, %%mm4 \n\t"
"movq 56(%%edi,%%ebx,), %%mm6 \n\t"
"movq %%mm4, 48(%%edi,%%ebx,) \n\t"
"addl $64, %%ebx \n\t"
"paddb %%mm7, %%mm6 \n\t"
"cmpl %%ecx, %%ebx \n\t"
"movq %%mm6, -8(%%edi,%%ebx,) \n\t" // (+56)movq does not affect flags;
"jb up_loop \n\t" // -8 to offset addl ebx
 
"cmpl $0, %%edx \n\t" // test for bytes over mult of 64
"jz up_end \n\t"
 
"cmpl $8, %%edx \n\t" // test for less than 8 bytes
"jb up_lt8 \n\t" // [added by lcreeve@netins.net]
 
"addl %%edx, %%ecx \n\t"
"andl $0x00000007, %%edx \n\t" // calc bytes over mult of 8
"subl %%edx, %%ecx \n\t" // drop over bytes from length
"jz up_lt8 \n\t"
 
"up_lpA: \n\t" // use MMX regs to update 8 bytes sim.
"movq (%%esi,%%ebx,), %%mm1 \n\t"
"movq (%%edi,%%ebx,), %%mm0 \n\t"
"addl $8, %%ebx \n\t"
"paddb %%mm1, %%mm0 \n\t"
"cmpl %%ecx, %%ebx \n\t"
"movq %%mm0, -8(%%edi,%%ebx,) \n\t" // movq does not affect flags; -8 to
"jb up_lpA \n\t" // offset add ebx
"cmpl $0, %%edx \n\t" // test for bytes over mult of 8
"jz up_end \n\t"
 
"up_lt8: \n\t"
"xorl %%eax, %%eax \n\t"
"addl %%edx, %%ecx \n\t" // move over byte count into counter
 
"up_lp2: \n\t" // use x86 regs for remaining bytes
"movb (%%edi,%%ebx,), %%al \n\t"
"addb (%%esi,%%ebx,), %%al \n\t"
"incl %%ebx \n\t"
"cmpl %%ecx, %%ebx \n\t"
"movb %%al, -1(%%edi,%%ebx,) \n\t" // mov does not affect flags; -1 to
"jb up_lp2 \n\t" // offset inc ebx
 
"up_end: \n\t"
"EMMS \n\t" // conversion of filtered row complete
#ifdef __PIC__
"popl %%ebx \n\t"
#endif
 
: "=d" (dummy_value_d), // 0 // output regs (dummy)
"=S" (dummy_value_S), // 1
"=D" (dummy_value_D) // 2
 
: "0" (len), // edx // input regs
"1" (prev_row), // esi
"2" (row) // edi
 
: "%eax", "%ebx", "%ecx" // clobber list (no input regs!)
 
#if 0 /* MMX regs (%mm0, etc.) not supported by gcc 2.7.2.3 or egcs 1.1 */
, "%mm0", "%mm1", "%mm2", "%mm3"
, "%mm4", "%mm5", "%mm6", "%mm7"
#endif
);
 
} // end of png_read_filter_row_mmx_up()
 
#endif /* PNG_ASSEMBLER_CODE_SUPPORTED */
 
 
 
 
/*===========================================================================*/
/* */
/* P N G _ R E A D _ F I L T E R _ R O W */
/* */
/*===========================================================================*/
 
 
/* Optimized png_read_filter_row routines */
 
void /* PRIVATE */
png_read_filter_row(png_structp png_ptr, png_row_infop row_info, png_bytep
row, png_bytep prev_row, int filter)
{
#ifdef PNG_DEBUG
char filnm[10];
#endif
 
#if defined(PNG_ASSEMBLER_CODE_SUPPORTED)
/* GRR: these are superseded by png_ptr->asm_flags: */
#define UseMMX_sub 1 // GRR: converted 20000730
#define UseMMX_up 1 // GRR: converted 20000729
#define UseMMX_avg 1 // GRR: converted 20000828 (+ 16-bit bugfix 20000916)
#define UseMMX_paeth 1 // GRR: converted 20000828
 
if (_mmx_supported == 2) {
/* this should have happened in png_init_mmx_flags() already */
#if !defined(PNG_1_0_X)
png_warning(png_ptr, "asm_flags may not have been initialized");
#endif
png_mmx_support();
}
#endif /* PNG_ASSEMBLER_CODE_SUPPORTED */
 
#ifdef PNG_DEBUG
png_debug(1, "in png_read_filter_row (pnggccrd.c)\n");
switch (filter)
{
case 0: sprintf(filnm, "none");
break;
case 1: sprintf(filnm, "sub-%s",
#if defined(PNG_ASSEMBLER_CODE_SUPPORTED) && defined(PNG_THREAD_UNSAFE_OK)
#if !defined(PNG_1_0_X)
(png_ptr->asm_flags & PNG_ASM_FLAG_MMX_READ_FILTER_SUB)? "MMX" :
#endif
#endif
"x86");
break;
case 2: sprintf(filnm, "up-%s",
#ifdef PNG_ASSEMBLER_CODE_SUPPORTED
#if !defined(PNG_1_0_X)
(png_ptr->asm_flags & PNG_ASM_FLAG_MMX_READ_FILTER_UP)? "MMX" :
#endif
#endif
"x86");
break;
case 3: sprintf(filnm, "avg-%s",
#if defined(PNG_ASSEMBLER_CODE_SUPPORTED) && defined(PNG_THREAD_UNSAFE_OK)
#if !defined(PNG_1_0_X)
(png_ptr->asm_flags & PNG_ASM_FLAG_MMX_READ_FILTER_AVG)? "MMX" :
#endif
#endif
"x86");
break;
case 4: sprintf(filnm, "Paeth-%s",
#if defined(PNG_ASSEMBLER_CODE_SUPPORTED) && defined(PNG_THREAD_UNSAFE_OK)
#if !defined(PNG_1_0_X)
(png_ptr->asm_flags & PNG_ASM_FLAG_MMX_READ_FILTER_PAETH)? "MMX":
#endif
#endif
"x86");
break;
default: sprintf(filnm, "unknw");
break;
}
png_debug2(0, "row_number=%5ld, %5s, ", png_ptr->row_number, filnm);
png_debug1(0, "row=0x%08lx, ", (unsigned long)row);
png_debug2(0, "pixdepth=%2d, bytes=%d, ", (int)row_info->pixel_depth,
(int)((row_info->pixel_depth + 7) >> 3));
png_debug1(0,"rowbytes=%8ld\n", row_info->rowbytes);
#endif /* PNG_DEBUG */
 
switch (filter)
{
case PNG_FILTER_VALUE_NONE:
break;
 
case PNG_FILTER_VALUE_SUB:
#if defined(PNG_ASSEMBLER_CODE_SUPPORTED) && defined(PNG_THREAD_UNSAFE_OK)
#if !defined(PNG_1_0_X)
if ((png_ptr->asm_flags & PNG_ASM_FLAG_MMX_READ_FILTER_SUB) &&
(row_info->pixel_depth >= png_ptr->mmx_bitdepth_threshold) &&
(row_info->rowbytes >= png_ptr->mmx_rowbytes_threshold))
#else
if (_mmx_supported)
#endif
{
png_read_filter_row_mmx_sub(row_info, row);
}
else
#endif /* PNG_ASSEMBLER_CODE_SUPPORTED */
{
png_uint_32 i;
png_uint_32 istop = row_info->rowbytes;
png_uint_32 bpp = (row_info->pixel_depth + 7) >> 3;
png_bytep rp = row + bpp;
png_bytep lp = row;
 
for (i = bpp; i < istop; i++)
{
*rp = (png_byte)(((int)(*rp) + (int)(*lp++)) & 0xff);
rp++;
}
} /* end !UseMMX_sub */
break;
 
case PNG_FILTER_VALUE_UP:
#if defined(PNG_ASSEMBLER_CODE_SUPPORTED)
#if !defined(PNG_1_0_X)
if ((png_ptr->asm_flags & PNG_ASM_FLAG_MMX_READ_FILTER_UP) &&
(row_info->pixel_depth >= png_ptr->mmx_bitdepth_threshold) &&
(row_info->rowbytes >= png_ptr->mmx_rowbytes_threshold))
#else
if (_mmx_supported)
#endif
{
png_read_filter_row_mmx_up(row_info, row, prev_row);
}
else
#endif /* PNG_ASSEMBLER_CODE_SUPPORTED */
{
png_uint_32 i;
png_uint_32 istop = row_info->rowbytes;
png_bytep rp = row;
png_bytep pp = prev_row;
 
for (i = 0; i < istop; ++i)
{
*rp = (png_byte)(((int)(*rp) + (int)(*pp++)) & 0xff);
rp++;
}
} /* end !UseMMX_up */
break;
 
case PNG_FILTER_VALUE_AVG:
#if defined(PNG_ASSEMBLER_CODE_SUPPORTED) && defined(PNG_THREAD_UNSAFE_OK)
#if !defined(PNG_1_0_X)
if ((png_ptr->asm_flags & PNG_ASM_FLAG_MMX_READ_FILTER_AVG) &&
(row_info->pixel_depth >= png_ptr->mmx_bitdepth_threshold) &&
(row_info->rowbytes >= png_ptr->mmx_rowbytes_threshold))
#else
if (_mmx_supported)
#endif
{
png_read_filter_row_mmx_avg(row_info, row, prev_row);
}
else
#endif /* PNG_ASSEMBLER_CODE_SUPPORTED */
{
png_uint_32 i;
png_bytep rp = row;
png_bytep pp = prev_row;
png_bytep lp = row;
png_uint_32 bpp = (row_info->pixel_depth + 7) >> 3;
png_uint_32 istop = row_info->rowbytes - bpp;
 
for (i = 0; i < bpp; i++)
{
*rp = (png_byte)(((int)(*rp) +
((int)(*pp++) >> 1)) & 0xff);
rp++;
}
 
for (i = 0; i < istop; i++)
{
*rp = (png_byte)(((int)(*rp) +
((int)(*pp++ + *lp++) >> 1)) & 0xff);
rp++;
}
} /* end !UseMMX_avg */
break;
 
case PNG_FILTER_VALUE_PAETH:
#if defined(PNG_ASSEMBLER_CODE_SUPPORTED) && defined(PNG_THREAD_UNSAFE_OK)
#if !defined(PNG_1_0_X)
if ((png_ptr->asm_flags & PNG_ASM_FLAG_MMX_READ_FILTER_PAETH) &&
(row_info->pixel_depth >= png_ptr->mmx_bitdepth_threshold) &&
(row_info->rowbytes >= png_ptr->mmx_rowbytes_threshold))
#else
if (_mmx_supported)
#endif
{
png_read_filter_row_mmx_paeth(row_info, row, prev_row);
}
else
#endif /* PNG_ASSEMBLER_CODE_SUPPORTED */
{
png_uint_32 i;
png_bytep rp = row;
png_bytep pp = prev_row;
png_bytep lp = row;
png_bytep cp = prev_row;
png_uint_32 bpp = (row_info->pixel_depth + 7) >> 3;
png_uint_32 istop = row_info->rowbytes - bpp;
 
for (i = 0; i < bpp; i++)
{
*rp = (png_byte)(((int)(*rp) + (int)(*pp++)) & 0xff);
rp++;
}
 
for (i = 0; i < istop; i++) /* use leftover rp,pp */
{
int a, b, c, pa, pb, pc, p;
 
a = *lp++;
b = *pp++;
c = *cp++;
 
p = b - c;
pc = a - c;
 
#ifdef PNG_USE_ABS
pa = abs(p);
pb = abs(pc);
pc = abs(p + pc);
#else
pa = p < 0 ? -p : p;
pb = pc < 0 ? -pc : pc;
pc = (p + pc) < 0 ? -(p + pc) : p + pc;
#endif
 
/*
if (pa <= pb && pa <= pc)
p = a;
else if (pb <= pc)
p = b;
else
p = c;
*/
 
p = (pa <= pb && pa <= pc) ? a : (pb <= pc) ? b : c;
 
*rp = (png_byte)(((int)(*rp) + p) & 0xff);
rp++;
}
} /* end !UseMMX_paeth */
break;
 
default:
png_warning(png_ptr, "Ignoring bad row-filter type");
*row=0;
break;
}
}
 
#endif /* PNG_HAVE_ASSEMBLER_READ_FILTER_ROW */
 
 
/*===========================================================================*/
/* */
/* P N G _ M M X _ S U P P O R T */
/* */
/*===========================================================================*/
 
/* GRR NOTES: (1) the following code assumes 386 or better (pushfl/popfl)
* (2) all instructions compile with gcc 2.7.2.3 and later
* (3) the function is moved down here to prevent gcc from
* inlining it in multiple places and then barfing be-
* cause the ".NOT_SUPPORTED" label is multiply defined
* [is there a way to signal that a *single* function should
* not be inlined? is there a way to modify the label for
* each inlined instance, e.g., by appending _1, _2, etc.?
* maybe if don't use leading "." in label name? (nope...sigh)]
*/
 
int PNGAPI
png_mmx_support(void)
{
#if defined(PNG_MMX_CODE_SUPPORTED)
__asm__ __volatile__ (
"pushl %%ebx \n\t" // ebx gets clobbered by CPUID instruction
"pushl %%ecx \n\t" // so does ecx...
"pushl %%edx \n\t" // ...and edx (but ecx & edx safe on Linux)
// ".byte 0x66 \n\t" // convert 16-bit pushf to 32-bit pushfd
// "pushf \n\t" // 16-bit pushf
"pushfl \n\t" // save Eflag to stack
"popl %%eax \n\t" // get Eflag from stack into eax
"movl %%eax, %%ecx \n\t" // make another copy of Eflag in ecx
"xorl $0x200000, %%eax \n\t" // toggle ID bit in Eflag (i.e., bit 21)
"pushl %%eax \n\t" // save modified Eflag back to stack
// ".byte 0x66 \n\t" // convert 16-bit popf to 32-bit popfd
// "popf \n\t" // 16-bit popf
"popfl \n\t" // restore modified value to Eflag reg
"pushfl \n\t" // save Eflag to stack
"popl %%eax \n\t" // get Eflag from stack
"pushl %%ecx \n\t" // save original Eflag to stack
"popfl \n\t" // restore original Eflag
"xorl %%ecx, %%eax \n\t" // compare new Eflag with original Eflag
"jz 0f \n\t" // if same, CPUID instr. is not supported
 
"xorl %%eax, %%eax \n\t" // set eax to zero
// ".byte 0x0f, 0xa2 \n\t" // CPUID instruction (two-byte opcode)
"cpuid \n\t" // get the CPU identification info
"cmpl $1, %%eax \n\t" // make sure eax return non-zero value
"jl 0f \n\t" // if eax is zero, MMX is not supported
 
"xorl %%eax, %%eax \n\t" // set eax to zero and...
"incl %%eax \n\t" // ...increment eax to 1. This pair is
// faster than the instruction "mov eax, 1"
"cpuid \n\t" // get the CPU identification info again
"andl $0x800000, %%edx \n\t" // mask out all bits but MMX bit (23)
"cmpl $0, %%edx \n\t" // 0 = MMX not supported
"jz 0f \n\t" // non-zero = yes, MMX IS supported
 
"movl $1, %%eax \n\t" // set return value to 1
"jmp 1f \n\t" // DONE: have MMX support
 
"0: \n\t" // .NOT_SUPPORTED: target label for jump instructions
"movl $0, %%eax \n\t" // set return value to 0
"1: \n\t" // .RETURN: target label for jump instructions
"movl %%eax, _mmx_supported \n\t" // save in global static variable, too
"popl %%edx \n\t" // restore edx
"popl %%ecx \n\t" // restore ecx
"popl %%ebx \n\t" // restore ebx
 
// "ret \n\t" // DONE: no MMX support
// (fall through to standard C "ret")
 
: // output list (none)
 
: // any variables used on input (none)
 
: "%eax" // clobber list
// , "%ebx", "%ecx", "%edx" // GRR: we handle these manually
// , "memory" // if write to a variable gcc thought was in a reg
// , "cc" // "condition codes" (flag bits)
);
#else
_mmx_supported = 0;
#endif /* PNG_MMX_CODE_SUPPORTED */
 
return _mmx_supported;
}
 
 
#endif /* PNG_USE_PNGGCCRD */
/shark/trunk/ports/png/example.c
0,0 → 1,804
 
#if 0 /* in case someone actually tries to compile this */
 
/* example.c - an example of using libpng */
 
/* This is an example of how to use libpng to read and write PNG files.
* The file libpng.txt is much more verbose then this. If you have not
* read it, do so first. This was designed to be a starting point of an
* implementation. This is not officially part of libpng, is hereby placed
* in the public domain, and therefore does not require a copyright notice.
*
* This file does not currently compile, because it is missing certain
* parts, like allocating memory to hold an image. You will have to
* supply these parts to get it to compile. For an example of a minimal
* working PNG reader/writer, see pngtest.c, included in this distribution;
* see also the programs in the contrib directory.
*/
 
#include "png.h"
 
/* The png_jmpbuf() macro, used in error handling, became available in
* libpng version 1.0.6. If you want to be able to run your code with older
* versions of libpng, you must define the macro yourself (but only if it
* is not already defined by libpng!).
*/
 
#ifndef png_jmpbuf
# define png_jmpbuf(png_ptr) ((png_ptr)->jmpbuf)
#endif
 
/* Check to see if a file is a PNG file using png_sig_cmp(). png_sig_cmp()
* returns zero if the image is a PNG and nonzero if it isn't a PNG.
*
* The function check_if_png() shown here, but not used, returns nonzero (true)
* if the file can be opened and is a PNG, 0 (false) otherwise.
*
* If this call is successful, and you are going to keep the file open,
* you should call png_set_sig_bytes(png_ptr, PNG_BYTES_TO_CHECK); once
* you have created the png_ptr, so that libpng knows your application
* has read that many bytes from the start of the file. Make sure you
* don't call png_set_sig_bytes() with more than 8 bytes read or give it
* an incorrect number of bytes read, or you will either have read too
* many bytes (your fault), or you are telling libpng to read the wrong
* number of magic bytes (also your fault).
*
* Many applications already read the first 2 or 4 bytes from the start
* of the image to determine the file type, so it would be easiest just
* to pass the bytes to png_sig_cmp() or even skip that if you know
* you have a PNG file, and call png_set_sig_bytes().
*/
#define PNG_BYTES_TO_CHECK 4
int check_if_png(char *file_name, FILE **fp)
{
char buf[PNG_BYTES_TO_CHECK];
 
/* Open the prospective PNG file. */
if ((*fp = fopen(file_name, "rb")) == NULL)
return 0;
 
/* Read in some of the signature bytes */
if (fread(buf, 1, PNG_BYTES_TO_CHECK, *fp) != PNG_BYTES_TO_CHECK)
return 0;
 
/* Compare the first PNG_BYTES_TO_CHECK bytes of the signature.
Return nonzero (true) if they match */
 
return(!png_sig_cmp(buf, (png_size_t)0, PNG_BYTES_TO_CHECK));
}
 
/* Read a PNG file. You may want to return an error code if the read
* fails (depending upon the failure). There are two "prototypes" given
* here - one where we are given the filename, and we need to open the
* file, and the other where we are given an open file (possibly with
* some or all of the magic bytes read - see comments above).
*/
#ifdef open_file /* prototype 1 */
void read_png(char *file_name) /* We need to open the file */
{
png_structp png_ptr;
png_infop info_ptr;
unsigned int sig_read = 0;
png_uint_32 width, height;
int bit_depth, color_type, interlace_type;
FILE *fp;
 
if ((fp = fopen(file_name, "rb")) == NULL)
return (ERROR);
#else no_open_file /* prototype 2 */
void read_png(FILE *fp, unsigned int sig_read) /* file is already open */
{
png_structp png_ptr;
png_infop info_ptr;
png_uint_32 width, height;
int bit_depth, color_type, interlace_type;
#endif no_open_file /* only use one prototype! */
 
/* Create and initialize the png_struct with the desired error handler
* functions. If you want to use the default stderr and longjump method,
* you can supply NULL for the last three parameters. We also supply the
* the compiler header file version, so that we know if the application
* was compiled with a compatible version of the library. REQUIRED
*/
png_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING,
png_voidp user_error_ptr, user_error_fn, user_warning_fn);
 
if (png_ptr == NULL)
{
fclose(fp);
return (ERROR);
}
 
/* Allocate/initialize the memory for image information. REQUIRED. */
info_ptr = png_create_info_struct(png_ptr);
if (info_ptr == NULL)
{
fclose(fp);
png_destroy_read_struct(&png_ptr, png_infopp_NULL, png_infopp_NULL);
return (ERROR);
}
 
/* Set error handling if you are using the setjmp/longjmp method (this is
* the normal method of doing things with libpng). REQUIRED unless you
* set up your own error handlers in the png_create_read_struct() earlier.
*/
 
if (setjmp(png_jmpbuf(png_ptr)))
{
/* Free all of the memory associated with the png_ptr and info_ptr */
png_destroy_read_struct(&png_ptr, &info_ptr, png_infopp_NULL);
fclose(fp);
/* If we get here, we had a problem reading the file */
return (ERROR);
}
 
/* One of the following I/O initialization methods is REQUIRED */
#ifdef streams /* PNG file I/O method 1 */
/* Set up the input control if you are using standard C streams */
png_init_io(png_ptr, fp);
 
#else no_streams /* PNG file I/O method 2 */
/* If you are using replacement read functions, instead of calling
* png_init_io() here you would call:
*/
png_set_read_fn(png_ptr, (void *)user_io_ptr, user_read_fn);
/* where user_io_ptr is a structure you want available to the callbacks */
#endif no_streams /* Use only one I/O method! */
 
/* If we have already read some of the signature */
png_set_sig_bytes(png_ptr, sig_read);
 
#ifdef hilevel
/*
* If you have enough memory to read in the entire image at once,
* and you need to specify only transforms that can be controlled
* with one of the PNG_TRANSFORM_* bits (this presently excludes
* dithering, filling, setting background, and doing gamma
* adjustment), then you can read the entire image (including
* pixels) into the info structure with this call:
*/
png_read_png(png_ptr, info_ptr, png_transforms, png_voidp_NULL);
#else
/* OK, you're doing it the hard way, with the lower-level functions */
 
/* The call to png_read_info() gives us all of the information from the
* PNG file before the first IDAT (image data chunk). REQUIRED
*/
png_read_info(png_ptr, info_ptr);
 
png_get_IHDR(png_ptr, info_ptr, &width, &height, &bit_depth, &color_type,
&interlace_type, int_p_NULL, int_p_NULL);
 
/* Set up the data transformations you want. Note that these are all
* optional. Only call them if you want/need them. Many of the
* transformations only work on specific types of images, and many
* are mutually exclusive.
*/
 
/* tell libpng to strip 16 bit/color files down to 8 bits/color */
png_set_strip_16(png_ptr);
 
/* Strip alpha bytes from the input data without combining with the
* background (not recommended).
*/
png_set_strip_alpha(png_ptr);
 
/* Extract multiple pixels with bit depths of 1, 2, and 4 from a single
* byte into separate bytes (useful for paletted and grayscale images).
*/
png_set_packing(png_ptr);
 
/* Change the order of packed pixels to least significant bit first
* (not useful if you are using png_set_packing). */
png_set_packswap(png_ptr);
 
/* Expand paletted colors into true RGB triplets */
if (color_type == PNG_COLOR_TYPE_PALETTE)
png_set_palette_rgb(png_ptr);
 
/* Expand grayscale images to the full 8 bits from 1, 2, or 4 bits/pixel */
if (color_type == PNG_COLOR_TYPE_GRAY && bit_depth < 8)
png_set_gray_1_2_4_to_8(png_ptr);
 
/* Expand paletted or RGB images with transparency to full alpha channels
* so the data will be available as RGBA quartets.
*/
if (png_get_valid(png_ptr, info_ptr, PNG_INFO_tRNS))
png_set_tRNS_to_alpha(png_ptr);
 
/* Set the background color to draw transparent and alpha images over.
* It is possible to set the red, green, and blue components directly
* for paletted images instead of supplying a palette index. Note that
* even if the PNG file supplies a background, you are not required to
* use it - you should use the (solid) application background if it has one.
*/
 
png_color_16 my_background, *image_background;
 
if (png_get_bKGD(png_ptr, info_ptr, &image_background))
png_set_background(png_ptr, image_background,
PNG_BACKGROUND_GAMMA_FILE, 1, 1.0);
else
png_set_background(png_ptr, &my_background,
PNG_BACKGROUND_GAMMA_SCREEN, 0, 1.0);
 
/* Some suggestions as to how to get a screen gamma value */
 
/* Note that screen gamma is the display_exponent, which includes
* the CRT_exponent and any correction for viewing conditions */
if (/* We have a user-defined screen gamma value */)
{
screen_gamma = user-defined screen_gamma;
}
/* This is one way that applications share the same screen gamma value */
else if ((gamma_str = getenv("SCREEN_GAMMA")) != NULL)
{
screen_gamma = atof(gamma_str);
}
/* If we don't have another value */
else
{
screen_gamma = 2.2; /* A good guess for a PC monitors in a dimly
lit room */
screen_gamma = 1.7 or 1.0; /* A good guess for Mac systems */
}
 
/* Tell libpng to handle the gamma conversion for you. The final call
* is a good guess for PC generated images, but it should be configurable
* by the user at run time by the user. It is strongly suggested that
* your application support gamma correction.
*/
 
int intent;
 
if (png_get_sRGB(png_ptr, info_ptr, &intent))
png_set_gamma(png_ptr, screen_gamma, 0.45455);
else
{
double image_gamma;
if (png_get_gAMA(png_ptr, info_ptr, &image_gamma))
png_set_gamma(png_ptr, screen_gamma, image_gamma);
else
png_set_gamma(png_ptr, screen_gamma, 0.45455);
}
 
/* Dither RGB files down to 8 bit palette or reduce palettes
* to the number of colors available on your screen.
*/
if (color_type & PNG_COLOR_MASK_COLOR)
{
int num_palette;
png_colorp palette;
 
/* This reduces the image to the application supplied palette */
if (/* we have our own palette */)
{
/* An array of colors to which the image should be dithered */
png_color std_color_cube[MAX_SCREEN_COLORS];
 
png_set_dither(png_ptr, std_color_cube, MAX_SCREEN_COLORS,
MAX_SCREEN_COLORS, png_uint_16p_NULL, 0);
}
/* This reduces the image to the palette supplied in the file */
else if (png_get_PLTE(png_ptr, info_ptr, &palette, &num_palette))
{
png_uint_16p histogram = NULL;
 
png_get_hIST(png_ptr, info_ptr, &histogram);
 
png_set_dither(png_ptr, palette, num_palette,
max_screen_colors, histogram, 0);
}
}
 
/* invert monochrome files to have 0 as white and 1 as black */
png_set_invert_mono(png_ptr);
 
/* If you want to shift the pixel values from the range [0,255] or
* [0,65535] to the original [0,7] or [0,31], or whatever range the
* colors were originally in:
*/
if (png_get_valid(png_ptr, info_ptr, PNG_INFO_sBIT))
{
png_color_8p sig_bit;
 
png_get_sBIT(png_ptr, info_ptr, &sig_bit);
png_set_shift(png_ptr, sig_bit);
}
 
/* flip the RGB pixels to BGR (or RGBA to BGRA) */
if (color_type & PNG_COLOR_MASK_COLOR)
png_set_bgr(png_ptr);
 
/* swap the RGBA or GA data to ARGB or AG (or BGRA to ABGR) */
png_set_swap_alpha(png_ptr);
 
/* swap bytes of 16 bit files to least significant byte first */
png_set_swap(png_ptr);
 
/* Add filler (or alpha) byte (before/after each RGB triplet) */
png_set_filler(png_ptr, 0xff, PNG_FILLER_AFTER);
 
/* Turn on interlace handling. REQUIRED if you are not using
* png_read_image(). To see how to handle interlacing passes,
* see the png_read_row() method below:
*/
number_passes = png_set_interlace_handling(png_ptr);
 
/* Optional call to gamma correct and add the background to the palette
* and update info structure. REQUIRED if you are expecting libpng to
* update the palette for you (ie you selected such a transform above).
*/
png_read_update_info(png_ptr, info_ptr);
 
/* Allocate the memory to hold the image using the fields of info_ptr. */
 
/* The easiest way to read the image: */
png_bytep row_pointers[height];
 
for (row = 0; row < height; row++)
{
row_pointers[row] = png_malloc(png_ptr, png_get_rowbytes(png_ptr,
info_ptr));
}
 
/* Now it's time to read the image. One of these methods is REQUIRED */
#ifdef entire /* Read the entire image in one go */
png_read_image(png_ptr, row_pointers);
 
#else no_entire /* Read the image one or more scanlines at a time */
/* The other way to read images - deal with interlacing: */
 
for (pass = 0; pass < number_passes; pass++)
{
#ifdef single /* Read the image a single row at a time */
for (y = 0; y < height; y++)
{
png_read_rows(png_ptr, &row_pointers[y], png_bytepp_NULL, 1);
}
 
#else no_single /* Read the image several rows at a time */
for (y = 0; y < height; y += number_of_rows)
{
#ifdef sparkle /* Read the image using the "sparkle" effect. */
png_read_rows(png_ptr, &row_pointers[y], png_bytepp_NULL,
number_of_rows);
#else no_sparkle /* Read the image using the "rectangle" effect */
png_read_rows(png_ptr, png_bytepp_NULL, &row_pointers[y],
number_of_rows);
#endif no_sparkle /* use only one of these two methods */
}
 
/* if you want to display the image after every pass, do
so here */
#endif no_single /* use only one of these two methods */
}
#endif no_entire /* use only one of these two methods */
 
/* read rest of file, and get additional chunks in info_ptr - REQUIRED */
png_read_end(png_ptr, info_ptr);
#endif hilevel
 
/* At this point you have read the entire image */
 
/* clean up after the read, and free any memory allocated - REQUIRED */
png_destroy_read_struct(&png_ptr, &info_ptr, png_infopp_NULL);
 
/* close the file */
fclose(fp);
 
/* that's it */
return (OK);
}
 
/* progressively read a file */
 
int
initialize_png_reader(png_structp *png_ptr, png_infop *info_ptr)
{
/* Create and initialize the png_struct with the desired error handler
* functions. If you want to use the default stderr and longjump method,
* you can supply NULL for the last three parameters. We also check that
* the library version is compatible in case we are using dynamically
* linked libraries.
*/
*png_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING,
png_voidp user_error_ptr, user_error_fn, user_warning_fn);
 
if (*png_ptr == NULL)
{
*info_ptr = NULL;
return (ERROR);
}
 
*info_ptr = png_create_info_struct(png_ptr);
 
if (*info_ptr == NULL)
{
png_destroy_read_struct(png_ptr, info_ptr, png_infopp_NULL);
return (ERROR);
}
 
if (setjmp(png_jmpbuf((*png_ptr))))
{
png_destroy_read_struct(png_ptr, info_ptr, png_infopp_NULL);
return (ERROR);
}
 
/* This one's new. You will need to provide all three
* function callbacks, even if you aren't using them all.
* If you aren't using all functions, you can specify NULL
* parameters. Even when all three functions are NULL,
* you need to call png_set_progressive_read_fn().
* These functions shouldn't be dependent on global or
* static variables if you are decoding several images
* simultaneously. You should store stream specific data
* in a separate struct, given as the second parameter,
* and retrieve the pointer from inside the callbacks using
* the function png_get_progressive_ptr(png_ptr).
*/
png_set_progressive_read_fn(*png_ptr, (void *)stream_data,
info_callback, row_callback, end_callback);
 
return (OK);
}
 
int
process_data(png_structp *png_ptr, png_infop *info_ptr,
png_bytep buffer, png_uint_32 length)
{
if (setjmp(png_jmpbuf((*png_ptr))))
{
/* Free the png_ptr and info_ptr memory on error */
png_destroy_read_struct(png_ptr, info_ptr, png_infopp_NULL);
return (ERROR);
}
 
/* This one's new also. Simply give it chunks of data as
* they arrive from the data stream (in order, of course).
* On Segmented machines, don't give it any more than 64K.
* The library seems to run fine with sizes of 4K, although
* you can give it much less if necessary (I assume you can
* give it chunks of 1 byte, but I haven't tried with less
* than 256 bytes yet). When this function returns, you may
* want to display any rows that were generated in the row
* callback, if you aren't already displaying them there.
*/
png_process_data(*png_ptr, *info_ptr, buffer, length);
return (OK);
}
 
info_callback(png_structp png_ptr, png_infop info)
{
/* do any setup here, including setting any of the transformations
* mentioned in the Reading PNG files section. For now, you _must_
* call either png_start_read_image() or png_read_update_info()
* after all the transformations are set (even if you don't set
* any). You may start getting rows before png_process_data()
* returns, so this is your last chance to prepare for that.
*/
}
 
row_callback(png_structp png_ptr, png_bytep new_row,
png_uint_32 row_num, int pass)
{
/*
* This function is called for every row in the image. If the
* image is interlaced, and you turned on the interlace handler,
* this function will be called for every row in every pass.
*
* In this function you will receive a pointer to new row data from
* libpng called new_row that is to replace a corresponding row (of
* the same data format) in a buffer allocated by your application.
*
* The new row data pointer new_row may be NULL, indicating there is
* no new data to be replaced (in cases of interlace loading).
*
* If new_row is not NULL then you need to call
* png_progressive_combine_row() to replace the corresponding row as
* shown below:
*/
/* Check if row_num is in bounds. */
if((row_num >= 0) && (row_num < height))
{
/* Get pointer to corresponding row in our
* PNG read buffer.
*/
png_bytep old_row = ((png_bytep *)our_data)[row_num];
 
/* If both rows are allocated then copy the new row
* data to the corresponding row data.
*/
if((old_row != NULL) && (new_row != NULL))
png_progressive_combine_row(png_ptr, old_row, new_row);
}
/*
* The rows and passes are called in order, so you don't really
* need the row_num and pass, but I'm supplying them because it
* may make your life easier.
*
* For the non-NULL rows of interlaced images, you must call
* png_progressive_combine_row() passing in the new row and the
* old row, as demonstrated above. You can call this function for
* NULL rows (it will just return) and for non-interlaced images
* (it just does the png_memcpy for you) if it will make the code
* easier. Thus, you can just do this for all cases:
*/
 
png_progressive_combine_row(png_ptr, old_row, new_row);
 
/* where old_row is what was displayed for previous rows. Note
* that the first pass (pass == 0 really) will completely cover
* the old row, so the rows do not have to be initialized. After
* the first pass (and only for interlaced images), you will have
* to pass the current row as new_row, and the function will combine
* the old row and the new row.
*/
}
 
end_callback(png_structp png_ptr, png_infop info)
{
/* this function is called when the whole image has been read,
* including any chunks after the image (up to and including
* the IEND). You will usually have the same info chunk as you
* had in the header, although some data may have been added
* to the comments and time fields.
*
* Most people won't do much here, perhaps setting a flag that
* marks the image as finished.
*/
}
 
/* write a png file */
void write_png(char *file_name /* , ... other image information ... */)
{
FILE *fp;
png_structp png_ptr;
png_infop info_ptr;
png_colorp palette;
 
/* open the file */
fp = fopen(file_name, "wb");
if (fp == NULL)
return (ERROR);
 
/* Create and initialize the png_struct with the desired error handler
* functions. If you want to use the default stderr and longjump method,
* you can supply NULL for the last three parameters. We also check that
* the library version is compatible with the one used at compile time,
* in case we are using dynamically linked libraries. REQUIRED.
*/
png_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING,
png_voidp user_error_ptr, user_error_fn, user_warning_fn);
 
if (png_ptr == NULL)
{
fclose(fp);
return (ERROR);
}
 
/* Allocate/initialize the image information data. REQUIRED */
info_ptr = png_create_info_struct(png_ptr);
if (info_ptr == NULL)
{
fclose(fp);
png_destroy_write_struct(&png_ptr, png_infopp_NULL);
return (ERROR);
}
 
/* Set error handling. REQUIRED if you aren't supplying your own
* error handling functions in the png_create_write_struct() call.
*/
if (setjmp(png_jmpbuf(png_ptr)))
{
/* If we get here, we had a problem reading the file */
fclose(fp);
png_destroy_write_struct(&png_ptr, &info_ptr);
return (ERROR);
}
 
/* One of the following I/O initialization functions is REQUIRED */
#ifdef streams /* I/O initialization method 1 */
/* set up the output control if you are using standard C streams */
png_init_io(png_ptr, fp);
#else no_streams /* I/O initialization method 2 */
/* If you are using replacement read functions, instead of calling
* png_init_io() here you would call */
png_set_write_fn(png_ptr, (void *)user_io_ptr, user_write_fn,
user_IO_flush_function);
/* where user_io_ptr is a structure you want available to the callbacks */
#endif no_streams /* only use one initialization method */
 
#ifdef hilevel
/* This is the easy way. Use it if you already have all the
* image info living info in the structure. You could "|" many
* PNG_TRANSFORM flags into the png_transforms integer here.
*/
png_write_png(png_ptr, info_ptr, png_transforms, png_voidp_NULL);
#else
/* This is the hard way */
 
/* Set the image information here. Width and height are up to 2^31,
* bit_depth is one of 1, 2, 4, 8, or 16, but valid values also depend on
* the color_type selected. color_type is one of PNG_COLOR_TYPE_GRAY,
* PNG_COLOR_TYPE_GRAY_ALPHA, PNG_COLOR_TYPE_PALETTE, PNG_COLOR_TYPE_RGB,
* or PNG_COLOR_TYPE_RGB_ALPHA. interlace is either PNG_INTERLACE_NONE or
* PNG_INTERLACE_ADAM7, and the compression_type and filter_type MUST
* currently be PNG_COMPRESSION_TYPE_BASE and PNG_FILTER_TYPE_BASE. REQUIRED
*/
png_set_IHDR(png_ptr, info_ptr, width, height, bit_depth, PNG_COLOR_TYPE_???,
PNG_INTERLACE_????, PNG_COMPRESSION_TYPE_BASE, PNG_FILTER_TYPE_BASE);
 
/* set the palette if there is one. REQUIRED for indexed-color images */
palette = (png_colorp)png_malloc(png_ptr, PNG_MAX_PALETTE_LENGTH
* sizeof (png_color));
/* ... set palette colors ... */
png_set_PLTE(png_ptr, info_ptr, palette, PNG_MAX_PALETTE_LENGTH);
/* You must not free palette here, because png_set_PLTE only makes a link to
the palette that you malloced. Wait until you are about to destroy
the png structure. */
 
/* optional significant bit chunk */
/* if we are dealing with a grayscale image then */
sig_bit.gray = true_bit_depth;
/* otherwise, if we are dealing with a color image then */
sig_bit.red = true_red_bit_depth;
sig_bit.green = true_green_bit_depth;
sig_bit.blue = true_blue_bit_depth;
/* if the image has an alpha channel then */
sig_bit.alpha = true_alpha_bit_depth;
png_set_sBIT(png_ptr, info_ptr, sig_bit);
 
 
/* Optional gamma chunk is strongly suggested if you have any guess
* as to the correct gamma of the image.
*/
png_set_gAMA(png_ptr, info_ptr, gamma);
 
/* Optionally write comments into the image */
text_ptr[0].key = "Title";
text_ptr[0].text = "Mona Lisa";
text_ptr[0].compression = PNG_TEXT_COMPRESSION_NONE;
text_ptr[1].key = "Author";
text_ptr[1].text = "Leonardo DaVinci";
text_ptr[1].compression = PNG_TEXT_COMPRESSION_NONE;
text_ptr[2].key = "Description";
text_ptr[2].text = "<long text>";
text_ptr[2].compression = PNG_TEXT_COMPRESSION_zTXt;
#ifdef PNG_iTXt_SUPPORTED
text_ptr[0].lang = NULL;
text_ptr[1].lang = NULL;
text_ptr[2].lang = NULL;
#endif
png_set_text(png_ptr, info_ptr, text_ptr, 3);
 
/* other optional chunks like cHRM, bKGD, tRNS, tIME, oFFs, pHYs, */
/* note that if sRGB is present the gAMA and cHRM chunks must be ignored
* on read and must be written in accordance with the sRGB profile */
 
/* Write the file header information. REQUIRED */
png_write_info(png_ptr, info_ptr);
 
/* If you want, you can write the info in two steps, in case you need to
* write your private chunk ahead of PLTE:
*
* png_write_info_before_PLTE(write_ptr, write_info_ptr);
* write_my_chunk();
* png_write_info(png_ptr, info_ptr);
*
* However, given the level of known- and unknown-chunk support in 1.1.0
* and up, this should no longer be necessary.
*/
 
/* Once we write out the header, the compression type on the text
* chunks gets changed to PNG_TEXT_COMPRESSION_NONE_WR or
* PNG_TEXT_COMPRESSION_zTXt_WR, so it doesn't get written out again
* at the end.
*/
 
/* set up the transformations you want. Note that these are
* all optional. Only call them if you want them.
*/
 
/* invert monochrome pixels */
png_set_invert_mono(png_ptr);
 
/* Shift the pixels up to a legal bit depth and fill in
* as appropriate to correctly scale the image.
*/
png_set_shift(png_ptr, &sig_bit);
 
/* pack pixels into bytes */
png_set_packing(png_ptr);
 
/* swap location of alpha bytes from ARGB to RGBA */
png_set_swap_alpha(png_ptr);
 
/* Get rid of filler (OR ALPHA) bytes, pack XRGB/RGBX/ARGB/RGBA into
* RGB (4 channels -> 3 channels). The second parameter is not used.
*/
png_set_filler(png_ptr, 0, PNG_FILLER_BEFORE);
 
/* flip BGR pixels to RGB */
png_set_bgr(png_ptr);
 
/* swap bytes of 16-bit files to most significant byte first */
png_set_swap(png_ptr);
 
/* swap bits of 1, 2, 4 bit packed pixel formats */
png_set_packswap(png_ptr);
 
/* turn on interlace handling if you are not using png_write_image() */
if (interlacing)
number_passes = png_set_interlace_handling(png_ptr);
else
number_passes = 1;
 
/* The easiest way to write the image (you may have a different memory
* layout, however, so choose what fits your needs best). You need to
* use the first method if you aren't handling interlacing yourself.
*/
png_uint_32 k, height, width;
png_byte image[height][width*bytes_per_pixel];
png_bytep row_pointers[height];
for (k = 0; k < height; k++)
row_pointers[k] = image + k*width*bytes_per_pixel;
 
/* One of the following output methods is REQUIRED */
#ifdef entire /* write out the entire image data in one call */
png_write_image(png_ptr, row_pointers);
 
/* the other way to write the image - deal with interlacing */
 
#else no_entire /* write out the image data by one or more scanlines */
/* The number of passes is either 1 for non-interlaced images,
* or 7 for interlaced images.
*/
for (pass = 0; pass < number_passes; pass++)
{
/* Write a few rows at a time. */
png_write_rows(png_ptr, &row_pointers[first_row], number_of_rows);
 
/* If you are only writing one row at a time, this works */
for (y = 0; y < height; y++)
{
png_write_rows(png_ptr, &row_pointers[y], 1);
}
}
#endif no_entire /* use only one output method */
 
/* You can write optional chunks like tEXt, zTXt, and tIME at the end
* as well. Shouldn't be necessary in 1.1.0 and up as all the public
* chunks are supported and you can use png_set_unknown_chunks() to
* register unknown chunks into the info structure to be written out.
*/
 
/* It is REQUIRED to call this to finish writing the rest of the file */
png_write_end(png_ptr, info_ptr);
#endif hilevel
 
/* If you png_malloced a palette, free it here (don't free info_ptr->palette,
as recommended in versions 1.0.5m and earlier of this example; if
libpng mallocs info_ptr->palette, libpng will free it). If you
allocated it with malloc() instead of png_malloc(), use free() instead
of png_free(). */
png_free(png_ptr, palette);
palette=NULL;
 
/* Similarly, if you png_malloced any data that you passed in with
png_set_something(), such as a hist or trans array, free it here,
when you can be sure that libpng is through with it. */
png_free(png_ptr, trans);
trans=NULL;
 
/* clean up after the write, and free any memory allocated */
png_destroy_write_struct(&png_ptr, &info_ptr);
 
/* close the file */
fclose(fp);
 
/* that's it */
return (OK);
}
 
#endif /* if 0 */
/shark/trunk/ports/png/pngtrans.c
0,0 → 1,640
 
/* pngtrans.c - transforms the data in a row (used by both readers and writers)
*
* libpng 1.2.5 - October 3, 2002
* For conditions of distribution and use, see copyright notice in png.h
* Copyright (c) 1998-2002 Glenn Randers-Pehrson
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
*/
 
#define PNG_INTERNAL
#include "png.h"
 
#if defined(PNG_READ_BGR_SUPPORTED) || defined(PNG_WRITE_BGR_SUPPORTED)
/* turn on BGR-to-RGB mapping */
void PNGAPI
png_set_bgr(png_structp png_ptr)
{
png_debug(1, "in png_set_bgr\n");
png_ptr->transformations |= PNG_BGR;
}
#endif
 
#if defined(PNG_READ_SWAP_SUPPORTED) || defined(PNG_WRITE_SWAP_SUPPORTED)
/* turn on 16 bit byte swapping */
void PNGAPI
png_set_swap(png_structp png_ptr)
{
png_debug(1, "in png_set_swap\n");
if (png_ptr->bit_depth == 16)
png_ptr->transformations |= PNG_SWAP_BYTES;
}
#endif
 
#if defined(PNG_READ_PACK_SUPPORTED) || defined(PNG_WRITE_PACK_SUPPORTED)
/* turn on pixel packing */
void PNGAPI
png_set_packing(png_structp png_ptr)
{
png_debug(1, "in png_set_packing\n");
if (png_ptr->bit_depth < 8)
{
png_ptr->transformations |= PNG_PACK;
png_ptr->usr_bit_depth = 8;
}
}
#endif
 
#if defined(PNG_READ_PACKSWAP_SUPPORTED)||defined(PNG_WRITE_PACKSWAP_SUPPORTED)
/* turn on packed pixel swapping */
void PNGAPI
png_set_packswap(png_structp png_ptr)
{
png_debug(1, "in png_set_packswap\n");
if (png_ptr->bit_depth < 8)
png_ptr->transformations |= PNG_PACKSWAP;
}
#endif
 
#if defined(PNG_READ_SHIFT_SUPPORTED) || defined(PNG_WRITE_SHIFT_SUPPORTED)
void PNGAPI
png_set_shift(png_structp png_ptr, png_color_8p true_bits)
{
png_debug(1, "in png_set_shift\n");
png_ptr->transformations |= PNG_SHIFT;
png_ptr->shift = *true_bits;
}
#endif
 
#if defined(PNG_READ_INTERLACING_SUPPORTED) || \
defined(PNG_WRITE_INTERLACING_SUPPORTED)
int PNGAPI
png_set_interlace_handling(png_structp png_ptr)
{
png_debug(1, "in png_set_interlace handling\n");
if (png_ptr->interlaced)
{
png_ptr->transformations |= PNG_INTERLACE;
return (7);
}
 
return (1);
}
#endif
 
#if defined(PNG_READ_FILLER_SUPPORTED) || defined(PNG_WRITE_FILLER_SUPPORTED)
/* Add a filler byte on read, or remove a filler or alpha byte on write.
* The filler type has changed in v0.95 to allow future 2-byte fillers
* for 48-bit input data, as well as to avoid problems with some compilers
* that don't like bytes as parameters.
*/
void PNGAPI
png_set_filler(png_structp png_ptr, png_uint_32 filler, int filler_loc)
{
png_debug(1, "in png_set_filler\n");
png_ptr->transformations |= PNG_FILLER;
png_ptr->filler = (png_byte)filler;
if (filler_loc == PNG_FILLER_AFTER)
png_ptr->flags |= PNG_FLAG_FILLER_AFTER;
else
png_ptr->flags &= ~PNG_FLAG_FILLER_AFTER;
 
/* This should probably go in the "do_filler" routine.
* I attempted to do that in libpng-1.0.1a but that caused problems
* so I restored it in libpng-1.0.2a
*/
 
if (png_ptr->color_type == PNG_COLOR_TYPE_RGB)
{
png_ptr->usr_channels = 4;
}
 
/* Also I added this in libpng-1.0.2a (what happens when we expand
* a less-than-8-bit grayscale to GA? */
 
if (png_ptr->color_type == PNG_COLOR_TYPE_GRAY && png_ptr->bit_depth >= 8)
{
png_ptr->usr_channels = 2;
}
}
#endif
 
#if defined(PNG_READ_SWAP_ALPHA_SUPPORTED) || \
defined(PNG_WRITE_SWAP_ALPHA_SUPPORTED)
void PNGAPI
png_set_swap_alpha(png_structp png_ptr)
{
png_debug(1, "in png_set_swap_alpha\n");
png_ptr->transformations |= PNG_SWAP_ALPHA;
}
#endif
 
#if defined(PNG_READ_INVERT_ALPHA_SUPPORTED) || \
defined(PNG_WRITE_INVERT_ALPHA_SUPPORTED)
void PNGAPI
png_set_invert_alpha(png_structp png_ptr)
{
png_debug(1, "in png_set_invert_alpha\n");
png_ptr->transformations |= PNG_INVERT_ALPHA;
}
#endif
 
#if defined(PNG_READ_INVERT_SUPPORTED) || defined(PNG_WRITE_INVERT_SUPPORTED)
void PNGAPI
png_set_invert_mono(png_structp png_ptr)
{
png_debug(1, "in png_set_invert_mono\n");
png_ptr->transformations |= PNG_INVERT_MONO;
}
 
/* invert monochrome grayscale data */
void /* PRIVATE */
png_do_invert(png_row_infop row_info, png_bytep row)
{
png_debug(1, "in png_do_invert\n");
/* This test removed from libpng version 1.0.13 and 1.2.0:
* if (row_info->bit_depth == 1 &&
*/
#if defined(PNG_USELESS_TESTS_SUPPORTED)
if (row == NULL || row_info == NULL)
return;
#endif
if (row_info->color_type == PNG_COLOR_TYPE_GRAY)
{
png_bytep rp = row;
png_uint_32 i;
png_uint_32 istop = row_info->rowbytes;
 
for (i = 0; i < istop; i++)
{
*rp = (png_byte)(~(*rp));
rp++;
}
}
else if (row_info->color_type == PNG_COLOR_TYPE_GRAY_ALPHA &&
row_info->bit_depth == 8)
{
png_bytep rp = row;
png_uint_32 i;
png_uint_32 istop = row_info->rowbytes;
 
for (i = 0; i < istop; i+=2)
{
*rp = (png_byte)(~(*rp));
rp+=2;
}
}
else if (row_info->color_type == PNG_COLOR_TYPE_GRAY_ALPHA &&
row_info->bit_depth == 16)
{
png_bytep rp = row;
png_uint_32 i;
png_uint_32 istop = row_info->rowbytes;
 
for (i = 0; i < istop; i+=4)
{
*rp = (png_byte)(~(*rp));
*(rp+1) = (png_byte)(~(*(rp+1)));
rp+=4;
}
}
}
#endif
 
#if defined(PNG_READ_SWAP_SUPPORTED) || defined(PNG_WRITE_SWAP_SUPPORTED)
/* swaps byte order on 16 bit depth images */
void /* PRIVATE */
png_do_swap(png_row_infop row_info, png_bytep row)
{
png_debug(1, "in png_do_swap\n");
if (
#if defined(PNG_USELESS_TESTS_SUPPORTED)
row != NULL && row_info != NULL &&
#endif
row_info->bit_depth == 16)
{
png_bytep rp = row;
png_uint_32 i;
png_uint_32 istop= row_info->width * row_info->channels;
 
for (i = 0; i < istop; i++, rp += 2)
{
png_byte t = *rp;
*rp = *(rp + 1);
*(rp + 1) = t;
}
}
}
#endif
 
#if defined(PNG_READ_PACKSWAP_SUPPORTED)||defined(PNG_WRITE_PACKSWAP_SUPPORTED)
static png_byte onebppswaptable[256] = {
0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0,
0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0,
0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8,
0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8,
0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4,
0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4,
0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC,
0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC,
0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2,
0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2,
0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA,
0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA,
0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6,
0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6,
0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE,
0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE,
0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1,
0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1,
0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9,
0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9,
0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5,
0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5,
0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED,
0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD,
0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3,
0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3,
0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB,
0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,
0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7,
0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7,
0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF,
0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF
};
 
static png_byte twobppswaptable[256] = {
0x00, 0x40, 0x80, 0xC0, 0x10, 0x50, 0x90, 0xD0,
0x20, 0x60, 0xA0, 0xE0, 0x30, 0x70, 0xB0, 0xF0,
0x04, 0x44, 0x84, 0xC4, 0x14, 0x54, 0x94, 0xD4,
0x24, 0x64, 0xA4, 0xE4, 0x34, 0x74, 0xB4, 0xF4,
0x08, 0x48, 0x88, 0xC8, 0x18, 0x58, 0x98, 0xD8,
0x28, 0x68, 0xA8, 0xE8, 0x38, 0x78, 0xB8, 0xF8,
0x0C, 0x4C, 0x8C, 0xCC, 0x1C, 0x5C, 0x9C, 0xDC,
0x2C, 0x6C, 0xAC, 0xEC, 0x3C, 0x7C, 0xBC, 0xFC,
0x01, 0x41, 0x81, 0xC1, 0x11, 0x51, 0x91, 0xD1,
0x21, 0x61, 0xA1, 0xE1, 0x31, 0x71, 0xB1, 0xF1,
0x05, 0x45, 0x85, 0xC5, 0x15, 0x55, 0x95, 0xD5,
0x25, 0x65, 0xA5, 0xE5, 0x35, 0x75, 0xB5, 0xF5,
0x09, 0x49, 0x89, 0xC9, 0x19, 0x59, 0x99, 0xD9,
0x29, 0x69, 0xA9, 0xE9, 0x39, 0x79, 0xB9, 0xF9,
0x0D, 0x4D, 0x8D, 0xCD, 0x1D, 0x5D, 0x9D, 0xDD,
0x2D, 0x6D, 0xAD, 0xED, 0x3D, 0x7D, 0xBD, 0xFD,
0x02, 0x42, 0x82, 0xC2, 0x12, 0x52, 0x92, 0xD2,
0x22, 0x62, 0xA2, 0xE2, 0x32, 0x72, 0xB2, 0xF2,
0x06, 0x46, 0x86, 0xC6, 0x16, 0x56, 0x96, 0xD6,
0x26, 0x66, 0xA6, 0xE6, 0x36, 0x76, 0xB6, 0xF6,
0x0A, 0x4A, 0x8A, 0xCA, 0x1A, 0x5A, 0x9A, 0xDA,
0x2A, 0x6A, 0xAA, 0xEA, 0x3A, 0x7A, 0xBA, 0xFA,
0x0E, 0x4E, 0x8E, 0xCE, 0x1E, 0x5E, 0x9E, 0xDE,
0x2E, 0x6E, 0xAE, 0xEE, 0x3E, 0x7E, 0xBE, 0xFE,
0x03, 0x43, 0x83, 0xC3, 0x13, 0x53, 0x93, 0xD3,
0x23, 0x63, 0xA3, 0xE3, 0x33, 0x73, 0xB3, 0xF3,
0x07, 0x47, 0x87, 0xC7, 0x17, 0x57, 0x97, 0xD7,
0x27, 0x67, 0xA7, 0xE7, 0x37, 0x77, 0xB7, 0xF7,
0x0B, 0x4B, 0x8B, 0xCB, 0x1B, 0x5B, 0x9B, 0xDB,
0x2B, 0x6B, 0xAB, 0xEB, 0x3B, 0x7B, 0xBB, 0xFB,
0x0F, 0x4F, 0x8F, 0xCF, 0x1F, 0x5F, 0x9F, 0xDF,
0x2F, 0x6F, 0xAF, 0xEF, 0x3F, 0x7F, 0xBF, 0xFF
};
 
static png_byte fourbppswaptable[256] = {
0x00, 0x10, 0x20, 0x30, 0x40, 0x50, 0x60, 0x70,
0x80, 0x90, 0xA0, 0xB0, 0xC0, 0xD0, 0xE0, 0xF0,
0x01, 0x11, 0x21, 0x31, 0x41, 0x51, 0x61, 0x71,
0x81, 0x91, 0xA1, 0xB1, 0xC1, 0xD1, 0xE1, 0xF1,
0x02, 0x12, 0x22, 0x32, 0x42, 0x52, 0x62, 0x72,
0x82, 0x92, 0xA2, 0xB2, 0xC2, 0xD2, 0xE2, 0xF2,
0x03, 0x13, 0x23, 0x33, 0x43, 0x53, 0x63, 0x73,
0x83, 0x93, 0xA3, 0xB3, 0xC3, 0xD3, 0xE3, 0xF3,
0x04, 0x14, 0x24, 0x34, 0x44, 0x54, 0x64, 0x74,
0x84, 0x94, 0xA4, 0xB4, 0xC4, 0xD4, 0xE4, 0xF4,
0x05, 0x15, 0x25, 0x35, 0x45, 0x55, 0x65, 0x75,
0x85, 0x95, 0xA5, 0xB5, 0xC5, 0xD5, 0xE5, 0xF5,
0x06, 0x16, 0x26, 0x36, 0x46, 0x56, 0x66, 0x76,
0x86, 0x96, 0xA6, 0xB6, 0xC6, 0xD6, 0xE6, 0xF6,
0x07, 0x17, 0x27, 0x37, 0x47, 0x57, 0x67, 0x77,
0x87, 0x97, 0xA7, 0xB7, 0xC7, 0xD7, 0xE7, 0xF7,
0x08, 0x18, 0x28, 0x38, 0x48, 0x58, 0x68, 0x78,
0x88, 0x98, 0xA8, 0xB8, 0xC8, 0xD8, 0xE8, 0xF8,
0x09, 0x19, 0x29, 0x39, 0x49, 0x59, 0x69, 0x79,
0x89, 0x99, 0xA9, 0xB9, 0xC9, 0xD9, 0xE9, 0xF9,
0x0A, 0x1A, 0x2A, 0x3A, 0x4A, 0x5A, 0x6A, 0x7A,
0x8A, 0x9A, 0xAA, 0xBA, 0xCA, 0xDA, 0xEA, 0xFA,
0x0B, 0x1B, 0x2B, 0x3B, 0x4B, 0x5B, 0x6B, 0x7B,
0x8B, 0x9B, 0xAB, 0xBB, 0xCB, 0xDB, 0xEB, 0xFB,
0x0C, 0x1C, 0x2C, 0x3C, 0x4C, 0x5C, 0x6C, 0x7C,
0x8C, 0x9C, 0xAC, 0xBC, 0xCC, 0xDC, 0xEC, 0xFC,
0x0D, 0x1D, 0x2D, 0x3D, 0x4D, 0x5D, 0x6D, 0x7D,
0x8D, 0x9D, 0xAD, 0xBD, 0xCD, 0xDD, 0xED, 0xFD,
0x0E, 0x1E, 0x2E, 0x3E, 0x4E, 0x5E, 0x6E, 0x7E,
0x8E, 0x9E, 0xAE, 0xBE, 0xCE, 0xDE, 0xEE, 0xFE,
0x0F, 0x1F, 0x2F, 0x3F, 0x4F, 0x5F, 0x6F, 0x7F,
0x8F, 0x9F, 0xAF, 0xBF, 0xCF, 0xDF, 0xEF, 0xFF
};
 
/* swaps pixel packing order within bytes */
void /* PRIVATE */
png_do_packswap(png_row_infop row_info, png_bytep row)
{
png_debug(1, "in png_do_packswap\n");
if (
#if defined(PNG_USELESS_TESTS_SUPPORTED)
row != NULL && row_info != NULL &&
#endif
row_info->bit_depth < 8)
{
png_bytep rp, end, table;
 
end = row + row_info->rowbytes;
 
if (row_info->bit_depth == 1)
table = onebppswaptable;
else if (row_info->bit_depth == 2)
table = twobppswaptable;
else if (row_info->bit_depth == 4)
table = fourbppswaptable;
else
return;
 
for (rp = row; rp < end; rp++)
*rp = table[*rp];
}
}
#endif /* PNG_READ_PACKSWAP_SUPPORTED or PNG_WRITE_PACKSWAP_SUPPORTED */
 
#if defined(PNG_WRITE_FILLER_SUPPORTED) || \
defined(PNG_READ_STRIP_ALPHA_SUPPORTED)
/* remove filler or alpha byte(s) */
void /* PRIVATE */
png_do_strip_filler(png_row_infop row_info, png_bytep row, png_uint_32 flags)
{
png_debug(1, "in png_do_strip_filler\n");
#if defined(PNG_USELESS_TESTS_SUPPORTED)
if (row != NULL && row_info != NULL)
#endif
{
/*
if (row_info->color_type == PNG_COLOR_TYPE_RGB ||
row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA)
*/
png_bytep sp=row;
png_bytep dp=row;
png_uint_32 row_width=row_info->width;
png_uint_32 i;
 
if (row_info->channels == 4)
{
if (row_info->bit_depth == 8)
{
/* This converts from RGBX or RGBA to RGB */
if (flags & PNG_FLAG_FILLER_AFTER)
{
dp+=3; sp+=4;
for (i = 1; i < row_width; i++)
{
*dp++ = *sp++;
*dp++ = *sp++;
*dp++ = *sp++;
sp++;
}
}
/* This converts from XRGB or ARGB to RGB */
else
{
for (i = 0; i < row_width; i++)
{
sp++;
*dp++ = *sp++;
*dp++ = *sp++;
*dp++ = *sp++;
}
}
row_info->pixel_depth = 24;
row_info->rowbytes = row_width * 3;
}
else /* if (row_info->bit_depth == 16) */
{
if (flags & PNG_FLAG_FILLER_AFTER)
{
/* This converts from RRGGBBXX or RRGGBBAA to RRGGBB */
sp += 8; dp += 6;
for (i = 1; i < row_width; i++)
{
/* This could be (although png_memcpy is probably slower):
png_memcpy(dp, sp, 6);
sp += 8;
dp += 6;
*/
 
*dp++ = *sp++;
*dp++ = *sp++;
*dp++ = *sp++;
*dp++ = *sp++;
*dp++ = *sp++;
*dp++ = *sp++;
sp += 2;
}
}
else
{
/* This converts from XXRRGGBB or AARRGGBB to RRGGBB */
for (i = 0; i < row_width; i++)
{
/* This could be (although png_memcpy is probably slower):
png_memcpy(dp, sp, 6);
sp += 8;
dp += 6;
*/
 
sp+=2;
*dp++ = *sp++;
*dp++ = *sp++;
*dp++ = *sp++;
*dp++ = *sp++;
*dp++ = *sp++;
*dp++ = *sp++;
}
}
row_info->pixel_depth = 48;
row_info->rowbytes = row_width * 6;
}
row_info->channels = 3;
row_info->color_type &= ~PNG_COLOR_MASK_ALPHA;
}
/*
else if (row_info->color_type == PNG_COLOR_TYPE_GRAY ||
row_info->color_type == PNG_COLOR_TYPE_GRAY_ALPHA)
*/
else if (row_info->channels == 2)
{
if (row_info->bit_depth == 8)
{
/* This converts from GX or GA to G */
if (flags & PNG_FLAG_FILLER_AFTER)
{
for (i = 0; i < row_width; i++)
{
*dp++ = *sp++;
sp++;
}
}
/* This converts from XG or AG to G */
else
{
for (i = 0; i < row_width; i++)
{
sp++;
*dp++ = *sp++;
}
}
row_info->pixel_depth = 8;
row_info->rowbytes = row_width;
}
else /* if (row_info->bit_depth == 16) */
{
if (flags & PNG_FLAG_FILLER_AFTER)
{
/* This converts from GGXX or GGAA to GG */
sp += 4; dp += 2;
for (i = 1; i < row_width; i++)
{
*dp++ = *sp++;
*dp++ = *sp++;
sp += 2;
}
}
else
{
/* This converts from XXGG or AAGG to GG */
for (i = 0; i < row_width; i++)
{
sp += 2;
*dp++ = *sp++;
*dp++ = *sp++;
}
}
row_info->pixel_depth = 16;
row_info->rowbytes = row_width * 2;
}
row_info->channels = 1;
row_info->color_type &= ~PNG_COLOR_MASK_ALPHA;
}
}
}
#endif
 
#if defined(PNG_READ_BGR_SUPPORTED) || defined(PNG_WRITE_BGR_SUPPORTED)
/* swaps red and blue bytes within a pixel */
void /* PRIVATE */
png_do_bgr(png_row_infop row_info, png_bytep row)
{
png_debug(1, "in png_do_bgr\n");
if (
#if defined(PNG_USELESS_TESTS_SUPPORTED)
row != NULL && row_info != NULL &&
#endif
(row_info->color_type & PNG_COLOR_MASK_COLOR))
{
png_uint_32 row_width = row_info->width;
if (row_info->bit_depth == 8)
{
if (row_info->color_type == PNG_COLOR_TYPE_RGB)
{
png_bytep rp;
png_uint_32 i;
 
for (i = 0, rp = row; i < row_width; i++, rp += 3)
{
png_byte save = *rp;
*rp = *(rp + 2);
*(rp + 2) = save;
}
}
else if (row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA)
{
png_bytep rp;
png_uint_32 i;
 
for (i = 0, rp = row; i < row_width; i++, rp += 4)
{
png_byte save = *rp;
*rp = *(rp + 2);
*(rp + 2) = save;
}
}
}
else if (row_info->bit_depth == 16)
{
if (row_info->color_type == PNG_COLOR_TYPE_RGB)
{
png_bytep rp;
png_uint_32 i;
 
for (i = 0, rp = row; i < row_width; i++, rp += 6)
{
png_byte save = *rp;
*rp = *(rp + 4);
*(rp + 4) = save;
save = *(rp + 1);
*(rp + 1) = *(rp + 5);
*(rp + 5) = save;
}
}
else if (row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA)
{
png_bytep rp;
png_uint_32 i;
 
for (i = 0, rp = row; i < row_width; i++, rp += 8)
{
png_byte save = *rp;
*rp = *(rp + 4);
*(rp + 4) = save;
save = *(rp + 1);
*(rp + 1) = *(rp + 5);
*(rp + 5) = save;
}
}
}
}
}
#endif /* PNG_READ_BGR_SUPPORTED or PNG_WRITE_BGR_SUPPORTED */
 
#if defined(PNG_READ_USER_TRANSFORM_SUPPORTED) || \
defined(PNG_WRITE_USER_TRANSFORM_SUPPORTED) || \
defined(PNG_LEGACY_SUPPORTED)
void PNGAPI
png_set_user_transform_info(png_structp png_ptr, png_voidp
user_transform_ptr, int user_transform_depth, int user_transform_channels)
{
png_debug(1, "in png_set_user_transform_info\n");
#if defined(PNG_USER_TRANSFORM_PTR_SUPPORTED)
png_ptr->user_transform_ptr = user_transform_ptr;
png_ptr->user_transform_depth = (png_byte)user_transform_depth;
png_ptr->user_transform_channels = (png_byte)user_transform_channels;
#else
if(user_transform_ptr || user_transform_depth || user_transform_channels)
png_warning(png_ptr,
"This version of libpng does not support user transform info");
#endif
}
#endif
 
/* This function returns a pointer to the user_transform_ptr associated with
* the user transform functions. The application should free any memory
* associated with this pointer before png_write_destroy and png_read_destroy
* are called.
*/
png_voidp PNGAPI
png_get_user_transform_ptr(png_structp png_ptr)
{
#if defined(PNG_USER_TRANSFORM_PTR_SUPPORTED)
return ((png_voidp)png_ptr->user_transform_ptr);
#else
if(png_ptr)
return (NULL);
return (NULL);
#endif
}
/shark/trunk/ports/png/pngrio.c
0,0 → 1,161
 
/* pngrio.c - functions for data input
*
* libpng 1.2.5 - October 3, 2002
* For conditions of distribution and use, see copyright notice in png.h
* Copyright (c) 1998-2002 Glenn Randers-Pehrson
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
*
* This file provides a location for all input. Users who need
* special handling are expected to write a function that has the same
* arguments as this and performs a similar function, but that possibly
* has a different input method. Note that you shouldn't change this
* function, but rather write a replacement function and then make
* libpng use it at run time with png_set_read_fn(...).
*/
 
#define PNG_INTERNAL
#include "png.h"
 
/* Read the data from whatever input you are using. The default routine
reads from a file pointer. Note that this routine sometimes gets called
with very small lengths, so you should implement some kind of simple
buffering if you are using unbuffered reads. This should never be asked
to read more then 64K on a 16 bit machine. */
void /* PRIVATE */
png_read_data(png_structp png_ptr, png_bytep data, png_size_t length)
{
png_debug1(4,"reading %d bytes\n", (int)length);
if (png_ptr->read_data_fn != NULL)
(*(png_ptr->read_data_fn))(png_ptr, data, length);
else
png_error(png_ptr, "Call to NULL read function");
}
 
#if !defined(PNG_NO_STDIO)
/* This is the function that does the actual reading of data. If you are
not reading from a standard C stream, you should create a replacement
read_data function and use it at run time with png_set_read_fn(), rather
than changing the library. */
#ifndef USE_FAR_KEYWORD
void PNGAPI
png_default_read_data(png_structp png_ptr, png_bytep data, png_size_t length)
{
png_size_t check;
 
/* fread() returns 0 on error, so it is OK to store this in a png_size_t
* instead of an int, which is what fread() actually returns.
*/
#if defined(_WIN32_WCE)
if ( !ReadFile((HANDLE)(png_ptr->io_ptr), data, length, &check, NULL) )
check = 0;
#else
check = (png_size_t)fread(data, (png_size_t)1, length,
(png_FILE_p)png_ptr->io_ptr);
#endif
 
if (check != length)
png_error(png_ptr, "Read Error");
}
#else
/* this is the model-independent version. Since the standard I/O library
can't handle far buffers in the medium and small models, we have to copy
the data.
*/
 
#define NEAR_BUF_SIZE 1024
#define MIN(a,b) (a <= b ? a : b)
 
static void /* PRIVATE */
png_default_read_data(png_structp png_ptr, png_bytep data, png_size_t length)
{
int check;
png_byte *n_data;
png_FILE_p io_ptr;
 
/* Check if data really is near. If so, use usual code. */
n_data = (png_byte *)CVT_PTR_NOCHECK(data);
io_ptr = (png_FILE_p)CVT_PTR(png_ptr->io_ptr);
if ((png_bytep)n_data == data)
{
#if defined(_WIN32_WCE)
if ( !ReadFile((HANDLE)(png_ptr->io_ptr), data, length, &check, NULL) )
check = 0;
#else
check = fread(n_data, 1, length, io_ptr);
#endif
}
else
{
png_byte buf[NEAR_BUF_SIZE];
png_size_t read, remaining, err;
check = 0;
remaining = length;
do
{
read = MIN(NEAR_BUF_SIZE, remaining);
#if defined(_WIN32_WCE)
if ( !ReadFile((HANDLE)(io_ptr), buf, read, &err, NULL) )
err = 0;
#else
err = fread(buf, (png_size_t)1, read, io_ptr);
#endif
png_memcpy(data, buf, read); /* copy far buffer to near buffer */
if(err != read)
break;
else
check += err;
data += read;
remaining -= read;
}
while (remaining != 0);
}
if ((png_uint_32)check != (png_uint_32)length)
png_error(png_ptr, "read Error");
}
#endif
#endif
 
/* This function allows the application to supply a new input function
for libpng if standard C streams aren't being used.
 
This function takes as its arguments:
png_ptr - pointer to a png input data structure
io_ptr - pointer to user supplied structure containing info about
the input functions. May be NULL.
read_data_fn - pointer to a new input function that takes as its
arguments a pointer to a png_struct, a pointer to
a location where input data can be stored, and a 32-bit
unsigned int that is the number of bytes to be read.
To exit and output any fatal error messages the new write
function should call png_error(png_ptr, "Error msg"). */
void PNGAPI
png_set_read_fn(png_structp png_ptr, png_voidp io_ptr,
png_rw_ptr read_data_fn)
{
png_ptr->io_ptr = io_ptr;
 
#if !defined(PNG_NO_STDIO)
if (read_data_fn != NULL)
png_ptr->read_data_fn = read_data_fn;
else
png_ptr->read_data_fn = png_default_read_data;
#else
png_ptr->read_data_fn = read_data_fn;
#endif
 
/* It is an error to write to a read device */
if (png_ptr->write_data_fn != NULL)
{
png_ptr->write_data_fn = NULL;
png_warning(png_ptr,
"It's an error to set both read_data_fn and write_data_fn in the ");
png_warning(png_ptr,
"same structure. Resetting write_data_fn to NULL.");
}
 
#if defined(PNG_WRITE_FLUSH_SUPPORTED)
png_ptr->output_flush_fn = NULL;
#endif
}
/shark/trunk/ports/png/pngwrite.c
0,0 → 1,1450
 
/* pngwrite.c - general routines to write a PNG file
*
* libpng 1.2.5 - October 3, 2002
* For conditions of distribution and use, see copyright notice in png.h
* Copyright (c) 1998-2002 Glenn Randers-Pehrson
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
*/
 
/* get internal access to png.h */
#define PNG_INTERNAL
#include "png.h"
#ifdef PNG_WRITE_SUPPORTED
 
/* Writes all the PNG information. This is the suggested way to use the
* library. If you have a new chunk to add, make a function to write it,
* and put it in the correct location here. If you want the chunk written
* after the image data, put it in png_write_end(). I strongly encourage
* you to supply a PNG_INFO_ flag, and check info_ptr->valid before writing
* the chunk, as that will keep the code from breaking if you want to just
* write a plain PNG file. If you have long comments, I suggest writing
* them in png_write_end(), and compressing them.
*/
void PNGAPI
png_write_info_before_PLTE(png_structp png_ptr, png_infop info_ptr)
{
png_debug(1, "in png_write_info_before_PLTE\n");
if (!(png_ptr->mode & PNG_WROTE_INFO_BEFORE_PLTE))
{
png_write_sig(png_ptr); /* write PNG signature */
#if defined(PNG_MNG_FEATURES_SUPPORTED)
if((png_ptr->mode&PNG_HAVE_PNG_SIGNATURE)&&(png_ptr->mng_features_permitted))
{
png_warning(png_ptr,"MNG features are not allowed in a PNG datastream\n");
png_ptr->mng_features_permitted=0;
}
#endif
/* write IHDR information. */
png_write_IHDR(png_ptr, info_ptr->width, info_ptr->height,
info_ptr->bit_depth, info_ptr->color_type, info_ptr->compression_type,
info_ptr->filter_type,
#if defined(PNG_WRITE_INTERLACING_SUPPORTED)
info_ptr->interlace_type);
#else
0);
#endif
/* the rest of these check to see if the valid field has the appropriate
flag set, and if it does, writes the chunk. */
#if defined(PNG_WRITE_gAMA_SUPPORTED)
if (info_ptr->valid & PNG_INFO_gAMA)
{
# ifdef PNG_FLOATING_POINT_SUPPORTED
png_write_gAMA(png_ptr, info_ptr->gamma);
#else
#ifdef PNG_FIXED_POINT_SUPPORTED
png_write_gAMA_fixed(png_ptr, info_ptr->int_gamma);
# endif
#endif
}
#endif
#if defined(PNG_WRITE_sRGB_SUPPORTED)
if (info_ptr->valid & PNG_INFO_sRGB)
png_write_sRGB(png_ptr, (int)info_ptr->srgb_intent);
#endif
#if defined(PNG_WRITE_iCCP_SUPPORTED)
if (info_ptr->valid & PNG_INFO_iCCP)
png_write_iCCP(png_ptr, info_ptr->iccp_name, PNG_COMPRESSION_TYPE_BASE,
info_ptr->iccp_profile, (int)info_ptr->iccp_proflen);
#endif
#if defined(PNG_WRITE_sBIT_SUPPORTED)
if (info_ptr->valid & PNG_INFO_sBIT)
png_write_sBIT(png_ptr, &(info_ptr->sig_bit), info_ptr->color_type);
#endif
#if defined(PNG_WRITE_cHRM_SUPPORTED)
if (info_ptr->valid & PNG_INFO_cHRM)
{
#ifdef PNG_FLOATING_POINT_SUPPORTED
png_write_cHRM(png_ptr,
info_ptr->x_white, info_ptr->y_white,
info_ptr->x_red, info_ptr->y_red,
info_ptr->x_green, info_ptr->y_green,
info_ptr->x_blue, info_ptr->y_blue);
#else
# ifdef PNG_FIXED_POINT_SUPPORTED
png_write_cHRM_fixed(png_ptr,
info_ptr->int_x_white, info_ptr->int_y_white,
info_ptr->int_x_red, info_ptr->int_y_red,
info_ptr->int_x_green, info_ptr->int_y_green,
info_ptr->int_x_blue, info_ptr->int_y_blue);
# endif
#endif
}
#endif
#if defined(PNG_WRITE_UNKNOWN_CHUNKS_SUPPORTED)
if (info_ptr->unknown_chunks_num)
{
png_unknown_chunk *up;
 
png_debug(5, "writing extra chunks\n");
 
for (up = info_ptr->unknown_chunks;
up < info_ptr->unknown_chunks + info_ptr->unknown_chunks_num;
up++)
{
int keep=png_handle_as_unknown(png_ptr, up->name);
if (keep != HANDLE_CHUNK_NEVER &&
up->location && (!(up->location & PNG_HAVE_PLTE)) &&
((up->name[3] & 0x20) || keep == HANDLE_CHUNK_ALWAYS ||
(png_ptr->flags & PNG_FLAG_KEEP_UNSAFE_CHUNKS)))
{
png_write_chunk(png_ptr, up->name, up->data, up->size);
}
}
}
#endif
png_ptr->mode |= PNG_WROTE_INFO_BEFORE_PLTE;
}
}
 
void PNGAPI
png_write_info(png_structp png_ptr, png_infop info_ptr)
{
#if defined(PNG_WRITE_TEXT_SUPPORTED) || defined(PNG_WRITE_sPLT_SUPPORTED)
int i;
#endif
 
png_debug(1, "in png_write_info\n");
 
png_write_info_before_PLTE(png_ptr, info_ptr);
 
if (info_ptr->valid & PNG_INFO_PLTE)
png_write_PLTE(png_ptr, info_ptr->palette,
(png_uint_32)info_ptr->num_palette);
else if (info_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
png_error(png_ptr, "Valid palette required for paletted images\n");
 
#if defined(PNG_WRITE_tRNS_SUPPORTED)
if (info_ptr->valid & PNG_INFO_tRNS)
{
#if defined(PNG_WRITE_INVERT_ALPHA_SUPPORTED)
/* invert the alpha channel (in tRNS) */
if ((png_ptr->transformations & PNG_INVERT_ALPHA) &&
info_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
{
int j;
for (j=0; j<(int)info_ptr->num_trans; j++)
info_ptr->trans[j] = (png_byte)(255 - info_ptr->trans[j]);
}
#endif
png_write_tRNS(png_ptr, info_ptr->trans, &(info_ptr->trans_values),
info_ptr->num_trans, info_ptr->color_type);
}
#endif
#if defined(PNG_WRITE_bKGD_SUPPORTED)
if (info_ptr->valid & PNG_INFO_bKGD)
png_write_bKGD(png_ptr, &(info_ptr->background), info_ptr->color_type);
#endif
#if defined(PNG_WRITE_hIST_SUPPORTED)
if (info_ptr->valid & PNG_INFO_hIST)
png_write_hIST(png_ptr, info_ptr->hist, info_ptr->num_palette);
#endif
#if defined(PNG_WRITE_oFFs_SUPPORTED)
if (info_ptr->valid & PNG_INFO_oFFs)
png_write_oFFs(png_ptr, info_ptr->x_offset, info_ptr->y_offset,
info_ptr->offset_unit_type);
#endif
#if defined(PNG_WRITE_pCAL_SUPPORTED)
if (info_ptr->valid & PNG_INFO_pCAL)
png_write_pCAL(png_ptr, info_ptr->pcal_purpose, info_ptr->pcal_X0,
info_ptr->pcal_X1, info_ptr->pcal_type, info_ptr->pcal_nparams,
info_ptr->pcal_units, info_ptr->pcal_params);
#endif
#if defined(PNG_WRITE_sCAL_SUPPORTED)
if (info_ptr->valid & PNG_INFO_sCAL)
#if defined(PNG_FLOATING_POINT_SUPPORTED) && !defined(PNG_NO_STDIO)
png_write_sCAL(png_ptr, (int)info_ptr->scal_unit,
info_ptr->scal_pixel_width, info_ptr->scal_pixel_height);
#else
#ifdef PNG_FIXED_POINT_SUPPORTED
png_write_sCAL_s(png_ptr, (int)info_ptr->scal_unit,
info_ptr->scal_s_width, info_ptr->scal_s_height);
#else
png_warning(png_ptr,
"png_write_sCAL not supported; sCAL chunk not written.\n");
#endif
#endif
#endif
#if defined(PNG_WRITE_pHYs_SUPPORTED)
if (info_ptr->valid & PNG_INFO_pHYs)
png_write_pHYs(png_ptr, info_ptr->x_pixels_per_unit,
info_ptr->y_pixels_per_unit, info_ptr->phys_unit_type);
#endif
#if defined(PNG_WRITE_tIME_SUPPORTED)
if (info_ptr->valid & PNG_INFO_tIME)
{
png_write_tIME(png_ptr, &(info_ptr->mod_time));
png_ptr->mode |= PNG_WROTE_tIME;
}
#endif
#if defined(PNG_WRITE_sPLT_SUPPORTED)
if (info_ptr->valid & PNG_INFO_sPLT)
for (i = 0; i < (int)info_ptr->splt_palettes_num; i++)
png_write_sPLT(png_ptr, info_ptr->splt_palettes + i);
#endif
#if defined(PNG_WRITE_TEXT_SUPPORTED)
/* Check to see if we need to write text chunks */
for (i = 0; i < info_ptr->num_text; i++)
{
png_debug2(2, "Writing header text chunk %d, type %d\n", i,
info_ptr->text[i].compression);
/* an internationalized chunk? */
if (info_ptr->text[i].compression > 0)
{
#if defined(PNG_WRITE_iTXt_SUPPORTED)
/* write international chunk */
png_write_iTXt(png_ptr,
info_ptr->text[i].compression,
info_ptr->text[i].key,
info_ptr->text[i].lang,
info_ptr->text[i].lang_key,
info_ptr->text[i].text);
#else
png_warning(png_ptr, "Unable to write international text\n");
#endif
/* Mark this chunk as written */
info_ptr->text[i].compression = PNG_TEXT_COMPRESSION_NONE_WR;
}
/* If we want a compressed text chunk */
else if (info_ptr->text[i].compression == PNG_TEXT_COMPRESSION_zTXt)
{
#if defined(PNG_WRITE_zTXt_SUPPORTED)
/* write compressed chunk */
png_write_zTXt(png_ptr, info_ptr->text[i].key,
info_ptr->text[i].text, 0,
info_ptr->text[i].compression);
#else
png_warning(png_ptr, "Unable to write compressed text\n");
#endif
/* Mark this chunk as written */
info_ptr->text[i].compression = PNG_TEXT_COMPRESSION_zTXt_WR;
}
else if (info_ptr->text[i].compression == PNG_TEXT_COMPRESSION_NONE)
{
#if defined(PNG_WRITE_tEXt_SUPPORTED)
/* write uncompressed chunk */
png_write_tEXt(png_ptr, info_ptr->text[i].key,
info_ptr->text[i].text,
0);
#else
png_warning(png_ptr, "Unable to write uncompressed text\n");
#endif
/* Mark this chunk as written */
info_ptr->text[i].compression = PNG_TEXT_COMPRESSION_NONE_WR;
}
}
#endif
#if defined(PNG_WRITE_UNKNOWN_CHUNKS_SUPPORTED)
if (info_ptr->unknown_chunks_num)
{
png_unknown_chunk *up;
 
png_debug(5, "writing extra chunks\n");
 
for (up = info_ptr->unknown_chunks;
up < info_ptr->unknown_chunks + info_ptr->unknown_chunks_num;
up++)
{
int keep=png_handle_as_unknown(png_ptr, up->name);
if (keep != HANDLE_CHUNK_NEVER &&
up->location && (up->location & PNG_HAVE_PLTE) &&
!(up->location & PNG_HAVE_IDAT) &&
((up->name[3] & 0x20) || keep == HANDLE_CHUNK_ALWAYS ||
(png_ptr->flags & PNG_FLAG_KEEP_UNSAFE_CHUNKS)))
{
png_write_chunk(png_ptr, up->name, up->data, up->size);
}
}
}
#endif
}
 
/* Writes the end of the PNG file. If you don't want to write comments or
* time information, you can pass NULL for info. If you already wrote these
* in png_write_info(), do not write them again here. If you have long
* comments, I suggest writing them here, and compressing them.
*/
void PNGAPI
png_write_end(png_structp png_ptr, png_infop info_ptr)
{
png_debug(1, "in png_write_end\n");
if (!(png_ptr->mode & PNG_HAVE_IDAT))
png_error(png_ptr, "No IDATs written into file");
 
/* see if user wants us to write information chunks */
if (info_ptr != NULL)
{
#if defined(PNG_WRITE_TEXT_SUPPORTED)
int i; /* local index variable */
#endif
#if defined(PNG_WRITE_tIME_SUPPORTED)
/* check to see if user has supplied a time chunk */
if ((info_ptr->valid & PNG_INFO_tIME) &&
!(png_ptr->mode & PNG_WROTE_tIME))
png_write_tIME(png_ptr, &(info_ptr->mod_time));
#endif
#if defined(PNG_WRITE_TEXT_SUPPORTED)
/* loop through comment chunks */
for (i = 0; i < info_ptr->num_text; i++)
{
png_debug2(2, "Writing trailer text chunk %d, type %d\n", i,
info_ptr->text[i].compression);
/* an internationalized chunk? */
if (info_ptr->text[i].compression > 0)
{
#if defined(PNG_WRITE_iTXt_SUPPORTED)
/* write international chunk */
png_write_iTXt(png_ptr,
info_ptr->text[i].compression,
info_ptr->text[i].key,
info_ptr->text[i].lang,
info_ptr->text[i].lang_key,
info_ptr->text[i].text);
#else
png_warning(png_ptr, "Unable to write international text\n");
#endif
/* Mark this chunk as written */
info_ptr->text[i].compression = PNG_TEXT_COMPRESSION_NONE_WR;
}
else if (info_ptr->text[i].compression >= PNG_TEXT_COMPRESSION_zTXt)
{
#if defined(PNG_WRITE_zTXt_SUPPORTED)
/* write compressed chunk */
png_write_zTXt(png_ptr, info_ptr->text[i].key,
info_ptr->text[i].text, 0,
info_ptr->text[i].compression);
#else
png_warning(png_ptr, "Unable to write compressed text\n");
#endif
/* Mark this chunk as written */
info_ptr->text[i].compression = PNG_TEXT_COMPRESSION_zTXt_WR;
}
else if (info_ptr->text[i].compression == PNG_TEXT_COMPRESSION_NONE)
{
#if defined(PNG_WRITE_tEXt_SUPPORTED)
/* write uncompressed chunk */
png_write_tEXt(png_ptr, info_ptr->text[i].key,
info_ptr->text[i].text, 0);
#else
png_warning(png_ptr, "Unable to write uncompressed text\n");
#endif
 
/* Mark this chunk as written */
info_ptr->text[i].compression = PNG_TEXT_COMPRESSION_NONE_WR;
}
}
#endif
#if defined(PNG_WRITE_UNKNOWN_CHUNKS_SUPPORTED)
if (info_ptr->unknown_chunks_num)
{
png_unknown_chunk *up;
 
png_debug(5, "writing extra chunks\n");
 
for (up = info_ptr->unknown_chunks;
up < info_ptr->unknown_chunks + info_ptr->unknown_chunks_num;
up++)
{
int keep=png_handle_as_unknown(png_ptr, up->name);
if (keep != HANDLE_CHUNK_NEVER &&
up->location && (up->location & PNG_AFTER_IDAT) &&
((up->name[3] & 0x20) || keep == HANDLE_CHUNK_ALWAYS ||
(png_ptr->flags & PNG_FLAG_KEEP_UNSAFE_CHUNKS)))
{
png_write_chunk(png_ptr, up->name, up->data, up->size);
}
}
}
#endif
}
 
png_ptr->mode |= PNG_AFTER_IDAT;
 
/* write end of PNG file */
png_write_IEND(png_ptr);
#if 0
/* This flush, added in libpng-1.0.8, causes some applications to crash
because they do not set png_ptr->output_flush_fn */
png_flush(png_ptr);
#endif
}
 
#if defined(PNG_WRITE_tIME_SUPPORTED)
#if !defined(_WIN32_WCE)
/* "time.h" functions are not supported on WindowsCE */
void PNGAPI
png_convert_from_struct_tm(png_timep ptime, struct tm FAR * ttime)
{
png_debug(1, "in png_convert_from_struct_tm\n");
ptime->year = (png_uint_16)(1900 + ttime->tm_year);
ptime->month = (png_byte)(ttime->tm_mon + 1);
ptime->day = (png_byte)ttime->tm_mday;
ptime->hour = (png_byte)ttime->tm_hour;
ptime->minute = (png_byte)ttime->tm_min;
ptime->second = (png_byte)ttime->tm_sec;
}
 
void PNGAPI
png_convert_from_time_t(png_timep ptime, time_t ttime)
{
struct tm *tbuf;
 
png_debug(1, "in png_convert_from_time_t\n");
tbuf = gmtime(&ttime);
png_convert_from_struct_tm(ptime, tbuf);
}
#endif
#endif
 
/* Initialize png_ptr structure, and allocate any memory needed */
png_structp PNGAPI
png_create_write_struct(png_const_charp user_png_ver, png_voidp error_ptr,
png_error_ptr error_fn, png_error_ptr warn_fn)
{
#ifdef PNG_USER_MEM_SUPPORTED
return (png_create_write_struct_2(user_png_ver, error_ptr, error_fn,
warn_fn, png_voidp_NULL, png_malloc_ptr_NULL, png_free_ptr_NULL));
}
 
/* Alternate initialize png_ptr structure, and allocate any memory needed */
png_structp PNGAPI
png_create_write_struct_2(png_const_charp user_png_ver, png_voidp error_ptr,
png_error_ptr error_fn, png_error_ptr warn_fn, png_voidp mem_ptr,
png_malloc_ptr malloc_fn, png_free_ptr free_fn)
{
#endif /* PNG_USER_MEM_SUPPORTED */
png_structp png_ptr;
#ifdef PNG_SETJMP_SUPPORTED
#ifdef USE_FAR_KEYWORD
jmp_buf jmpbuf;
#endif
#endif
int i;
png_debug(1, "in png_create_write_struct\n");
#ifdef PNG_USER_MEM_SUPPORTED
png_ptr = (png_structp)png_create_struct_2(PNG_STRUCT_PNG,
(png_malloc_ptr)malloc_fn, (png_voidp)mem_ptr);
#else
png_ptr = (png_structp)png_create_struct(PNG_STRUCT_PNG);
#endif /* PNG_USER_MEM_SUPPORTED */
if (png_ptr == NULL)
return (NULL);
 
#if !defined(PNG_1_0_X)
#ifdef PNG_ASSEMBLER_CODE_SUPPORTED
png_init_mmx_flags(png_ptr); /* 1.2.0 addition */
#endif
#endif /* PNG_1_0_X */
 
#ifdef PNG_SETJMP_SUPPORTED
#ifdef USE_FAR_KEYWORD
if (setjmp(jmpbuf))
#else
if (setjmp(png_ptr->jmpbuf))
#endif
{
png_free(png_ptr, png_ptr->zbuf);
png_ptr->zbuf=NULL;
png_destroy_struct(png_ptr);
return (NULL);
}
#ifdef USE_FAR_KEYWORD
png_memcpy(png_ptr->jmpbuf,jmpbuf,sizeof(jmp_buf));
#endif
#endif
 
#ifdef PNG_USER_MEM_SUPPORTED
png_set_mem_fn(png_ptr, mem_ptr, malloc_fn, free_fn);
#endif /* PNG_USER_MEM_SUPPORTED */
png_set_error_fn(png_ptr, error_ptr, error_fn, warn_fn);
 
i=0;
do
{
if(user_png_ver[i] != png_libpng_ver[i])
png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH;
} while (png_libpng_ver[i++]);
 
if (png_ptr->flags & PNG_FLAG_LIBRARY_MISMATCH)
{
/* Libpng 0.90 and later are binary incompatible with libpng 0.89, so
* we must recompile any applications that use any older library version.
* For versions after libpng 1.0, we will be compatible, so we need
* only check the first digit.
*/
if (user_png_ver == NULL || user_png_ver[0] != png_libpng_ver[0] ||
(user_png_ver[0] == '1' && user_png_ver[2] != png_libpng_ver[2]) ||
(user_png_ver[0] == '0' && user_png_ver[2] < '9'))
{
#if !defined(PNG_NO_STDIO) && !defined(_WIN32_WCE)
char msg[80];
if (user_png_ver)
{
sprintf(msg, "Application was compiled with png.h from libpng-%.20s",
user_png_ver);
png_warning(png_ptr, msg);
}
sprintf(msg, "Application is running with png.c from libpng-%.20s",
png_libpng_ver);
png_warning(png_ptr, msg);
#endif
#ifdef PNG_ERROR_NUMBERS_SUPPORTED
png_ptr->flags=0;
#endif
png_error(png_ptr,
"Incompatible libpng version in application and library");
}
}
 
/* initialize zbuf - compression buffer */
png_ptr->zbuf_size = PNG_ZBUF_SIZE;
png_ptr->zbuf = (png_bytep)png_malloc(png_ptr,
(png_uint_32)png_ptr->zbuf_size);
 
png_set_write_fn(png_ptr, png_voidp_NULL, png_rw_ptr_NULL,
png_flush_ptr_NULL);
 
#if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED)
png_set_filter_heuristics(png_ptr, PNG_FILTER_HEURISTIC_DEFAULT,
1, png_doublep_NULL, png_doublep_NULL);
#endif
 
#ifdef PNG_SETJMP_SUPPORTED
/* Applications that neglect to set up their own setjmp() and then encounter
a png_error() will longjmp here. Since the jmpbuf is then meaningless we
abort instead of returning. */
#ifdef USE_FAR_KEYWORD
if (setjmp(jmpbuf))
PNG_ABORT();
png_memcpy(png_ptr->jmpbuf,jmpbuf,sizeof(jmp_buf));
#else
if (setjmp(png_ptr->jmpbuf))
PNG_ABORT();
#endif
#endif
return (png_ptr);
}
 
/* Initialize png_ptr structure, and allocate any memory needed */
#undef png_write_init
void PNGAPI
png_write_init(png_structp png_ptr)
{
/* We only come here via pre-1.0.7-compiled applications */
png_write_init_2(png_ptr, "1.0.6 or earlier", 0, 0);
}
 
void PNGAPI
png_write_init_2(png_structp png_ptr, png_const_charp user_png_ver,
png_size_t png_struct_size, png_size_t png_info_size)
{
/* We only come here via pre-1.0.12-compiled applications */
#if !defined(PNG_NO_STDIO) && !defined(_WIN32_WCE)
if(sizeof(png_struct) > png_struct_size || sizeof(png_info) > png_info_size)
{
char msg[80];
png_ptr->warning_fn=NULL;
if (user_png_ver)
{
sprintf(msg, "Application was compiled with png.h from libpng-%.20s",
user_png_ver);
png_warning(png_ptr, msg);
}
sprintf(msg, "Application is running with png.c from libpng-%.20s",
png_libpng_ver);
png_warning(png_ptr, msg);
}
#endif
if(sizeof(png_struct) > png_struct_size)
{
png_ptr->error_fn=NULL;
#ifdef PNG_ERROR_NUMBERS_SUPPORTED
png_ptr->flags=0;
#endif
png_error(png_ptr,
"The png struct allocated by the application for writing is too small.");
}
if(sizeof(png_info) > png_info_size)
{
png_ptr->error_fn=NULL;
#ifdef PNG_ERROR_NUMBERS_SUPPORTED
png_ptr->flags=0;
#endif
png_error(png_ptr,
"The info struct allocated by the application for writing is too small.");
}
png_write_init_3(&png_ptr, user_png_ver, png_struct_size);
}
 
 
void PNGAPI
png_write_init_3(png_structpp ptr_ptr, png_const_charp user_png_ver,
png_size_t png_struct_size)
{
png_structp png_ptr=*ptr_ptr;
#ifdef PNG_SETJMP_SUPPORTED
jmp_buf tmp_jmp; /* to save current jump buffer */
#endif
int i = 0;
do
{
if (user_png_ver[i] != png_libpng_ver[i])
{
#ifdef PNG_LEGACY_SUPPORTED
png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH;
#else
png_ptr->warning_fn=NULL;
png_warning(png_ptr,
"Application uses deprecated png_write_init() and should be recompiled.");
break;
#endif
}
} while (png_libpng_ver[i++]);
 
png_debug(1, "in png_write_init_3\n");
 
#ifdef PNG_SETJMP_SUPPORTED
/* save jump buffer and error functions */
png_memcpy(tmp_jmp, png_ptr->jmpbuf, sizeof (jmp_buf));
#endif
 
if (sizeof(png_struct) > png_struct_size)
{
png_destroy_struct(png_ptr);
png_ptr = (png_structp)png_create_struct(PNG_STRUCT_PNG);
*ptr_ptr = png_ptr;
}
 
/* reset all variables to 0 */
png_memset(png_ptr, 0, sizeof (png_struct));
 
#if !defined(PNG_1_0_X)
#ifdef PNG_ASSEMBLER_CODE_SUPPORTED
png_init_mmx_flags(png_ptr); /* 1.2.0 addition */
#endif
#endif /* PNG_1_0_X */
 
#ifdef PNG_SETJMP_SUPPORTED
/* restore jump buffer */
png_memcpy(png_ptr->jmpbuf, tmp_jmp, sizeof (jmp_buf));
#endif
 
png_set_write_fn(png_ptr, png_voidp_NULL, png_rw_ptr_NULL,
png_flush_ptr_NULL);
 
/* initialize zbuf - compression buffer */
png_ptr->zbuf_size = PNG_ZBUF_SIZE;
png_ptr->zbuf = (png_bytep)png_malloc(png_ptr,
(png_uint_32)png_ptr->zbuf_size);
 
#if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED)
png_set_filter_heuristics(png_ptr, PNG_FILTER_HEURISTIC_DEFAULT,
1, png_doublep_NULL, png_doublep_NULL);
#endif
}
 
/* Write a few rows of image data. If the image is interlaced,
* either you will have to write the 7 sub images, or, if you
* have called png_set_interlace_handling(), you will have to
* "write" the image seven times.
*/
void PNGAPI
png_write_rows(png_structp png_ptr, png_bytepp row,
png_uint_32 num_rows)
{
png_uint_32 i; /* row counter */
png_bytepp rp; /* row pointer */
 
png_debug(1, "in png_write_rows\n");
/* loop through the rows */
for (i = 0, rp = row; i < num_rows; i++, rp++)
{
png_write_row(png_ptr, *rp);
}
}
 
/* Write the image. You only need to call this function once, even
* if you are writing an interlaced image.
*/
void PNGAPI
png_write_image(png_structp png_ptr, png_bytepp image)
{
png_uint_32 i; /* row index */
int pass, num_pass; /* pass variables */
png_bytepp rp; /* points to current row */
 
png_debug(1, "in png_write_image\n");
#if defined(PNG_WRITE_INTERLACING_SUPPORTED)
/* intialize interlace handling. If image is not interlaced,
this will set pass to 1 */
num_pass = png_set_interlace_handling(png_ptr);
#else
num_pass = 1;
#endif
/* loop through passes */
for (pass = 0; pass < num_pass; pass++)
{
/* loop through image */
for (i = 0, rp = image; i < png_ptr->height; i++, rp++)
{
png_write_row(png_ptr, *rp);
}
}
}
 
/* called by user to write a row of image data */
void PNGAPI
png_write_row(png_structp png_ptr, png_bytep row)
{
png_debug2(1, "in png_write_row (row %ld, pass %d)\n",
png_ptr->row_number, png_ptr->pass);
/* initialize transformations and other stuff if first time */
if (png_ptr->row_number == 0 && png_ptr->pass == 0)
{
/* make sure we wrote the header info */
if (!(png_ptr->mode & PNG_WROTE_INFO_BEFORE_PLTE))
png_error(png_ptr,
"png_write_info was never called before png_write_row.");
 
/* check for transforms that have been set but were defined out */
#if !defined(PNG_WRITE_INVERT_SUPPORTED) && defined(PNG_READ_INVERT_SUPPORTED)
if (png_ptr->transformations & PNG_INVERT_MONO)
png_warning(png_ptr, "PNG_WRITE_INVERT_SUPPORTED is not defined.");
#endif
#if !defined(PNG_WRITE_FILLER_SUPPORTED) && defined(PNG_READ_FILLER_SUPPORTED)
if (png_ptr->transformations & PNG_FILLER)
png_warning(png_ptr, "PNG_WRITE_FILLER_SUPPORTED is not defined.");
#endif
#if !defined(PNG_WRITE_PACKSWAP_SUPPORTED) && defined(PNG_READ_PACKSWAP_SUPPORTED)
if (png_ptr->transformations & PNG_PACKSWAP)
png_warning(png_ptr, "PNG_WRITE_PACKSWAP_SUPPORTED is not defined.");
#endif
#if !defined(PNG_WRITE_PACK_SUPPORTED) && defined(PNG_READ_PACK_SUPPORTED)
if (png_ptr->transformations & PNG_PACK)
png_warning(png_ptr, "PNG_WRITE_PACK_SUPPORTED is not defined.");
#endif
#if !defined(PNG_WRITE_SHIFT_SUPPORTED) && defined(PNG_READ_SHIFT_SUPPORTED)
if (png_ptr->transformations & PNG_SHIFT)
png_warning(png_ptr, "PNG_WRITE_SHIFT_SUPPORTED is not defined.");
#endif
#if !defined(PNG_WRITE_BGR_SUPPORTED) && defined(PNG_READ_BGR_SUPPORTED)
if (png_ptr->transformations & PNG_BGR)
png_warning(png_ptr, "PNG_WRITE_BGR_SUPPORTED is not defined.");
#endif
#if !defined(PNG_WRITE_SWAP_SUPPORTED) && defined(PNG_READ_SWAP_SUPPORTED)
if (png_ptr->transformations & PNG_SWAP_BYTES)
png_warning(png_ptr, "PNG_WRITE_SWAP_SUPPORTED is not defined.");
#endif
 
png_write_start_row(png_ptr);
}
 
#if defined(PNG_WRITE_INTERLACING_SUPPORTED)
/* if interlaced and not interested in row, return */
if (png_ptr->interlaced && (png_ptr->transformations & PNG_INTERLACE))
{
switch (png_ptr->pass)
{
case 0:
if (png_ptr->row_number & 0x07)
{
png_write_finish_row(png_ptr);
return;
}
break;
case 1:
if ((png_ptr->row_number & 0x07) || png_ptr->width < 5)
{
png_write_finish_row(png_ptr);
return;
}
break;
case 2:
if ((png_ptr->row_number & 0x07) != 4)
{
png_write_finish_row(png_ptr);
return;
}
break;
case 3:
if ((png_ptr->row_number & 0x03) || png_ptr->width < 3)
{
png_write_finish_row(png_ptr);
return;
}
break;
case 4:
if ((png_ptr->row_number & 0x03) != 2)
{
png_write_finish_row(png_ptr);
return;
}
break;
case 5:
if ((png_ptr->row_number & 0x01) || png_ptr->width < 2)
{
png_write_finish_row(png_ptr);
return;
}
break;
case 6:
if (!(png_ptr->row_number & 0x01))
{
png_write_finish_row(png_ptr);
return;
}
break;
}
}
#endif
 
/* set up row info for transformations */
png_ptr->row_info.color_type = png_ptr->color_type;
png_ptr->row_info.width = png_ptr->usr_width;
png_ptr->row_info.channels = png_ptr->usr_channels;
png_ptr->row_info.bit_depth = png_ptr->usr_bit_depth;
png_ptr->row_info.pixel_depth = (png_byte)(png_ptr->row_info.bit_depth *
png_ptr->row_info.channels);
 
png_ptr->row_info.rowbytes = ((png_ptr->row_info.width *
(png_uint_32)png_ptr->row_info.pixel_depth + 7) >> 3);
 
png_debug1(3, "row_info->color_type = %d\n", png_ptr->row_info.color_type);
png_debug1(3, "row_info->width = %lu\n", png_ptr->row_info.width);
png_debug1(3, "row_info->channels = %d\n", png_ptr->row_info.channels);
png_debug1(3, "row_info->bit_depth = %d\n", png_ptr->row_info.bit_depth);
png_debug1(3, "row_info->pixel_depth = %d\n", png_ptr->row_info.pixel_depth);
png_debug1(3, "row_info->rowbytes = %lu\n", png_ptr->row_info.rowbytes);
 
/* Copy user's row into buffer, leaving room for filter byte. */
png_memcpy_check(png_ptr, png_ptr->row_buf + 1, row,
png_ptr->row_info.rowbytes);
 
#if defined(PNG_WRITE_INTERLACING_SUPPORTED)
/* handle interlacing */
if (png_ptr->interlaced && png_ptr->pass < 6 &&
(png_ptr->transformations & PNG_INTERLACE))
{
png_do_write_interlace(&(png_ptr->row_info),
png_ptr->row_buf + 1, png_ptr->pass);
/* this should always get caught above, but still ... */
if (!(png_ptr->row_info.width))
{
png_write_finish_row(png_ptr);
return;
}
}
#endif
 
/* handle other transformations */
if (png_ptr->transformations)
png_do_write_transformations(png_ptr);
 
#if defined(PNG_MNG_FEATURES_SUPPORTED)
/* Write filter_method 64 (intrapixel differencing) only if
* 1. Libpng was compiled with PNG_MNG_FEATURES_SUPPORTED and
* 2. Libpng did not write a PNG signature (this filter_method is only
* used in PNG datastreams that are embedded in MNG datastreams) and
* 3. The application called png_permit_mng_features with a mask that
* included PNG_FLAG_MNG_FILTER_64 and
* 4. The filter_method is 64 and
* 5. The color_type is RGB or RGBA
*/
if((png_ptr->mng_features_permitted & PNG_FLAG_MNG_FILTER_64) &&
(png_ptr->filter_type == PNG_INTRAPIXEL_DIFFERENCING))
{
/* Intrapixel differencing */
png_do_write_intrapixel(&(png_ptr->row_info), png_ptr->row_buf + 1);
}
#endif
 
/* Find a filter if necessary, filter the row and write it out. */
png_write_find_filter(png_ptr, &(png_ptr->row_info));
 
if (png_ptr->write_row_fn != NULL)
(*(png_ptr->write_row_fn))(png_ptr, png_ptr->row_number, png_ptr->pass);
}
 
#if defined(PNG_WRITE_FLUSH_SUPPORTED)
/* Set the automatic flush interval or 0 to turn flushing off */
void PNGAPI
png_set_flush(png_structp png_ptr, int nrows)
{
png_debug(1, "in png_set_flush\n");
png_ptr->flush_dist = (nrows < 0 ? 0 : nrows);
}
 
/* flush the current output buffers now */
void PNGAPI
png_write_flush(png_structp png_ptr)
{
int wrote_IDAT;
 
png_debug(1, "in png_write_flush\n");
/* We have already written out all of the data */
if (png_ptr->row_number >= png_ptr->num_rows)
return;
 
do
{
int ret;
 
/* compress the data */
ret = deflate(&png_ptr->zstream, Z_SYNC_FLUSH);
wrote_IDAT = 0;
 
/* check for compression errors */
if (ret != Z_OK)
{
if (png_ptr->zstream.msg != NULL)
png_error(png_ptr, png_ptr->zstream.msg);
else
png_error(png_ptr, "zlib error");
}
 
if (!(png_ptr->zstream.avail_out))
{
/* write the IDAT and reset the zlib output buffer */
png_write_IDAT(png_ptr, png_ptr->zbuf,
png_ptr->zbuf_size);
png_ptr->zstream.next_out = png_ptr->zbuf;
png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size;
wrote_IDAT = 1;
}
} while(wrote_IDAT == 1);
 
/* If there is any data left to be output, write it into a new IDAT */
if (png_ptr->zbuf_size != png_ptr->zstream.avail_out)
{
/* write the IDAT and reset the zlib output buffer */
png_write_IDAT(png_ptr, png_ptr->zbuf,
png_ptr->zbuf_size - png_ptr->zstream.avail_out);
png_ptr->zstream.next_out = png_ptr->zbuf;
png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size;
}
png_ptr->flush_rows = 0;
png_flush(png_ptr);
}
#endif /* PNG_WRITE_FLUSH_SUPPORTED */
 
/* free all memory used by the write */
void PNGAPI
png_destroy_write_struct(png_structpp png_ptr_ptr, png_infopp info_ptr_ptr)
{
png_structp png_ptr = NULL;
png_infop info_ptr = NULL;
#ifdef PNG_USER_MEM_SUPPORTED
png_free_ptr free_fn = NULL;
png_voidp mem_ptr = NULL;
#endif
 
png_debug(1, "in png_destroy_write_struct\n");
if (png_ptr_ptr != NULL)
{
png_ptr = *png_ptr_ptr;
#ifdef PNG_USER_MEM_SUPPORTED
free_fn = png_ptr->free_fn;
mem_ptr = png_ptr->mem_ptr;
#endif
}
 
if (info_ptr_ptr != NULL)
info_ptr = *info_ptr_ptr;
 
if (info_ptr != NULL)
{
png_free_data(png_ptr, info_ptr, PNG_FREE_ALL, -1);
 
#if defined(PNG_UNKNOWN_CHUNKS_SUPPORTED)
if (png_ptr->num_chunk_list)
{
png_free(png_ptr, png_ptr->chunk_list);
png_ptr->chunk_list=NULL;
png_ptr->num_chunk_list=0;
}
#endif
 
#ifdef PNG_USER_MEM_SUPPORTED
png_destroy_struct_2((png_voidp)info_ptr, (png_free_ptr)free_fn,
(png_voidp)mem_ptr);
#else
png_destroy_struct((png_voidp)info_ptr);
#endif
*info_ptr_ptr = NULL;
}
 
if (png_ptr != NULL)
{
png_write_destroy(png_ptr);
#ifdef PNG_USER_MEM_SUPPORTED
png_destroy_struct_2((png_voidp)png_ptr, (png_free_ptr)free_fn,
(png_voidp)mem_ptr);
#else
png_destroy_struct((png_voidp)png_ptr);
#endif
*png_ptr_ptr = NULL;
}
}
 
 
/* Free any memory used in png_ptr struct (old method) */
void /* PRIVATE */
png_write_destroy(png_structp png_ptr)
{
#ifdef PNG_SETJMP_SUPPORTED
jmp_buf tmp_jmp; /* save jump buffer */
#endif
png_error_ptr error_fn;
png_error_ptr warning_fn;
png_voidp error_ptr;
#ifdef PNG_USER_MEM_SUPPORTED
png_free_ptr free_fn;
#endif
 
png_debug(1, "in png_write_destroy\n");
/* free any memory zlib uses */
deflateEnd(&png_ptr->zstream);
 
/* free our memory. png_free checks NULL for us. */
png_free(png_ptr, png_ptr->zbuf);
png_free(png_ptr, png_ptr->row_buf);
png_free(png_ptr, png_ptr->prev_row);
png_free(png_ptr, png_ptr->sub_row);
png_free(png_ptr, png_ptr->up_row);
png_free(png_ptr, png_ptr->avg_row);
png_free(png_ptr, png_ptr->paeth_row);
 
#if defined(PNG_TIME_RFC1123_SUPPORTED)
png_free(png_ptr, png_ptr->time_buffer);
#endif
 
#if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED)
png_free(png_ptr, png_ptr->prev_filters);
png_free(png_ptr, png_ptr->filter_weights);
png_free(png_ptr, png_ptr->inv_filter_weights);
png_free(png_ptr, png_ptr->filter_costs);
png_free(png_ptr, png_ptr->inv_filter_costs);
#endif
 
#ifdef PNG_SETJMP_SUPPORTED
/* reset structure */
png_memcpy(tmp_jmp, png_ptr->jmpbuf, sizeof (jmp_buf));
#endif
 
error_fn = png_ptr->error_fn;
warning_fn = png_ptr->warning_fn;
error_ptr = png_ptr->error_ptr;
#ifdef PNG_USER_MEM_SUPPORTED
free_fn = png_ptr->free_fn;
#endif
 
png_memset(png_ptr, 0, sizeof (png_struct));
 
png_ptr->error_fn = error_fn;
png_ptr->warning_fn = warning_fn;
png_ptr->error_ptr = error_ptr;
#ifdef PNG_USER_MEM_SUPPORTED
png_ptr->free_fn = free_fn;
#endif
 
#ifdef PNG_SETJMP_SUPPORTED
png_memcpy(png_ptr->jmpbuf, tmp_jmp, sizeof (jmp_buf));
#endif
}
 
/* Allow the application to select one or more row filters to use. */
void PNGAPI
png_set_filter(png_structp png_ptr, int method, int filters)
{
png_debug(1, "in png_set_filter\n");
#if defined(PNG_MNG_FEATURES_SUPPORTED)
if((png_ptr->mng_features_permitted & PNG_FLAG_MNG_FILTER_64) &&
(method == PNG_INTRAPIXEL_DIFFERENCING))
method = PNG_FILTER_TYPE_BASE;
#endif
if (method == PNG_FILTER_TYPE_BASE)
{
switch (filters & (PNG_ALL_FILTERS | 0x07))
{
case 5:
case 6:
case 7: png_warning(png_ptr, "Unknown row filter for method 0");
case PNG_FILTER_VALUE_NONE: png_ptr->do_filter=PNG_FILTER_NONE; break;
case PNG_FILTER_VALUE_SUB: png_ptr->do_filter=PNG_FILTER_SUB; break;
case PNG_FILTER_VALUE_UP: png_ptr->do_filter=PNG_FILTER_UP; break;
case PNG_FILTER_VALUE_AVG: png_ptr->do_filter=PNG_FILTER_AVG; break;
case PNG_FILTER_VALUE_PAETH: png_ptr->do_filter=PNG_FILTER_PAETH;break;
default: png_ptr->do_filter = (png_byte)filters; break;
}
 
/* If we have allocated the row_buf, this means we have already started
* with the image and we should have allocated all of the filter buffers
* that have been selected. If prev_row isn't already allocated, then
* it is too late to start using the filters that need it, since we
* will be missing the data in the previous row. If an application
* wants to start and stop using particular filters during compression,
* it should start out with all of the filters, and then add and
* remove them after the start of compression.
*/
if (png_ptr->row_buf != NULL)
{
if ((png_ptr->do_filter & PNG_FILTER_SUB) && png_ptr->sub_row == NULL)
{
png_ptr->sub_row = (png_bytep)png_malloc(png_ptr,
(png_ptr->rowbytes + 1));
png_ptr->sub_row[0] = PNG_FILTER_VALUE_SUB;
}
 
if ((png_ptr->do_filter & PNG_FILTER_UP) && png_ptr->up_row == NULL)
{
if (png_ptr->prev_row == NULL)
{
png_warning(png_ptr, "Can't add Up filter after starting");
png_ptr->do_filter &= ~PNG_FILTER_UP;
}
else
{
png_ptr->up_row = (png_bytep)png_malloc(png_ptr,
(png_ptr->rowbytes + 1));
png_ptr->up_row[0] = PNG_FILTER_VALUE_UP;
}
}
 
if ((png_ptr->do_filter & PNG_FILTER_AVG) && png_ptr->avg_row == NULL)
{
if (png_ptr->prev_row == NULL)
{
png_warning(png_ptr, "Can't add Average filter after starting");
png_ptr->do_filter &= ~PNG_FILTER_AVG;
}
else
{
png_ptr->avg_row = (png_bytep)png_malloc(png_ptr,
(png_ptr->rowbytes + 1));
png_ptr->avg_row[0] = PNG_FILTER_VALUE_AVG;
}
}
 
if ((png_ptr->do_filter & PNG_FILTER_PAETH) &&
png_ptr->paeth_row == NULL)
{
if (png_ptr->prev_row == NULL)
{
png_warning(png_ptr, "Can't add Paeth filter after starting");
png_ptr->do_filter &= (png_byte)(~PNG_FILTER_PAETH);
}
else
{
png_ptr->paeth_row = (png_bytep)png_malloc(png_ptr,
(png_ptr->rowbytes + 1));
png_ptr->paeth_row[0] = PNG_FILTER_VALUE_PAETH;
}
}
 
if (png_ptr->do_filter == PNG_NO_FILTERS)
png_ptr->do_filter = PNG_FILTER_NONE;
}
}
else
png_error(png_ptr, "Unknown custom filter method");
}
 
/* This allows us to influence the way in which libpng chooses the "best"
* filter for the current scanline. While the "minimum-sum-of-absolute-
* differences metric is relatively fast and effective, there is some
* question as to whether it can be improved upon by trying to keep the
* filtered data going to zlib more consistent, hopefully resulting in
* better compression.
*/
#if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED) /* GRR 970116 */
void PNGAPI
png_set_filter_heuristics(png_structp png_ptr, int heuristic_method,
int num_weights, png_doublep filter_weights,
png_doublep filter_costs)
{
int i;
 
png_debug(1, "in png_set_filter_heuristics\n");
if (heuristic_method >= PNG_FILTER_HEURISTIC_LAST)
{
png_warning(png_ptr, "Unknown filter heuristic method");
return;
}
 
if (heuristic_method == PNG_FILTER_HEURISTIC_DEFAULT)
{
heuristic_method = PNG_FILTER_HEURISTIC_UNWEIGHTED;
}
 
if (num_weights < 0 || filter_weights == NULL ||
heuristic_method == PNG_FILTER_HEURISTIC_UNWEIGHTED)
{
num_weights = 0;
}
 
png_ptr->num_prev_filters = (png_byte)num_weights;
png_ptr->heuristic_method = (png_byte)heuristic_method;
 
if (num_weights > 0)
{
if (png_ptr->prev_filters == NULL)
{
png_ptr->prev_filters = (png_bytep)png_malloc(png_ptr,
(png_uint_32)(sizeof(png_byte) * num_weights));
 
/* To make sure that the weighting starts out fairly */
for (i = 0; i < num_weights; i++)
{
png_ptr->prev_filters[i] = 255;
}
}
 
if (png_ptr->filter_weights == NULL)
{
png_ptr->filter_weights = (png_uint_16p)png_malloc(png_ptr,
(png_uint_32)(sizeof(png_uint_16) * num_weights));
 
png_ptr->inv_filter_weights = (png_uint_16p)png_malloc(png_ptr,
(png_uint_32)(sizeof(png_uint_16) * num_weights));
for (i = 0; i < num_weights; i++)
{
png_ptr->inv_filter_weights[i] =
png_ptr->filter_weights[i] = PNG_WEIGHT_FACTOR;
}
}
 
for (i = 0; i < num_weights; i++)
{
if (filter_weights[i] < 0.0)
{
png_ptr->inv_filter_weights[i] =
png_ptr->filter_weights[i] = PNG_WEIGHT_FACTOR;
}
else
{
png_ptr->inv_filter_weights[i] =
(png_uint_16)((double)PNG_WEIGHT_FACTOR*filter_weights[i]+0.5);
png_ptr->filter_weights[i] =
(png_uint_16)((double)PNG_WEIGHT_FACTOR/filter_weights[i]+0.5);
}
}
}
 
/* If, in the future, there are other filter methods, this would
* need to be based on png_ptr->filter.
*/
if (png_ptr->filter_costs == NULL)
{
png_ptr->filter_costs = (png_uint_16p)png_malloc(png_ptr,
(png_uint_32)(sizeof(png_uint_16) * PNG_FILTER_VALUE_LAST));
 
png_ptr->inv_filter_costs = (png_uint_16p)png_malloc(png_ptr,
(png_uint_32)(sizeof(png_uint_16) * PNG_FILTER_VALUE_LAST));
 
for (i = 0; i < PNG_FILTER_VALUE_LAST; i++)
{
png_ptr->inv_filter_costs[i] =
png_ptr->filter_costs[i] = PNG_COST_FACTOR;
}
}
 
/* Here is where we set the relative costs of the different filters. We
* should take the desired compression level into account when setting
* the costs, so that Paeth, for instance, has a high relative cost at low
* compression levels, while it has a lower relative cost at higher
* compression settings. The filter types are in order of increasing
* relative cost, so it would be possible to do this with an algorithm.
*/
for (i = 0; i < PNG_FILTER_VALUE_LAST; i++)
{
if (filter_costs == NULL || filter_costs[i] < 0.0)
{
png_ptr->inv_filter_costs[i] =
png_ptr->filter_costs[i] = PNG_COST_FACTOR;
}
else if (filter_costs[i] >= 1.0)
{
png_ptr->inv_filter_costs[i] =
(png_uint_16)((double)PNG_COST_FACTOR / filter_costs[i] + 0.5);
png_ptr->filter_costs[i] =
(png_uint_16)((double)PNG_COST_FACTOR * filter_costs[i] + 0.5);
}
}
}
#endif /* PNG_WRITE_WEIGHTED_FILTER_SUPPORTED */
 
void PNGAPI
png_set_compression_level(png_structp png_ptr, int level)
{
png_debug(1, "in png_set_compression_level\n");
png_ptr->flags |= PNG_FLAG_ZLIB_CUSTOM_LEVEL;
png_ptr->zlib_level = level;
}
 
void PNGAPI
png_set_compression_mem_level(png_structp png_ptr, int mem_level)
{
png_debug(1, "in png_set_compression_mem_level\n");
png_ptr->flags |= PNG_FLAG_ZLIB_CUSTOM_MEM_LEVEL;
png_ptr->zlib_mem_level = mem_level;
}
 
void PNGAPI
png_set_compression_strategy(png_structp png_ptr, int strategy)
{
png_debug(1, "in png_set_compression_strategy\n");
png_ptr->flags |= PNG_FLAG_ZLIB_CUSTOM_STRATEGY;
png_ptr->zlib_strategy = strategy;
}
 
void PNGAPI
png_set_compression_window_bits(png_structp png_ptr, int window_bits)
{
if (window_bits > 15)
png_warning(png_ptr, "Only compression windows <= 32k supported by PNG");
else if (window_bits < 8)
png_warning(png_ptr, "Only compression windows >= 256 supported by PNG");
#ifndef WBITS_8_OK
/* avoid libpng bug with 256-byte windows */
if (window_bits == 8)
{
png_warning(png_ptr, "Compression window is being reset to 512");
window_bits=9;
}
#endif
png_ptr->flags |= PNG_FLAG_ZLIB_CUSTOM_WINDOW_BITS;
png_ptr->zlib_window_bits = window_bits;
}
 
void PNGAPI
png_set_compression_method(png_structp png_ptr, int method)
{
png_debug(1, "in png_set_compression_method\n");
if (method != 8)
png_warning(png_ptr, "Only compression method 8 is supported by PNG");
png_ptr->flags |= PNG_FLAG_ZLIB_CUSTOM_METHOD;
png_ptr->zlib_method = method;
}
 
void PNGAPI
png_set_write_status_fn(png_structp png_ptr, png_write_status_ptr write_row_fn)
{
png_ptr->write_row_fn = write_row_fn;
}
 
#if defined(PNG_WRITE_USER_TRANSFORM_SUPPORTED)
void PNGAPI
png_set_write_user_transform_fn(png_structp png_ptr, png_user_transform_ptr
write_user_transform_fn)
{
png_debug(1, "in png_set_write_user_transform_fn\n");
png_ptr->transformations |= PNG_USER_TRANSFORM;
png_ptr->write_user_transform_fn = write_user_transform_fn;
}
#endif
 
 
#if defined(PNG_INFO_IMAGE_SUPPORTED)
void PNGAPI
png_write_png(png_structp png_ptr, png_infop info_ptr,
int transforms, voidp params)
{
#if defined(PNG_WRITE_INVERT_ALPHA_SUPPORTED)
/* invert the alpha channel from opacity to transparency */
if (transforms & PNG_TRANSFORM_INVERT_ALPHA)
png_set_invert_alpha(png_ptr);
#endif
 
/* Write the file header information. */
png_write_info(png_ptr, info_ptr);
 
/* ------ these transformations don't touch the info structure ------- */
 
#if defined(PNG_WRITE_INVERT_SUPPORTED)
/* invert monochrome pixels */
if (transforms & PNG_TRANSFORM_INVERT_MONO)
png_set_invert_mono(png_ptr);
#endif
 
#if defined(PNG_WRITE_SHIFT_SUPPORTED)
/* Shift the pixels up to a legal bit depth and fill in
* as appropriate to correctly scale the image.
*/
if ((transforms & PNG_TRANSFORM_SHIFT)
&& (info_ptr->valid & PNG_INFO_sBIT))
png_set_shift(png_ptr, &info_ptr->sig_bit);
#endif
 
#if defined(PNG_WRITE_PACK_SUPPORTED)
/* pack pixels into bytes */
if (transforms & PNG_TRANSFORM_PACKING)
png_set_packing(png_ptr);
#endif
 
#if defined(PNG_WRITE_SWAP_ALPHA_SUPPORTED)
/* swap location of alpha bytes from ARGB to RGBA */
if (transforms & PNG_TRANSFORM_SWAP_ALPHA)
png_set_swap_alpha(png_ptr);
#endif
 
#if defined(PNG_WRITE_FILLER_SUPPORTED)
/* Get rid of filler (OR ALPHA) bytes, pack XRGB/RGBX/ARGB/RGBA into
* RGB (4 channels -> 3 channels). The second parameter is not used.
*/
if (transforms & PNG_TRANSFORM_STRIP_FILLER)
png_set_filler(png_ptr, 0, PNG_FILLER_BEFORE);
#endif
 
#if defined(PNG_WRITE_BGR_SUPPORTED)
/* flip BGR pixels to RGB */
if (transforms & PNG_TRANSFORM_BGR)
png_set_bgr(png_ptr);
#endif
 
#if defined(PNG_WRITE_SWAP_SUPPORTED)
/* swap bytes of 16-bit files to most significant byte first */
if (transforms & PNG_TRANSFORM_SWAP_ENDIAN)
png_set_swap(png_ptr);
#endif
 
#if defined(PNG_WRITE_PACKSWAP_SUPPORTED)
/* swap bits of 1, 2, 4 bit packed pixel formats */
if (transforms & PNG_TRANSFORM_PACKSWAP)
png_set_packswap(png_ptr);
#endif
 
/* ----------------------- end of transformations ------------------- */
 
/* write the bits */
if (info_ptr->valid & PNG_INFO_IDAT)
png_write_image(png_ptr, info_ptr->row_pointers);
 
/* It is REQUIRED to call this to finish writing the rest of the file */
png_write_end(png_ptr, info_ptr);
 
if(transforms == 0 || params == NULL)
/* quiet compiler warnings */ return;
}
#endif
#endif /* PNG_WRITE_SUPPORTED */
/shark/trunk/ports/png/pngpread.c
0,0 → 1,1543
 
/* pngpread.c - read a png file in push mode
*
* libpng 1.2.5 - October 3, 2002
* For conditions of distribution and use, see copyright notice in png.h
* Copyright (c) 1998-2002 Glenn Randers-Pehrson
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
*/
 
#define PNG_INTERNAL
#include "png.h"
 
#ifdef PNG_PROGRESSIVE_READ_SUPPORTED
 
/* push model modes */
#define PNG_READ_SIG_MODE 0
#define PNG_READ_CHUNK_MODE 1
#define PNG_READ_IDAT_MODE 2
#define PNG_SKIP_MODE 3
#define PNG_READ_tEXt_MODE 4
#define PNG_READ_zTXt_MODE 5
#define PNG_READ_DONE_MODE 6
#define PNG_READ_iTXt_MODE 7
#define PNG_ERROR_MODE 8
 
void PNGAPI
png_process_data(png_structp png_ptr, png_infop info_ptr,
png_bytep buffer, png_size_t buffer_size)
{
png_push_restore_buffer(png_ptr, buffer, buffer_size);
 
while (png_ptr->buffer_size)
{
png_process_some_data(png_ptr, info_ptr);
}
}
 
/* What we do with the incoming data depends on what we were previously
* doing before we ran out of data...
*/
void /* PRIVATE */
png_process_some_data(png_structp png_ptr, png_infop info_ptr)
{
switch (png_ptr->process_mode)
{
case PNG_READ_SIG_MODE:
{
png_push_read_sig(png_ptr, info_ptr);
break;
}
case PNG_READ_CHUNK_MODE:
{
png_push_read_chunk(png_ptr, info_ptr);
break;
}
case PNG_READ_IDAT_MODE:
{
png_push_read_IDAT(png_ptr);
break;
}
#if defined(PNG_READ_tEXt_SUPPORTED)
case PNG_READ_tEXt_MODE:
{
png_push_read_tEXt(png_ptr, info_ptr);
break;
}
#endif
#if defined(PNG_READ_zTXt_SUPPORTED)
case PNG_READ_zTXt_MODE:
{
png_push_read_zTXt(png_ptr, info_ptr);
break;
}
#endif
#if defined(PNG_READ_iTXt_SUPPORTED)
case PNG_READ_iTXt_MODE:
{
png_push_read_iTXt(png_ptr, info_ptr);
break;
}
#endif
case PNG_SKIP_MODE:
{
png_push_crc_finish(png_ptr);
break;
}
default:
{
png_ptr->buffer_size = 0;
break;
}
}
}
 
/* Read any remaining signature bytes from the stream and compare them with
* the correct PNG signature. It is possible that this routine is called
* with bytes already read from the signature, either because they have been
* checked by the calling application, or because of multiple calls to this
* routine.
*/
void /* PRIVATE */
png_push_read_sig(png_structp png_ptr, png_infop info_ptr)
{
png_size_t num_checked = png_ptr->sig_bytes,
num_to_check = 8 - num_checked;
 
if (png_ptr->buffer_size < num_to_check)
{
num_to_check = png_ptr->buffer_size;
}
 
png_push_fill_buffer(png_ptr, &(info_ptr->signature[num_checked]),
num_to_check);
png_ptr->sig_bytes = (png_byte)(png_ptr->sig_bytes+num_to_check);
 
if (png_sig_cmp(info_ptr->signature, num_checked, num_to_check))
{
if (num_checked < 4 &&
png_sig_cmp(info_ptr->signature, num_checked, num_to_check - 4))
png_error(png_ptr, "Not a PNG file");
else
png_error(png_ptr, "PNG file corrupted by ASCII conversion");
}
else
{
if (png_ptr->sig_bytes >= 8)
{
png_ptr->process_mode = PNG_READ_CHUNK_MODE;
}
}
}
 
void /* PRIVATE */
png_push_read_chunk(png_structp png_ptr, png_infop info_ptr)
{
#ifdef PNG_USE_LOCAL_ARRAYS
PNG_IHDR;
PNG_IDAT;
PNG_IEND;
PNG_PLTE;
#if defined(PNG_READ_bKGD_SUPPORTED)
PNG_bKGD;
#endif
#if defined(PNG_READ_cHRM_SUPPORTED)
PNG_cHRM;
#endif
#if defined(PNG_READ_gAMA_SUPPORTED)
PNG_gAMA;
#endif
#if defined(PNG_READ_hIST_SUPPORTED)
PNG_hIST;
#endif
#if defined(PNG_READ_iCCP_SUPPORTED)
PNG_iCCP;
#endif
#if defined(PNG_READ_iTXt_SUPPORTED)
PNG_iTXt;
#endif
#if defined(PNG_READ_oFFs_SUPPORTED)
PNG_oFFs;
#endif
#if defined(PNG_READ_pCAL_SUPPORTED)
PNG_pCAL;
#endif
#if defined(PNG_READ_pHYs_SUPPORTED)
PNG_pHYs;
#endif
#if defined(PNG_READ_sBIT_SUPPORTED)
PNG_sBIT;
#endif
#if defined(PNG_READ_sCAL_SUPPORTED)
PNG_sCAL;
#endif
#if defined(PNG_READ_sRGB_SUPPORTED)
PNG_sRGB;
#endif
#if defined(PNG_READ_sPLT_SUPPORTED)
PNG_sPLT;
#endif
#if defined(PNG_READ_tEXt_SUPPORTED)
PNG_tEXt;
#endif
#if defined(PNG_READ_tIME_SUPPORTED)
PNG_tIME;
#endif
#if defined(PNG_READ_tRNS_SUPPORTED)
PNG_tRNS;
#endif
#if defined(PNG_READ_zTXt_SUPPORTED)
PNG_zTXt;
#endif
#endif /* PNG_USE_LOCAL_ARRAYS */
/* First we make sure we have enough data for the 4 byte chunk name
* and the 4 byte chunk length before proceeding with decoding the
* chunk data. To fully decode each of these chunks, we also make
* sure we have enough data in the buffer for the 4 byte CRC at the
* end of every chunk (except IDAT, which is handled separately).
*/
if (!(png_ptr->mode & PNG_HAVE_CHUNK_HEADER))
{
png_byte chunk_length[4];
 
if (png_ptr->buffer_size < 8)
{
png_push_save_buffer(png_ptr);
return;
}
 
png_push_fill_buffer(png_ptr, chunk_length, 4);
png_ptr->push_length = png_get_uint_32(chunk_length);
png_reset_crc(png_ptr);
png_crc_read(png_ptr, png_ptr->chunk_name, 4);
png_ptr->mode |= PNG_HAVE_CHUNK_HEADER;
}
 
if (!png_memcmp(png_ptr->chunk_name, png_IHDR, 4))
{
if (png_ptr->push_length + 4 > png_ptr->buffer_size)
{
png_push_save_buffer(png_ptr);
return;
}
png_handle_IHDR(png_ptr, info_ptr, png_ptr->push_length);
}
else if (!png_memcmp(png_ptr->chunk_name, png_PLTE, 4))
{
if (png_ptr->push_length + 4 > png_ptr->buffer_size)
{
png_push_save_buffer(png_ptr);
return;
}
png_handle_PLTE(png_ptr, info_ptr, png_ptr->push_length);
}
else if (!png_memcmp(png_ptr->chunk_name, (png_bytep)png_IDAT, 4))
{
/* If we reach an IDAT chunk, this means we have read all of the
* header chunks, and we can start reading the image (or if this
* is called after the image has been read - we have an error).
*/
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before IDAT");
else if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE &&
!(png_ptr->mode & PNG_HAVE_PLTE))
png_error(png_ptr, "Missing PLTE before IDAT");
 
if (png_ptr->mode & PNG_HAVE_IDAT)
{
if (png_ptr->push_length == 0)
return;
 
if (png_ptr->mode & PNG_AFTER_IDAT)
png_error(png_ptr, "Too many IDAT's found");
}
 
png_ptr->idat_size = png_ptr->push_length;
png_ptr->mode |= PNG_HAVE_IDAT;
png_ptr->process_mode = PNG_READ_IDAT_MODE;
png_push_have_info(png_ptr, info_ptr);
png_ptr->zstream.avail_out = (uInt)png_ptr->irowbytes;
png_ptr->zstream.next_out = png_ptr->row_buf;
return;
}
else if (!png_memcmp(png_ptr->chunk_name, png_IEND, 4))
{
if (png_ptr->push_length + 4 > png_ptr->buffer_size)
{
png_push_save_buffer(png_ptr);
return;
}
png_handle_IEND(png_ptr, info_ptr, png_ptr->push_length);
 
png_ptr->process_mode = PNG_READ_DONE_MODE;
png_push_have_end(png_ptr, info_ptr);
}
#if defined(PNG_READ_gAMA_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_gAMA, 4))
{
if (png_ptr->push_length + 4 > png_ptr->buffer_size)
{
png_push_save_buffer(png_ptr);
return;
}
png_handle_gAMA(png_ptr, info_ptr, png_ptr->push_length);
}
#endif
#if defined(PNG_READ_sBIT_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_sBIT, 4))
{
if (png_ptr->push_length + 4 > png_ptr->buffer_size)
{
png_push_save_buffer(png_ptr);
return;
}
png_handle_sBIT(png_ptr, info_ptr, png_ptr->push_length);
}
#endif
#if defined(PNG_READ_cHRM_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_cHRM, 4))
{
if (png_ptr->push_length + 4 > png_ptr->buffer_size)
{
png_push_save_buffer(png_ptr);
return;
}
png_handle_cHRM(png_ptr, info_ptr, png_ptr->push_length);
}
#endif
#if defined(PNG_READ_sRGB_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_sRGB, 4))
{
if (png_ptr->push_length + 4 > png_ptr->buffer_size)
{
png_push_save_buffer(png_ptr);
return;
}
png_handle_sRGB(png_ptr, info_ptr, png_ptr->push_length);
}
#endif
#if defined(PNG_READ_iCCP_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_iCCP, 4))
{
if (png_ptr->push_length + 4 > png_ptr->buffer_size)
{
png_push_save_buffer(png_ptr);
return;
}
png_handle_iCCP(png_ptr, info_ptr, png_ptr->push_length);
}
#endif
#if defined(PNG_READ_sPLT_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_sPLT, 4))
{
if (png_ptr->push_length + 4 > png_ptr->buffer_size)
{
png_push_save_buffer(png_ptr);
return;
}
png_handle_sPLT(png_ptr, info_ptr, png_ptr->push_length);
}
#endif
#if defined(PNG_READ_tRNS_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_tRNS, 4))
{
if (png_ptr->push_length + 4 > png_ptr->buffer_size)
{
png_push_save_buffer(png_ptr);
return;
}
png_handle_tRNS(png_ptr, info_ptr, png_ptr->push_length);
}
#endif
#if defined(PNG_READ_bKGD_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_bKGD, 4))
{
if (png_ptr->push_length + 4 > png_ptr->buffer_size)
{
png_push_save_buffer(png_ptr);
return;
}
png_handle_bKGD(png_ptr, info_ptr, png_ptr->push_length);
}
#endif
#if defined(PNG_READ_hIST_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_hIST, 4))
{
if (png_ptr->push_length + 4 > png_ptr->buffer_size)
{
png_push_save_buffer(png_ptr);
return;
}
png_handle_hIST(png_ptr, info_ptr, png_ptr->push_length);
}
#endif
#if defined(PNG_READ_pHYs_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_pHYs, 4))
{
if (png_ptr->push_length + 4 > png_ptr->buffer_size)
{
png_push_save_buffer(png_ptr);
return;
}
png_handle_pHYs(png_ptr, info_ptr, png_ptr->push_length);
}
#endif
#if defined(PNG_READ_oFFs_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_oFFs, 4))
{
if (png_ptr->push_length + 4 > png_ptr->buffer_size)
{
png_push_save_buffer(png_ptr);
return;
}
png_handle_oFFs(png_ptr, info_ptr, png_ptr->push_length);
}
#endif
#if defined(PNG_READ_pCAL_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_pCAL, 4))
{
if (png_ptr->push_length + 4 > png_ptr->buffer_size)
{
png_push_save_buffer(png_ptr);
return;
}
png_handle_pCAL(png_ptr, info_ptr, png_ptr->push_length);
}
#endif
#if defined(PNG_READ_sCAL_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_sCAL, 4))
{
if (png_ptr->push_length + 4 > png_ptr->buffer_size)
{
png_push_save_buffer(png_ptr);
return;
}
png_handle_sCAL(png_ptr, info_ptr, png_ptr->push_length);
}
#endif
#if defined(PNG_READ_tIME_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_tIME, 4))
{
if (png_ptr->push_length + 4 > png_ptr->buffer_size)
{
png_push_save_buffer(png_ptr);
return;
}
png_handle_tIME(png_ptr, info_ptr, png_ptr->push_length);
}
#endif
#if defined(PNG_READ_tEXt_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_tEXt, 4))
{
if (png_ptr->push_length + 4 > png_ptr->buffer_size)
{
png_push_save_buffer(png_ptr);
return;
}
png_push_handle_tEXt(png_ptr, info_ptr, png_ptr->push_length);
}
#endif
#if defined(PNG_READ_zTXt_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_zTXt, 4))
{
if (png_ptr->push_length + 4 > png_ptr->buffer_size)
{
png_push_save_buffer(png_ptr);
return;
}
png_push_handle_zTXt(png_ptr, info_ptr, png_ptr->push_length);
}
#endif
#if defined(PNG_READ_iTXt_SUPPORTED)
else if (!png_memcmp(png_ptr->chunk_name, png_iTXt, 4))
{
if (png_ptr->push_length + 4 > png_ptr->buffer_size)
{
png_push_save_buffer(png_ptr);
return;
}
png_push_handle_iTXt(png_ptr, info_ptr, png_ptr->push_length);
}
#endif
else
{
if (png_ptr->push_length + 4 > png_ptr->buffer_size)
{
png_push_save_buffer(png_ptr);
return;
}
png_push_handle_unknown(png_ptr, info_ptr, png_ptr->push_length);
}
 
png_ptr->mode &= ~PNG_HAVE_CHUNK_HEADER;
}
 
void /* PRIVATE */
png_push_crc_skip(png_structp png_ptr, png_uint_32 skip)
{
png_ptr->process_mode = PNG_SKIP_MODE;
png_ptr->skip_length = skip;
}
 
void /* PRIVATE */
png_push_crc_finish(png_structp png_ptr)
{
if (png_ptr->skip_length && png_ptr->save_buffer_size)
{
png_size_t save_size;
 
if (png_ptr->skip_length < (png_uint_32)png_ptr->save_buffer_size)
save_size = (png_size_t)png_ptr->skip_length;
else
save_size = png_ptr->save_buffer_size;
 
png_calculate_crc(png_ptr, png_ptr->save_buffer_ptr, save_size);
 
png_ptr->skip_length -= save_size;
png_ptr->buffer_size -= save_size;
png_ptr->save_buffer_size -= save_size;
png_ptr->save_buffer_ptr += save_size;
}
if (png_ptr->skip_length && png_ptr->current_buffer_size)
{
png_size_t save_size;
 
if (png_ptr->skip_length < (png_uint_32)png_ptr->current_buffer_size)
save_size = (png_size_t)png_ptr->skip_length;
else
save_size = png_ptr->current_buffer_size;
 
png_calculate_crc(png_ptr, png_ptr->current_buffer_ptr, save_size);
 
png_ptr->skip_length -= save_size;
png_ptr->buffer_size -= save_size;
png_ptr->current_buffer_size -= save_size;
png_ptr->current_buffer_ptr += save_size;
}
if (!png_ptr->skip_length)
{
if (png_ptr->buffer_size < 4)
{
png_push_save_buffer(png_ptr);
return;
}
 
png_crc_finish(png_ptr, 0);
png_ptr->process_mode = PNG_READ_CHUNK_MODE;
}
}
 
void PNGAPI
png_push_fill_buffer(png_structp png_ptr, png_bytep buffer, png_size_t length)
{
png_bytep ptr;
 
ptr = buffer;
if (png_ptr->save_buffer_size)
{
png_size_t save_size;
 
if (length < png_ptr->save_buffer_size)
save_size = length;
else
save_size = png_ptr->save_buffer_size;
 
png_memcpy(ptr, png_ptr->save_buffer_ptr, save_size);
length -= save_size;
ptr += save_size;
png_ptr->buffer_size -= save_size;
png_ptr->save_buffer_size -= save_size;
png_ptr->save_buffer_ptr += save_size;
}
if (length && png_ptr->current_buffer_size)
{
png_size_t save_size;
 
if (length < png_ptr->current_buffer_size)
save_size = length;
else
save_size = png_ptr->current_buffer_size;
 
png_memcpy(ptr, png_ptr->current_buffer_ptr, save_size);
png_ptr->buffer_size -= save_size;
png_ptr->current_buffer_size -= save_size;
png_ptr->current_buffer_ptr += save_size;
}
}
 
void /* PRIVATE */
png_push_save_buffer(png_structp png_ptr)
{
if (png_ptr->save_buffer_size)
{
if (png_ptr->save_buffer_ptr != png_ptr->save_buffer)
{
png_size_t i,istop;
png_bytep sp;
png_bytep dp;
 
istop = png_ptr->save_buffer_size;
for (i = 0, sp = png_ptr->save_buffer_ptr, dp = png_ptr->save_buffer;
i < istop; i++, sp++, dp++)
{
*dp = *sp;
}
}
}
if (png_ptr->save_buffer_size + png_ptr->current_buffer_size >
png_ptr->save_buffer_max)
{
png_size_t new_max;
png_bytep old_buffer;
 
new_max = png_ptr->save_buffer_size + png_ptr->current_buffer_size + 256;
old_buffer = png_ptr->save_buffer;
png_ptr->save_buffer = (png_bytep)png_malloc(png_ptr,
(png_uint_32)new_max);
png_memcpy(png_ptr->save_buffer, old_buffer, png_ptr->save_buffer_size);
png_free(png_ptr, old_buffer);
png_ptr->save_buffer_max = new_max;
}
if (png_ptr->current_buffer_size)
{
png_memcpy(png_ptr->save_buffer + png_ptr->save_buffer_size,
png_ptr->current_buffer_ptr, png_ptr->current_buffer_size);
png_ptr->save_buffer_size += png_ptr->current_buffer_size;
png_ptr->current_buffer_size = 0;
}
png_ptr->save_buffer_ptr = png_ptr->save_buffer;
png_ptr->buffer_size = 0;
}
 
void /* PRIVATE */
png_push_restore_buffer(png_structp png_ptr, png_bytep buffer,
png_size_t buffer_length)
{
png_ptr->current_buffer = buffer;
png_ptr->current_buffer_size = buffer_length;
png_ptr->buffer_size = buffer_length + png_ptr->save_buffer_size;
png_ptr->current_buffer_ptr = png_ptr->current_buffer;
}
 
void /* PRIVATE */
png_push_read_IDAT(png_structp png_ptr)
{
#ifdef PNG_USE_LOCAL_ARRAYS
PNG_IDAT;
#endif
if (!(png_ptr->mode & PNG_HAVE_CHUNK_HEADER))
{
png_byte chunk_length[4];
 
if (png_ptr->buffer_size < 8)
{
png_push_save_buffer(png_ptr);
return;
}
 
png_push_fill_buffer(png_ptr, chunk_length, 4);
png_ptr->push_length = png_get_uint_32(chunk_length);
 
png_reset_crc(png_ptr);
png_crc_read(png_ptr, png_ptr->chunk_name, 4);
png_ptr->mode |= PNG_HAVE_CHUNK_HEADER;
 
if (png_memcmp(png_ptr->chunk_name, (png_bytep)png_IDAT, 4))
{
png_ptr->process_mode = PNG_READ_CHUNK_MODE;
if (!(png_ptr->flags & PNG_FLAG_ZLIB_FINISHED))
png_error(png_ptr, "Not enough compressed data");
return;
}
 
png_ptr->idat_size = png_ptr->push_length;
}
if (png_ptr->idat_size && png_ptr->save_buffer_size)
{
png_size_t save_size;
 
if (png_ptr->idat_size < (png_uint_32)png_ptr->save_buffer_size)
{
save_size = (png_size_t)png_ptr->idat_size;
/* check for overflow */
if((png_uint_32)save_size != png_ptr->idat_size)
png_error(png_ptr, "save_size overflowed in pngpread");
}
else
save_size = png_ptr->save_buffer_size;
 
png_calculate_crc(png_ptr, png_ptr->save_buffer_ptr, save_size);
if (!(png_ptr->flags & PNG_FLAG_ZLIB_FINISHED))
png_process_IDAT_data(png_ptr, png_ptr->save_buffer_ptr, save_size);
png_ptr->idat_size -= save_size;
png_ptr->buffer_size -= save_size;
png_ptr->save_buffer_size -= save_size;
png_ptr->save_buffer_ptr += save_size;
}
if (png_ptr->idat_size && png_ptr->current_buffer_size)
{
png_size_t save_size;
 
if (png_ptr->idat_size < (png_uint_32)png_ptr->current_buffer_size)
{
save_size = (png_size_t)png_ptr->idat_size;
/* check for overflow */
if((png_uint_32)save_size != png_ptr->idat_size)
png_error(png_ptr, "save_size overflowed in pngpread");
}
else
save_size = png_ptr->current_buffer_size;
 
png_calculate_crc(png_ptr, png_ptr->current_buffer_ptr, save_size);
if (!(png_ptr->flags & PNG_FLAG_ZLIB_FINISHED))
png_process_IDAT_data(png_ptr, png_ptr->current_buffer_ptr, save_size);
 
png_ptr->idat_size -= save_size;
png_ptr->buffer_size -= save_size;
png_ptr->current_buffer_size -= save_size;
png_ptr->current_buffer_ptr += save_size;
}
if (!png_ptr->idat_size)
{
if (png_ptr->buffer_size < 4)
{
png_push_save_buffer(png_ptr);
return;
}
 
png_crc_finish(png_ptr, 0);
png_ptr->mode &= ~PNG_HAVE_CHUNK_HEADER;
png_ptr->mode |= PNG_AFTER_IDAT;
}
}
 
void /* PRIVATE */
png_process_IDAT_data(png_structp png_ptr, png_bytep buffer,
png_size_t buffer_length)
{
int ret;
 
if ((png_ptr->flags & PNG_FLAG_ZLIB_FINISHED) && buffer_length)
png_error(png_ptr, "Extra compression data");
 
png_ptr->zstream.next_in = buffer;
png_ptr->zstream.avail_in = (uInt)buffer_length;
for(;;)
{
ret = inflate(&png_ptr->zstream, Z_PARTIAL_FLUSH);
if (ret != Z_OK)
{
if (ret == Z_STREAM_END)
{
if (png_ptr->zstream.avail_in)
png_error(png_ptr, "Extra compressed data");
if (!(png_ptr->zstream.avail_out))
{
png_push_process_row(png_ptr);
}
 
png_ptr->mode |= PNG_AFTER_IDAT;
png_ptr->flags |= PNG_FLAG_ZLIB_FINISHED;
break;
}
else if (ret == Z_BUF_ERROR)
break;
else
png_error(png_ptr, "Decompression Error");
}
if (!(png_ptr->zstream.avail_out))
{
if ((
#if defined(PNG_READ_INTERLACING_SUPPORTED)
png_ptr->interlaced && png_ptr->pass > 6) ||
(!png_ptr->interlaced &&
#endif
png_ptr->row_number == png_ptr->num_rows-1))
{
if (png_ptr->zstream.avail_in)
png_warning(png_ptr, "Too much data in IDAT chunks");
png_ptr->flags |= PNG_FLAG_ZLIB_FINISHED;
break;
}
png_push_process_row(png_ptr);
png_ptr->zstream.avail_out = (uInt)png_ptr->irowbytes;
png_ptr->zstream.next_out = png_ptr->row_buf;
}
else
break;
}
}
 
void /* PRIVATE */
png_push_process_row(png_structp png_ptr)
{
png_ptr->row_info.color_type = png_ptr->color_type;
png_ptr->row_info.width = png_ptr->iwidth;
png_ptr->row_info.channels = png_ptr->channels;
png_ptr->row_info.bit_depth = png_ptr->bit_depth;
png_ptr->row_info.pixel_depth = png_ptr->pixel_depth;
 
png_ptr->row_info.rowbytes = ((png_ptr->row_info.width *
(png_uint_32)png_ptr->row_info.pixel_depth + 7) >> 3);
 
png_read_filter_row(png_ptr, &(png_ptr->row_info),
png_ptr->row_buf + 1, png_ptr->prev_row + 1,
(int)(png_ptr->row_buf[0]));
 
png_memcpy_check(png_ptr, png_ptr->prev_row, png_ptr->row_buf,
png_ptr->rowbytes + 1);
 
if (png_ptr->transformations)
png_do_read_transformations(png_ptr);
 
#if defined(PNG_READ_INTERLACING_SUPPORTED)
/* blow up interlaced rows to full size */
if (png_ptr->interlaced && (png_ptr->transformations & PNG_INTERLACE))
{
if (png_ptr->pass < 6)
/* old interface (pre-1.0.9):
png_do_read_interlace(&(png_ptr->row_info),
png_ptr->row_buf + 1, png_ptr->pass, png_ptr->transformations);
*/
png_do_read_interlace(png_ptr);
 
switch (png_ptr->pass)
{
case 0:
{
int i;
for (i = 0; i < 8 && png_ptr->pass == 0; i++)
{
png_push_have_row(png_ptr, png_ptr->row_buf + 1);
png_read_push_finish_row(png_ptr); /* updates png_ptr->pass */
}
if (png_ptr->pass == 2) /* pass 1 might be empty */
{
for (i = 0; i < 4 && png_ptr->pass == 2; i++)
{
png_push_have_row(png_ptr, png_bytep_NULL);
png_read_push_finish_row(png_ptr);
}
}
if (png_ptr->pass == 4 && png_ptr->height <= 4)
{
for (i = 0; i < 2 && png_ptr->pass == 4; i++)
{
png_push_have_row(png_ptr, png_bytep_NULL);
png_read_push_finish_row(png_ptr);
}
}
if (png_ptr->pass == 6 && png_ptr->height <= 4)
{
png_push_have_row(png_ptr, png_bytep_NULL);
png_read_push_finish_row(png_ptr);
}
break;
}
case 1:
{
int i;
for (i = 0; i < 8 && png_ptr->pass == 1; i++)
{
png_push_have_row(png_ptr, png_ptr->row_buf + 1);
png_read_push_finish_row(png_ptr);
}
if (png_ptr->pass == 2) /* skip top 4 generated rows */
{
for (i = 0; i < 4 && png_ptr->pass == 2; i++)
{
png_push_have_row(png_ptr, png_bytep_NULL);
png_read_push_finish_row(png_ptr);
}
}
break;
}
case 2:
{
int i;
for (i = 0; i < 4 && png_ptr->pass == 2; i++)
{
png_push_have_row(png_ptr, png_ptr->row_buf + 1);
png_read_push_finish_row(png_ptr);
}
for (i = 0; i < 4 && png_ptr->pass == 2; i++)
{
png_push_have_row(png_ptr, png_bytep_NULL);
png_read_push_finish_row(png_ptr);
}
if (png_ptr->pass == 4) /* pass 3 might be empty */
{
for (i = 0; i < 2 && png_ptr->pass == 4; i++)
{
png_push_have_row(png_ptr, png_bytep_NULL);
png_read_push_finish_row(png_ptr);
}
}
break;
}
case 3:
{
int i;
for (i = 0; i < 4 && png_ptr->pass == 3; i++)
{
png_push_have_row(png_ptr, png_ptr->row_buf + 1);
png_read_push_finish_row(png_ptr);
}
if (png_ptr->pass == 4) /* skip top two generated rows */
{
for (i = 0; i < 2 && png_ptr->pass == 4; i++)
{
png_push_have_row(png_ptr, png_bytep_NULL);
png_read_push_finish_row(png_ptr);
}
}
break;
}
case 4:
{
int i;
for (i = 0; i < 2 && png_ptr->pass == 4; i++)
{
png_push_have_row(png_ptr, png_ptr->row_buf + 1);
png_read_push_finish_row(png_ptr);
}
for (i = 0; i < 2 && png_ptr->pass == 4; i++)
{
png_push_have_row(png_ptr, png_bytep_NULL);
png_read_push_finish_row(png_ptr);
}
if (png_ptr->pass == 6) /* pass 5 might be empty */
{
png_push_have_row(png_ptr, png_bytep_NULL);
png_read_push_finish_row(png_ptr);
}
break;
}
case 5:
{
int i;
for (i = 0; i < 2 && png_ptr->pass == 5; i++)
{
png_push_have_row(png_ptr, png_ptr->row_buf + 1);
png_read_push_finish_row(png_ptr);
}
if (png_ptr->pass == 6) /* skip top generated row */
{
png_push_have_row(png_ptr, png_bytep_NULL);
png_read_push_finish_row(png_ptr);
}
break;
}
case 6:
{
png_push_have_row(png_ptr, png_ptr->row_buf + 1);
png_read_push_finish_row(png_ptr);
if (png_ptr->pass != 6)
break;
png_push_have_row(png_ptr, png_bytep_NULL);
png_read_push_finish_row(png_ptr);
}
}
}
else
#endif
{
png_push_have_row(png_ptr, png_ptr->row_buf + 1);
png_read_push_finish_row(png_ptr);
}
}
 
void /* PRIVATE */
png_read_push_finish_row(png_structp png_ptr)
{
#ifdef PNG_USE_LOCAL_ARRAYS
/* arrays to facilitate easy interlacing - use pass (0 - 6) as index */
 
/* start of interlace block */
const int FARDATA png_pass_start[] = {0, 4, 0, 2, 0, 1, 0};
 
/* offset to next interlace block */
const int FARDATA png_pass_inc[] = {8, 8, 4, 4, 2, 2, 1};
 
/* start of interlace block in the y direction */
const int FARDATA png_pass_ystart[] = {0, 0, 4, 0, 2, 0, 1};
 
/* offset to next interlace block in the y direction */
const int FARDATA png_pass_yinc[] = {8, 8, 8, 4, 4, 2, 2};
 
/* Width of interlace block. This is not currently used - if you need
* it, uncomment it here and in png.h
const int FARDATA png_pass_width[] = {8, 4, 4, 2, 2, 1, 1};
*/
 
/* Height of interlace block. This is not currently used - if you need
* it, uncomment it here and in png.h
const int FARDATA png_pass_height[] = {8, 8, 4, 4, 2, 2, 1};
*/
#endif
 
png_ptr->row_number++;
if (png_ptr->row_number < png_ptr->num_rows)
return;
 
if (png_ptr->interlaced)
{
png_ptr->row_number = 0;
png_memset_check(png_ptr, png_ptr->prev_row, 0,
png_ptr->rowbytes + 1);
do
{
png_ptr->pass++;
if ((png_ptr->pass == 1 && png_ptr->width < 5) ||
(png_ptr->pass == 3 && png_ptr->width < 3) ||
(png_ptr->pass == 5 && png_ptr->width < 2))
png_ptr->pass++;
 
if (png_ptr->pass > 7)
png_ptr->pass--;
if (png_ptr->pass >= 7)
break;
 
png_ptr->iwidth = (png_ptr->width +
png_pass_inc[png_ptr->pass] - 1 -
png_pass_start[png_ptr->pass]) /
png_pass_inc[png_ptr->pass];
 
png_ptr->irowbytes = ((png_ptr->iwidth *
png_ptr->pixel_depth + 7) >> 3) + 1;
 
if (png_ptr->transformations & PNG_INTERLACE)
break;
 
png_ptr->num_rows = (png_ptr->height +
png_pass_yinc[png_ptr->pass] - 1 -
png_pass_ystart[png_ptr->pass]) /
png_pass_yinc[png_ptr->pass];
 
} while (png_ptr->iwidth == 0 || png_ptr->num_rows == 0);
}
}
 
#if defined(PNG_READ_tEXt_SUPPORTED)
void /* PRIVATE */
png_push_handle_tEXt(png_structp png_ptr, png_infop info_ptr, png_uint_32
length)
{
if (!(png_ptr->mode & PNG_HAVE_IHDR) || (png_ptr->mode & PNG_HAVE_IEND))
{
png_error(png_ptr, "Out of place tEXt");
/* to quiet some compiler warnings */
if(info_ptr == NULL) return;
}
 
#ifdef PNG_MAX_MALLOC_64K
png_ptr->skip_length = 0; /* This may not be necessary */
 
if (length > (png_uint_32)65535L) /* Can't hold entire string in memory */
{
png_warning(png_ptr, "tEXt chunk too large to fit in memory");
png_ptr->skip_length = length - (png_uint_32)65535L;
length = (png_uint_32)65535L;
}
#endif
 
png_ptr->current_text = (png_charp)png_malloc(png_ptr,
(png_uint_32)(length+1));
png_ptr->current_text[length] = '\0';
png_ptr->current_text_ptr = png_ptr->current_text;
png_ptr->current_text_size = (png_size_t)length;
png_ptr->current_text_left = (png_size_t)length;
png_ptr->process_mode = PNG_READ_tEXt_MODE;
}
 
void /* PRIVATE */
png_push_read_tEXt(png_structp png_ptr, png_infop info_ptr)
{
if (png_ptr->buffer_size && png_ptr->current_text_left)
{
png_size_t text_size;
 
if (png_ptr->buffer_size < png_ptr->current_text_left)
text_size = png_ptr->buffer_size;
else
text_size = png_ptr->current_text_left;
png_crc_read(png_ptr, (png_bytep)png_ptr->current_text_ptr, text_size);
png_ptr->current_text_left -= text_size;
png_ptr->current_text_ptr += text_size;
}
if (!(png_ptr->current_text_left))
{
png_textp text_ptr;
png_charp text;
png_charp key;
int ret;
 
if (png_ptr->buffer_size < 4)
{
png_push_save_buffer(png_ptr);
return;
}
 
png_push_crc_finish(png_ptr);
 
#if defined(PNG_MAX_MALLOC_64K)
if (png_ptr->skip_length)
return;
#endif
 
key = png_ptr->current_text;
 
for (text = key; *text; text++)
/* empty loop */ ;
 
if (text != key + png_ptr->current_text_size)
text++;
 
text_ptr = (png_textp)png_malloc(png_ptr, (png_uint_32)sizeof(png_text));
text_ptr->compression = PNG_TEXT_COMPRESSION_NONE;
text_ptr->key = key;
#ifdef PNG_iTXt_SUPPORTED
text_ptr->lang = NULL;
text_ptr->lang_key = NULL;
#endif
text_ptr->text = text;
 
ret = png_set_text_2(png_ptr, info_ptr, text_ptr, 1);
 
png_free(png_ptr, key);
png_free(png_ptr, text_ptr);
png_ptr->current_text = NULL;
 
if (ret)
png_warning(png_ptr, "Insufficient memory to store text chunk.");
}
}
#endif
 
#if defined(PNG_READ_zTXt_SUPPORTED)
void /* PRIVATE */
png_push_handle_zTXt(png_structp png_ptr, png_infop info_ptr, png_uint_32
length)
{
if (!(png_ptr->mode & PNG_HAVE_IHDR) || (png_ptr->mode & PNG_HAVE_IEND))
{
png_error(png_ptr, "Out of place zTXt");
/* to quiet some compiler warnings */
if(info_ptr == NULL) return;
}
 
#ifdef PNG_MAX_MALLOC_64K
/* We can't handle zTXt chunks > 64K, since we don't have enough space
* to be able to store the uncompressed data. Actually, the threshold
* is probably around 32K, but it isn't as definite as 64K is.
*/
if (length > (png_uint_32)65535L)
{
png_warning(png_ptr, "zTXt chunk too large to fit in memory");
png_push_crc_skip(png_ptr, length);
return;
}
#endif
 
png_ptr->current_text = (png_charp)png_malloc(png_ptr,
(png_uint_32)(length+1));
png_ptr->current_text[length] = '\0';
png_ptr->current_text_ptr = png_ptr->current_text;
png_ptr->current_text_size = (png_size_t)length;
png_ptr->current_text_left = (png_size_t)length;
png_ptr->process_mode = PNG_READ_zTXt_MODE;
}
 
void /* PRIVATE */
png_push_read_zTXt(png_structp png_ptr, png_infop info_ptr)
{
if (png_ptr->buffer_size && png_ptr->current_text_left)
{
png_size_t text_size;
 
if (png_ptr->buffer_size < (png_uint_32)png_ptr->current_text_left)
text_size = png_ptr->buffer_size;
else
text_size = png_ptr->current_text_left;
png_crc_read(png_ptr, (png_bytep)png_ptr->current_text_ptr, text_size);
png_ptr->current_text_left -= text_size;
png_ptr->current_text_ptr += text_size;
}
if (!(png_ptr->current_text_left))
{
png_textp text_ptr;
png_charp text;
png_charp key;
int ret;
png_size_t text_size, key_size;
 
if (png_ptr->buffer_size < 4)
{
png_push_save_buffer(png_ptr);
return;
}
 
png_push_crc_finish(png_ptr);
 
key = png_ptr->current_text;
 
for (text = key; *text; text++)
/* empty loop */ ;
 
/* zTXt can't have zero text */
if (text == key + png_ptr->current_text_size)
{
png_ptr->current_text = NULL;
png_free(png_ptr, key);
return;
}
 
text++;
 
if (*text != PNG_TEXT_COMPRESSION_zTXt) /* check compression byte */
{
png_ptr->current_text = NULL;
png_free(png_ptr, key);
return;
}
 
text++;
 
png_ptr->zstream.next_in = (png_bytep )text;
png_ptr->zstream.avail_in = (uInt)(png_ptr->current_text_size -
(text - key));
png_ptr->zstream.next_out = png_ptr->zbuf;
png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size;
 
key_size = text - key;
text_size = 0;
text = NULL;
ret = Z_STREAM_END;
 
while (png_ptr->zstream.avail_in)
{
ret = inflate(&png_ptr->zstream, Z_PARTIAL_FLUSH);
if (ret != Z_OK && ret != Z_STREAM_END)
{
inflateReset(&png_ptr->zstream);
png_ptr->zstream.avail_in = 0;
png_ptr->current_text = NULL;
png_free(png_ptr, key);
png_free(png_ptr, text);
return;
}
if (!(png_ptr->zstream.avail_out) || ret == Z_STREAM_END)
{
if (text == NULL)
{
text = (png_charp)png_malloc(png_ptr,
(png_uint_32)(png_ptr->zbuf_size - png_ptr->zstream.avail_out
+ key_size + 1));
png_memcpy(text + key_size, png_ptr->zbuf,
png_ptr->zbuf_size - png_ptr->zstream.avail_out);
png_memcpy(text, key, key_size);
text_size = key_size + png_ptr->zbuf_size -
png_ptr->zstream.avail_out;
*(text + text_size) = '\0';
}
else
{
png_charp tmp;
 
tmp = text;
text = (png_charp)png_malloc(png_ptr, text_size +
(png_uint_32)(png_ptr->zbuf_size - png_ptr->zstream.avail_out
+ 1));
png_memcpy(text, tmp, text_size);
png_free(png_ptr, tmp);
png_memcpy(text + text_size, png_ptr->zbuf,
png_ptr->zbuf_size - png_ptr->zstream.avail_out);
text_size += png_ptr->zbuf_size - png_ptr->zstream.avail_out;
*(text + text_size) = '\0';
}
if (ret != Z_STREAM_END)
{
png_ptr->zstream.next_out = png_ptr->zbuf;
png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size;
}
}
else
{
break;
}
 
if (ret == Z_STREAM_END)
break;
}
 
inflateReset(&png_ptr->zstream);
png_ptr->zstream.avail_in = 0;
 
if (ret != Z_STREAM_END)
{
png_ptr->current_text = NULL;
png_free(png_ptr, key);
png_free(png_ptr, text);
return;
}
 
png_ptr->current_text = NULL;
png_free(png_ptr, key);
key = text;
text += key_size;
 
text_ptr = (png_textp)png_malloc(png_ptr, (png_uint_32)sizeof(png_text));
text_ptr->compression = PNG_TEXT_COMPRESSION_zTXt;
text_ptr->key = key;
#ifdef PNG_iTXt_SUPPORTED
text_ptr->lang = NULL;
text_ptr->lang_key = NULL;
#endif
text_ptr->text = text;
 
ret = png_set_text_2(png_ptr, info_ptr, text_ptr, 1);
 
png_free(png_ptr, key);
png_free(png_ptr, text_ptr);
 
if (ret)
png_warning(png_ptr, "Insufficient memory to store text chunk.");
}
}
#endif
 
#if defined(PNG_READ_iTXt_SUPPORTED)
void /* PRIVATE */
png_push_handle_iTXt(png_structp png_ptr, png_infop info_ptr, png_uint_32
length)
{
if (!(png_ptr->mode & PNG_HAVE_IHDR) || (png_ptr->mode & PNG_HAVE_IEND))
{
png_error(png_ptr, "Out of place iTXt");
/* to quiet some compiler warnings */
if(info_ptr == NULL) return;
}
 
#ifdef PNG_MAX_MALLOC_64K
png_ptr->skip_length = 0; /* This may not be necessary */
 
if (length > (png_uint_32)65535L) /* Can't hold entire string in memory */
{
png_warning(png_ptr, "iTXt chunk too large to fit in memory");
png_ptr->skip_length = length - (png_uint_32)65535L;
length = (png_uint_32)65535L;
}
#endif
 
png_ptr->current_text = (png_charp)png_malloc(png_ptr,
(png_uint_32)(length+1));
png_ptr->current_text[length] = '\0';
png_ptr->current_text_ptr = png_ptr->current_text;
png_ptr->current_text_size = (png_size_t)length;
png_ptr->current_text_left = (png_size_t)length;
png_ptr->process_mode = PNG_READ_iTXt_MODE;
}
 
void /* PRIVATE */
png_push_read_iTXt(png_structp png_ptr, png_infop info_ptr)
{
 
if (png_ptr->buffer_size && png_ptr->current_text_left)
{
png_size_t text_size;
 
if (png_ptr->buffer_size < png_ptr->current_text_left)
text_size = png_ptr->buffer_size;
else
text_size = png_ptr->current_text_left;
png_crc_read(png_ptr, (png_bytep)png_ptr->current_text_ptr, text_size);
png_ptr->current_text_left -= text_size;
png_ptr->current_text_ptr += text_size;
}
if (!(png_ptr->current_text_left))
{
png_textp text_ptr;
png_charp key;
int comp_flag;
png_charp lang;
png_charp lang_key;
png_charp text;
int ret;
 
if (png_ptr->buffer_size < 4)
{
png_push_save_buffer(png_ptr);
return;
}
 
png_push_crc_finish(png_ptr);
 
#if defined(PNG_MAX_MALLOC_64K)
if (png_ptr->skip_length)
return;
#endif
 
key = png_ptr->current_text;
 
for (lang = key; *lang; lang++)
/* empty loop */ ;
 
if (lang != key + png_ptr->current_text_size)
lang++;
 
comp_flag = *lang++;
lang++; /* skip comp_type, always zero */
 
for (lang_key = lang; *lang_key; lang_key++)
/* empty loop */ ;
lang_key++; /* skip NUL separator */
 
for (text = lang_key; *text; text++)
/* empty loop */ ;
 
if (text != key + png_ptr->current_text_size)
text++;
 
text_ptr = (png_textp)png_malloc(png_ptr, (png_uint_32)sizeof(png_text));
text_ptr->compression = comp_flag + 2;
text_ptr->key = key;
text_ptr->lang = lang;
text_ptr->lang_key = lang_key;
text_ptr->text = text;
text_ptr->text_length = 0;
text_ptr->itxt_length = png_strlen(text);
 
ret = png_set_text_2(png_ptr, info_ptr, text_ptr, 1);
 
png_ptr->current_text = NULL;
 
png_free(png_ptr, text_ptr);
if (ret)
png_warning(png_ptr, "Insufficient memory to store iTXt chunk.");
}
}
#endif
 
/* This function is called when we haven't found a handler for this
* chunk. If there isn't a problem with the chunk itself (ie a bad chunk
* name or a critical chunk), the chunk is (currently) silently ignored.
*/
void /* PRIVATE */
png_push_handle_unknown(png_structp png_ptr, png_infop info_ptr, png_uint_32
length)
{
png_uint_32 skip=0;
png_check_chunk_name(png_ptr, png_ptr->chunk_name);
 
if (!(png_ptr->chunk_name[0] & 0x20))
{
#if defined(PNG_READ_UNKNOWN_CHUNKS_SUPPORTED)
if(png_handle_as_unknown(png_ptr, png_ptr->chunk_name) !=
HANDLE_CHUNK_ALWAYS
#if defined(PNG_READ_USER_CHUNKS_SUPPORTED)
&& png_ptr->read_user_chunk_fn == NULL
#endif
)
#endif
png_chunk_error(png_ptr, "unknown critical chunk");
 
/* to quiet compiler warnings about unused info_ptr */
if (info_ptr == NULL)
return;
}
 
#if defined(PNG_READ_UNKNOWN_CHUNKS_SUPPORTED)
if (png_ptr->flags & PNG_FLAG_KEEP_UNKNOWN_CHUNKS)
{
png_unknown_chunk chunk;
 
#ifdef PNG_MAX_MALLOC_64K
if (length > (png_uint_32)65535L)
{
png_warning(png_ptr, "unknown chunk too large to fit in memory");
skip = length - (png_uint_32)65535L;
length = (png_uint_32)65535L;
}
#endif
 
png_strcpy((png_charp)chunk.name, (png_charp)png_ptr->chunk_name);
chunk.data = (png_bytep)png_malloc(png_ptr, length);
png_crc_read(png_ptr, chunk.data, length);
chunk.size = length;
#if defined(PNG_READ_USER_CHUNKS_SUPPORTED)
if(png_ptr->read_user_chunk_fn != NULL)
{
/* callback to user unknown chunk handler */
if ((*(png_ptr->read_user_chunk_fn)) (png_ptr, &chunk) <= 0)
{
if (!(png_ptr->chunk_name[0] & 0x20))
if(png_handle_as_unknown(png_ptr, png_ptr->chunk_name) !=
HANDLE_CHUNK_ALWAYS)
png_chunk_error(png_ptr, "unknown critical chunk");
}
png_set_unknown_chunks(png_ptr, info_ptr, &chunk, 1);
}
else
#endif
png_set_unknown_chunks(png_ptr, info_ptr, &chunk, 1);
png_free(png_ptr, chunk.data);
}
else
#endif
skip=length;
png_push_crc_skip(png_ptr, skip);
}
 
void /* PRIVATE */
png_push_have_info(png_structp png_ptr, png_infop info_ptr)
{
if (png_ptr->info_fn != NULL)
(*(png_ptr->info_fn))(png_ptr, info_ptr);
}
 
void /* PRIVATE */
png_push_have_end(png_structp png_ptr, png_infop info_ptr)
{
if (png_ptr->end_fn != NULL)
(*(png_ptr->end_fn))(png_ptr, info_ptr);
}
 
void /* PRIVATE */
png_push_have_row(png_structp png_ptr, png_bytep row)
{
if (png_ptr->row_fn != NULL)
(*(png_ptr->row_fn))(png_ptr, row, png_ptr->row_number,
(int)png_ptr->pass);
}
 
void PNGAPI
png_progressive_combine_row (png_structp png_ptr,
png_bytep old_row, png_bytep new_row)
{
#ifdef PNG_USE_LOCAL_ARRAYS
const int FARDATA png_pass_dsp_mask[7] =
{0xff, 0x0f, 0xff, 0x33, 0xff, 0x55, 0xff};
#endif
if (new_row != NULL) /* new_row must == png_ptr->row_buf here. */
png_combine_row(png_ptr, old_row, png_pass_dsp_mask[png_ptr->pass]);
}
 
void PNGAPI
png_set_progressive_read_fn(png_structp png_ptr, png_voidp progressive_ptr,
png_progressive_info_ptr info_fn, png_progressive_row_ptr row_fn,
png_progressive_end_ptr end_fn)
{
png_ptr->info_fn = info_fn;
png_ptr->row_fn = row_fn;
png_ptr->end_fn = end_fn;
 
png_set_read_fn(png_ptr, progressive_ptr, png_push_fill_buffer);
}
 
png_voidp PNGAPI
png_get_progressive_ptr(png_structp png_ptr)
{
return png_ptr->io_ptr;
}
#endif /* PNG_PROGRESSIVE_READ_SUPPORTED */
/shark/trunk/ports/png/pngset.c
0,0 → 1,1160
 
/* pngset.c - storage of image information into info struct
*
* libpng 1.2.5 - October 3, 2002
* For conditions of distribution and use, see copyright notice in png.h
* Copyright (c) 1998-2002 Glenn Randers-Pehrson
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
*
* The functions here are used during reads to store data from the file
* into the info struct, and during writes to store application data
* into the info struct for writing into the file. This abstracts the
* info struct and allows us to change the structure in the future.
*/
 
#define PNG_INTERNAL
#include "png.h"
 
#if defined(PNG_bKGD_SUPPORTED)
void PNGAPI
png_set_bKGD(png_structp png_ptr, png_infop info_ptr, png_color_16p background)
{
png_debug1(1, "in %s storage function\n", "bKGD");
if (png_ptr == NULL || info_ptr == NULL)
return;
 
png_memcpy(&(info_ptr->background), background, sizeof(png_color_16));
info_ptr->valid |= PNG_INFO_bKGD;
}
#endif
 
#if defined(PNG_cHRM_SUPPORTED)
#ifdef PNG_FLOATING_POINT_SUPPORTED
void PNGAPI
png_set_cHRM(png_structp png_ptr, png_infop info_ptr,
double white_x, double white_y, double red_x, double red_y,
double green_x, double green_y, double blue_x, double blue_y)
{
png_debug1(1, "in %s storage function\n", "cHRM");
if (png_ptr == NULL || info_ptr == NULL)
return;
 
if (white_x < 0.0 || white_y < 0.0 ||
red_x < 0.0 || red_y < 0.0 ||
green_x < 0.0 || green_y < 0.0 ||
blue_x < 0.0 || blue_y < 0.0)
{
png_warning(png_ptr,
"Ignoring attempt to set negative chromaticity value");
return;
}
if (white_x > 21474.83 || white_y > 21474.83 ||
red_x > 21474.83 || red_y > 21474.83 ||
green_x > 21474.83 || green_y > 21474.83 ||
blue_x > 21474.83 || blue_y > 21474.83)
{
png_warning(png_ptr,
"Ignoring attempt to set chromaticity value exceeding 21474.83");
return;
}
 
info_ptr->x_white = (float)white_x;
info_ptr->y_white = (float)white_y;
info_ptr->x_red = (float)red_x;
info_ptr->y_red = (float)red_y;
info_ptr->x_green = (float)green_x;
info_ptr->y_green = (float)green_y;
info_ptr->x_blue = (float)blue_x;
info_ptr->y_blue = (float)blue_y;
#ifdef PNG_FIXED_POINT_SUPPORTED
info_ptr->int_x_white = (png_fixed_point)(white_x*100000.+0.5);
info_ptr->int_y_white = (png_fixed_point)(white_y*100000.+0.5);
info_ptr->int_x_red = (png_fixed_point)( red_x*100000.+0.5);
info_ptr->int_y_red = (png_fixed_point)( red_y*100000.+0.5);
info_ptr->int_x_green = (png_fixed_point)(green_x*100000.+0.5);
info_ptr->int_y_green = (png_fixed_point)(green_y*100000.+0.5);
info_ptr->int_x_blue = (png_fixed_point)( blue_x*100000.+0.5);
info_ptr->int_y_blue = (png_fixed_point)( blue_y*100000.+0.5);
#endif
info_ptr->valid |= PNG_INFO_cHRM;
}
#endif
#ifdef PNG_FIXED_POINT_SUPPORTED
void PNGAPI
png_set_cHRM_fixed(png_structp png_ptr, png_infop info_ptr,
png_fixed_point white_x, png_fixed_point white_y, png_fixed_point red_x,
png_fixed_point red_y, png_fixed_point green_x, png_fixed_point green_y,
png_fixed_point blue_x, png_fixed_point blue_y)
{
png_debug1(1, "in %s storage function\n", "cHRM");
if (png_ptr == NULL || info_ptr == NULL)
return;
 
if (white_x < 0 || white_y < 0 ||
red_x < 0 || red_y < 0 ||
green_x < 0 || green_y < 0 ||
blue_x < 0 || blue_y < 0)
{
png_warning(png_ptr,
"Ignoring attempt to set negative chromaticity value");
return;
}
if (white_x > (double) PNG_MAX_UINT || white_y > (double) PNG_MAX_UINT ||
red_x > (double) PNG_MAX_UINT || red_y > (double) PNG_MAX_UINT ||
green_x > (double) PNG_MAX_UINT || green_y > (double) PNG_MAX_UINT ||
blue_x > (double) PNG_MAX_UINT || blue_y > (double) PNG_MAX_UINT)
{
png_warning(png_ptr,
"Ignoring attempt to set chromaticity value exceeding 21474.83");
return;
}
info_ptr->int_x_white = white_x;
info_ptr->int_y_white = white_y;
info_ptr->int_x_red = red_x;
info_ptr->int_y_red = red_y;
info_ptr->int_x_green = green_x;
info_ptr->int_y_green = green_y;
info_ptr->int_x_blue = blue_x;
info_ptr->int_y_blue = blue_y;
#ifdef PNG_FLOATING_POINT_SUPPORTED
info_ptr->x_white = (float)(white_x/100000.);
info_ptr->y_white = (float)(white_y/100000.);
info_ptr->x_red = (float)( red_x/100000.);
info_ptr->y_red = (float)( red_y/100000.);
info_ptr->x_green = (float)(green_x/100000.);
info_ptr->y_green = (float)(green_y/100000.);
info_ptr->x_blue = (float)( blue_x/100000.);
info_ptr->y_blue = (float)( blue_y/100000.);
#endif
info_ptr->valid |= PNG_INFO_cHRM;
}
#endif
#endif
 
#if defined(PNG_gAMA_SUPPORTED)
#ifdef PNG_FLOATING_POINT_SUPPORTED
void PNGAPI
png_set_gAMA(png_structp png_ptr, png_infop info_ptr, double file_gamma)
{
double gamma;
png_debug1(1, "in %s storage function\n", "gAMA");
if (png_ptr == NULL || info_ptr == NULL)
return;
 
/* Check for overflow */
if (file_gamma > 21474.83)
{
png_warning(png_ptr, "Limiting gamma to 21474.83");
gamma=21474.83;
}
else
gamma=file_gamma;
info_ptr->gamma = (float)gamma;
#ifdef PNG_FIXED_POINT_SUPPORTED
info_ptr->int_gamma = (int)(gamma*100000.+.5);
#endif
info_ptr->valid |= PNG_INFO_gAMA;
if(gamma == 0.0)
png_warning(png_ptr, "Setting gamma=0");
}
#endif
void PNGAPI
png_set_gAMA_fixed(png_structp png_ptr, png_infop info_ptr, png_fixed_point
int_gamma)
{
png_fixed_point gamma;
 
png_debug1(1, "in %s storage function\n", "gAMA");
if (png_ptr == NULL || info_ptr == NULL)
return;
 
if (int_gamma > (png_fixed_point) PNG_MAX_UINT)
{
png_warning(png_ptr, "Limiting gamma to 21474.83");
gamma=PNG_MAX_UINT;
}
else
{
if (int_gamma < 0)
{
png_warning(png_ptr, "Setting negative gamma to zero");
gamma=0;
}
else
gamma=int_gamma;
}
#ifdef PNG_FLOATING_POINT_SUPPORTED
info_ptr->gamma = (float)(gamma/100000.);
#endif
#ifdef PNG_FIXED_POINT_SUPPORTED
info_ptr->int_gamma = gamma;
#endif
info_ptr->valid |= PNG_INFO_gAMA;
if(gamma == 0)
png_warning(png_ptr, "Setting gamma=0");
}
#endif
 
#if defined(PNG_hIST_SUPPORTED)
void PNGAPI
png_set_hIST(png_structp png_ptr, png_infop info_ptr, png_uint_16p hist)
{
int i;
 
png_debug1(1, "in %s storage function\n", "hIST");
if (png_ptr == NULL || info_ptr == NULL)
return;
if (info_ptr->num_palette == 0)
{
png_warning(png_ptr,
"Palette size 0, hIST allocation skipped.");
return;
}
 
#ifdef PNG_FREE_ME_SUPPORTED
png_free_data(png_ptr, info_ptr, PNG_FREE_HIST, 0);
#endif
/* Changed from info->num_palette to 256 in version 1.2.1 */
png_ptr->hist = (png_uint_16p)png_malloc_warn(png_ptr,
(png_uint_32)(256 * sizeof (png_uint_16)));
if (png_ptr->hist == NULL)
{
png_warning(png_ptr, "Insufficient memory for hIST chunk data.");
return;
}
 
for (i = 0; i < info_ptr->num_palette; i++)
png_ptr->hist[i] = hist[i];
info_ptr->hist = png_ptr->hist;
info_ptr->valid |= PNG_INFO_hIST;
 
#ifdef PNG_FREE_ME_SUPPORTED
info_ptr->free_me |= PNG_FREE_HIST;
#else
png_ptr->flags |= PNG_FLAG_FREE_HIST;
#endif
}
#endif
 
void PNGAPI
png_set_IHDR(png_structp png_ptr, png_infop info_ptr,
png_uint_32 width, png_uint_32 height, int bit_depth,
int color_type, int interlace_type, int compression_type,
int filter_type)
{
int rowbytes_per_pixel;
png_debug1(1, "in %s storage function\n", "IHDR");
if (png_ptr == NULL || info_ptr == NULL)
return;
 
/* check for width and height valid values */
if (width == 0 || height == 0)
png_error(png_ptr, "Image width or height is zero in IHDR");
if (width > PNG_MAX_UINT || height > PNG_MAX_UINT)
png_error(png_ptr, "Invalid image size in IHDR");
 
/* check other values */
if (bit_depth != 1 && bit_depth != 2 && bit_depth != 4 &&
bit_depth != 8 && bit_depth != 16)
png_error(png_ptr, "Invalid bit depth in IHDR");
 
if (color_type < 0 || color_type == 1 ||
color_type == 5 || color_type > 6)
png_error(png_ptr, "Invalid color type in IHDR");
 
if (((color_type == PNG_COLOR_TYPE_PALETTE) && bit_depth > 8) ||
((color_type == PNG_COLOR_TYPE_RGB ||
color_type == PNG_COLOR_TYPE_GRAY_ALPHA ||
color_type == PNG_COLOR_TYPE_RGB_ALPHA) && bit_depth < 8))
png_error(png_ptr, "Invalid color type/bit depth combination in IHDR");
 
if (interlace_type >= PNG_INTERLACE_LAST)
png_error(png_ptr, "Unknown interlace method in IHDR");
 
if (compression_type != PNG_COMPRESSION_TYPE_BASE)
png_error(png_ptr, "Unknown compression method in IHDR");
 
#if defined(PNG_MNG_FEATURES_SUPPORTED)
/* Accept filter_method 64 (intrapixel differencing) only if
* 1. Libpng was compiled with PNG_MNG_FEATURES_SUPPORTED and
* 2. Libpng did not read a PNG signature (this filter_method is only
* used in PNG datastreams that are embedded in MNG datastreams) and
* 3. The application called png_permit_mng_features with a mask that
* included PNG_FLAG_MNG_FILTER_64 and
* 4. The filter_method is 64 and
* 5. The color_type is RGB or RGBA
*/
if((png_ptr->mode&PNG_HAVE_PNG_SIGNATURE)&&png_ptr->mng_features_permitted)
png_warning(png_ptr,"MNG features are not allowed in a PNG datastream\n");
if(filter_type != PNG_FILTER_TYPE_BASE)
{
if(!((png_ptr->mng_features_permitted & PNG_FLAG_MNG_FILTER_64) &&
(filter_type == PNG_INTRAPIXEL_DIFFERENCING) &&
((png_ptr->mode&PNG_HAVE_PNG_SIGNATURE) == 0) &&
(color_type == PNG_COLOR_TYPE_RGB ||
color_type == PNG_COLOR_TYPE_RGB_ALPHA)))
png_error(png_ptr, "Unknown filter method in IHDR");
if(png_ptr->mode&PNG_HAVE_PNG_SIGNATURE)
png_warning(png_ptr, "Invalid filter method in IHDR");
}
#else
if(filter_type != PNG_FILTER_TYPE_BASE)
png_error(png_ptr, "Unknown filter method in IHDR");
#endif
 
info_ptr->width = width;
info_ptr->height = height;
info_ptr->bit_depth = (png_byte)bit_depth;
info_ptr->color_type =(png_byte) color_type;
info_ptr->compression_type = (png_byte)compression_type;
info_ptr->filter_type = (png_byte)filter_type;
info_ptr->interlace_type = (png_byte)interlace_type;
if (info_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
info_ptr->channels = 1;
else if (info_ptr->color_type & PNG_COLOR_MASK_COLOR)
info_ptr->channels = 3;
else
info_ptr->channels = 1;
if (info_ptr->color_type & PNG_COLOR_MASK_ALPHA)
info_ptr->channels++;
info_ptr->pixel_depth = (png_byte)(info_ptr->channels * info_ptr->bit_depth);
 
/* check for overflow */
rowbytes_per_pixel = (info_ptr->pixel_depth + 7) >> 3;
if ( width > PNG_MAX_UINT/rowbytes_per_pixel - 64)
{
png_warning(png_ptr,
"Width too large to process image data; rowbytes will overflow.");
info_ptr->rowbytes = (png_size_t)0;
}
else
info_ptr->rowbytes = (info_ptr->width * info_ptr->pixel_depth + 7) >> 3;
}
 
#if defined(PNG_oFFs_SUPPORTED)
void PNGAPI
png_set_oFFs(png_structp png_ptr, png_infop info_ptr,
png_int_32 offset_x, png_int_32 offset_y, int unit_type)
{
png_debug1(1, "in %s storage function\n", "oFFs");
if (png_ptr == NULL || info_ptr == NULL)
return;
 
info_ptr->x_offset = offset_x;
info_ptr->y_offset = offset_y;
info_ptr->offset_unit_type = (png_byte)unit_type;
info_ptr->valid |= PNG_INFO_oFFs;
}
#endif
 
#if defined(PNG_pCAL_SUPPORTED)
void PNGAPI
png_set_pCAL(png_structp png_ptr, png_infop info_ptr,
png_charp purpose, png_int_32 X0, png_int_32 X1, int type, int nparams,
png_charp units, png_charpp params)
{
png_uint_32 length;
int i;
 
png_debug1(1, "in %s storage function\n", "pCAL");
if (png_ptr == NULL || info_ptr == NULL)
return;
 
length = png_strlen(purpose) + 1;
png_debug1(3, "allocating purpose for info (%lu bytes)\n", length);
info_ptr->pcal_purpose = (png_charp)png_malloc_warn(png_ptr, length);
if (info_ptr->pcal_purpose == NULL)
{
png_warning(png_ptr, "Insufficient memory for pCAL purpose.");
return;
}
png_memcpy(info_ptr->pcal_purpose, purpose, (png_size_t)length);
 
png_debug(3, "storing X0, X1, type, and nparams in info\n");
info_ptr->pcal_X0 = X0;
info_ptr->pcal_X1 = X1;
info_ptr->pcal_type = (png_byte)type;
info_ptr->pcal_nparams = (png_byte)nparams;
 
length = png_strlen(units) + 1;
png_debug1(3, "allocating units for info (%lu bytes)\n", length);
info_ptr->pcal_units = (png_charp)png_malloc_warn(png_ptr, length);
if (info_ptr->pcal_units == NULL)
{
png_warning(png_ptr, "Insufficient memory for pCAL units.");
return;
}
png_memcpy(info_ptr->pcal_units, units, (png_size_t)length);
 
info_ptr->pcal_params = (png_charpp)png_malloc_warn(png_ptr,
(png_uint_32)((nparams + 1) * sizeof(png_charp)));
if (info_ptr->pcal_params == NULL)
{
png_warning(png_ptr, "Insufficient memory for pCAL params.");
return;
}
 
info_ptr->pcal_params[nparams] = NULL;
 
for (i = 0; i < nparams; i++)
{
length = png_strlen(params[i]) + 1;
png_debug2(3, "allocating parameter %d for info (%lu bytes)\n", i, length);
info_ptr->pcal_params[i] = (png_charp)png_malloc_warn(png_ptr, length);
if (info_ptr->pcal_params[i] == NULL)
{
png_warning(png_ptr, "Insufficient memory for pCAL parameter.");
return;
}
png_memcpy(info_ptr->pcal_params[i], params[i], (png_size_t)length);
}
 
info_ptr->valid |= PNG_INFO_pCAL;
#ifdef PNG_FREE_ME_SUPPORTED
info_ptr->free_me |= PNG_FREE_PCAL;
#endif
}
#endif
 
#if defined(PNG_READ_sCAL_SUPPORTED) || defined(PNG_WRITE_sCAL_SUPPORTED)
#ifdef PNG_FLOATING_POINT_SUPPORTED
void PNGAPI
png_set_sCAL(png_structp png_ptr, png_infop info_ptr,
int unit, double width, double height)
{
png_debug1(1, "in %s storage function\n", "sCAL");
if (png_ptr == NULL || info_ptr == NULL)
return;
 
info_ptr->scal_unit = (png_byte)unit;
info_ptr->scal_pixel_width = width;
info_ptr->scal_pixel_height = height;
 
info_ptr->valid |= PNG_INFO_sCAL;
}
#else
#ifdef PNG_FIXED_POINT_SUPPORTED
void PNGAPI
png_set_sCAL_s(png_structp png_ptr, png_infop info_ptr,
int unit, png_charp swidth, png_charp sheight)
{
png_uint_32 length;
 
png_debug1(1, "in %s storage function\n", "sCAL");
if (png_ptr == NULL || info_ptr == NULL)
return;
 
info_ptr->scal_unit = (png_byte)unit;
 
length = png_strlen(swidth) + 1;
png_debug1(3, "allocating unit for info (%d bytes)\n", length);
info_ptr->scal_s_width = (png_charp)png_malloc(png_ptr, length);
png_memcpy(info_ptr->scal_s_width, swidth, (png_size_t)length);
 
length = png_strlen(sheight) + 1;
png_debug1(3, "allocating unit for info (%d bytes)\n", length);
info_ptr->scal_s_height = (png_charp)png_malloc(png_ptr, length);
png_memcpy(info_ptr->scal_s_height, sheight, (png_size_t)length);
 
info_ptr->valid |= PNG_INFO_sCAL;
#ifdef PNG_FREE_ME_SUPPORTED
info_ptr->free_me |= PNG_FREE_SCAL;
#endif
}
#endif
#endif
#endif
 
#if defined(PNG_pHYs_SUPPORTED)
void PNGAPI
png_set_pHYs(png_structp png_ptr, png_infop info_ptr,
png_uint_32 res_x, png_uint_32 res_y, int unit_type)
{
png_debug1(1, "in %s storage function\n", "pHYs");
if (png_ptr == NULL || info_ptr == NULL)
return;
 
info_ptr->x_pixels_per_unit = res_x;
info_ptr->y_pixels_per_unit = res_y;
info_ptr->phys_unit_type = (png_byte)unit_type;
info_ptr->valid |= PNG_INFO_pHYs;
}
#endif
 
void PNGAPI
png_set_PLTE(png_structp png_ptr, png_infop info_ptr,
png_colorp palette, int num_palette)
{
 
png_debug1(1, "in %s storage function\n", "PLTE");
if (png_ptr == NULL || info_ptr == NULL)
return;
 
/*
* It may not actually be necessary to set png_ptr->palette here;
* we do it for backward compatibility with the way the png_handle_tRNS
* function used to do the allocation.
*/
#ifdef PNG_FREE_ME_SUPPORTED
png_free_data(png_ptr, info_ptr, PNG_FREE_PLTE, 0);
#endif
/* Changed in libpng-1.2.1 to allocate 256 instead of num_palette entries,
in case of an invalid PNG file that has too-large sample values. */
png_ptr->palette = (png_colorp)png_zalloc(png_ptr, (uInt)256,
sizeof (png_color));
if (png_ptr->palette == NULL)
png_error(png_ptr, "Unable to malloc palette");
png_memcpy(png_ptr->palette, palette, num_palette * sizeof (png_color));
info_ptr->palette = png_ptr->palette;
info_ptr->num_palette = png_ptr->num_palette = (png_uint_16)num_palette;
 
#ifdef PNG_FREE_ME_SUPPORTED
info_ptr->free_me |= PNG_FREE_PLTE;
#else
png_ptr->flags |= PNG_FLAG_FREE_PLTE;
#endif
 
info_ptr->valid |= PNG_INFO_PLTE;
}
 
#if defined(PNG_sBIT_SUPPORTED)
void PNGAPI
png_set_sBIT(png_structp png_ptr, png_infop info_ptr,
png_color_8p sig_bit)
{
png_debug1(1, "in %s storage function\n", "sBIT");
if (png_ptr == NULL || info_ptr == NULL)
return;
 
png_memcpy(&(info_ptr->sig_bit), sig_bit, sizeof (png_color_8));
info_ptr->valid |= PNG_INFO_sBIT;
}
#endif
 
#if defined(PNG_sRGB_SUPPORTED)
void PNGAPI
png_set_sRGB(png_structp png_ptr, png_infop info_ptr, int intent)
{
png_debug1(1, "in %s storage function\n", "sRGB");
if (png_ptr == NULL || info_ptr == NULL)
return;
 
info_ptr->srgb_intent = (png_byte)intent;
info_ptr->valid |= PNG_INFO_sRGB;
}
 
void PNGAPI
png_set_sRGB_gAMA_and_cHRM(png_structp png_ptr, png_infop info_ptr,
int intent)
{
#if defined(PNG_gAMA_SUPPORTED)
#ifdef PNG_FLOATING_POINT_SUPPORTED
float file_gamma;
#endif
#ifdef PNG_FIXED_POINT_SUPPORTED
png_fixed_point int_file_gamma;
#endif
#endif
#if defined(PNG_cHRM_SUPPORTED)
#ifdef PNG_FLOATING_POINT_SUPPORTED
float white_x, white_y, red_x, red_y, green_x, green_y, blue_x, blue_y;
#endif
#ifdef PNG_FIXED_POINT_SUPPORTED
png_fixed_point int_white_x, int_white_y, int_red_x, int_red_y, int_green_x,
int_green_y, int_blue_x, int_blue_y;
#endif
#endif
png_debug1(1, "in %s storage function\n", "sRGB_gAMA_and_cHRM");
if (png_ptr == NULL || info_ptr == NULL)
return;
 
png_set_sRGB(png_ptr, info_ptr, intent);
 
#if defined(PNG_gAMA_SUPPORTED)
#ifdef PNG_FLOATING_POINT_SUPPORTED
file_gamma = (float).45455;
png_set_gAMA(png_ptr, info_ptr, file_gamma);
#endif
#ifdef PNG_FIXED_POINT_SUPPORTED
int_file_gamma = 45455L;
png_set_gAMA_fixed(png_ptr, info_ptr, int_file_gamma);
#endif
#endif
 
#if defined(PNG_cHRM_SUPPORTED)
#ifdef PNG_FIXED_POINT_SUPPORTED
int_white_x = 31270L;
int_white_y = 32900L;
int_red_x = 64000L;
int_red_y = 33000L;
int_green_x = 30000L;
int_green_y = 60000L;
int_blue_x = 15000L;
int_blue_y = 6000L;
 
png_set_cHRM_fixed(png_ptr, info_ptr,
int_white_x, int_white_y, int_red_x, int_red_y, int_green_x, int_green_y,
int_blue_x, int_blue_y);
#endif
#ifdef PNG_FLOATING_POINT_SUPPORTED
white_x = (float).3127;
white_y = (float).3290;
red_x = (float).64;
red_y = (float).33;
green_x = (float).30;
green_y = (float).60;
blue_x = (float).15;
blue_y = (float).06;
 
png_set_cHRM(png_ptr, info_ptr,
white_x, white_y, red_x, red_y, green_x, green_y, blue_x, blue_y);
#endif
#endif
}
#endif
 
 
#if defined(PNG_iCCP_SUPPORTED)
void PNGAPI
png_set_iCCP(png_structp png_ptr, png_infop info_ptr,
png_charp name, int compression_type,
png_charp profile, png_uint_32 proflen)
{
png_charp new_iccp_name;
png_charp new_iccp_profile;
 
png_debug1(1, "in %s storage function\n", "iCCP");
if (png_ptr == NULL || info_ptr == NULL || name == NULL || profile == NULL)
return;
 
new_iccp_name = (png_charp)png_malloc(png_ptr, png_strlen(name)+1);
png_strcpy(new_iccp_name, name);
new_iccp_profile = (png_charp)png_malloc(png_ptr, proflen);
png_memcpy(new_iccp_profile, profile, (png_size_t)proflen);
 
png_free_data(png_ptr, info_ptr, PNG_FREE_ICCP, 0);
 
info_ptr->iccp_proflen = proflen;
info_ptr->iccp_name = new_iccp_name;
info_ptr->iccp_profile = new_iccp_profile;
/* Compression is always zero but is here so the API and info structure
* does not have to change if we introduce multiple compression types */
info_ptr->iccp_compression = (png_byte)compression_type;
#ifdef PNG_FREE_ME_SUPPORTED
info_ptr->free_me |= PNG_FREE_ICCP;
#endif
info_ptr->valid |= PNG_INFO_iCCP;
}
#endif
 
#if defined(PNG_TEXT_SUPPORTED)
void PNGAPI
png_set_text(png_structp png_ptr, png_infop info_ptr, png_textp text_ptr,
int num_text)
{
int ret;
ret=png_set_text_2(png_ptr, info_ptr, text_ptr, num_text);
if (ret)
png_error(png_ptr, "Insufficient memory to store text");
}
 
int /* PRIVATE */
png_set_text_2(png_structp png_ptr, png_infop info_ptr, png_textp text_ptr,
int num_text)
{
int i;
 
png_debug1(1, "in %s storage function\n", (png_ptr->chunk_name[0] == '\0' ?
"text" : (png_const_charp)png_ptr->chunk_name));
 
if (png_ptr == NULL || info_ptr == NULL || num_text == 0)
return(0);
 
/* Make sure we have enough space in the "text" array in info_struct
* to hold all of the incoming text_ptr objects.
*/
if (info_ptr->num_text + num_text > info_ptr->max_text)
{
if (info_ptr->text != NULL)
{
png_textp old_text;
int old_max;
 
old_max = info_ptr->max_text;
info_ptr->max_text = info_ptr->num_text + num_text + 8;
old_text = info_ptr->text;
info_ptr->text = (png_textp)png_malloc_warn(png_ptr,
(png_uint_32)(info_ptr->max_text * sizeof (png_text)));
if (info_ptr->text == NULL)
{
png_free(png_ptr, old_text);
return(1);
}
png_memcpy(info_ptr->text, old_text, (png_size_t)(old_max *
sizeof(png_text)));
png_free(png_ptr, old_text);
}
else
{
info_ptr->max_text = num_text + 8;
info_ptr->num_text = 0;
info_ptr->text = (png_textp)png_malloc_warn(png_ptr,
(png_uint_32)(info_ptr->max_text * sizeof (png_text)));
if (info_ptr->text == NULL)
return(1);
#ifdef PNG_FREE_ME_SUPPORTED
info_ptr->free_me |= PNG_FREE_TEXT;
#endif
}
png_debug1(3, "allocated %d entries for info_ptr->text\n",
info_ptr->max_text);
}
for (i = 0; i < num_text; i++)
{
png_size_t text_length,key_len;
png_size_t lang_len,lang_key_len;
png_textp textp = &(info_ptr->text[info_ptr->num_text]);
 
if (text_ptr[i].key == NULL)
continue;
 
key_len = png_strlen(text_ptr[i].key);
 
if(text_ptr[i].compression <= 0)
{
lang_len = 0;
lang_key_len = 0;
}
else
#ifdef PNG_iTXt_SUPPORTED
{
/* set iTXt data */
if (text_ptr[i].lang != NULL)
lang_len = png_strlen(text_ptr[i].lang);
else
lang_len = 0;
if (text_ptr[i].lang_key != NULL)
lang_key_len = png_strlen(text_ptr[i].lang_key);
else
lang_key_len = 0;
}
#else
{
png_warning(png_ptr, "iTXt chunk not supported.");
continue;
}
#endif
 
if (text_ptr[i].text == NULL || text_ptr[i].text[0] == '\0')
{
text_length = 0;
#ifdef PNG_iTXt_SUPPORTED
if(text_ptr[i].compression > 0)
textp->compression = PNG_ITXT_COMPRESSION_NONE;
else
#endif
textp->compression = PNG_TEXT_COMPRESSION_NONE;
}
else
{
text_length = png_strlen(text_ptr[i].text);
textp->compression = text_ptr[i].compression;
}
 
textp->key = (png_charp)png_malloc_warn(png_ptr,
(png_uint_32)(key_len + text_length + lang_len + lang_key_len + 4));
if (textp->key == NULL)
return(1);
png_debug2(2, "Allocated %lu bytes at %x in png_set_text\n",
(png_uint_32)(key_len + lang_len + lang_key_len + text_length + 4),
(int)textp->key);
 
png_memcpy(textp->key, text_ptr[i].key,
(png_size_t)(key_len));
*(textp->key+key_len) = '\0';
#ifdef PNG_iTXt_SUPPORTED
if (text_ptr[i].compression > 0)
{
textp->lang=textp->key + key_len + 1;
png_memcpy(textp->lang, text_ptr[i].lang, lang_len);
*(textp->lang+lang_len) = '\0';
textp->lang_key=textp->lang + lang_len + 1;
png_memcpy(textp->lang_key, text_ptr[i].lang_key, lang_key_len);
*(textp->lang_key+lang_key_len) = '\0';
textp->text=textp->lang_key + lang_key_len + 1;
}
else
#endif
{
#ifdef PNG_iTXt_SUPPORTED
textp->lang=NULL;
textp->lang_key=NULL;
#endif
textp->text=textp->key + key_len + 1;
}
if(text_length)
png_memcpy(textp->text, text_ptr[i].text,
(png_size_t)(text_length));
*(textp->text+text_length) = '\0';
 
#ifdef PNG_iTXt_SUPPORTED
if(textp->compression > 0)
{
textp->text_length = 0;
textp->itxt_length = text_length;
}
else
#endif
{
textp->text_length = text_length;
#ifdef PNG_iTXt_SUPPORTED
textp->itxt_length = 0;
#endif
}
info_ptr->text[info_ptr->num_text]= *textp;
info_ptr->num_text++;
png_debug1(3, "transferred text chunk %d\n", info_ptr->num_text);
}
return(0);
}
#endif
 
#if defined(PNG_tIME_SUPPORTED)
void PNGAPI
png_set_tIME(png_structp png_ptr, png_infop info_ptr, png_timep mod_time)
{
png_debug1(1, "in %s storage function\n", "tIME");
if (png_ptr == NULL || info_ptr == NULL ||
(png_ptr->mode & PNG_WROTE_tIME))
return;
 
png_memcpy(&(info_ptr->mod_time), mod_time, sizeof (png_time));
info_ptr->valid |= PNG_INFO_tIME;
}
#endif
 
#if defined(PNG_tRNS_SUPPORTED)
void PNGAPI
png_set_tRNS(png_structp png_ptr, png_infop info_ptr,
png_bytep trans, int num_trans, png_color_16p trans_values)
{
png_debug1(1, "in %s storage function\n", "tRNS");
if (png_ptr == NULL || info_ptr == NULL)
return;
 
if (trans != NULL)
{
/*
* It may not actually be necessary to set png_ptr->trans here;
* we do it for backward compatibility with the way the png_handle_tRNS
* function used to do the allocation.
*/
#ifdef PNG_FREE_ME_SUPPORTED
png_free_data(png_ptr, info_ptr, PNG_FREE_TRNS, 0);
#endif
/* Changed from num_trans to 256 in version 1.2.1 */
png_ptr->trans = info_ptr->trans = (png_bytep)png_malloc(png_ptr,
(png_uint_32)256);
png_memcpy(info_ptr->trans, trans, (png_size_t)num_trans);
#ifdef PNG_FREE_ME_SUPPORTED
info_ptr->free_me |= PNG_FREE_TRNS;
#else
png_ptr->flags |= PNG_FLAG_FREE_TRNS;
#endif
}
 
if (trans_values != NULL)
{
png_memcpy(&(info_ptr->trans_values), trans_values,
sizeof(png_color_16));
if (num_trans == 0)
num_trans = 1;
}
info_ptr->num_trans = (png_uint_16)num_trans;
info_ptr->valid |= PNG_INFO_tRNS;
}
#endif
 
#if defined(PNG_sPLT_SUPPORTED)
void PNGAPI
png_set_sPLT(png_structp png_ptr,
png_infop info_ptr, png_sPLT_tp entries, int nentries)
{
png_sPLT_tp np;
int i;
 
np = (png_sPLT_tp)png_malloc_warn(png_ptr,
(info_ptr->splt_palettes_num + nentries) * sizeof(png_sPLT_t));
if (np == NULL)
{
png_warning(png_ptr, "No memory for sPLT palettes.");
return;
}
 
png_memcpy(np, info_ptr->splt_palettes,
info_ptr->splt_palettes_num * sizeof(png_sPLT_t));
png_free(png_ptr, info_ptr->splt_palettes);
info_ptr->splt_palettes=NULL;
 
for (i = 0; i < nentries; i++)
{
png_sPLT_tp to = np + info_ptr->splt_palettes_num + i;
png_sPLT_tp from = entries + i;
 
to->name = (png_charp)png_malloc(png_ptr,
png_strlen(from->name) + 1);
png_strcpy(to->name, from->name);
to->entries = (png_sPLT_entryp)png_malloc(png_ptr,
from->nentries * sizeof(png_sPLT_t));
png_memcpy(to->entries, from->entries,
from->nentries * sizeof(png_sPLT_t));
to->nentries = from->nentries;
to->depth = from->depth;
}
 
info_ptr->splt_palettes = np;
info_ptr->splt_palettes_num += nentries;
info_ptr->valid |= PNG_INFO_sPLT;
#ifdef PNG_FREE_ME_SUPPORTED
info_ptr->free_me |= PNG_FREE_SPLT;
#endif
}
#endif /* PNG_sPLT_SUPPORTED */
 
#if defined(PNG_UNKNOWN_CHUNKS_SUPPORTED)
void PNGAPI
png_set_unknown_chunks(png_structp png_ptr,
png_infop info_ptr, png_unknown_chunkp unknowns, int num_unknowns)
{
png_unknown_chunkp np;
int i;
 
if (png_ptr == NULL || info_ptr == NULL || num_unknowns == 0)
return;
 
np = (png_unknown_chunkp)png_malloc_warn(png_ptr,
(info_ptr->unknown_chunks_num + num_unknowns) *
sizeof(png_unknown_chunk));
if (np == NULL)
{
png_warning(png_ptr, "Out of memory while processing unknown chunk.");
return;
}
 
png_memcpy(np, info_ptr->unknown_chunks,
info_ptr->unknown_chunks_num * sizeof(png_unknown_chunk));
png_free(png_ptr, info_ptr->unknown_chunks);
info_ptr->unknown_chunks=NULL;
 
for (i = 0; i < num_unknowns; i++)
{
png_unknown_chunkp to = np + info_ptr->unknown_chunks_num + i;
png_unknown_chunkp from = unknowns + i;
 
png_strcpy((png_charp)to->name, (png_charp)from->name);
to->data = (png_bytep)png_malloc(png_ptr, from->size);
if (to->data == NULL)
png_warning(png_ptr, "Out of memory while processing unknown chunk.");
else
{
png_memcpy(to->data, from->data, from->size);
to->size = from->size;
 
/* note our location in the read or write sequence */
to->location = (png_byte)(png_ptr->mode & 0xff);
}
}
 
info_ptr->unknown_chunks = np;
info_ptr->unknown_chunks_num += num_unknowns;
#ifdef PNG_FREE_ME_SUPPORTED
info_ptr->free_me |= PNG_FREE_UNKN;
#endif
}
void PNGAPI
png_set_unknown_chunk_location(png_structp png_ptr, png_infop info_ptr,
int chunk, int location)
{
if(png_ptr != NULL && info_ptr != NULL && chunk >= 0 && chunk <
(int)info_ptr->unknown_chunks_num)
info_ptr->unknown_chunks[chunk].location = (png_byte)location;
}
#endif
 
#if defined(PNG_READ_EMPTY_PLTE_SUPPORTED) || \
defined(PNG_WRITE_EMPTY_PLTE_SUPPORTED)
void PNGAPI
png_permit_empty_plte (png_structp png_ptr, int empty_plte_permitted)
{
/* This function is deprecated in favor of png_permit_mng_features()
and will be removed from libpng-2.0.0 */
png_debug(1, "in png_permit_empty_plte, DEPRECATED.\n");
if (png_ptr == NULL)
return;
png_ptr->mng_features_permitted = (png_byte)
((png_ptr->mng_features_permitted & (~(PNG_FLAG_MNG_EMPTY_PLTE))) |
((empty_plte_permitted & PNG_FLAG_MNG_EMPTY_PLTE)));
}
#endif
 
#if defined(PNG_MNG_FEATURES_SUPPORTED)
png_uint_32 PNGAPI
png_permit_mng_features (png_structp png_ptr, png_uint_32 mng_features)
{
png_debug(1, "in png_permit_mng_features\n");
if (png_ptr == NULL)
return (png_uint_32)0;
png_ptr->mng_features_permitted =
(png_byte)(mng_features & PNG_ALL_MNG_FEATURES);
return (png_uint_32)png_ptr->mng_features_permitted;
}
#endif
 
#if defined(PNG_UNKNOWN_CHUNKS_SUPPORTED)
void PNGAPI
png_set_keep_unknown_chunks(png_structp png_ptr, int keep, png_bytep
chunk_list, int num_chunks)
{
png_bytep new_list, p;
int i, old_num_chunks;
if (num_chunks == 0)
{
if(keep == HANDLE_CHUNK_ALWAYS || keep == HANDLE_CHUNK_IF_SAFE)
png_ptr->flags |= PNG_FLAG_KEEP_UNKNOWN_CHUNKS;
else
png_ptr->flags &= ~PNG_FLAG_KEEP_UNKNOWN_CHUNKS;
 
if(keep == HANDLE_CHUNK_ALWAYS)
png_ptr->flags |= PNG_FLAG_KEEP_UNSAFE_CHUNKS;
else
png_ptr->flags &= ~PNG_FLAG_KEEP_UNSAFE_CHUNKS;
return;
}
if (chunk_list == NULL)
return;
old_num_chunks=png_ptr->num_chunk_list;
new_list=(png_bytep)png_malloc(png_ptr,
(png_uint_32)(5*(num_chunks+old_num_chunks)));
if(png_ptr->chunk_list != NULL)
{
png_memcpy(new_list, png_ptr->chunk_list,
(png_size_t)(5*old_num_chunks));
png_free(png_ptr, png_ptr->chunk_list);
png_ptr->chunk_list=NULL;
}
png_memcpy(new_list+5*old_num_chunks, chunk_list,
(png_size_t)(5*num_chunks));
for (p=new_list+5*old_num_chunks+4, i=0; i<num_chunks; i++, p+=5)
*p=(png_byte)keep;
png_ptr->num_chunk_list=old_num_chunks+num_chunks;
png_ptr->chunk_list=new_list;
#ifdef PNG_FREE_ME_SUPPORTED
png_ptr->free_me |= PNG_FREE_LIST;
#endif
}
#endif
 
#if defined(PNG_READ_USER_CHUNKS_SUPPORTED)
void PNGAPI
png_set_read_user_chunk_fn(png_structp png_ptr, png_voidp user_chunk_ptr,
png_user_chunk_ptr read_user_chunk_fn)
{
png_debug(1, "in png_set_read_user_chunk_fn\n");
png_ptr->read_user_chunk_fn = read_user_chunk_fn;
png_ptr->user_chunk_ptr = user_chunk_ptr;
}
#endif
 
#if defined(PNG_INFO_IMAGE_SUPPORTED)
void PNGAPI
png_set_rows(png_structp png_ptr, png_infop info_ptr, png_bytepp row_pointers)
{
png_debug1(1, "in %s storage function\n", "rows");
 
if (png_ptr == NULL || info_ptr == NULL)
return;
 
if(info_ptr->row_pointers && (info_ptr->row_pointers != row_pointers))
png_free_data(png_ptr, info_ptr, PNG_FREE_ROWS, 0);
info_ptr->row_pointers = row_pointers;
if(row_pointers)
info_ptr->valid |= PNG_INFO_IDAT;
}
#endif
 
void PNGAPI
png_set_compression_buffer_size(png_structp png_ptr, png_uint_32 size)
{
if(png_ptr->zbuf)
png_free(png_ptr, png_ptr->zbuf);
png_ptr->zbuf_size = (png_size_t)size;
png_ptr->zbuf = (png_bytep)png_malloc(png_ptr, size);
png_ptr->zstream.next_out = png_ptr->zbuf;
png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size;
}
 
void PNGAPI
png_set_invalid(png_structp png_ptr, png_infop info_ptr, int mask)
{
if (png_ptr && info_ptr)
info_ptr->valid &= ~(mask);
}
 
 
#ifndef PNG_1_0_X
#ifdef PNG_ASSEMBLER_CODE_SUPPORTED
/* this function was added to libpng 1.2.0 and should always exist by default */
void PNGAPI
png_set_asm_flags (png_structp png_ptr, png_uint_32 asm_flags)
{
png_uint_32 settable_asm_flags;
png_uint_32 settable_mmx_flags;
 
settable_mmx_flags =
#ifdef PNG_HAVE_ASSEMBLER_COMBINE_ROW
PNG_ASM_FLAG_MMX_READ_COMBINE_ROW |
#endif
#ifdef PNG_HAVE_ASSEMBLER_READ_INTERLACE
PNG_ASM_FLAG_MMX_READ_INTERLACE |
#endif
#ifdef PNG_HAVE_ASSEMBLER_READ_FILTER_ROW
PNG_ASM_FLAG_MMX_READ_FILTER_SUB |
PNG_ASM_FLAG_MMX_READ_FILTER_UP |
PNG_ASM_FLAG_MMX_READ_FILTER_AVG |
PNG_ASM_FLAG_MMX_READ_FILTER_PAETH |
#endif
0;
 
/* could be some non-MMX ones in the future, but not currently: */
settable_asm_flags = settable_mmx_flags;
 
if (!(png_ptr->asm_flags & PNG_ASM_FLAG_MMX_SUPPORT_COMPILED) ||
!(png_ptr->asm_flags & PNG_ASM_FLAG_MMX_SUPPORT_IN_CPU))
{
/* clear all MMX flags if MMX isn't supported */
settable_asm_flags &= ~settable_mmx_flags;
png_ptr->asm_flags &= ~settable_mmx_flags;
}
 
/* we're replacing the settable bits with those passed in by the user,
* so first zero them out of the master copy, then logical-OR in the
* allowed subset that was requested */
 
png_ptr->asm_flags &= ~settable_asm_flags; /* zero them */
png_ptr->asm_flags |= (asm_flags & settable_asm_flags); /* set them */
}
#endif /* ?PNG_ASSEMBLER_CODE_SUPPORTED */
 
#ifdef PNG_ASSEMBLER_CODE_SUPPORTED
/* this function was added to libpng 1.2.0 */
void PNGAPI
png_set_mmx_thresholds (png_structp png_ptr,
png_byte mmx_bitdepth_threshold,
png_uint_32 mmx_rowbytes_threshold)
{
png_ptr->mmx_bitdepth_threshold = mmx_bitdepth_threshold;
png_ptr->mmx_rowbytes_threshold = mmx_rowbytes_threshold;
}
#endif /* ?PNG_ASSEMBLER_CODE_SUPPORTED */
#endif /* ?PNG_1_0_X */
/shark/trunk/ports/png/pngwio.c
0,0 → 1,228
 
/* pngwio.c - functions for data output
*
* libpng 1.2.5 - October 3, 2002
* For conditions of distribution and use, see copyright notice in png.h
* Copyright (c) 1998-2002 Glenn Randers-Pehrson
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
*
* This file provides a location for all output. Users who need
* special handling are expected to write functions that have the same
* arguments as these and perform similar functions, but that possibly
* use different output methods. Note that you shouldn't change these
* functions, but rather write replacement functions and then change
* them at run time with png_set_write_fn(...).
*/
 
#define PNG_INTERNAL
#include "png.h"
#ifdef PNG_WRITE_SUPPORTED
 
/* Write the data to whatever output you are using. The default routine
writes to a file pointer. Note that this routine sometimes gets called
with very small lengths, so you should implement some kind of simple
buffering if you are using unbuffered writes. This should never be asked
to write more than 64K on a 16 bit machine. */
 
void /* PRIVATE */
png_write_data(png_structp png_ptr, png_bytep data, png_size_t length)
{
if (png_ptr->write_data_fn != NULL )
(*(png_ptr->write_data_fn))(png_ptr, data, length);
else
png_error(png_ptr, "Call to NULL write function");
}
 
#if !defined(PNG_NO_STDIO)
/* This is the function that does the actual writing of data. If you are
not writing to a standard C stream, you should create a replacement
write_data function and use it at run time with png_set_write_fn(), rather
than changing the library. */
#ifndef USE_FAR_KEYWORD
void PNGAPI
png_default_write_data(png_structp png_ptr, png_bytep data, png_size_t length)
{
png_uint_32 check;
 
#if defined(_WIN32_WCE)
if ( !WriteFile((HANDLE)(png_ptr->io_ptr), data, length, &check, NULL) )
check = 0;
#else
check = fwrite(data, 1, length, (png_FILE_p)(png_ptr->io_ptr));
#endif
if (check != length)
png_error(png_ptr, "Write Error");
}
#else
/* this is the model-independent version. Since the standard I/O library
can't handle far buffers in the medium and small models, we have to copy
the data.
*/
 
#define NEAR_BUF_SIZE 1024
#define MIN(a,b) (a <= b ? a : b)
 
void PNGAPI
png_default_write_data(png_structp png_ptr, png_bytep data, png_size_t length)
{
png_uint_32 check;
png_byte *near_data; /* Needs to be "png_byte *" instead of "png_bytep" */
png_FILE_p io_ptr;
 
/* Check if data really is near. If so, use usual code. */
near_data = (png_byte *)CVT_PTR_NOCHECK(data);
io_ptr = (png_FILE_p)CVT_PTR(png_ptr->io_ptr);
if ((png_bytep)near_data == data)
{
#if defined(_WIN32_WCE)
if ( !WriteFile(io_ptr, near_data, length, &check, NULL) )
check = 0;
#else
check = fwrite(near_data, 1, length, io_ptr);
#endif
}
else
{
png_byte buf[NEAR_BUF_SIZE];
png_size_t written, remaining, err;
check = 0;
remaining = length;
do
{
written = MIN(NEAR_BUF_SIZE, remaining);
png_memcpy(buf, data, written); /* copy far buffer to near buffer */
#if defined(_WIN32_WCE)
if ( !WriteFile(io_ptr, buf, written, &err, NULL) )
err = 0;
#else
err = fwrite(buf, 1, written, io_ptr);
#endif
if (err != written)
break;
else
check += err;
data += written;
remaining -= written;
}
while (remaining != 0);
}
if (check != length)
png_error(png_ptr, "Write Error");
}
 
#endif
#endif
 
/* This function is called to output any data pending writing (normally
to disk). After png_flush is called, there should be no data pending
writing in any buffers. */
#if defined(PNG_WRITE_FLUSH_SUPPORTED)
void /* PRIVATE */
png_flush(png_structp png_ptr)
{
if (png_ptr->output_flush_fn != NULL)
(*(png_ptr->output_flush_fn))(png_ptr);
}
 
#if !defined(PNG_NO_STDIO)
void PNGAPI
png_default_flush(png_structp png_ptr)
{
#if !defined(_WIN32_WCE)
png_FILE_p io_ptr;
io_ptr = (png_FILE_p)CVT_PTR((png_ptr->io_ptr));
if (io_ptr != NULL)
fflush(io_ptr);
#endif
}
#endif
#endif
 
/* This function allows the application to supply new output functions for
libpng if standard C streams aren't being used.
 
This function takes as its arguments:
png_ptr - pointer to a png output data structure
io_ptr - pointer to user supplied structure containing info about
the output functions. May be NULL.
write_data_fn - pointer to a new output function that takes as its
arguments a pointer to a png_struct, a pointer to
data to be written, and a 32-bit unsigned int that is
the number of bytes to be written. The new write
function should call png_error(png_ptr, "Error msg")
to exit and output any fatal error messages.
flush_data_fn - pointer to a new flush function that takes as its
arguments a pointer to a png_struct. After a call to
the flush function, there should be no data in any buffers
or pending transmission. If the output method doesn't do
any buffering of ouput, a function prototype must still be
supplied although it doesn't have to do anything. If
PNG_WRITE_FLUSH_SUPPORTED is not defined at libpng compile
time, output_flush_fn will be ignored, although it must be
supplied for compatibility. */
void PNGAPI
png_set_write_fn(png_structp png_ptr, png_voidp io_ptr,
png_rw_ptr write_data_fn, png_flush_ptr output_flush_fn)
{
png_ptr->io_ptr = io_ptr;
 
#if !defined(PNG_NO_STDIO)
if (write_data_fn != NULL)
png_ptr->write_data_fn = write_data_fn;
else
png_ptr->write_data_fn = png_default_write_data;
#else
png_ptr->write_data_fn = write_data_fn;
#endif
 
#if defined(PNG_WRITE_FLUSH_SUPPORTED)
#if !defined(PNG_NO_STDIO)
if (output_flush_fn != NULL)
png_ptr->output_flush_fn = output_flush_fn;
else
png_ptr->output_flush_fn = png_default_flush;
#else
png_ptr->output_flush_fn = output_flush_fn;
#endif
#endif /* PNG_WRITE_FLUSH_SUPPORTED */
 
/* It is an error to read while writing a png file */
if (png_ptr->read_data_fn != NULL)
{
png_ptr->read_data_fn = NULL;
png_warning(png_ptr,
"Attempted to set both read_data_fn and write_data_fn in");
png_warning(png_ptr,
"the same structure. Resetting read_data_fn to NULL.");
}
}
 
#if defined(USE_FAR_KEYWORD)
#if defined(_MSC_VER)
void *png_far_to_near(png_structp png_ptr,png_voidp ptr, int check)
{
void *near_ptr;
void FAR *far_ptr;
FP_OFF(near_ptr) = FP_OFF(ptr);
far_ptr = (void FAR *)near_ptr;
if(check != 0)
if(FP_SEG(ptr) != FP_SEG(far_ptr))
png_error(png_ptr,"segment lost in conversion");
return(near_ptr);
}
# else
void *png_far_to_near(png_structp png_ptr,png_voidp ptr, int check)
{
void *near_ptr;
void FAR *far_ptr;
near_ptr = (void FAR *)ptr;
far_ptr = (void FAR *)near_ptr;
if(check != 0)
if(far_ptr != ptr)
png_error(png_ptr,"segment lost in conversion");
return(near_ptr);
}
# endif
# endif
#endif /* PNG_WRITE_SUPPORTED */
/shark/trunk/ports/png/pngrutil.c
0,0 → 1,3101
 
/* pngrutil.c - utilities to read a PNG file
*
* libpng 1.2.5 - October 3, 2002
* For conditions of distribution and use, see copyright notice in png.h
* Copyright (c) 1998-2002 Glenn Randers-Pehrson
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
*
* This file contains routines that are only called from within
* libpng itself during the course of reading an image.
*/
 
#define PNG_INTERNAL
#include "png.h"
 
#if defined(_WIN32_WCE)
/* strtod() function is not supported on WindowsCE */
# ifdef PNG_FLOATING_POINT_SUPPORTED
__inline double strtod(const char *nptr, char **endptr)
{
double result = 0;
int len;
wchar_t *str, *end;
 
len = MultiByteToWideChar(CP_ACP, 0, nptr, -1, NULL, 0);
str = (wchar_t *)malloc(len * sizeof(wchar_t));
if ( NULL != str )
{
MultiByteToWideChar(CP_ACP, 0, nptr, -1, str, len);
result = wcstod(str, &end);
len = WideCharToMultiByte(CP_ACP, 0, end, -1, NULL, 0, NULL, NULL);
*endptr = (char *)nptr + (png_strlen(nptr) - len + 1);
free(str);
}
return result;
}
# endif
#endif
 
#ifndef PNG_READ_BIG_ENDIAN_SUPPORTED
/* Grab an unsigned 32-bit integer from a buffer in big-endian format. */
png_uint_32 /* PRIVATE */
png_get_uint_32(png_bytep buf)
{
png_uint_32 i = ((png_uint_32)(*buf) << 24) +
((png_uint_32)(*(buf + 1)) << 16) +
((png_uint_32)(*(buf + 2)) << 8) +
(png_uint_32)(*(buf + 3));
 
return (i);
}
 
#if defined(PNG_READ_pCAL_SUPPORTED) || defined(PNG_READ_oFFs_SUPPORTED)
/* Grab a signed 32-bit integer from a buffer in big-endian format. The
* data is stored in the PNG file in two's complement format, and it is
* assumed that the machine format for signed integers is the same. */
png_int_32 /* PRIVATE */
png_get_int_32(png_bytep buf)
{
png_int_32 i = ((png_int_32)(*buf) << 24) +
((png_int_32)(*(buf + 1)) << 16) +
((png_int_32)(*(buf + 2)) << 8) +
(png_int_32)(*(buf + 3));
 
return (i);
}
#endif /* PNG_READ_pCAL_SUPPORTED */
 
/* Grab an unsigned 16-bit integer from a buffer in big-endian format. */
png_uint_16 /* PRIVATE */
png_get_uint_16(png_bytep buf)
{
png_uint_16 i = (png_uint_16)(((png_uint_16)(*buf) << 8) +
(png_uint_16)(*(buf + 1)));
 
return (i);
}
#endif /* PNG_READ_BIG_ENDIAN_SUPPORTED */
 
/* Read data, and (optionally) run it through the CRC. */
void /* PRIVATE */
png_crc_read(png_structp png_ptr, png_bytep buf, png_size_t length)
{
png_read_data(png_ptr, buf, length);
png_calculate_crc(png_ptr, buf, length);
}
 
/* Optionally skip data and then check the CRC. Depending on whether we
are reading a ancillary or critical chunk, and how the program has set
things up, we may calculate the CRC on the data and print a message.
Returns '1' if there was a CRC error, '0' otherwise. */
int /* PRIVATE */
png_crc_finish(png_structp png_ptr, png_uint_32 skip)
{
png_size_t i;
png_size_t istop = png_ptr->zbuf_size;
 
for (i = (png_size_t)skip; i > istop; i -= istop)
{
png_crc_read(png_ptr, png_ptr->zbuf, png_ptr->zbuf_size);
}
if (i)
{
png_crc_read(png_ptr, png_ptr->zbuf, i);
}
 
if (png_crc_error(png_ptr))
{
if (((png_ptr->chunk_name[0] & 0x20) && /* Ancillary */
!(png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_NOWARN)) ||
(!(png_ptr->chunk_name[0] & 0x20) && /* Critical */
(png_ptr->flags & PNG_FLAG_CRC_CRITICAL_USE)))
{
png_chunk_warning(png_ptr, "CRC error");
}
else
{
png_chunk_error(png_ptr, "CRC error");
}
return (1);
}
 
return (0);
}
 
/* Compare the CRC stored in the PNG file with that calculated by libpng from
the data it has read thus far. */
int /* PRIVATE */
png_crc_error(png_structp png_ptr)
{
png_byte crc_bytes[4];
png_uint_32 crc;
int need_crc = 1;
 
if (png_ptr->chunk_name[0] & 0x20) /* ancillary */
{
if ((png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_MASK) ==
(PNG_FLAG_CRC_ANCILLARY_USE | PNG_FLAG_CRC_ANCILLARY_NOWARN))
need_crc = 0;
}
else /* critical */
{
if (png_ptr->flags & PNG_FLAG_CRC_CRITICAL_IGNORE)
need_crc = 0;
}
 
png_read_data(png_ptr, crc_bytes, 4);
 
if (need_crc)
{
crc = png_get_uint_32(crc_bytes);
return ((int)(crc != png_ptr->crc));
}
else
return (0);
}
 
#if defined(PNG_READ_zTXt_SUPPORTED) || defined(PNG_READ_iTXt_SUPPORTED) || \
defined(PNG_READ_iCCP_SUPPORTED)
/*
* Decompress trailing data in a chunk. The assumption is that chunkdata
* points at an allocated area holding the contents of a chunk with a
* trailing compressed part. What we get back is an allocated area
* holding the original prefix part and an uncompressed version of the
* trailing part (the malloc area passed in is freed).
*/
png_charp /* PRIVATE */
png_decompress_chunk(png_structp png_ptr, int comp_type,
png_charp chunkdata, png_size_t chunklength,
png_size_t prefix_size, png_size_t *newlength)
{
static char msg[] = "Error decoding compressed text";
png_charp text = NULL;
png_size_t text_size;
 
if (comp_type == PNG_COMPRESSION_TYPE_BASE)
{
int ret = Z_OK;
png_ptr->zstream.next_in = (png_bytep)(chunkdata + prefix_size);
png_ptr->zstream.avail_in = (uInt)(chunklength - prefix_size);
png_ptr->zstream.next_out = png_ptr->zbuf;
png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size;
 
text_size = 0;
text = NULL;
 
while (png_ptr->zstream.avail_in)
{
ret = inflate(&png_ptr->zstream, Z_PARTIAL_FLUSH);
if (ret != Z_OK && ret != Z_STREAM_END)
{
if (png_ptr->zstream.msg != NULL)
png_warning(png_ptr, png_ptr->zstream.msg);
else
png_warning(png_ptr, msg);
inflateReset(&png_ptr->zstream);
png_ptr->zstream.avail_in = 0;
 
if (text == NULL)
{
text_size = prefix_size + sizeof(msg) + 1;
text = (png_charp)png_malloc_warn(png_ptr, text_size);
if (text == NULL)
{
png_free(png_ptr,chunkdata);
png_error(png_ptr,"Not enough memory to decompress chunk");
}
png_memcpy(text, chunkdata, prefix_size);
}
 
text[text_size - 1] = 0x00;
 
/* Copy what we can of the error message into the text chunk */
text_size = (png_size_t)(chunklength - (text - chunkdata) - 1);
text_size = sizeof(msg) > text_size ? text_size : sizeof(msg);
png_memcpy(text + prefix_size, msg, text_size + 1);
break;
}
if (!png_ptr->zstream.avail_out || ret == Z_STREAM_END)
{
if (text == NULL)
{
text_size = prefix_size +
png_ptr->zbuf_size - png_ptr->zstream.avail_out;
text = (png_charp)png_malloc_warn(png_ptr, text_size + 1);
if (text == NULL)
{
png_free(png_ptr,chunkdata);
png_error(png_ptr,"Not enough memory to decompress chunk.");
}
png_memcpy(text + prefix_size, png_ptr->zbuf,
text_size - prefix_size);
png_memcpy(text, chunkdata, prefix_size);
*(text + text_size) = 0x00;
}
else
{
png_charp tmp;
 
tmp = text;
text = (png_charp)png_malloc_warn(png_ptr,
(png_uint_32)(text_size +
png_ptr->zbuf_size - png_ptr->zstream.avail_out + 1));
if (text == NULL)
{
png_free(png_ptr, tmp);
png_free(png_ptr, chunkdata);
png_error(png_ptr,"Not enough memory to decompress chunk..");
}
png_memcpy(text, tmp, text_size);
png_free(png_ptr, tmp);
png_memcpy(text + text_size, png_ptr->zbuf,
(png_ptr->zbuf_size - png_ptr->zstream.avail_out));
text_size += png_ptr->zbuf_size - png_ptr->zstream.avail_out;
*(text + text_size) = 0x00;
}
if (ret == Z_STREAM_END)
break;
else
{
png_ptr->zstream.next_out = png_ptr->zbuf;
png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size;
}
}
}
if (ret != Z_STREAM_END)
{
#if !defined(PNG_NO_STDIO) && !defined(_WIN32_WCE)
char umsg[50];
 
if (ret == Z_BUF_ERROR)
sprintf(umsg,"Buffer error in compressed datastream in %s chunk",
png_ptr->chunk_name);
else if (ret == Z_DATA_ERROR)
sprintf(umsg,"Data error in compressed datastream in %s chunk",
png_ptr->chunk_name);
else
sprintf(umsg,"Incomplete compressed datastream in %s chunk",
png_ptr->chunk_name);
png_warning(png_ptr, umsg);
#else
png_warning(png_ptr,
"Incomplete compressed datastream in chunk other than IDAT");
#endif
text_size=prefix_size;
if (text == NULL)
{
text = (png_charp)png_malloc_warn(png_ptr, text_size+1);
if (text == NULL)
{
png_free(png_ptr, chunkdata);
png_error(png_ptr,"Not enough memory for text.");
}
png_memcpy(text, chunkdata, prefix_size);
}
*(text + text_size) = 0x00;
}
 
inflateReset(&png_ptr->zstream);
png_ptr->zstream.avail_in = 0;
 
png_free(png_ptr, chunkdata);
chunkdata = text;
*newlength=text_size;
}
else /* if (comp_type != PNG_COMPRESSION_TYPE_BASE) */
{
#if !defined(PNG_NO_STDIO) && !defined(_WIN32_WCE)
char umsg[50];
 
sprintf(umsg, "Unknown zTXt compression type %d", comp_type);
png_warning(png_ptr, umsg);
#else
png_warning(png_ptr, "Unknown zTXt compression type");
#endif
 
*(chunkdata + prefix_size) = 0x00;
*newlength=prefix_size;
}
 
return chunkdata;
}
#endif
 
/* read and check the IDHR chunk */
void /* PRIVATE */
png_handle_IHDR(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
{
png_byte buf[13];
png_uint_32 width, height;
int bit_depth, color_type, compression_type, filter_type;
int interlace_type;
 
png_debug(1, "in png_handle_IHDR\n");
 
if (png_ptr->mode & PNG_HAVE_IHDR)
png_error(png_ptr, "Out of place IHDR");
 
/* check the length */
if (length != 13)
png_error(png_ptr, "Invalid IHDR chunk");
 
png_ptr->mode |= PNG_HAVE_IHDR;
 
png_crc_read(png_ptr, buf, 13);
png_crc_finish(png_ptr, 0);
 
width = png_get_uint_32(buf);
height = png_get_uint_32(buf + 4);
bit_depth = buf[8];
color_type = buf[9];
compression_type = buf[10];
filter_type = buf[11];
interlace_type = buf[12];
 
 
/* set internal variables */
png_ptr->width = width;
png_ptr->height = height;
png_ptr->bit_depth = (png_byte)bit_depth;
png_ptr->interlaced = (png_byte)interlace_type;
png_ptr->color_type = (png_byte)color_type;
#if defined(PNG_MNG_FEATURES_SUPPORTED)
png_ptr->filter_type = (png_byte)filter_type;
#endif
 
/* find number of channels */
switch (png_ptr->color_type)
{
case PNG_COLOR_TYPE_GRAY:
case PNG_COLOR_TYPE_PALETTE:
png_ptr->channels = 1;
break;
case PNG_COLOR_TYPE_RGB:
png_ptr->channels = 3;
break;
case PNG_COLOR_TYPE_GRAY_ALPHA:
png_ptr->channels = 2;
break;
case PNG_COLOR_TYPE_RGB_ALPHA:
png_ptr->channels = 4;
break;
}
 
/* set up other useful info */
png_ptr->pixel_depth = (png_byte)(png_ptr->bit_depth *
png_ptr->channels);
png_ptr->rowbytes = ((png_ptr->width *
(png_uint_32)png_ptr->pixel_depth + 7) >> 3);
png_debug1(3,"bit_depth = %d\n", png_ptr->bit_depth);
png_debug1(3,"channels = %d\n", png_ptr->channels);
png_debug1(3,"rowbytes = %lu\n", png_ptr->rowbytes);
png_set_IHDR(png_ptr, info_ptr, width, height, bit_depth,
color_type, interlace_type, compression_type, filter_type);
}
 
/* read and check the palette */
void /* PRIVATE */
png_handle_PLTE(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
{
png_color palette[PNG_MAX_PALETTE_LENGTH];
int num, i;
#ifndef PNG_NO_POINTER_INDEXING
png_colorp pal_ptr;
#endif
 
png_debug(1, "in png_handle_PLTE\n");
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before PLTE");
else if (png_ptr->mode & PNG_HAVE_IDAT)
{
png_warning(png_ptr, "Invalid PLTE after IDAT");
png_crc_finish(png_ptr, length);
return;
}
else if (png_ptr->mode & PNG_HAVE_PLTE)
png_error(png_ptr, "Duplicate PLTE chunk");
 
png_ptr->mode |= PNG_HAVE_PLTE;
 
if (!(png_ptr->color_type&PNG_COLOR_MASK_COLOR))
{
png_warning(png_ptr,
"Ignoring PLTE chunk in grayscale PNG");
png_crc_finish(png_ptr, length);
return;
}
#if !defined(PNG_READ_OPT_PLTE_SUPPORTED)
if (png_ptr->color_type != PNG_COLOR_TYPE_PALETTE)
{
png_crc_finish(png_ptr, length);
return;
}
#endif
 
if (length > 3*PNG_MAX_PALETTE_LENGTH || length % 3)
{
if (png_ptr->color_type != PNG_COLOR_TYPE_PALETTE)
{
png_warning(png_ptr, "Invalid palette chunk");
png_crc_finish(png_ptr, length);
return;
}
else
{
png_error(png_ptr, "Invalid palette chunk");
}
}
 
num = (int)length / 3;
 
#ifndef PNG_NO_POINTER_INDEXING
for (i = 0, pal_ptr = palette; i < num; i++, pal_ptr++)
{
png_byte buf[3];
 
png_crc_read(png_ptr, buf, 3);
pal_ptr->red = buf[0];
pal_ptr->green = buf[1];
pal_ptr->blue = buf[2];
}
#else
for (i = 0; i < num; i++)
{
png_byte buf[3];
 
png_crc_read(png_ptr, buf, 3);
/* don't depend upon png_color being any order */
palette[i].red = buf[0];
palette[i].green = buf[1];
palette[i].blue = buf[2];
}
#endif
 
/* If we actually NEED the PLTE chunk (ie for a paletted image), we do
whatever the normal CRC configuration tells us. However, if we
have an RGB image, the PLTE can be considered ancillary, so
we will act as though it is. */
#if !defined(PNG_READ_OPT_PLTE_SUPPORTED)
if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
#endif
{
png_crc_finish(png_ptr, 0);
}
#if !defined(PNG_READ_OPT_PLTE_SUPPORTED)
else if (png_crc_error(png_ptr)) /* Only if we have a CRC error */
{
/* If we don't want to use the data from an ancillary chunk,
we have two options: an error abort, or a warning and we
ignore the data in this chunk (which should be OK, since
it's considered ancillary for a RGB or RGBA image). */
if (!(png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_USE))
{
if (png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_NOWARN)
{
png_chunk_error(png_ptr, "CRC error");
}
else
{
png_chunk_warning(png_ptr, "CRC error");
return;
}
}
/* Otherwise, we (optionally) emit a warning and use the chunk. */
else if (!(png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_NOWARN))
{
png_chunk_warning(png_ptr, "CRC error");
}
}
#endif
 
png_set_PLTE(png_ptr, info_ptr, palette, num);
 
#if defined(PNG_READ_tRNS_SUPPORTED)
if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
{
if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_tRNS))
{
if (png_ptr->num_trans > (png_uint_16)num)
{
png_warning(png_ptr, "Truncating incorrect tRNS chunk length");
png_ptr->num_trans = (png_uint_16)num;
}
if (info_ptr->num_trans > (png_uint_16)num)
{
png_warning(png_ptr, "Truncating incorrect info tRNS chunk length");
info_ptr->num_trans = (png_uint_16)num;
}
}
}
#endif
 
}
 
void /* PRIVATE */
png_handle_IEND(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
{
png_debug(1, "in png_handle_IEND\n");
 
if (!(png_ptr->mode & PNG_HAVE_IHDR) || !(png_ptr->mode & PNG_HAVE_IDAT))
{
png_error(png_ptr, "No image in file");
 
info_ptr = info_ptr; /* quiet compiler warnings about unused info_ptr */
}
 
png_ptr->mode |= (PNG_AFTER_IDAT | PNG_HAVE_IEND);
 
if (length != 0)
{
png_warning(png_ptr, "Incorrect IEND chunk length");
}
png_crc_finish(png_ptr, length);
}
 
#if defined(PNG_READ_gAMA_SUPPORTED)
void /* PRIVATE */
png_handle_gAMA(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
{
png_fixed_point igamma;
#ifdef PNG_FLOATING_POINT_SUPPORTED
float file_gamma;
#endif
png_byte buf[4];
 
png_debug(1, "in png_handle_gAMA\n");
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before gAMA");
else if (png_ptr->mode & PNG_HAVE_IDAT)
{
png_warning(png_ptr, "Invalid gAMA after IDAT");
png_crc_finish(png_ptr, length);
return;
}
else if (png_ptr->mode & PNG_HAVE_PLTE)
/* Should be an error, but we can cope with it */
png_warning(png_ptr, "Out of place gAMA chunk");
 
else if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_gAMA)
#if defined(PNG_READ_sRGB_SUPPORTED)
&& !(info_ptr->valid & PNG_INFO_sRGB)
#endif
)
{
png_warning(png_ptr, "Duplicate gAMA chunk");
png_crc_finish(png_ptr, length);
return;
}
 
if (length != 4)
{
png_warning(png_ptr, "Incorrect gAMA chunk length");
png_crc_finish(png_ptr, length);
return;
}
 
png_crc_read(png_ptr, buf, 4);
if (png_crc_finish(png_ptr, 0))
return;
 
igamma = (png_fixed_point)png_get_uint_32(buf);
/* check for zero gamma */
if (igamma == 0)
{
png_warning(png_ptr,
"Ignoring gAMA chunk with gamma=0");
return;
}
 
#if defined(PNG_READ_sRGB_SUPPORTED)
if (info_ptr->valid & PNG_INFO_sRGB)
if(igamma < 45000L || igamma > 46000L)
{
png_warning(png_ptr,
"Ignoring incorrect gAMA value when sRGB is also present");
#ifndef PNG_NO_CONSOLE_IO
cprintf("gamma = (%d/100000)\n", (int)igamma);
#endif
return;
}
#endif /* PNG_READ_sRGB_SUPPORTED */
 
#ifdef PNG_FLOATING_POINT_SUPPORTED
file_gamma = (float)igamma / (float)100000.0;
# ifdef PNG_READ_GAMMA_SUPPORTED
png_ptr->gamma = file_gamma;
# endif
png_set_gAMA(png_ptr, info_ptr, file_gamma);
#endif
#ifdef PNG_FIXED_POINT_SUPPORTED
png_set_gAMA_fixed(png_ptr, info_ptr, igamma);
#endif
}
#endif
 
#if defined(PNG_READ_sBIT_SUPPORTED)
void /* PRIVATE */
png_handle_sBIT(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
{
png_size_t truelen;
png_byte buf[4];
 
png_debug(1, "in png_handle_sBIT\n");
 
buf[0] = buf[1] = buf[2] = buf[3] = 0;
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before sBIT");
else if (png_ptr->mode & PNG_HAVE_IDAT)
{
png_warning(png_ptr, "Invalid sBIT after IDAT");
png_crc_finish(png_ptr, length);
return;
}
else if (png_ptr->mode & PNG_HAVE_PLTE)
{
/* Should be an error, but we can cope with it */
png_warning(png_ptr, "Out of place sBIT chunk");
}
else if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_sBIT))
{
png_warning(png_ptr, "Duplicate sBIT chunk");
png_crc_finish(png_ptr, length);
return;
}
 
if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
truelen = 3;
else
truelen = (png_size_t)png_ptr->channels;
 
if (length != truelen)
{
png_warning(png_ptr, "Incorrect sBIT chunk length");
png_crc_finish(png_ptr, length);
return;
}
 
png_crc_read(png_ptr, buf, truelen);
if (png_crc_finish(png_ptr, 0))
return;
 
if (png_ptr->color_type & PNG_COLOR_MASK_COLOR)
{
png_ptr->sig_bit.red = buf[0];
png_ptr->sig_bit.green = buf[1];
png_ptr->sig_bit.blue = buf[2];
png_ptr->sig_bit.alpha = buf[3];
}
else
{
png_ptr->sig_bit.gray = buf[0];
png_ptr->sig_bit.red = buf[0];
png_ptr->sig_bit.green = buf[0];
png_ptr->sig_bit.blue = buf[0];
png_ptr->sig_bit.alpha = buf[1];
}
png_set_sBIT(png_ptr, info_ptr, &(png_ptr->sig_bit));
}
#endif
 
#if defined(PNG_READ_cHRM_SUPPORTED)
void /* PRIVATE */
png_handle_cHRM(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
{
png_byte buf[4];
#ifdef PNG_FLOATING_POINT_SUPPORTED
float white_x, white_y, red_x, red_y, green_x, green_y, blue_x, blue_y;
#endif
png_fixed_point int_x_white, int_y_white, int_x_red, int_y_red, int_x_green,
int_y_green, int_x_blue, int_y_blue;
 
png_uint_32 uint_x, uint_y;
 
png_debug(1, "in png_handle_cHRM\n");
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before cHRM");
else if (png_ptr->mode & PNG_HAVE_IDAT)
{
png_warning(png_ptr, "Invalid cHRM after IDAT");
png_crc_finish(png_ptr, length);
return;
}
else if (png_ptr->mode & PNG_HAVE_PLTE)
/* Should be an error, but we can cope with it */
png_warning(png_ptr, "Missing PLTE before cHRM");
 
else if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_cHRM)
#if defined(PNG_READ_sRGB_SUPPORTED)
&& !(info_ptr->valid & PNG_INFO_sRGB)
#endif
)
{
png_warning(png_ptr, "Duplicate cHRM chunk");
png_crc_finish(png_ptr, length);
return;
}
 
if (length != 32)
{
png_warning(png_ptr, "Incorrect cHRM chunk length");
png_crc_finish(png_ptr, length);
return;
}
 
png_crc_read(png_ptr, buf, 4);
uint_x = png_get_uint_32(buf);
 
png_crc_read(png_ptr, buf, 4);
uint_y = png_get_uint_32(buf);
 
if (uint_x > 80000L || uint_y > 80000L ||
uint_x + uint_y > 100000L)
{
png_warning(png_ptr, "Invalid cHRM white point");
png_crc_finish(png_ptr, 24);
return;
}
int_x_white = (png_fixed_point)uint_x;
int_y_white = (png_fixed_point)uint_y;
 
png_crc_read(png_ptr, buf, 4);
uint_x = png_get_uint_32(buf);
 
png_crc_read(png_ptr, buf, 4);
uint_y = png_get_uint_32(buf);
 
if (uint_x > 80000L || uint_y > 80000L ||
uint_x + uint_y > 100000L)
{
png_warning(png_ptr, "Invalid cHRM red point");
png_crc_finish(png_ptr, 16);
return;
}
int_x_red = (png_fixed_point)uint_x;
int_y_red = (png_fixed_point)uint_y;
 
png_crc_read(png_ptr, buf, 4);
uint_x = png_get_uint_32(buf);
 
png_crc_read(png_ptr, buf, 4);
uint_y = png_get_uint_32(buf);
 
if (uint_x > 80000L || uint_y > 80000L ||
uint_x + uint_y > 100000L)
{
png_warning(png_ptr, "Invalid cHRM green point");
png_crc_finish(png_ptr, 8);
return;
}
int_x_green = (png_fixed_point)uint_x;
int_y_green = (png_fixed_point)uint_y;
 
png_crc_read(png_ptr, buf, 4);
uint_x = png_get_uint_32(buf);
 
png_crc_read(png_ptr, buf, 4);
uint_y = png_get_uint_32(buf);
 
if (uint_x > 80000L || uint_y > 80000L ||
uint_x + uint_y > 100000L)
{
png_warning(png_ptr, "Invalid cHRM blue point");
png_crc_finish(png_ptr, 0);
return;
}
int_x_blue = (png_fixed_point)uint_x;
int_y_blue = (png_fixed_point)uint_y;
 
#ifdef PNG_FLOATING_POINT_SUPPORTED
white_x = (float)int_x_white / (float)100000.0;
white_y = (float)int_y_white / (float)100000.0;
red_x = (float)int_x_red / (float)100000.0;
red_y = (float)int_y_red / (float)100000.0;
green_x = (float)int_x_green / (float)100000.0;
green_y = (float)int_y_green / (float)100000.0;
blue_x = (float)int_x_blue / (float)100000.0;
blue_y = (float)int_y_blue / (float)100000.0;
#endif
 
#if defined(PNG_READ_sRGB_SUPPORTED)
if (info_ptr->valid & PNG_INFO_sRGB)
{
if (abs(int_x_white - 31270L) > 1000 ||
abs(int_y_white - 32900L) > 1000 ||
abs(int_x_red - 64000L) > 1000 ||
abs(int_y_red - 33000L) > 1000 ||
abs(int_x_green - 30000L) > 1000 ||
abs(int_y_green - 60000L) > 1000 ||
abs(int_x_blue - 15000L) > 1000 ||
abs(int_y_blue - 6000L) > 1000)
{
 
png_warning(png_ptr,
"Ignoring incorrect cHRM value when sRGB is also present");
#ifndef PNG_NO_CONSOLE_IO
#ifdef PNG_FLOATING_POINT_SUPPORTED
cprintf("wx=%f, wy=%f, rx=%f, ry=%f\n",
white_x, white_y, red_x, red_y);
cprintf("gx=%f, gy=%f, bx=%f, by=%f\n",
green_x, green_y, blue_x, blue_y);
#else
cprintf("wx=%ld, wy=%ld, rx=%ld, ry=%ld\n",
int_x_white, int_y_white, int_x_red, int_y_red);
cprintf("gx=%ld, gy=%ld, bx=%ld, by=%ld\n",
int_x_green, int_y_green, int_x_blue, int_y_blue);
#endif
#endif /* PNG_NO_CONSOLE_IO */
}
png_crc_finish(png_ptr, 0);
return;
}
#endif /* PNG_READ_sRGB_SUPPORTED */
 
#ifdef PNG_FLOATING_POINT_SUPPORTED
png_set_cHRM(png_ptr, info_ptr,
white_x, white_y, red_x, red_y, green_x, green_y, blue_x, blue_y);
#endif
#ifdef PNG_FIXED_POINT_SUPPORTED
png_set_cHRM_fixed(png_ptr, info_ptr,
int_x_white, int_y_white, int_x_red, int_y_red, int_x_green,
int_y_green, int_x_blue, int_y_blue);
#endif
if (png_crc_finish(png_ptr, 0))
return;
}
#endif
 
#if defined(PNG_READ_sRGB_SUPPORTED)
void /* PRIVATE */
png_handle_sRGB(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
{
int intent;
png_byte buf[1];
 
png_debug(1, "in png_handle_sRGB\n");
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before sRGB");
else if (png_ptr->mode & PNG_HAVE_IDAT)
{
png_warning(png_ptr, "Invalid sRGB after IDAT");
png_crc_finish(png_ptr, length);
return;
}
else if (png_ptr->mode & PNG_HAVE_PLTE)
/* Should be an error, but we can cope with it */
png_warning(png_ptr, "Out of place sRGB chunk");
 
else if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_sRGB))
{
png_warning(png_ptr, "Duplicate sRGB chunk");
png_crc_finish(png_ptr, length);
return;
}
 
if (length != 1)
{
png_warning(png_ptr, "Incorrect sRGB chunk length");
png_crc_finish(png_ptr, length);
return;
}
 
png_crc_read(png_ptr, buf, 1);
if (png_crc_finish(png_ptr, 0))
return;
 
intent = buf[0];
/* check for bad intent */
if (intent >= PNG_sRGB_INTENT_LAST)
{
png_warning(png_ptr, "Unknown sRGB intent");
return;
}
 
#if defined(PNG_READ_gAMA_SUPPORTED) && defined(PNG_READ_GAMMA_SUPPORTED)
if ((info_ptr->valid & PNG_INFO_gAMA))
{
int igamma;
#ifdef PNG_FIXED_POINT_SUPPORTED
igamma=(int)info_ptr->int_gamma;
#else
# ifdef PNG_FLOATING_POINT_SUPPORTED
igamma=(int)(info_ptr->gamma * 100000.);
# endif
#endif
if(igamma < 45000L || igamma > 46000L)
{
png_warning(png_ptr,
"Ignoring incorrect gAMA value when sRGB is also present");
#ifndef PNG_NO_CONSOLE_IO
# ifdef PNG_FIXED_POINT_SUPPORTED
cprintf("incorrect gamma=(%d/100000)\n",(int)png_ptr->int_gamma);
# else
# ifdef PNG_FLOATING_POINT_SUPPORTED
cprintf("incorrect gamma=%f\n",png_ptr->gamma);
# endif
# endif
#endif
}
}
#endif /* PNG_READ_gAMA_SUPPORTED */
 
#ifdef PNG_READ_cHRM_SUPPORTED
#ifdef PNG_FIXED_POINT_SUPPORTED
if (info_ptr->valid & PNG_INFO_cHRM)
if (abs(info_ptr->int_x_white - 31270L) > 1000 ||
abs(info_ptr->int_y_white - 32900L) > 1000 ||
abs(info_ptr->int_x_red - 64000L) > 1000 ||
abs(info_ptr->int_y_red - 33000L) > 1000 ||
abs(info_ptr->int_x_green - 30000L) > 1000 ||
abs(info_ptr->int_y_green - 60000L) > 1000 ||
abs(info_ptr->int_x_blue - 15000L) > 1000 ||
abs(info_ptr->int_y_blue - 6000L) > 1000)
{
png_warning(png_ptr,
"Ignoring incorrect cHRM value when sRGB is also present");
}
#endif /* PNG_FIXED_POINT_SUPPORTED */
#endif /* PNG_READ_cHRM_SUPPORTED */
 
png_set_sRGB_gAMA_and_cHRM(png_ptr, info_ptr, intent);
}
#endif /* PNG_READ_sRGB_SUPPORTED */
 
#if defined(PNG_READ_iCCP_SUPPORTED)
void /* PRIVATE */
png_handle_iCCP(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
/* Note: this does not properly handle chunks that are > 64K under DOS */
{
png_charp chunkdata;
png_byte compression_type;
png_bytep pC;
png_charp profile;
png_uint_32 skip = 0;
png_uint_32 profile_size = 0;
png_uint_32 profile_length = 0;
png_size_t slength, prefix_length, data_length;
 
png_debug(1, "in png_handle_iCCP\n");
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before iCCP");
else if (png_ptr->mode & PNG_HAVE_IDAT)
{
png_warning(png_ptr, "Invalid iCCP after IDAT");
png_crc_finish(png_ptr, length);
return;
}
else if (png_ptr->mode & PNG_HAVE_PLTE)
/* Should be an error, but we can cope with it */
png_warning(png_ptr, "Out of place iCCP chunk");
 
else if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_iCCP))
{
png_warning(png_ptr, "Duplicate iCCP chunk");
png_crc_finish(png_ptr, length);
return;
}
 
#ifdef PNG_MAX_MALLOC_64K
if (length > (png_uint_32)65535L)
{
png_warning(png_ptr, "iCCP chunk too large to fit in memory");
skip = length - (png_uint_32)65535L;
length = (png_uint_32)65535L;
}
#endif
 
chunkdata = (png_charp)png_malloc(png_ptr, length + 1);
slength = (png_size_t)length;
png_crc_read(png_ptr, (png_bytep)chunkdata, slength);
 
if (png_crc_finish(png_ptr, skip))
{
png_free(png_ptr, chunkdata);
return;
}
 
chunkdata[slength] = 0x00;
 
for (profile = chunkdata; *profile; profile++)
/* empty loop to find end of name */ ;
 
++profile;
 
/* there should be at least one zero (the compression type byte)
following the separator, and we should be on it */
if ( profile >= chunkdata + slength)
{
png_free(png_ptr, chunkdata);
png_warning(png_ptr, "Malformed iCCP chunk");
return;
}
 
/* compression_type should always be zero */
compression_type = *profile++;
if (compression_type)
{
png_warning(png_ptr, "Ignoring nonzero compression type in iCCP chunk");
compression_type=0x00; /* Reset it to zero (libpng-1.0.6 through 1.0.8
wrote nonzero) */
}
 
prefix_length = profile - chunkdata;
chunkdata = png_decompress_chunk(png_ptr, compression_type, chunkdata,
slength, prefix_length, &data_length);
 
profile_length = data_length - prefix_length;
 
if ( prefix_length > data_length || profile_length < 4)
{
png_free(png_ptr, chunkdata);
png_warning(png_ptr, "Profile size field missing from iCCP chunk");
return;
}
 
/* Check the profile_size recorded in the first 32 bits of the ICC profile */
pC = (png_bytep)(chunkdata+prefix_length);
profile_size = ((*(pC ))<<24) |
((*(pC+1))<<16) |
((*(pC+2))<< 8) |
((*(pC+3)) );
 
if(profile_size < profile_length)
profile_length = profile_size;
 
if(profile_size > profile_length)
{
png_free(png_ptr, chunkdata);
png_warning(png_ptr, "Ignoring truncated iCCP profile.\n");
return;
}
 
png_set_iCCP(png_ptr, info_ptr, chunkdata, compression_type,
chunkdata + prefix_length, profile_length);
png_free(png_ptr, chunkdata);
}
#endif /* PNG_READ_iCCP_SUPPORTED */
 
#if defined(PNG_READ_sPLT_SUPPORTED)
void /* PRIVATE */
png_handle_sPLT(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
/* Note: this does not properly handle chunks that are > 64K under DOS */
{
png_bytep chunkdata;
png_bytep entry_start;
png_sPLT_t new_palette;
#ifdef PNG_NO_POINTER_INDEXING
png_sPLT_entryp pp;
#endif
int data_length, entry_size, i;
png_uint_32 skip = 0;
png_size_t slength;
 
png_debug(1, "in png_handle_sPLT\n");
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before sPLT");
else if (png_ptr->mode & PNG_HAVE_IDAT)
{
png_warning(png_ptr, "Invalid sPLT after IDAT");
png_crc_finish(png_ptr, length);
return;
}
 
#ifdef PNG_MAX_MALLOC_64K
if (length > (png_uint_32)65535L)
{
png_warning(png_ptr, "sPLT chunk too large to fit in memory");
skip = length - (png_uint_32)65535L;
length = (png_uint_32)65535L;
}
#endif
 
chunkdata = (png_bytep)png_malloc(png_ptr, length + 1);
slength = (png_size_t)length;
png_crc_read(png_ptr, (png_bytep)chunkdata, slength);
 
if (png_crc_finish(png_ptr, skip))
{
png_free(png_ptr, chunkdata);
return;
}
 
chunkdata[slength] = 0x00;
 
for (entry_start = chunkdata; *entry_start; entry_start++)
/* empty loop to find end of name */ ;
++entry_start;
 
/* a sample depth should follow the separator, and we should be on it */
if (entry_start > chunkdata + slength)
{
png_free(png_ptr, chunkdata);
png_warning(png_ptr, "malformed sPLT chunk");
return;
}
 
new_palette.depth = *entry_start++;
entry_size = (new_palette.depth == 8 ? 6 : 10);
data_length = (slength - (entry_start - chunkdata));
 
/* integrity-check the data length */
if (data_length % entry_size)
{
png_free(png_ptr, chunkdata);
png_warning(png_ptr, "sPLT chunk has bad length");
return;
}
 
new_palette.nentries = data_length / entry_size;
new_palette.entries = (png_sPLT_entryp)png_malloc(
png_ptr, new_palette.nentries * sizeof(png_sPLT_entry));
 
#ifndef PNG_NO_POINTER_INDEXING
for (i = 0; i < new_palette.nentries; i++)
{
png_sPLT_entryp pp = new_palette.entries + i;
 
if (new_palette.depth == 8)
{
pp->red = *entry_start++;
pp->green = *entry_start++;
pp->blue = *entry_start++;
pp->alpha = *entry_start++;
}
else
{
pp->red = png_get_uint_16(entry_start); entry_start += 2;
pp->green = png_get_uint_16(entry_start); entry_start += 2;
pp->blue = png_get_uint_16(entry_start); entry_start += 2;
pp->alpha = png_get_uint_16(entry_start); entry_start += 2;
}
pp->frequency = png_get_uint_16(entry_start); entry_start += 2;
}
#else
pp = new_palette.entries;
for (i = 0; i < new_palette.nentries; i++)
{
 
if (new_palette.depth == 8)
{
pp[i].red = *entry_start++;
pp[i].green = *entry_start++;
pp[i].blue = *entry_start++;
pp[i].alpha = *entry_start++;
}
else
{
pp[i].red = png_get_uint_16(entry_start); entry_start += 2;
pp[i].green = png_get_uint_16(entry_start); entry_start += 2;
pp[i].blue = png_get_uint_16(entry_start); entry_start += 2;
pp[i].alpha = png_get_uint_16(entry_start); entry_start += 2;
}
pp->frequency = png_get_uint_16(entry_start); entry_start += 2;
}
#endif
 
/* discard all chunk data except the name and stash that */
new_palette.name = (png_charp)chunkdata;
 
png_set_sPLT(png_ptr, info_ptr, &new_palette, 1);
 
png_free(png_ptr, chunkdata);
png_free(png_ptr, new_palette.entries);
}
#endif /* PNG_READ_sPLT_SUPPORTED */
 
#if defined(PNG_READ_tRNS_SUPPORTED)
void /* PRIVATE */
png_handle_tRNS(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
{
png_byte readbuf[PNG_MAX_PALETTE_LENGTH];
 
png_debug(1, "in png_handle_tRNS\n");
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before tRNS");
else if (png_ptr->mode & PNG_HAVE_IDAT)
{
png_warning(png_ptr, "Invalid tRNS after IDAT");
png_crc_finish(png_ptr, length);
return;
}
else if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_tRNS))
{
png_warning(png_ptr, "Duplicate tRNS chunk");
png_crc_finish(png_ptr, length);
return;
}
 
if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
{
if (!(png_ptr->mode & PNG_HAVE_PLTE))
{
/* Should be an error, but we can cope with it */
png_warning(png_ptr, "Missing PLTE before tRNS");
}
else if (length > (png_uint_32)png_ptr->num_palette)
{
png_warning(png_ptr, "Incorrect tRNS chunk length");
png_crc_finish(png_ptr, length);
return;
}
if (length == 0)
{
png_warning(png_ptr, "Zero length tRNS chunk");
png_crc_finish(png_ptr, length);
return;
}
 
png_crc_read(png_ptr, readbuf, (png_size_t)length);
png_ptr->num_trans = (png_uint_16)length;
}
else if (png_ptr->color_type == PNG_COLOR_TYPE_RGB)
{
png_byte buf[6];
 
if (length != 6)
{
png_warning(png_ptr, "Incorrect tRNS chunk length");
png_crc_finish(png_ptr, length);
return;
}
 
png_crc_read(png_ptr, buf, (png_size_t)length);
png_ptr->num_trans = 1;
png_ptr->trans_values.red = png_get_uint_16(buf);
png_ptr->trans_values.green = png_get_uint_16(buf + 2);
png_ptr->trans_values.blue = png_get_uint_16(buf + 4);
}
else if (png_ptr->color_type == PNG_COLOR_TYPE_GRAY)
{
png_byte buf[6];
 
if (length != 2)
{
png_warning(png_ptr, "Incorrect tRNS chunk length");
png_crc_finish(png_ptr, length);
return;
}
 
png_crc_read(png_ptr, buf, 2);
png_ptr->num_trans = 1;
png_ptr->trans_values.gray = png_get_uint_16(buf);
}
else
{
png_warning(png_ptr, "tRNS chunk not allowed with alpha channel");
png_crc_finish(png_ptr, length);
return;
}
 
if (png_crc_finish(png_ptr, 0))
return;
 
png_set_tRNS(png_ptr, info_ptr, readbuf, png_ptr->num_trans,
&(png_ptr->trans_values));
}
#endif
 
#if defined(PNG_READ_bKGD_SUPPORTED)
void /* PRIVATE */
png_handle_bKGD(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
{
png_size_t truelen;
png_byte buf[6];
 
png_debug(1, "in png_handle_bKGD\n");
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before bKGD");
else if (png_ptr->mode & PNG_HAVE_IDAT)
{
png_warning(png_ptr, "Invalid bKGD after IDAT");
png_crc_finish(png_ptr, length);
return;
}
else if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE &&
!(png_ptr->mode & PNG_HAVE_PLTE))
{
png_warning(png_ptr, "Missing PLTE before bKGD");
png_crc_finish(png_ptr, length);
return;
}
else if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_bKGD))
{
png_warning(png_ptr, "Duplicate bKGD chunk");
png_crc_finish(png_ptr, length);
return;
}
 
if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
truelen = 1;
else if (png_ptr->color_type & PNG_COLOR_MASK_COLOR)
truelen = 6;
else
truelen = 2;
 
if (length != truelen)
{
png_warning(png_ptr, "Incorrect bKGD chunk length");
png_crc_finish(png_ptr, length);
return;
}
 
png_crc_read(png_ptr, buf, truelen);
if (png_crc_finish(png_ptr, 0))
return;
 
/* We convert the index value into RGB components so that we can allow
* arbitrary RGB values for background when we have transparency, and
* so it is easy to determine the RGB values of the background color
* from the info_ptr struct. */
if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
{
png_ptr->background.index = buf[0];
if(info_ptr->num_palette)
{
if(buf[0] > info_ptr->num_palette)
{
png_warning(png_ptr, "Incorrect bKGD chunk index value");
return;
}
png_ptr->background.red =
(png_uint_16)png_ptr->palette[buf[0]].red;
png_ptr->background.green =
(png_uint_16)png_ptr->palette[buf[0]].green;
png_ptr->background.blue =
(png_uint_16)png_ptr->palette[buf[0]].blue;
}
}
else if (!(png_ptr->color_type & PNG_COLOR_MASK_COLOR)) /* GRAY */
{
png_ptr->background.red =
png_ptr->background.green =
png_ptr->background.blue =
png_ptr->background.gray = png_get_uint_16(buf);
}
else
{
png_ptr->background.red = png_get_uint_16(buf);
png_ptr->background.green = png_get_uint_16(buf + 2);
png_ptr->background.blue = png_get_uint_16(buf + 4);
}
 
png_set_bKGD(png_ptr, info_ptr, &(png_ptr->background));
}
#endif
 
#if defined(PNG_READ_hIST_SUPPORTED)
void /* PRIVATE */
png_handle_hIST(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
{
int num, i;
png_uint_16 readbuf[PNG_MAX_PALETTE_LENGTH];
 
png_debug(1, "in png_handle_hIST\n");
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before hIST");
else if (png_ptr->mode & PNG_HAVE_IDAT)
{
png_warning(png_ptr, "Invalid hIST after IDAT");
png_crc_finish(png_ptr, length);
return;
}
else if (!(png_ptr->mode & PNG_HAVE_PLTE))
{
png_warning(png_ptr, "Missing PLTE before hIST");
png_crc_finish(png_ptr, length);
return;
}
else if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_hIST))
{
png_warning(png_ptr, "Duplicate hIST chunk");
png_crc_finish(png_ptr, length);
return;
}
 
num = (int)length / 2 ;
if (num != png_ptr->num_palette)
{
png_warning(png_ptr, "Incorrect hIST chunk length");
png_crc_finish(png_ptr, length);
return;
}
 
for (i = 0; i < num; i++)
{
png_byte buf[2];
 
png_crc_read(png_ptr, buf, 2);
readbuf[i] = png_get_uint_16(buf);
}
 
if (png_crc_finish(png_ptr, 0))
return;
 
png_set_hIST(png_ptr, info_ptr, readbuf);
}
#endif
 
#if defined(PNG_READ_pHYs_SUPPORTED)
void /* PRIVATE */
png_handle_pHYs(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
{
png_byte buf[9];
png_uint_32 res_x, res_y;
int unit_type;
 
png_debug(1, "in png_handle_pHYs\n");
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before pHYs");
else if (png_ptr->mode & PNG_HAVE_IDAT)
{
png_warning(png_ptr, "Invalid pHYs after IDAT");
png_crc_finish(png_ptr, length);
return;
}
else if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_pHYs))
{
png_warning(png_ptr, "Duplicate pHYs chunk");
png_crc_finish(png_ptr, length);
return;
}
 
if (length != 9)
{
png_warning(png_ptr, "Incorrect pHYs chunk length");
png_crc_finish(png_ptr, length);
return;
}
 
png_crc_read(png_ptr, buf, 9);
if (png_crc_finish(png_ptr, 0))
return;
 
res_x = png_get_uint_32(buf);
res_y = png_get_uint_32(buf + 4);
unit_type = buf[8];
png_set_pHYs(png_ptr, info_ptr, res_x, res_y, unit_type);
}
#endif
 
#if defined(PNG_READ_oFFs_SUPPORTED)
void /* PRIVATE */
png_handle_oFFs(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
{
png_byte buf[9];
png_int_32 offset_x, offset_y;
int unit_type;
 
png_debug(1, "in png_handle_oFFs\n");
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before oFFs");
else if (png_ptr->mode & PNG_HAVE_IDAT)
{
png_warning(png_ptr, "Invalid oFFs after IDAT");
png_crc_finish(png_ptr, length);
return;
}
else if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_oFFs))
{
png_warning(png_ptr, "Duplicate oFFs chunk");
png_crc_finish(png_ptr, length);
return;
}
 
if (length != 9)
{
png_warning(png_ptr, "Incorrect oFFs chunk length");
png_crc_finish(png_ptr, length);
return;
}
 
png_crc_read(png_ptr, buf, 9);
if (png_crc_finish(png_ptr, 0))
return;
 
offset_x = png_get_int_32(buf);
offset_y = png_get_int_32(buf + 4);
unit_type = buf[8];
png_set_oFFs(png_ptr, info_ptr, offset_x, offset_y, unit_type);
}
#endif
 
#if defined(PNG_READ_pCAL_SUPPORTED)
/* read the pCAL chunk (described in the PNG Extensions document) */
void /* PRIVATE */
png_handle_pCAL(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
{
png_charp purpose;
png_int_32 X0, X1;
png_byte type, nparams;
png_charp buf, units, endptr;
png_charpp params;
png_size_t slength;
int i;
 
png_debug(1, "in png_handle_pCAL\n");
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before pCAL");
else if (png_ptr->mode & PNG_HAVE_IDAT)
{
png_warning(png_ptr, "Invalid pCAL after IDAT");
png_crc_finish(png_ptr, length);
return;
}
else if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_pCAL))
{
png_warning(png_ptr, "Duplicate pCAL chunk");
png_crc_finish(png_ptr, length);
return;
}
 
png_debug1(2, "Allocating and reading pCAL chunk data (%lu bytes)\n",
length + 1);
purpose = (png_charp)png_malloc_warn(png_ptr, length + 1);
if (purpose == NULL)
{
png_warning(png_ptr, "No memory for pCAL purpose.");
return;
}
slength = (png_size_t)length;
png_crc_read(png_ptr, (png_bytep)purpose, slength);
 
if (png_crc_finish(png_ptr, 0))
{
png_free(png_ptr, purpose);
return;
}
 
purpose[slength] = 0x00; /* null terminate the last string */
 
png_debug(3, "Finding end of pCAL purpose string\n");
for (buf = purpose; *buf; buf++)
/* empty loop */ ;
 
endptr = purpose + slength;
 
/* We need to have at least 12 bytes after the purpose string
in order to get the parameter information. */
if (endptr <= buf + 12)
{
png_warning(png_ptr, "Invalid pCAL data");
png_free(png_ptr, purpose);
return;
}
 
png_debug(3, "Reading pCAL X0, X1, type, nparams, and units\n");
X0 = png_get_int_32((png_bytep)buf+1);
X1 = png_get_int_32((png_bytep)buf+5);
type = buf[9];
nparams = buf[10];
units = buf + 11;
 
png_debug(3, "Checking pCAL equation type and number of parameters\n");
/* Check that we have the right number of parameters for known
equation types. */
if ((type == PNG_EQUATION_LINEAR && nparams != 2) ||
(type == PNG_EQUATION_BASE_E && nparams != 3) ||
(type == PNG_EQUATION_ARBITRARY && nparams != 3) ||
(type == PNG_EQUATION_HYPERBOLIC && nparams != 4))
{
png_warning(png_ptr, "Invalid pCAL parameters for equation type");
png_free(png_ptr, purpose);
return;
}
else if (type >= PNG_EQUATION_LAST)
{
png_warning(png_ptr, "Unrecognized equation type for pCAL chunk");
}
 
for (buf = units; *buf; buf++)
/* Empty loop to move past the units string. */ ;
 
png_debug(3, "Allocating pCAL parameters array\n");
params = (png_charpp)png_malloc_warn(png_ptr, (png_uint_32)(nparams
*sizeof(png_charp))) ;
if (params == NULL)
{
png_free(png_ptr, purpose);
png_warning(png_ptr, "No memory for pCAL params.");
return;
}
 
/* Get pointers to the start of each parameter string. */
for (i = 0; i < (int)nparams; i++)
{
buf++; /* Skip the null string terminator from previous parameter. */
 
png_debug1(3, "Reading pCAL parameter %d\n", i);
for (params[i] = buf; *buf != 0x00 && buf <= endptr; buf++)
/* Empty loop to move past each parameter string */ ;
 
/* Make sure we haven't run out of data yet */
if (buf > endptr)
{
png_warning(png_ptr, "Invalid pCAL data");
png_free(png_ptr, purpose);
png_free(png_ptr, params);
return;
}
}
 
png_set_pCAL(png_ptr, info_ptr, purpose, X0, X1, type, nparams,
units, params);
 
png_free(png_ptr, purpose);
png_free(png_ptr, params);
}
#endif
 
#if defined(PNG_READ_sCAL_SUPPORTED)
/* read the sCAL chunk */
void /* PRIVATE */
png_handle_sCAL(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
{
png_charp buffer, ep;
#ifdef PNG_FLOATING_POINT_SUPPORTED
double width, height;
png_charp vp;
#else
#ifdef PNG_FIXED_POINT_SUPPORTED
png_charp swidth, sheight;
#endif
#endif
png_size_t slength;
 
png_debug(1, "in png_handle_sCAL\n");
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before sCAL");
else if (png_ptr->mode & PNG_HAVE_IDAT)
{
png_warning(png_ptr, "Invalid sCAL after IDAT");
png_crc_finish(png_ptr, length);
return;
}
else if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_sCAL))
{
png_warning(png_ptr, "Duplicate sCAL chunk");
png_crc_finish(png_ptr, length);
return;
}
 
png_debug1(2, "Allocating and reading sCAL chunk data (%lu bytes)\n",
length + 1);
buffer = (png_charp)png_malloc_warn(png_ptr, length + 1);
if (buffer == NULL)
{
png_warning(png_ptr, "Out of memory while processing sCAL chunk");
return;
}
slength = (png_size_t)length;
png_crc_read(png_ptr, (png_bytep)buffer, slength);
 
if (png_crc_finish(png_ptr, 0))
{
png_free(png_ptr, buffer);
return;
}
 
buffer[slength] = 0x00; /* null terminate the last string */
 
ep = buffer + 1; /* skip unit byte */
 
#ifdef PNG_FLOATING_POINT_SUPPORTED
width = strtod(ep, &vp);
if (*vp)
{
png_warning(png_ptr, "malformed width string in sCAL chunk");
return;
}
#else
#ifdef PNG_FIXED_POINT_SUPPORTED
swidth = (png_charp)png_malloc_warn(png_ptr, png_strlen(ep) + 1);
if (swidth == NULL)
{
png_warning(png_ptr, "Out of memory while processing sCAL chunk width");
return;
}
png_memcpy(swidth, ep, (png_size_t)png_strlen(ep));
#endif
#endif
 
for (ep = buffer; *ep; ep++)
/* empty loop */ ;
ep++;
 
#ifdef PNG_FLOATING_POINT_SUPPORTED
height = strtod(ep, &vp);
if (*vp)
{
png_warning(png_ptr, "malformed height string in sCAL chunk");
return;
}
#else
#ifdef PNG_FIXED_POINT_SUPPORTED
sheight = (png_charp)png_malloc_warn(png_ptr, png_strlen(ep) + 1);
if (swidth == NULL)
{
png_warning(png_ptr, "Out of memory while processing sCAL chunk height");
return;
}
png_memcpy(sheight, ep, (png_size_t)png_strlen(ep));
#endif
#endif
 
if (buffer + slength < ep
#ifdef PNG_FLOATING_POINT_SUPPORTED
|| width <= 0. || height <= 0.
#endif
)
{
png_warning(png_ptr, "Invalid sCAL data");
png_free(png_ptr, buffer);
#if defined(PNG_FIXED_POINT_SUPPORTED) && !defined(PNG_FLOATING_POINT_SUPPORTED)
png_free(png_ptr, swidth);
png_free(png_ptr, sheight);
#endif
return;
}
 
 
#ifdef PNG_FLOATING_POINT_SUPPORTED
png_set_sCAL(png_ptr, info_ptr, buffer[0], width, height);
#else
#ifdef PNG_FIXED_POINT_SUPPORTED
png_set_sCAL_s(png_ptr, info_ptr, buffer[0], swidth, sheight);
#endif
#endif
 
png_free(png_ptr, buffer);
#if defined(PNG_FIXED_POINT_SUPPORTED) && !defined(PNG_FLOATING_POINT_SUPPORTED)
png_free(png_ptr, swidth);
png_free(png_ptr, sheight);
#endif
}
#endif
 
#if defined(PNG_READ_tIME_SUPPORTED)
void /* PRIVATE */
png_handle_tIME(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
{
png_byte buf[7];
png_time mod_time;
 
png_debug(1, "in png_handle_tIME\n");
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Out of place tIME chunk");
else if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_tIME))
{
png_warning(png_ptr, "Duplicate tIME chunk");
png_crc_finish(png_ptr, length);
return;
}
 
if (png_ptr->mode & PNG_HAVE_IDAT)
png_ptr->mode |= PNG_AFTER_IDAT;
 
if (length != 7)
{
png_warning(png_ptr, "Incorrect tIME chunk length");
png_crc_finish(png_ptr, length);
return;
}
 
png_crc_read(png_ptr, buf, 7);
if (png_crc_finish(png_ptr, 0))
return;
 
mod_time.second = buf[6];
mod_time.minute = buf[5];
mod_time.hour = buf[4];
mod_time.day = buf[3];
mod_time.month = buf[2];
mod_time.year = png_get_uint_16(buf);
 
png_set_tIME(png_ptr, info_ptr, &mod_time);
}
#endif
 
#if defined(PNG_READ_tEXt_SUPPORTED)
/* Note: this does not properly handle chunks that are > 64K under DOS */
void /* PRIVATE */
png_handle_tEXt(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
{
png_textp text_ptr;
png_charp key;
png_charp text;
png_uint_32 skip = 0;
png_size_t slength;
int ret;
 
png_debug(1, "in png_handle_tEXt\n");
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before tEXt");
 
if (png_ptr->mode & PNG_HAVE_IDAT)
png_ptr->mode |= PNG_AFTER_IDAT;
 
#ifdef PNG_MAX_MALLOC_64K
if (length > (png_uint_32)65535L)
{
png_warning(png_ptr, "tEXt chunk too large to fit in memory");
skip = length - (png_uint_32)65535L;
length = (png_uint_32)65535L;
}
#endif
 
key = (png_charp)png_malloc_warn(png_ptr, length + 1);
if (key == NULL)
{
png_warning(png_ptr, "No memory to process text chunk.");
return;
}
slength = (png_size_t)length;
png_crc_read(png_ptr, (png_bytep)key, slength);
 
if (png_crc_finish(png_ptr, skip))
{
png_free(png_ptr, key);
return;
}
 
key[slength] = 0x00;
 
for (text = key; *text; text++)
/* empty loop to find end of key */ ;
 
if (text != key + slength)
text++;
 
text_ptr = (png_textp)png_malloc_warn(png_ptr, (png_uint_32)sizeof(png_text));
if (text_ptr == NULL)
{
png_warning(png_ptr, "Not enough memory to process text chunk.");
png_free(png_ptr, key);
return;
}
text_ptr->compression = PNG_TEXT_COMPRESSION_NONE;
text_ptr->key = key;
#ifdef PNG_iTXt_SUPPORTED
text_ptr->lang = NULL;
text_ptr->lang_key = NULL;
text_ptr->itxt_length = 0;
#endif
text_ptr->text = text;
text_ptr->text_length = png_strlen(text);
 
ret=png_set_text_2(png_ptr, info_ptr, text_ptr, 1);
 
png_free(png_ptr, key);
png_free(png_ptr, text_ptr);
if (ret)
png_warning(png_ptr, "Insufficient memory to process text chunk.");
}
#endif
 
#if defined(PNG_READ_zTXt_SUPPORTED)
/* note: this does not correctly handle chunks that are > 64K under DOS */
void /* PRIVATE */
png_handle_zTXt(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
{
png_textp text_ptr;
png_charp chunkdata;
png_charp text;
int comp_type;
int ret;
png_size_t slength, prefix_len, data_len;
 
png_debug(1, "in png_handle_zTXt\n");
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before zTXt");
 
if (png_ptr->mode & PNG_HAVE_IDAT)
png_ptr->mode |= PNG_AFTER_IDAT;
 
#ifdef PNG_MAX_MALLOC_64K
/* We will no doubt have problems with chunks even half this size, but
there is no hard and fast rule to tell us where to stop. */
if (length > (png_uint_32)65535L)
{
png_warning(png_ptr,"zTXt chunk too large to fit in memory");
png_crc_finish(png_ptr, length);
return;
}
#endif
 
chunkdata = (png_charp)png_malloc_warn(png_ptr, length + 1);
if (chunkdata == NULL)
{
png_warning(png_ptr,"Out of memory processing zTXt chunk.");
return;
}
slength = (png_size_t)length;
png_crc_read(png_ptr, (png_bytep)chunkdata, slength);
if (png_crc_finish(png_ptr, 0))
{
png_free(png_ptr, chunkdata);
return;
}
 
chunkdata[slength] = 0x00;
 
for (text = chunkdata; *text; text++)
/* empty loop */ ;
 
/* zTXt must have some text after the chunkdataword */
if (text == chunkdata + slength)
{
comp_type = PNG_TEXT_COMPRESSION_NONE;
png_warning(png_ptr, "Zero length zTXt chunk");
}
else
{
comp_type = *(++text);
if (comp_type != PNG_TEXT_COMPRESSION_zTXt)
{
png_warning(png_ptr, "Unknown compression type in zTXt chunk");
comp_type = PNG_TEXT_COMPRESSION_zTXt;
}
text++; /* skip the compression_method byte */
}
prefix_len = text - chunkdata;
 
chunkdata = (png_charp)png_decompress_chunk(png_ptr, comp_type, chunkdata,
(png_size_t)length, prefix_len, &data_len);
 
text_ptr = (png_textp)png_malloc_warn(png_ptr, (png_uint_32)sizeof(png_text));
if (text_ptr == NULL)
{
png_warning(png_ptr,"Not enough memory to process zTXt chunk.");
png_free(png_ptr, chunkdata);
return;
}
text_ptr->compression = comp_type;
text_ptr->key = chunkdata;
#ifdef PNG_iTXt_SUPPORTED
text_ptr->lang = NULL;
text_ptr->lang_key = NULL;
text_ptr->itxt_length = 0;
#endif
text_ptr->text = chunkdata + prefix_len;
text_ptr->text_length = data_len;
 
ret=png_set_text_2(png_ptr, info_ptr, text_ptr, 1);
 
png_free(png_ptr, text_ptr);
png_free(png_ptr, chunkdata);
if (ret)
png_error(png_ptr, "Insufficient memory to store zTXt chunk.");
}
#endif
 
#if defined(PNG_READ_iTXt_SUPPORTED)
/* note: this does not correctly handle chunks that are > 64K under DOS */
void /* PRIVATE */
png_handle_iTXt(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
{
png_textp text_ptr;
png_charp chunkdata;
png_charp key, lang, text, lang_key;
int comp_flag;
int comp_type = 0;
int ret;
png_size_t slength, prefix_len, data_len;
 
png_debug(1, "in png_handle_iTXt\n");
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before iTXt");
 
if (png_ptr->mode & PNG_HAVE_IDAT)
png_ptr->mode |= PNG_AFTER_IDAT;
 
#ifdef PNG_MAX_MALLOC_64K
/* We will no doubt have problems with chunks even half this size, but
there is no hard and fast rule to tell us where to stop. */
if (length > (png_uint_32)65535L)
{
png_warning(png_ptr,"iTXt chunk too large to fit in memory");
png_crc_finish(png_ptr, length);
return;
}
#endif
 
chunkdata = (png_charp)png_malloc_warn(png_ptr, length + 1);
if (chunkdata == NULL)
{
png_warning(png_ptr, "No memory to process iTXt chunk.");
return;
}
slength = (png_size_t)length;
png_crc_read(png_ptr, (png_bytep)chunkdata, slength);
if (png_crc_finish(png_ptr, 0))
{
png_free(png_ptr, chunkdata);
return;
}
 
chunkdata[slength] = 0x00;
 
for (lang = chunkdata; *lang; lang++)
/* empty loop */ ;
lang++; /* skip NUL separator */
 
/* iTXt must have a language tag (possibly empty), two compression bytes,
translated keyword (possibly empty), and possibly some text after the
keyword */
 
if (lang >= chunkdata + slength)
{
comp_flag = PNG_TEXT_COMPRESSION_NONE;
png_warning(png_ptr, "Zero length iTXt chunk");
}
else
{
comp_flag = *lang++;
comp_type = *lang++;
}
 
for (lang_key = lang; *lang_key; lang_key++)
/* empty loop */ ;
lang_key++; /* skip NUL separator */
 
for (text = lang_key; *text; text++)
/* empty loop */ ;
text++; /* skip NUL separator */
 
prefix_len = text - chunkdata;
 
key=chunkdata;
if (comp_flag)
chunkdata = png_decompress_chunk(png_ptr, comp_type, chunkdata,
(size_t)length, prefix_len, &data_len);
else
data_len=png_strlen(chunkdata + prefix_len);
text_ptr = (png_textp)png_malloc_warn(png_ptr, (png_uint_32)sizeof(png_text));
if (text_ptr == NULL)
{
png_warning(png_ptr,"Not enough memory to process iTXt chunk.");
png_free(png_ptr, chunkdata);
return;
}
text_ptr->compression = (int)comp_flag + 1;
text_ptr->lang_key = chunkdata+(lang_key-key);
text_ptr->lang = chunkdata+(lang-key);
text_ptr->itxt_length = data_len;
text_ptr->text_length = 0;
text_ptr->key = chunkdata;
text_ptr->text = chunkdata + prefix_len;
 
ret=png_set_text_2(png_ptr, info_ptr, text_ptr, 1);
 
png_free(png_ptr, text_ptr);
png_free(png_ptr, chunkdata);
if (ret)
png_error(png_ptr, "Insufficient memory to store iTXt chunk.");
}
#endif
 
/* This function is called when we haven't found a handler for a
chunk. If there isn't a problem with the chunk itself (ie bad
chunk name, CRC, or a critical chunk), the chunk is silently ignored
-- unless the PNG_FLAG_UNKNOWN_CHUNKS_SUPPORTED flag is on in which
case it will be saved away to be written out later. */
void /* PRIVATE */
png_handle_unknown(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
{
png_uint_32 skip = 0;
 
png_debug(1, "in png_handle_unknown\n");
 
if (png_ptr->mode & PNG_HAVE_IDAT)
{
#ifdef PNG_USE_LOCAL_ARRAYS
PNG_IDAT;
#endif
if (png_memcmp(png_ptr->chunk_name, png_IDAT, 4)) /* not an IDAT */
png_ptr->mode |= PNG_AFTER_IDAT;
}
 
png_check_chunk_name(png_ptr, png_ptr->chunk_name);
 
if (!(png_ptr->chunk_name[0] & 0x20))
{
#if defined(PNG_READ_UNKNOWN_CHUNKS_SUPPORTED)
if(png_handle_as_unknown(png_ptr, png_ptr->chunk_name) !=
HANDLE_CHUNK_ALWAYS
#if defined(PNG_READ_USER_CHUNKS_SUPPORTED)
&& png_ptr->read_user_chunk_fn == NULL
#endif
)
#endif
png_chunk_error(png_ptr, "unknown critical chunk");
}
 
#if defined(PNG_READ_UNKNOWN_CHUNKS_SUPPORTED)
if (png_ptr->flags & PNG_FLAG_KEEP_UNKNOWN_CHUNKS)
{
png_unknown_chunk chunk;
 
#ifdef PNG_MAX_MALLOC_64K
if (length > (png_uint_32)65535L)
{
png_warning(png_ptr, "unknown chunk too large to fit in memory");
skip = length - (png_uint_32)65535L;
length = (png_uint_32)65535L;
}
#endif
png_strcpy((png_charp)chunk.name, (png_charp)png_ptr->chunk_name);
chunk.data = (png_bytep)png_malloc(png_ptr, length);
chunk.size = (png_size_t)length;
png_crc_read(png_ptr, (png_bytep)chunk.data, length);
#if defined(PNG_READ_USER_CHUNKS_SUPPORTED)
if(png_ptr->read_user_chunk_fn != NULL)
{
/* callback to user unknown chunk handler */
if ((*(png_ptr->read_user_chunk_fn)) (png_ptr, &chunk) <= 0)
{
if (!(png_ptr->chunk_name[0] & 0x20))
if(png_handle_as_unknown(png_ptr, png_ptr->chunk_name) !=
HANDLE_CHUNK_ALWAYS)
{
png_free(png_ptr, chunk.data);
png_chunk_error(png_ptr, "unknown critical chunk");
}
png_set_unknown_chunks(png_ptr, info_ptr, &chunk, 1);
}
}
else
#endif
png_set_unknown_chunks(png_ptr, info_ptr, &chunk, 1);
png_free(png_ptr, chunk.data);
}
else
#endif
skip = length;
 
png_crc_finish(png_ptr, skip);
 
#if !defined(PNG_READ_USER_CHUNKS_SUPPORTED)
info_ptr = info_ptr; /* quiet compiler warnings about unused info_ptr */
#endif
}
 
/* This function is called to verify that a chunk name is valid.
This function can't have the "critical chunk check" incorporated
into it, since in the future we will need to be able to call user
functions to handle unknown critical chunks after we check that
the chunk name itself is valid. */
 
#define isnonalpha(c) ((c) < 41 || (c) > 122 || ((c) > 90 && (c) < 97))
 
void /* PRIVATE */
png_check_chunk_name(png_structp png_ptr, png_bytep chunk_name)
{
png_debug(1, "in png_check_chunk_name\n");
if (isnonalpha(chunk_name[0]) || isnonalpha(chunk_name[1]) ||
isnonalpha(chunk_name[2]) || isnonalpha(chunk_name[3]))
{
png_chunk_error(png_ptr, "invalid chunk type");
}
}
 
/* Combines the row recently read in with the existing pixels in the
row. This routine takes care of alpha and transparency if requested.
This routine also handles the two methods of progressive display
of interlaced images, depending on the mask value.
The mask value describes which pixels are to be combined with
the row. The pattern always repeats every 8 pixels, so just 8
bits are needed. A one indicates the pixel is to be combined,
a zero indicates the pixel is to be skipped. This is in addition
to any alpha or transparency value associated with the pixel. If
you want all pixels to be combined, pass 0xff (255) in mask. */
#ifndef PNG_HAVE_ASSEMBLER_COMBINE_ROW
void /* PRIVATE */
png_combine_row(png_structp png_ptr, png_bytep row, int mask)
{
png_debug(1,"in png_combine_row\n");
if (mask == 0xff)
{
png_memcpy(row, png_ptr->row_buf + 1,
(png_size_t)((png_ptr->width *
png_ptr->row_info.pixel_depth + 7) >> 3));
}
else
{
switch (png_ptr->row_info.pixel_depth)
{
case 1:
{
png_bytep sp = png_ptr->row_buf + 1;
png_bytep dp = row;
int s_inc, s_start, s_end;
int m = 0x80;
int shift;
png_uint_32 i;
png_uint_32 row_width = png_ptr->width;
 
#if defined(PNG_READ_PACKSWAP_SUPPORTED)
if (png_ptr->transformations & PNG_PACKSWAP)
{
s_start = 0;
s_end = 7;
s_inc = 1;
}
else
#endif
{
s_start = 7;
s_end = 0;
s_inc = -1;
}
 
shift = s_start;
 
for (i = 0; i < row_width; i++)
{
if (m & mask)
{
int value;
 
value = (*sp >> shift) & 0x01;
*dp &= (png_byte)((0x7f7f >> (7 - shift)) & 0xff);
*dp |= (png_byte)(value << shift);
}
 
if (shift == s_end)
{
shift = s_start;
sp++;
dp++;
}
else
shift += s_inc;
 
if (m == 1)
m = 0x80;
else
m >>= 1;
}
break;
}
case 2:
{
png_bytep sp = png_ptr->row_buf + 1;
png_bytep dp = row;
int s_start, s_end, s_inc;
int m = 0x80;
int shift;
png_uint_32 i;
png_uint_32 row_width = png_ptr->width;
int value;
 
#if defined(PNG_READ_PACKSWAP_SUPPORTED)
if (png_ptr->transformations & PNG_PACKSWAP)
{
s_start = 0;
s_end = 6;
s_inc = 2;
}
else
#endif
{
s_start = 6;
s_end = 0;
s_inc = -2;
}
 
shift = s_start;
 
for (i = 0; i < row_width; i++)
{
if (m & mask)
{
value = (*sp >> shift) & 0x03;
*dp &= (png_byte)((0x3f3f >> (6 - shift)) & 0xff);
*dp |= (png_byte)(value << shift);
}
 
if (shift == s_end)
{
shift = s_start;
sp++;
dp++;
}
else
shift += s_inc;
if (m == 1)
m = 0x80;
else
m >>= 1;
}
break;
}
case 4:
{
png_bytep sp = png_ptr->row_buf + 1;
png_bytep dp = row;
int s_start, s_end, s_inc;
int m = 0x80;
int shift;
png_uint_32 i;
png_uint_32 row_width = png_ptr->width;
int value;
 
#if defined(PNG_READ_PACKSWAP_SUPPORTED)
if (png_ptr->transformations & PNG_PACKSWAP)
{
s_start = 0;
s_end = 4;
s_inc = 4;
}
else
#endif
{
s_start = 4;
s_end = 0;
s_inc = -4;
}
shift = s_start;
 
for (i = 0; i < row_width; i++)
{
if (m & mask)
{
value = (*sp >> shift) & 0xf;
*dp &= (png_byte)((0xf0f >> (4 - shift)) & 0xff);
*dp |= (png_byte)(value << shift);
}
 
if (shift == s_end)
{
shift = s_start;
sp++;
dp++;
}
else
shift += s_inc;
if (m == 1)
m = 0x80;
else
m >>= 1;
}
break;
}
default:
{
png_bytep sp = png_ptr->row_buf + 1;
png_bytep dp = row;
png_size_t pixel_bytes = (png_ptr->row_info.pixel_depth >> 3);
png_uint_32 i;
png_uint_32 row_width = png_ptr->width;
png_byte m = 0x80;
 
 
for (i = 0; i < row_width; i++)
{
if (m & mask)
{
png_memcpy(dp, sp, pixel_bytes);
}
 
sp += pixel_bytes;
dp += pixel_bytes;
 
if (m == 1)
m = 0x80;
else
m >>= 1;
}
break;
}
}
}
}
#endif /* !PNG_HAVE_ASSEMBLER_COMBINE_ROW */
 
#ifdef PNG_READ_INTERLACING_SUPPORTED
#ifndef PNG_HAVE_ASSEMBLER_READ_INTERLACE /* else in pngvcrd.c, pnggccrd.c */
/* OLD pre-1.0.9 interface:
void png_do_read_interlace(png_row_infop row_info, png_bytep row, int pass,
png_uint_32 transformations)
*/
void /* PRIVATE */
png_do_read_interlace(png_structp png_ptr)
{
png_row_infop row_info = &(png_ptr->row_info);
png_bytep row = png_ptr->row_buf + 1;
int pass = png_ptr->pass;
png_uint_32 transformations = png_ptr->transformations;
#ifdef PNG_USE_LOCAL_ARRAYS
/* arrays to facilitate easy interlacing - use pass (0 - 6) as index */
/* offset to next interlace block */
const int png_pass_inc[7] = {8, 8, 4, 4, 2, 2, 1};
#endif
 
png_debug(1,"in png_do_read_interlace (stock C version)\n");
if (row != NULL && row_info != NULL)
{
png_uint_32 final_width;
 
final_width = row_info->width * png_pass_inc[pass];
 
switch (row_info->pixel_depth)
{
case 1:
{
png_bytep sp = row + (png_size_t)((row_info->width - 1) >> 3);
png_bytep dp = row + (png_size_t)((final_width - 1) >> 3);
int sshift, dshift;
int s_start, s_end, s_inc;
int jstop = png_pass_inc[pass];
png_byte v;
png_uint_32 i;
int j;
 
#if defined(PNG_READ_PACKSWAP_SUPPORTED)
if (transformations & PNG_PACKSWAP)
{
sshift = (int)((row_info->width + 7) & 0x07);
dshift = (int)((final_width + 7) & 0x07);
s_start = 7;
s_end = 0;
s_inc = -1;
}
else
#endif
{
sshift = 7 - (int)((row_info->width + 7) & 0x07);
dshift = 7 - (int)((final_width + 7) & 0x07);
s_start = 0;
s_end = 7;
s_inc = 1;
}
 
for (i = 0; i < row_info->width; i++)
{
v = (png_byte)((*sp >> sshift) & 0x01);
for (j = 0; j < jstop; j++)
{
*dp &= (png_byte)((0x7f7f >> (7 - dshift)) & 0xff);
*dp |= (png_byte)(v << dshift);
if (dshift == s_end)
{
dshift = s_start;
dp--;
}
else
dshift += s_inc;
}
if (sshift == s_end)
{
sshift = s_start;
sp--;
}
else
sshift += s_inc;
}
break;
}
case 2:
{
png_bytep sp = row + (png_uint_32)((row_info->width - 1) >> 2);
png_bytep dp = row + (png_uint_32)((final_width - 1) >> 2);
int sshift, dshift;
int s_start, s_end, s_inc;
int jstop = png_pass_inc[pass];
png_uint_32 i;
 
#if defined(PNG_READ_PACKSWAP_SUPPORTED)
if (transformations & PNG_PACKSWAP)
{
sshift = (int)(((row_info->width + 3) & 0x03) << 1);
dshift = (int)(((final_width + 3) & 0x03) << 1);
s_start = 6;
s_end = 0;
s_inc = -2;
}
else
#endif
{
sshift = (int)((3 - ((row_info->width + 3) & 0x03)) << 1);
dshift = (int)((3 - ((final_width + 3) & 0x03)) << 1);
s_start = 0;
s_end = 6;
s_inc = 2;
}
 
for (i = 0; i < row_info->width; i++)
{
png_byte v;
int j;
 
v = (png_byte)((*sp >> sshift) & 0x03);
for (j = 0; j < jstop; j++)
{
*dp &= (png_byte)((0x3f3f >> (6 - dshift)) & 0xff);
*dp |= (png_byte)(v << dshift);
if (dshift == s_end)
{
dshift = s_start;
dp--;
}
else
dshift += s_inc;
}
if (sshift == s_end)
{
sshift = s_start;
sp--;
}
else
sshift += s_inc;
}
break;
}
case 4:
{
png_bytep sp = row + (png_size_t)((row_info->width - 1) >> 1);
png_bytep dp = row + (png_size_t)((final_width - 1) >> 1);
int sshift, dshift;
int s_start, s_end, s_inc;
png_uint_32 i;
int jstop = png_pass_inc[pass];
 
#if defined(PNG_READ_PACKSWAP_SUPPORTED)
if (transformations & PNG_PACKSWAP)
{
sshift = (int)(((row_info->width + 1) & 0x01) << 2);
dshift = (int)(((final_width + 1) & 0x01) << 2);
s_start = 4;
s_end = 0;
s_inc = -4;
}
else
#endif
{
sshift = (int)((1 - ((row_info->width + 1) & 0x01)) << 2);
dshift = (int)((1 - ((final_width + 1) & 0x01)) << 2);
s_start = 0;
s_end = 4;
s_inc = 4;
}
 
for (i = 0; i < row_info->width; i++)
{
png_byte v = (png_byte)((*sp >> sshift) & 0xf);
int j;
 
for (j = 0; j < jstop; j++)
{
*dp &= (png_byte)((0xf0f >> (4 - dshift)) & 0xff);
*dp |= (png_byte)(v << dshift);
if (dshift == s_end)
{
dshift = s_start;
dp--;
}
else
dshift += s_inc;
}
if (sshift == s_end)
{
sshift = s_start;
sp--;
}
else
sshift += s_inc;
}
break;
}
default:
{
png_size_t pixel_bytes = (row_info->pixel_depth >> 3);
png_bytep sp = row + (png_size_t)(row_info->width - 1) * pixel_bytes;
png_bytep dp = row + (png_size_t)(final_width - 1) * pixel_bytes;
 
int jstop = png_pass_inc[pass];
png_uint_32 i;
 
for (i = 0; i < row_info->width; i++)
{
png_byte v[8];
int j;
 
png_memcpy(v, sp, pixel_bytes);
for (j = 0; j < jstop; j++)
{
png_memcpy(dp, v, pixel_bytes);
dp -= pixel_bytes;
}
sp -= pixel_bytes;
}
break;
}
}
row_info->width = final_width;
row_info->rowbytes = ((final_width *
(png_uint_32)row_info->pixel_depth + 7) >> 3);
}
#if !defined(PNG_READ_PACKSWAP_SUPPORTED)
transformations = transformations; /* silence compiler warning */
#endif
}
#endif /* !PNG_HAVE_ASSEMBLER_READ_INTERLACE */
#endif /* PNG_READ_INTERLACING_SUPPORTED */
 
#ifndef PNG_HAVE_ASSEMBLER_READ_FILTER_ROW
void /* PRIVATE */
png_read_filter_row(png_structp png_ptr, png_row_infop row_info, png_bytep row,
png_bytep prev_row, int filter)
{
png_debug(1, "in png_read_filter_row\n");
png_debug2(2,"row = %lu, filter = %d\n", png_ptr->row_number, filter);
switch (filter)
{
case PNG_FILTER_VALUE_NONE:
break;
case PNG_FILTER_VALUE_SUB:
{
png_uint_32 i;
png_uint_32 istop = row_info->rowbytes;
png_uint_32 bpp = (row_info->pixel_depth + 7) >> 3;
png_bytep rp = row + bpp;
png_bytep lp = row;
 
for (i = bpp; i < istop; i++)
{
*rp = (png_byte)(((int)(*rp) + (int)(*lp++)) & 0xff);
rp++;
}
break;
}
case PNG_FILTER_VALUE_UP:
{
png_uint_32 i;
png_uint_32 istop = row_info->rowbytes;
png_bytep rp = row;
png_bytep pp = prev_row;
 
for (i = 0; i < istop; i++)
{
*rp = (png_byte)(((int)(*rp) + (int)(*pp++)) & 0xff);
rp++;
}
break;
}
case PNG_FILTER_VALUE_AVG:
{
png_uint_32 i;
png_bytep rp = row;
png_bytep pp = prev_row;
png_bytep lp = row;
png_uint_32 bpp = (row_info->pixel_depth + 7) >> 3;
png_uint_32 istop = row_info->rowbytes - bpp;
 
for (i = 0; i < bpp; i++)
{
*rp = (png_byte)(((int)(*rp) +
((int)(*pp++) / 2 )) & 0xff);
rp++;
}
 
for (i = 0; i < istop; i++)
{
*rp = (png_byte)(((int)(*rp) +
(int)(*pp++ + *lp++) / 2 ) & 0xff);
rp++;
}
break;
}
case PNG_FILTER_VALUE_PAETH:
{
png_uint_32 i;
png_bytep rp = row;
png_bytep pp = prev_row;
png_bytep lp = row;
png_bytep cp = prev_row;
png_uint_32 bpp = (row_info->pixel_depth + 7) >> 3;
png_uint_32 istop=row_info->rowbytes - bpp;
 
for (i = 0; i < bpp; i++)
{
*rp = (png_byte)(((int)(*rp) + (int)(*pp++)) & 0xff);
rp++;
}
 
for (i = 0; i < istop; i++) /* use leftover rp,pp */
{
int a, b, c, pa, pb, pc, p;
 
a = *lp++;
b = *pp++;
c = *cp++;
 
p = b - c;
pc = a - c;
 
#ifdef PNG_USE_ABS
pa = abs(p);
pb = abs(pc);
pc = abs(p + pc);
#else
pa = p < 0 ? -p : p;
pb = pc < 0 ? -pc : pc;
pc = (p + pc) < 0 ? -(p + pc) : p + pc;
#endif
 
/*
if (pa <= pb && pa <= pc)
p = a;
else if (pb <= pc)
p = b;
else
p = c;
*/
 
p = (pa <= pb && pa <=pc) ? a : (pb <= pc) ? b : c;
 
*rp = (png_byte)(((int)(*rp) + p) & 0xff);
rp++;
}
break;
}
default:
png_warning(png_ptr, "Ignoring bad adaptive filter type");
*row=0;
break;
}
}
#endif /* !PNG_HAVE_ASSEMBLER_READ_FILTER_ROW */
 
void /* PRIVATE */
png_read_finish_row(png_structp png_ptr)
{
#ifdef PNG_USE_LOCAL_ARRAYS
/* arrays to facilitate easy interlacing - use pass (0 - 6) as index */
 
/* start of interlace block */
const int png_pass_start[7] = {0, 4, 0, 2, 0, 1, 0};
 
/* offset to next interlace block */
const int png_pass_inc[7] = {8, 8, 4, 4, 2, 2, 1};
 
/* start of interlace block in the y direction */
const int png_pass_ystart[7] = {0, 0, 4, 0, 2, 0, 1};
 
/* offset to next interlace block in the y direction */
const int png_pass_yinc[7] = {8, 8, 8, 4, 4, 2, 2};
#endif
 
png_debug(1, "in png_read_finish_row\n");
png_ptr->row_number++;
if (png_ptr->row_number < png_ptr->num_rows)
return;
 
if (png_ptr->interlaced)
{
png_ptr->row_number = 0;
png_memset_check(png_ptr, png_ptr->prev_row, 0, png_ptr->rowbytes + 1);
do
{
png_ptr->pass++;
if (png_ptr->pass >= 7)
break;
png_ptr->iwidth = (png_ptr->width +
png_pass_inc[png_ptr->pass] - 1 -
png_pass_start[png_ptr->pass]) /
png_pass_inc[png_ptr->pass];
png_ptr->irowbytes = ((png_ptr->iwidth *
(png_uint_32)png_ptr->pixel_depth + 7) >> 3) +1;
 
if (!(png_ptr->transformations & PNG_INTERLACE))
{
png_ptr->num_rows = (png_ptr->height +
png_pass_yinc[png_ptr->pass] - 1 -
png_pass_ystart[png_ptr->pass]) /
png_pass_yinc[png_ptr->pass];
if (!(png_ptr->num_rows))
continue;
}
else /* if (png_ptr->transformations & PNG_INTERLACE) */
break;
} while (png_ptr->iwidth == 0);
 
if (png_ptr->pass < 7)
return;
}
 
if (!(png_ptr->flags & PNG_FLAG_ZLIB_FINISHED))
{
#ifdef PNG_USE_LOCAL_ARRAYS
PNG_IDAT;
#endif
char extra;
int ret;
 
png_ptr->zstream.next_out = (Byte *)&extra;
png_ptr->zstream.avail_out = (uInt)1;
for(;;)
{
if (!(png_ptr->zstream.avail_in))
{
while (!png_ptr->idat_size)
{
png_byte chunk_length[4];
 
png_crc_finish(png_ptr, 0);
 
png_read_data(png_ptr, chunk_length, 4);
png_ptr->idat_size = png_get_uint_32(chunk_length);
 
png_reset_crc(png_ptr);
png_crc_read(png_ptr, png_ptr->chunk_name, 4);
if (png_memcmp(png_ptr->chunk_name, (png_bytep)png_IDAT, 4))
png_error(png_ptr, "Not enough image data");
 
}
png_ptr->zstream.avail_in = (uInt)png_ptr->zbuf_size;
png_ptr->zstream.next_in = png_ptr->zbuf;
if (png_ptr->zbuf_size > png_ptr->idat_size)
png_ptr->zstream.avail_in = (uInt)png_ptr->idat_size;
png_crc_read(png_ptr, png_ptr->zbuf, png_ptr->zstream.avail_in);
png_ptr->idat_size -= png_ptr->zstream.avail_in;
}
ret = inflate(&png_ptr->zstream, Z_PARTIAL_FLUSH);
if (ret == Z_STREAM_END)
{
if (!(png_ptr->zstream.avail_out) || png_ptr->zstream.avail_in ||
png_ptr->idat_size)
png_warning(png_ptr, "Extra compressed data");
png_ptr->mode |= PNG_AFTER_IDAT;
png_ptr->flags |= PNG_FLAG_ZLIB_FINISHED;
break;
}
if (ret != Z_OK)
png_error(png_ptr, png_ptr->zstream.msg ? png_ptr->zstream.msg :
"Decompression Error");
 
if (!(png_ptr->zstream.avail_out))
{
png_warning(png_ptr, "Extra compressed data.");
png_ptr->mode |= PNG_AFTER_IDAT;
png_ptr->flags |= PNG_FLAG_ZLIB_FINISHED;
break;
}
 
}
png_ptr->zstream.avail_out = 0;
}
 
if (png_ptr->idat_size || png_ptr->zstream.avail_in)
png_warning(png_ptr, "Extra compression data");
 
inflateReset(&png_ptr->zstream);
 
png_ptr->mode |= PNG_AFTER_IDAT;
}
 
void /* PRIVATE */
png_read_start_row(png_structp png_ptr)
{
#ifdef PNG_USE_LOCAL_ARRAYS
/* arrays to facilitate easy interlacing - use pass (0 - 6) as index */
 
/* start of interlace block */
const int png_pass_start[7] = {0, 4, 0, 2, 0, 1, 0};
 
/* offset to next interlace block */
const int png_pass_inc[7] = {8, 8, 4, 4, 2, 2, 1};
 
/* start of interlace block in the y direction */
const int png_pass_ystart[7] = {0, 0, 4, 0, 2, 0, 1};
 
/* offset to next interlace block in the y direction */
const int png_pass_yinc[7] = {8, 8, 8, 4, 4, 2, 2};
#endif
 
int max_pixel_depth;
png_uint_32 row_bytes;
 
png_debug(1, "in png_read_start_row\n");
png_ptr->zstream.avail_in = 0;
png_init_read_transformations(png_ptr);
if (png_ptr->interlaced)
{
if (!(png_ptr->transformations & PNG_INTERLACE))
png_ptr->num_rows = (png_ptr->height + png_pass_yinc[0] - 1 -
png_pass_ystart[0]) / png_pass_yinc[0];
else
png_ptr->num_rows = png_ptr->height;
 
png_ptr->iwidth = (png_ptr->width +
png_pass_inc[png_ptr->pass] - 1 -
png_pass_start[png_ptr->pass]) /
png_pass_inc[png_ptr->pass];
 
row_bytes = ((png_ptr->iwidth *
(png_uint_32)png_ptr->pixel_depth + 7) >> 3) +1;
png_ptr->irowbytes = (png_size_t)row_bytes;
if((png_uint_32)png_ptr->irowbytes != row_bytes)
png_error(png_ptr, "Rowbytes overflow in png_read_start_row");
}
else
{
png_ptr->num_rows = png_ptr->height;
png_ptr->iwidth = png_ptr->width;
png_ptr->irowbytes = png_ptr->rowbytes + 1;
}
max_pixel_depth = png_ptr->pixel_depth;
 
#if defined(PNG_READ_PACK_SUPPORTED)
if ((png_ptr->transformations & PNG_PACK) && png_ptr->bit_depth < 8)
max_pixel_depth = 8;
#endif
 
#if defined(PNG_READ_EXPAND_SUPPORTED)
if (png_ptr->transformations & PNG_EXPAND)
{
if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
{
if (png_ptr->num_trans)
max_pixel_depth = 32;
else
max_pixel_depth = 24;
}
else if (png_ptr->color_type == PNG_COLOR_TYPE_GRAY)
{
if (max_pixel_depth < 8)
max_pixel_depth = 8;
if (png_ptr->num_trans)
max_pixel_depth *= 2;
}
else if (png_ptr->color_type == PNG_COLOR_TYPE_RGB)
{
if (png_ptr->num_trans)
{
max_pixel_depth *= 4;
max_pixel_depth /= 3;
}
}
}
#endif
 
#if defined(PNG_READ_FILLER_SUPPORTED)
if (png_ptr->transformations & (PNG_FILLER))
{
if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
max_pixel_depth = 32;
else if (png_ptr->color_type == PNG_COLOR_TYPE_GRAY)
{
if (max_pixel_depth <= 8)
max_pixel_depth = 16;
else
max_pixel_depth = 32;
}
else if (png_ptr->color_type == PNG_COLOR_TYPE_RGB)
{
if (max_pixel_depth <= 32)
max_pixel_depth = 32;
else
max_pixel_depth = 64;
}
}
#endif
 
#if defined(PNG_READ_GRAY_TO_RGB_SUPPORTED)
if (png_ptr->transformations & PNG_GRAY_TO_RGB)
{
if (
#if defined(PNG_READ_EXPAND_SUPPORTED)
(png_ptr->num_trans && (png_ptr->transformations & PNG_EXPAND)) ||
#endif
#if defined(PNG_READ_FILLER_SUPPORTED)
(png_ptr->transformations & (PNG_FILLER)) ||
#endif
png_ptr->color_type == PNG_COLOR_TYPE_GRAY_ALPHA)
{
if (max_pixel_depth <= 16)
max_pixel_depth = 32;
else
max_pixel_depth = 64;
}
else
{
if (max_pixel_depth <= 8)
{
if (png_ptr->color_type == PNG_COLOR_TYPE_RGB_ALPHA)
max_pixel_depth = 32;
else
max_pixel_depth = 24;
}
else if (png_ptr->color_type == PNG_COLOR_TYPE_RGB_ALPHA)
max_pixel_depth = 64;
else
max_pixel_depth = 48;
}
}
#endif
 
#if defined(PNG_READ_USER_TRANSFORM_SUPPORTED) && \
defined(PNG_USER_TRANSFORM_PTR_SUPPORTED)
if(png_ptr->transformations & PNG_USER_TRANSFORM)
{
int user_pixel_depth=png_ptr->user_transform_depth*
png_ptr->user_transform_channels;
if(user_pixel_depth > max_pixel_depth)
max_pixel_depth=user_pixel_depth;
}
#endif
 
/* align the width on the next larger 8 pixels. Mainly used
for interlacing */
row_bytes = ((png_ptr->width + 7) & ~((png_uint_32)7));
/* calculate the maximum bytes needed, adding a byte and a pixel
for safety's sake */
row_bytes = ((row_bytes * (png_uint_32)max_pixel_depth + 7) >> 3) +
1 + ((max_pixel_depth + 7) >> 3);
#ifdef PNG_MAX_MALLOC_64K
if (row_bytes > (png_uint_32)65536L)
png_error(png_ptr, "This image requires a row greater than 64KB");
#endif
png_ptr->big_row_buf = (png_bytep)png_malloc(png_ptr, row_bytes+64);
png_ptr->row_buf = png_ptr->big_row_buf+32;
#if defined(PNG_DEBUG) && defined(PNG_USE_PNGGCCRD)
png_ptr->row_buf_size = row_bytes;
#endif
 
#ifdef PNG_MAX_MALLOC_64K
if ((png_uint_32)png_ptr->rowbytes + 1 > (png_uint_32)65536L)
png_error(png_ptr, "This image requires a row greater than 64KB");
#endif
png_ptr->prev_row = (png_bytep)png_malloc(png_ptr, (png_uint_32)(
png_ptr->rowbytes + 1));
 
png_memset_check(png_ptr, png_ptr->prev_row, 0, png_ptr->rowbytes + 1);
 
png_debug1(3, "width = %lu,\n", png_ptr->width);
png_debug1(3, "height = %lu,\n", png_ptr->height);
png_debug1(3, "iwidth = %lu,\n", png_ptr->iwidth);
png_debug1(3, "num_rows = %lu\n", png_ptr->num_rows);
png_debug1(3, "rowbytes = %lu,\n", png_ptr->rowbytes);
png_debug1(3, "irowbytes = %lu,\n", png_ptr->irowbytes);
 
png_ptr->flags |= PNG_FLAG_ROW_INIT;
}
/shark/trunk/ports/png/pngwutil.c
0,0 → 1,2675
 
/* pngwutil.c - utilities to write a PNG file
*
* libpng 1.2.5 - October 3, 2002
* For conditions of distribution and use, see copyright notice in png.h
* Copyright (c) 1998-2002 Glenn Randers-Pehrson
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
*/
 
#define PNG_INTERNAL
#include "png.h"
#ifdef PNG_WRITE_SUPPORTED
 
/* Place a 32-bit number into a buffer in PNG byte order. We work
* with unsigned numbers for convenience, although one supported
* ancillary chunk uses signed (two's complement) numbers.
*/
void /* PRIVATE */
png_save_uint_32(png_bytep buf, png_uint_32 i)
{
buf[0] = (png_byte)((i >> 24) & 0xff);
buf[1] = (png_byte)((i >> 16) & 0xff);
buf[2] = (png_byte)((i >> 8) & 0xff);
buf[3] = (png_byte)(i & 0xff);
}
 
#if defined(PNG_WRITE_pCAL_SUPPORTED) || defined(PNG_WRITE_oFFs_SUPPORTED)
/* The png_save_int_32 function assumes integers are stored in two's
* complement format. If this isn't the case, then this routine needs to
* be modified to write data in two's complement format.
*/
void /* PRIVATE */
png_save_int_32(png_bytep buf, png_int_32 i)
{
buf[0] = (png_byte)((i >> 24) & 0xff);
buf[1] = (png_byte)((i >> 16) & 0xff);
buf[2] = (png_byte)((i >> 8) & 0xff);
buf[3] = (png_byte)(i & 0xff);
}
#endif
 
/* Place a 16-bit number into a buffer in PNG byte order.
* The parameter is declared unsigned int, not png_uint_16,
* just to avoid potential problems on pre-ANSI C compilers.
*/
void /* PRIVATE */
png_save_uint_16(png_bytep buf, unsigned int i)
{
buf[0] = (png_byte)((i >> 8) & 0xff);
buf[1] = (png_byte)(i & 0xff);
}
 
/* Write a PNG chunk all at once. The type is an array of ASCII characters
* representing the chunk name. The array must be at least 4 bytes in
* length, and does not need to be null terminated. To be safe, pass the
* pre-defined chunk names here, and if you need a new one, define it
* where the others are defined. The length is the length of the data.
* All the data must be present. If that is not possible, use the
* png_write_chunk_start(), png_write_chunk_data(), and png_write_chunk_end()
* functions instead.
*/
void PNGAPI
png_write_chunk(png_structp png_ptr, png_bytep chunk_name,
png_bytep data, png_size_t length)
{
png_write_chunk_start(png_ptr, chunk_name, (png_uint_32)length);
png_write_chunk_data(png_ptr, data, length);
png_write_chunk_end(png_ptr);
}
 
/* Write the start of a PNG chunk. The type is the chunk type.
* The total_length is the sum of the lengths of all the data you will be
* passing in png_write_chunk_data().
*/
void PNGAPI
png_write_chunk_start(png_structp png_ptr, png_bytep chunk_name,
png_uint_32 length)
{
png_byte buf[4];
png_debug2(0, "Writing %s chunk (%lu bytes)\n", chunk_name, length);
 
/* write the length */
png_save_uint_32(buf, length);
png_write_data(png_ptr, buf, (png_size_t)4);
 
/* write the chunk name */
png_write_data(png_ptr, chunk_name, (png_size_t)4);
/* reset the crc and run it over the chunk name */
png_reset_crc(png_ptr);
png_calculate_crc(png_ptr, chunk_name, (png_size_t)4);
}
 
/* Write the data of a PNG chunk started with png_write_chunk_start().
* Note that multiple calls to this function are allowed, and that the
* sum of the lengths from these calls *must* add up to the total_length
* given to png_write_chunk_start().
*/
void PNGAPI
png_write_chunk_data(png_structp png_ptr, png_bytep data, png_size_t length)
{
/* write the data, and run the CRC over it */
if (data != NULL && length > 0)
{
png_calculate_crc(png_ptr, data, length);
png_write_data(png_ptr, data, length);
}
}
 
/* Finish a chunk started with png_write_chunk_start(). */
void PNGAPI
png_write_chunk_end(png_structp png_ptr)
{
png_byte buf[4];
 
/* write the crc */
png_save_uint_32(buf, png_ptr->crc);
 
png_write_data(png_ptr, buf, (png_size_t)4);
}
 
/* Simple function to write the signature. If we have already written
* the magic bytes of the signature, or more likely, the PNG stream is
* being embedded into another stream and doesn't need its own signature,
* we should call png_set_sig_bytes() to tell libpng how many of the
* bytes have already been written.
*/
void /* PRIVATE */
png_write_sig(png_structp png_ptr)
{
png_byte png_signature[8] = {137, 80, 78, 71, 13, 10, 26, 10};
/* write the rest of the 8 byte signature */
png_write_data(png_ptr, &png_signature[png_ptr->sig_bytes],
(png_size_t)8 - png_ptr->sig_bytes);
if(png_ptr->sig_bytes < 3)
png_ptr->mode |= PNG_HAVE_PNG_SIGNATURE;
}
 
#if defined(PNG_WRITE_TEXT_SUPPORTED) || defined(PNG_WRITE_iCCP_SUPPORTED)
/*
* This pair of functions encapsulates the operation of (a) compressing a
* text string, and (b) issuing it later as a series of chunk data writes.
* The compression_state structure is shared context for these functions
* set up by the caller in order to make the whole mess thread-safe.
*/
 
typedef struct
{
char *input; /* the uncompressed input data */
int input_len; /* its length */
int num_output_ptr; /* number of output pointers used */
int max_output_ptr; /* size of output_ptr */
png_charpp output_ptr; /* array of pointers to output */
} compression_state;
 
/* compress given text into storage in the png_ptr structure */
static int /* PRIVATE */
png_text_compress(png_structp png_ptr,
png_charp text, png_size_t text_len, int compression,
compression_state *comp)
{
int ret;
 
comp->num_output_ptr = comp->max_output_ptr = 0;
comp->output_ptr = NULL;
comp->input = NULL;
 
/* we may just want to pass the text right through */
if (compression == PNG_TEXT_COMPRESSION_NONE)
{
comp->input = text;
comp->input_len = text_len;
return((int)text_len);
}
 
if (compression >= PNG_TEXT_COMPRESSION_LAST)
{
#if !defined(PNG_NO_STDIO) && !defined(_WIN32_WCE)
char msg[50];
sprintf(msg, "Unknown compression type %d", compression);
png_warning(png_ptr, msg);
#else
png_warning(png_ptr, "Unknown compression type");
#endif
}
 
/* We can't write the chunk until we find out how much data we have,
* which means we need to run the compressor first and save the
* output. This shouldn't be a problem, as the vast majority of
* comments should be reasonable, but we will set up an array of
* malloc'd pointers to be sure.
*
* If we knew the application was well behaved, we could simplify this
* greatly by assuming we can always malloc an output buffer large
* enough to hold the compressed text ((1001 * text_len / 1000) + 12)
* and malloc this directly. The only time this would be a bad idea is
* if we can't malloc more than 64K and we have 64K of random input
* data, or if the input string is incredibly large (although this
* wouldn't cause a failure, just a slowdown due to swapping).
*/
 
/* set up the compression buffers */
png_ptr->zstream.avail_in = (uInt)text_len;
png_ptr->zstream.next_in = (Bytef *)text;
png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size;
png_ptr->zstream.next_out = (Bytef *)png_ptr->zbuf;
 
/* this is the same compression loop as in png_write_row() */
do
{
/* compress the data */
ret = deflate(&png_ptr->zstream, Z_NO_FLUSH);
if (ret != Z_OK)
{
/* error */
if (png_ptr->zstream.msg != NULL)
png_error(png_ptr, png_ptr->zstream.msg);
else
png_error(png_ptr, "zlib error");
}
/* check to see if we need more room */
if (!png_ptr->zstream.avail_out && png_ptr->zstream.avail_in)
{
/* make sure the output array has room */
if (comp->num_output_ptr >= comp->max_output_ptr)
{
int old_max;
 
old_max = comp->max_output_ptr;
comp->max_output_ptr = comp->num_output_ptr + 4;
if (comp->output_ptr != NULL)
{
png_charpp old_ptr;
 
old_ptr = comp->output_ptr;
comp->output_ptr = (png_charpp)png_malloc(png_ptr,
(png_uint_32)(comp->max_output_ptr * sizeof (png_charpp)));
png_memcpy(comp->output_ptr, old_ptr, old_max
* sizeof (png_charp));
png_free(png_ptr, old_ptr);
}
else
comp->output_ptr = (png_charpp)png_malloc(png_ptr,
(png_uint_32)(comp->max_output_ptr * sizeof (png_charp)));
}
 
/* save the data */
comp->output_ptr[comp->num_output_ptr] = (png_charp)png_malloc(png_ptr,
(png_uint_32)png_ptr->zbuf_size);
png_memcpy(comp->output_ptr[comp->num_output_ptr], png_ptr->zbuf,
png_ptr->zbuf_size);
comp->num_output_ptr++;
 
/* and reset the buffer */
png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size;
png_ptr->zstream.next_out = png_ptr->zbuf;
}
/* continue until we don't have any more to compress */
} while (png_ptr->zstream.avail_in);
 
/* finish the compression */
do
{
/* tell zlib we are finished */
ret = deflate(&png_ptr->zstream, Z_FINISH);
 
if (ret == Z_OK)
{
/* check to see if we need more room */
if (!(png_ptr->zstream.avail_out))
{
/* check to make sure our output array has room */
if (comp->num_output_ptr >= comp->max_output_ptr)
{
int old_max;
 
old_max = comp->max_output_ptr;
comp->max_output_ptr = comp->num_output_ptr + 4;
if (comp->output_ptr != NULL)
{
png_charpp old_ptr;
 
old_ptr = comp->output_ptr;
/* This could be optimized to realloc() */
comp->output_ptr = (png_charpp)png_malloc(png_ptr,
(png_uint_32)(comp->max_output_ptr * sizeof (png_charpp)));
png_memcpy(comp->output_ptr, old_ptr,
old_max * sizeof (png_charp));
png_free(png_ptr, old_ptr);
}
else
comp->output_ptr = (png_charpp)png_malloc(png_ptr,
(png_uint_32)(comp->max_output_ptr * sizeof (png_charp)));
}
 
/* save off the data */
comp->output_ptr[comp->num_output_ptr] =
(png_charp)png_malloc(png_ptr, (png_uint_32)png_ptr->zbuf_size);
png_memcpy(comp->output_ptr[comp->num_output_ptr], png_ptr->zbuf,
png_ptr->zbuf_size);
comp->num_output_ptr++;
 
/* and reset the buffer pointers */
png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size;
png_ptr->zstream.next_out = png_ptr->zbuf;
}
}
else if (ret != Z_STREAM_END)
{
/* we got an error */
if (png_ptr->zstream.msg != NULL)
png_error(png_ptr, png_ptr->zstream.msg);
else
png_error(png_ptr, "zlib error");
}
} while (ret != Z_STREAM_END);
 
/* text length is number of buffers plus last buffer */
text_len = png_ptr->zbuf_size * comp->num_output_ptr;
if (png_ptr->zstream.avail_out < png_ptr->zbuf_size)
text_len += png_ptr->zbuf_size - (png_size_t)png_ptr->zstream.avail_out;
 
return((int)text_len);
}
 
/* ship the compressed text out via chunk writes */
static void /* PRIVATE */
png_write_compressed_data_out(png_structp png_ptr, compression_state *comp)
{
int i;
 
/* handle the no-compression case */
if (comp->input)
{
png_write_chunk_data(png_ptr, (png_bytep)comp->input,
(png_size_t)comp->input_len);
return;
}
 
/* write saved output buffers, if any */
for (i = 0; i < comp->num_output_ptr; i++)
{
png_write_chunk_data(png_ptr,(png_bytep)comp->output_ptr[i],
png_ptr->zbuf_size);
png_free(png_ptr, comp->output_ptr[i]);
comp->output_ptr[i]=NULL;
}
if (comp->max_output_ptr != 0)
png_free(png_ptr, comp->output_ptr);
comp->output_ptr=NULL;
/* write anything left in zbuf */
if (png_ptr->zstream.avail_out < (png_uint_32)png_ptr->zbuf_size)
png_write_chunk_data(png_ptr, png_ptr->zbuf,
png_ptr->zbuf_size - png_ptr->zstream.avail_out);
 
/* reset zlib for another zTXt/iTXt or the image data */
deflateReset(&png_ptr->zstream);
 
}
#endif
 
/* Write the IHDR chunk, and update the png_struct with the necessary
* information. Note that the rest of this code depends upon this
* information being correct.
*/
void /* PRIVATE */
png_write_IHDR(png_structp png_ptr, png_uint_32 width, png_uint_32 height,
int bit_depth, int color_type, int compression_type, int filter_type,
int interlace_type)
{
#ifdef PNG_USE_LOCAL_ARRAYS
PNG_IHDR;
#endif
png_byte buf[13]; /* buffer to store the IHDR info */
 
png_debug(1, "in png_write_IHDR\n");
/* Check that we have valid input data from the application info */
switch (color_type)
{
case PNG_COLOR_TYPE_GRAY:
switch (bit_depth)
{
case 1:
case 2:
case 4:
case 8:
case 16: png_ptr->channels = 1; break;
default: png_error(png_ptr,"Invalid bit depth for grayscale image");
}
break;
case PNG_COLOR_TYPE_RGB:
if (bit_depth != 8 && bit_depth != 16)
png_error(png_ptr, "Invalid bit depth for RGB image");
png_ptr->channels = 3;
break;
case PNG_COLOR_TYPE_PALETTE:
switch (bit_depth)
{
case 1:
case 2:
case 4:
case 8: png_ptr->channels = 1; break;
default: png_error(png_ptr, "Invalid bit depth for paletted image");
}
break;
case PNG_COLOR_TYPE_GRAY_ALPHA:
if (bit_depth != 8 && bit_depth != 16)
png_error(png_ptr, "Invalid bit depth for grayscale+alpha image");
png_ptr->channels = 2;
break;
case PNG_COLOR_TYPE_RGB_ALPHA:
if (bit_depth != 8 && bit_depth != 16)
png_error(png_ptr, "Invalid bit depth for RGBA image");
png_ptr->channels = 4;
break;
default:
png_error(png_ptr, "Invalid image color type specified");
}
 
if (compression_type != PNG_COMPRESSION_TYPE_BASE)
{
png_warning(png_ptr, "Invalid compression type specified");
compression_type = PNG_COMPRESSION_TYPE_BASE;
}
 
/* Write filter_method 64 (intrapixel differencing) only if
* 1. Libpng was compiled with PNG_MNG_FEATURES_SUPPORTED and
* 2. Libpng did not write a PNG signature (this filter_method is only
* used in PNG datastreams that are embedded in MNG datastreams) and
* 3. The application called png_permit_mng_features with a mask that
* included PNG_FLAG_MNG_FILTER_64 and
* 4. The filter_method is 64 and
* 5. The color_type is RGB or RGBA
*/
if (
#if defined(PNG_MNG_FEATURES_SUPPORTED)
!((png_ptr->mng_features_permitted & PNG_FLAG_MNG_FILTER_64) &&
((png_ptr->mode&PNG_HAVE_PNG_SIGNATURE) == 0) &&
(color_type == PNG_COLOR_TYPE_RGB ||
color_type == PNG_COLOR_TYPE_RGB_ALPHA) &&
(filter_type == PNG_INTRAPIXEL_DIFFERENCING)) &&
#endif
filter_type != PNG_FILTER_TYPE_BASE)
{
png_warning(png_ptr, "Invalid filter type specified");
filter_type = PNG_FILTER_TYPE_BASE;
}
 
#ifdef PNG_WRITE_INTERLACING_SUPPORTED
if (interlace_type != PNG_INTERLACE_NONE &&
interlace_type != PNG_INTERLACE_ADAM7)
{
png_warning(png_ptr, "Invalid interlace type specified");
interlace_type = PNG_INTERLACE_ADAM7;
}
#else
interlace_type=PNG_INTERLACE_NONE;
#endif
 
/* save off the relevent information */
png_ptr->bit_depth = (png_byte)bit_depth;
png_ptr->color_type = (png_byte)color_type;
png_ptr->interlaced = (png_byte)interlace_type;
#if defined(PNG_MNG_FEATURES_SUPPORTED)
png_ptr->filter_type = (png_byte)filter_type;
#endif
png_ptr->width = width;
png_ptr->height = height;
 
png_ptr->pixel_depth = (png_byte)(bit_depth * png_ptr->channels);
png_ptr->rowbytes = ((width * (png_size_t)png_ptr->pixel_depth + 7) >> 3);
/* set the usr info, so any transformations can modify it */
png_ptr->usr_width = png_ptr->width;
png_ptr->usr_bit_depth = png_ptr->bit_depth;
png_ptr->usr_channels = png_ptr->channels;
 
/* pack the header information into the buffer */
png_save_uint_32(buf, width);
png_save_uint_32(buf + 4, height);
buf[8] = (png_byte)bit_depth;
buf[9] = (png_byte)color_type;
buf[10] = (png_byte)compression_type;
buf[11] = (png_byte)filter_type;
buf[12] = (png_byte)interlace_type;
 
/* write the chunk */
png_write_chunk(png_ptr, (png_bytep)png_IHDR, buf, (png_size_t)13);
 
/* initialize zlib with PNG info */
png_ptr->zstream.zalloc = png_zalloc;
png_ptr->zstream.zfree = png_zfree;
png_ptr->zstream.opaque = (voidpf)png_ptr;
if (!(png_ptr->do_filter))
{
if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE ||
png_ptr->bit_depth < 8)
png_ptr->do_filter = PNG_FILTER_NONE;
else
png_ptr->do_filter = PNG_ALL_FILTERS;
}
if (!(png_ptr->flags & PNG_FLAG_ZLIB_CUSTOM_STRATEGY))
{
if (png_ptr->do_filter != PNG_FILTER_NONE)
png_ptr->zlib_strategy = Z_FILTERED;
else
png_ptr->zlib_strategy = Z_DEFAULT_STRATEGY;
}
if (!(png_ptr->flags & PNG_FLAG_ZLIB_CUSTOM_LEVEL))
png_ptr->zlib_level = Z_DEFAULT_COMPRESSION;
if (!(png_ptr->flags & PNG_FLAG_ZLIB_CUSTOM_MEM_LEVEL))
png_ptr->zlib_mem_level = 8;
if (!(png_ptr->flags & PNG_FLAG_ZLIB_CUSTOM_WINDOW_BITS))
png_ptr->zlib_window_bits = 15;
if (!(png_ptr->flags & PNG_FLAG_ZLIB_CUSTOM_METHOD))
png_ptr->zlib_method = 8;
deflateInit2(&png_ptr->zstream, png_ptr->zlib_level,
png_ptr->zlib_method, png_ptr->zlib_window_bits,
png_ptr->zlib_mem_level, png_ptr->zlib_strategy);
png_ptr->zstream.next_out = png_ptr->zbuf;
png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size;
 
png_ptr->mode = PNG_HAVE_IHDR;
}
 
/* write the palette. We are careful not to trust png_color to be in the
* correct order for PNG, so people can redefine it to any convenient
* structure.
*/
void /* PRIVATE */
png_write_PLTE(png_structp png_ptr, png_colorp palette, png_uint_32 num_pal)
{
#ifdef PNG_USE_LOCAL_ARRAYS
PNG_PLTE;
#endif
png_uint_32 i;
png_colorp pal_ptr;
png_byte buf[3];
 
png_debug(1, "in png_write_PLTE\n");
if ((
#if defined(PNG_MNG_FEATURES_SUPPORTED)
!(png_ptr->mng_features_permitted & PNG_FLAG_MNG_EMPTY_PLTE) &&
#endif
num_pal == 0) || num_pal > 256)
{
if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
{
png_error(png_ptr, "Invalid number of colors in palette");
}
else
{
png_warning(png_ptr, "Invalid number of colors in palette");
return;
}
}
 
if (!(png_ptr->color_type&PNG_COLOR_MASK_COLOR))
{
png_warning(png_ptr,
"Ignoring request to write a PLTE chunk in grayscale PNG");
return;
}
 
png_ptr->num_palette = (png_uint_16)num_pal;
png_debug1(3, "num_palette = %d\n", png_ptr->num_palette);
 
png_write_chunk_start(png_ptr, (png_bytep)png_PLTE, num_pal * 3);
#ifndef PNG_NO_POINTER_INDEXING
for (i = 0, pal_ptr = palette; i < num_pal; i++, pal_ptr++)
{
buf[0] = pal_ptr->red;
buf[1] = pal_ptr->green;
buf[2] = pal_ptr->blue;
png_write_chunk_data(png_ptr, buf, (png_size_t)3);
}
#else
/* This is a little slower but some buggy compilers need to do this instead */
pal_ptr=palette;
for (i = 0; i < num_pal; i++)
{
buf[0] = pal_ptr[i].red;
buf[1] = pal_ptr[i].green;
buf[2] = pal_ptr[i].blue;
png_write_chunk_data(png_ptr, buf, (png_size_t)3);
}
#endif
png_write_chunk_end(png_ptr);
png_ptr->mode |= PNG_HAVE_PLTE;
}
 
/* write an IDAT chunk */
void /* PRIVATE */
png_write_IDAT(png_structp png_ptr, png_bytep data, png_size_t length)
{
#ifdef PNG_USE_LOCAL_ARRAYS
PNG_IDAT;
#endif
png_debug(1, "in png_write_IDAT\n");
png_write_chunk(png_ptr, (png_bytep)png_IDAT, data, length);
png_ptr->mode |= PNG_HAVE_IDAT;
}
 
/* write an IEND chunk */
void /* PRIVATE */
png_write_IEND(png_structp png_ptr)
{
#ifdef PNG_USE_LOCAL_ARRAYS
PNG_IEND;
#endif
png_debug(1, "in png_write_IEND\n");
png_write_chunk(png_ptr, (png_bytep)png_IEND, png_bytep_NULL,
(png_size_t)0);
png_ptr->mode |= PNG_HAVE_IEND;
}
 
#if defined(PNG_WRITE_gAMA_SUPPORTED)
/* write a gAMA chunk */
#ifdef PNG_FLOATING_POINT_SUPPORTED
void /* PRIVATE */
png_write_gAMA(png_structp png_ptr, double file_gamma)
{
#ifdef PNG_USE_LOCAL_ARRAYS
PNG_gAMA;
#endif
png_uint_32 igamma;
png_byte buf[4];
 
png_debug(1, "in png_write_gAMA\n");
/* file_gamma is saved in 1/100,000ths */
igamma = (png_uint_32)(file_gamma * 100000.0 + 0.5);
png_save_uint_32(buf, igamma);
png_write_chunk(png_ptr, (png_bytep)png_gAMA, buf, (png_size_t)4);
}
#endif
#ifdef PNG_FIXED_POINT_SUPPORTED
void /* PRIVATE */
png_write_gAMA_fixed(png_structp png_ptr, png_fixed_point file_gamma)
{
#ifdef PNG_USE_LOCAL_ARRAYS
PNG_gAMA;
#endif
png_byte buf[4];
 
png_debug(1, "in png_write_gAMA\n");
/* file_gamma is saved in 1/100,000ths */
png_save_uint_32(buf, (png_uint_32)file_gamma);
png_write_chunk(png_ptr, (png_bytep)png_gAMA, buf, (png_size_t)4);
}
#endif
#endif
 
#if defined(PNG_WRITE_sRGB_SUPPORTED)
/* write a sRGB chunk */
void /* PRIVATE */
png_write_sRGB(png_structp png_ptr, int srgb_intent)
{
#ifdef PNG_USE_LOCAL_ARRAYS
PNG_sRGB;
#endif
png_byte buf[1];
 
png_debug(1, "in png_write_sRGB\n");
if(srgb_intent >= PNG_sRGB_INTENT_LAST)
png_warning(png_ptr,
"Invalid sRGB rendering intent specified");
buf[0]=(png_byte)srgb_intent;
png_write_chunk(png_ptr, (png_bytep)png_sRGB, buf, (png_size_t)1);
}
#endif
 
#if defined(PNG_WRITE_iCCP_SUPPORTED)
/* write an iCCP chunk */
void /* PRIVATE */
png_write_iCCP(png_structp png_ptr, png_charp name, int compression_type,
png_charp profile, int profile_len)
{
#ifdef PNG_USE_LOCAL_ARRAYS
PNG_iCCP;
#endif
png_size_t name_len;
png_charp new_name;
compression_state comp;
 
png_debug(1, "in png_write_iCCP\n");
if (name == NULL || (name_len = png_check_keyword(png_ptr, name,
&new_name)) == 0)
{
png_warning(png_ptr, "Empty keyword in iCCP chunk");
return;
}
 
if (compression_type != PNG_COMPRESSION_TYPE_BASE)
png_warning(png_ptr, "Unknown compression type in iCCP chunk");
 
if (profile == NULL)
profile_len = 0;
 
if (profile_len)
profile_len = png_text_compress(png_ptr, profile, (png_size_t)profile_len,
PNG_COMPRESSION_TYPE_BASE, &comp);
 
/* make sure we include the NULL after the name and the compression type */
png_write_chunk_start(png_ptr, (png_bytep)png_iCCP,
(png_uint_32)name_len+profile_len+2);
new_name[name_len+1]=0x00;
png_write_chunk_data(png_ptr, (png_bytep)new_name, name_len + 2);
 
if (profile_len)
png_write_compressed_data_out(png_ptr, &comp);
 
png_write_chunk_end(png_ptr);
png_free(png_ptr, new_name);
}
#endif
 
#if defined(PNG_WRITE_sPLT_SUPPORTED)
/* write a sPLT chunk */
void /* PRIVATE */
png_write_sPLT(png_structp png_ptr, png_sPLT_tp spalette)
{
#ifdef PNG_USE_LOCAL_ARRAYS
PNG_sPLT;
#endif
png_size_t name_len;
png_charp new_name;
png_byte entrybuf[10];
int entry_size = (spalette->depth == 8 ? 6 : 10);
int palette_size = entry_size * spalette->nentries;
png_sPLT_entryp ep;
#ifdef PNG_NO_POINTER_INDEXING
int i;
#endif
 
png_debug(1, "in png_write_sPLT\n");
if (spalette->name == NULL || (name_len = png_check_keyword(png_ptr,
spalette->name, &new_name))==0)
{
png_warning(png_ptr, "Empty keyword in sPLT chunk");
return;
}
 
/* make sure we include the NULL after the name */
png_write_chunk_start(png_ptr, (png_bytep)png_sPLT,
(png_uint_32)(name_len + 2 + palette_size));
png_write_chunk_data(png_ptr, (png_bytep)new_name, name_len + 1);
png_write_chunk_data(png_ptr, (png_bytep)&spalette->depth, 1);
 
/* loop through each palette entry, writing appropriately */
#ifndef PNG_NO_POINTER_INDEXING
for (ep = spalette->entries; ep<spalette->entries+spalette->nentries; ep++)
{
if (spalette->depth == 8)
{
entrybuf[0] = (png_byte)ep->red;
entrybuf[1] = (png_byte)ep->green;
entrybuf[2] = (png_byte)ep->blue;
entrybuf[3] = (png_byte)ep->alpha;
png_save_uint_16(entrybuf + 4, ep->frequency);
}
else
{
png_save_uint_16(entrybuf + 0, ep->red);
png_save_uint_16(entrybuf + 2, ep->green);
png_save_uint_16(entrybuf + 4, ep->blue);
png_save_uint_16(entrybuf + 6, ep->alpha);
png_save_uint_16(entrybuf + 8, ep->frequency);
}
png_write_chunk_data(png_ptr, entrybuf, (png_size_t)entry_size);
}
#else
ep=spalette->entries;
for (i=0; i>spalette->nentries; i++)
{
if (spalette->depth == 8)
{
entrybuf[0] = (png_byte)ep[i].red;
entrybuf[1] = (png_byte)ep[i].green;
entrybuf[2] = (png_byte)ep[i].blue;
entrybuf[3] = (png_byte)ep[i].alpha;
png_save_uint_16(entrybuf + 4, ep[i].frequency);
}
else
{
png_save_uint_16(entrybuf + 0, ep[i].red);
png_save_uint_16(entrybuf + 2, ep[i].green);
png_save_uint_16(entrybuf + 4, ep[i].blue);
png_save_uint_16(entrybuf + 6, ep[i].alpha);
png_save_uint_16(entrybuf + 8, ep[i].frequency);
}
png_write_chunk_data(png_ptr, entrybuf, entry_size);
}
#endif
 
png_write_chunk_end(png_ptr);
png_free(png_ptr, new_name);
}
#endif
 
#if defined(PNG_WRITE_sBIT_SUPPORTED)
/* write the sBIT chunk */
void /* PRIVATE */
png_write_sBIT(png_structp png_ptr, png_color_8p sbit, int color_type)
{
#ifdef PNG_USE_LOCAL_ARRAYS
PNG_sBIT;
#endif
png_byte buf[4];
png_size_t size;
 
png_debug(1, "in png_write_sBIT\n");
/* make sure we don't depend upon the order of PNG_COLOR_8 */
if (color_type & PNG_COLOR_MASK_COLOR)
{
png_byte maxbits;
 
maxbits = (png_byte)(color_type==PNG_COLOR_TYPE_PALETTE ? 8 :
png_ptr->usr_bit_depth);
if (sbit->red == 0 || sbit->red > maxbits ||
sbit->green == 0 || sbit->green > maxbits ||
sbit->blue == 0 || sbit->blue > maxbits)
{
png_warning(png_ptr, "Invalid sBIT depth specified");
return;
}
buf[0] = sbit->red;
buf[1] = sbit->green;
buf[2] = sbit->blue;
size = 3;
}
else
{
if (sbit->gray == 0 || sbit->gray > png_ptr->usr_bit_depth)
{
png_warning(png_ptr, "Invalid sBIT depth specified");
return;
}
buf[0] = sbit->gray;
size = 1;
}
 
if (color_type & PNG_COLOR_MASK_ALPHA)
{
if (sbit->alpha == 0 || sbit->alpha > png_ptr->usr_bit_depth)
{
png_warning(png_ptr, "Invalid sBIT depth specified");
return;
}
buf[size++] = sbit->alpha;
}
 
png_write_chunk(png_ptr, (png_bytep)png_sBIT, buf, size);
}
#endif
 
#if defined(PNG_WRITE_cHRM_SUPPORTED)
/* write the cHRM chunk */
#ifdef PNG_FLOATING_POINT_SUPPORTED
void /* PRIVATE */
png_write_cHRM(png_structp png_ptr, double white_x, double white_y,
double red_x, double red_y, double green_x, double green_y,
double blue_x, double blue_y)
{
#ifdef PNG_USE_LOCAL_ARRAYS
PNG_cHRM;
#endif
png_byte buf[32];
png_uint_32 itemp;
 
png_debug(1, "in png_write_cHRM\n");
/* each value is saved in 1/100,000ths */
if (white_x < 0 || white_x > 0.8 || white_y < 0 || white_y > 0.8 ||
white_x + white_y > 1.0)
{
png_warning(png_ptr, "Invalid cHRM white point specified");
#if !defined(PNG_NO_CONSOLE_IO)
cprintf("white_x=%f, white_y=%f\n",white_x, white_y);
#endif
return;
}
itemp = (png_uint_32)(white_x * 100000.0 + 0.5);
png_save_uint_32(buf, itemp);
itemp = (png_uint_32)(white_y * 100000.0 + 0.5);
png_save_uint_32(buf + 4, itemp);
 
if (red_x < 0 || red_x > 0.8 || red_y < 0 || red_y > 0.8 ||
red_x + red_y > 1.0)
{
png_warning(png_ptr, "Invalid cHRM red point specified");
return;
}
itemp = (png_uint_32)(red_x * 100000.0 + 0.5);
png_save_uint_32(buf + 8, itemp);
itemp = (png_uint_32)(red_y * 100000.0 + 0.5);
png_save_uint_32(buf + 12, itemp);
 
if (green_x < 0 || green_x > 0.8 || green_y < 0 || green_y > 0.8 ||
green_x + green_y > 1.0)
{
png_warning(png_ptr, "Invalid cHRM green point specified");
return;
}
itemp = (png_uint_32)(green_x * 100000.0 + 0.5);
png_save_uint_32(buf + 16, itemp);
itemp = (png_uint_32)(green_y * 100000.0 + 0.5);
png_save_uint_32(buf + 20, itemp);
 
if (blue_x < 0 || blue_x > 0.8 || blue_y < 0 || blue_y > 0.8 ||
blue_x + blue_y > 1.0)
{
png_warning(png_ptr, "Invalid cHRM blue point specified");
return;
}
itemp = (png_uint_32)(blue_x * 100000.0 + 0.5);
png_save_uint_32(buf + 24, itemp);
itemp = (png_uint_32)(blue_y * 100000.0 + 0.5);
png_save_uint_32(buf + 28, itemp);
 
png_write_chunk(png_ptr, (png_bytep)png_cHRM, buf, (png_size_t)32);
}
#endif
#ifdef PNG_FIXED_POINT_SUPPORTED
void /* PRIVATE */
png_write_cHRM_fixed(png_structp png_ptr, png_fixed_point white_x,
png_fixed_point white_y, png_fixed_point red_x, png_fixed_point red_y,
png_fixed_point green_x, png_fixed_point green_y, png_fixed_point blue_x,
png_fixed_point blue_y)
{
#ifdef PNG_USE_LOCAL_ARRAYS
PNG_cHRM;
#endif
png_byte buf[32];
 
png_debug(1, "in png_write_cHRM\n");
/* each value is saved in 1/100,000ths */
if (white_x > 80000L || white_y > 80000L || white_x + white_y > 100000L)
{
png_warning(png_ptr, "Invalid fixed cHRM white point specified");
#if !defined(PNG_NO_CONSOLE_IO)
cprintf("white_x=%ld, white_y=%ld\n",white_x, white_y);
#endif
return;
}
png_save_uint_32(buf, (png_uint_32)white_x);
png_save_uint_32(buf + 4, (png_uint_32)white_y);
 
if (red_x > 80000L || red_y > 80000L || red_x + red_y > 100000L)
{
png_warning(png_ptr, "Invalid cHRM fixed red point specified");
return;
}
png_save_uint_32(buf + 8, (png_uint_32)red_x);
png_save_uint_32(buf + 12, (png_uint_32)red_y);
 
if (green_x > 80000L || green_y > 80000L || green_x + green_y > 100000L)
{
png_warning(png_ptr, "Invalid fixed cHRM green point specified");
return;
}
png_save_uint_32(buf + 16, (png_uint_32)green_x);
png_save_uint_32(buf + 20, (png_uint_32)green_y);
 
if (blue_x > 80000L || blue_y > 80000L || blue_x + blue_y > 100000L)
{
png_warning(png_ptr, "Invalid fixed cHRM blue point specified");
return;
}
png_save_uint_32(buf + 24, (png_uint_32)blue_x);
png_save_uint_32(buf + 28, (png_uint_32)blue_y);
 
png_write_chunk(png_ptr, (png_bytep)png_cHRM, buf, (png_size_t)32);
}
#endif
#endif
 
#if defined(PNG_WRITE_tRNS_SUPPORTED)
/* write the tRNS chunk */
void /* PRIVATE */
png_write_tRNS(png_structp png_ptr, png_bytep trans, png_color_16p tran,
int num_trans, int color_type)
{
#ifdef PNG_USE_LOCAL_ARRAYS
PNG_tRNS;
#endif
png_byte buf[6];
 
png_debug(1, "in png_write_tRNS\n");
if (color_type == PNG_COLOR_TYPE_PALETTE)
{
if (num_trans <= 0 || num_trans > (int)png_ptr->num_palette)
{
png_warning(png_ptr,"Invalid number of transparent colors specified");
return;
}
/* write the chunk out as it is */
png_write_chunk(png_ptr, (png_bytep)png_tRNS, trans, (png_size_t)num_trans);
}
else if (color_type == PNG_COLOR_TYPE_GRAY)
{
/* one 16 bit value */
if(tran->gray >= (1 << png_ptr->bit_depth))
{
png_warning(png_ptr,
"Ignoring attempt to write tRNS chunk out-of-range for bit_depth");
return;
}
png_save_uint_16(buf, tran->gray);
png_write_chunk(png_ptr, (png_bytep)png_tRNS, buf, (png_size_t)2);
}
else if (color_type == PNG_COLOR_TYPE_RGB)
{
/* three 16 bit values */
png_save_uint_16(buf, tran->red);
png_save_uint_16(buf + 2, tran->green);
png_save_uint_16(buf + 4, tran->blue);
if(png_ptr->bit_depth == 8 && (buf[0] | buf[2] | buf[4]))
{
png_warning(png_ptr,
"Ignoring attempt to write 16-bit tRNS chunk when bit_depth is 8");
return;
}
png_write_chunk(png_ptr, (png_bytep)png_tRNS, buf, (png_size_t)6);
}
else
{
png_warning(png_ptr, "Can't write tRNS with an alpha channel");
}
}
#endif
 
#if defined(PNG_WRITE_bKGD_SUPPORTED)
/* write the background chunk */
void /* PRIVATE */
png_write_bKGD(png_structp png_ptr, png_color_16p back, int color_type)
{
#ifdef PNG_USE_LOCAL_ARRAYS
PNG_bKGD;
#endif
png_byte buf[6];
 
png_debug(1, "in png_write_bKGD\n");
if (color_type == PNG_COLOR_TYPE_PALETTE)
{
if (
#if defined(PNG_MNG_FEATURES_SUPPORTED)
(png_ptr->num_palette ||
(!(png_ptr->mng_features_permitted & PNG_FLAG_MNG_EMPTY_PLTE))) &&
#endif
back->index > png_ptr->num_palette)
{
png_warning(png_ptr, "Invalid background palette index");
return;
}
buf[0] = back->index;
png_write_chunk(png_ptr, (png_bytep)png_bKGD, buf, (png_size_t)1);
}
else if (color_type & PNG_COLOR_MASK_COLOR)
{
png_save_uint_16(buf, back->red);
png_save_uint_16(buf + 2, back->green);
png_save_uint_16(buf + 4, back->blue);
if(png_ptr->bit_depth == 8 && (buf[0] | buf[2] | buf[4]))
{
png_warning(png_ptr,
"Ignoring attempt to write 16-bit bKGD chunk when bit_depth is 8");
return;
}
png_write_chunk(png_ptr, (png_bytep)png_bKGD, buf, (png_size_t)6);
}
else
{
if(back->gray >= (1 << png_ptr->bit_depth))
{
png_warning(png_ptr,
"Ignoring attempt to write bKGD chunk out-of-range for bit_depth");
return;
}
png_save_uint_16(buf, back->gray);
png_write_chunk(png_ptr, (png_bytep)png_bKGD, buf, (png_size_t)2);
}
}
#endif
 
#if defined(PNG_WRITE_hIST_SUPPORTED)
/* write the histogram */
void /* PRIVATE */
png_write_hIST(png_structp png_ptr, png_uint_16p hist, int num_hist)
{
#ifdef PNG_USE_LOCAL_ARRAYS
PNG_hIST;
#endif
int i;
png_byte buf[3];
 
png_debug(1, "in png_write_hIST\n");
if (num_hist > (int)png_ptr->num_palette)
{
png_debug2(3, "num_hist = %d, num_palette = %d\n", num_hist,
png_ptr->num_palette);
png_warning(png_ptr, "Invalid number of histogram entries specified");
return;
}
 
png_write_chunk_start(png_ptr, (png_bytep)png_hIST, (png_uint_32)(num_hist * 2));
for (i = 0; i < num_hist; i++)
{
png_save_uint_16(buf, hist[i]);
png_write_chunk_data(png_ptr, buf, (png_size_t)2);
}
png_write_chunk_end(png_ptr);
}
#endif
 
#if defined(PNG_WRITE_TEXT_SUPPORTED) || defined(PNG_WRITE_pCAL_SUPPORTED) || \
defined(PNG_WRITE_iCCP_SUPPORTED) || defined(PNG_WRITE_sPLT_SUPPORTED)
/* Check that the tEXt or zTXt keyword is valid per PNG 1.0 specification,
* and if invalid, correct the keyword rather than discarding the entire
* chunk. The PNG 1.0 specification requires keywords 1-79 characters in
* length, forbids leading or trailing whitespace, multiple internal spaces,
* and the non-break space (0x80) from ISO 8859-1. Returns keyword length.
*
* The new_key is allocated to hold the corrected keyword and must be freed
* by the calling routine. This avoids problems with trying to write to
* static keywords without having to have duplicate copies of the strings.
*/
png_size_t /* PRIVATE */
png_check_keyword(png_structp png_ptr, png_charp key, png_charpp new_key)
{
png_size_t key_len;
png_charp kp, dp;
int kflag;
int kwarn=0;
 
png_debug(1, "in png_check_keyword\n");
*new_key = NULL;
 
if (key == NULL || (key_len = png_strlen(key)) == 0)
{
png_warning(png_ptr, "zero length keyword");
return ((png_size_t)0);
}
 
png_debug1(2, "Keyword to be checked is '%s'\n", key);
 
*new_key = (png_charp)png_malloc(png_ptr, (png_uint_32)(key_len + 2));
 
/* Replace non-printing characters with a blank and print a warning */
for (kp = key, dp = *new_key; *kp != '\0'; kp++, dp++)
{
if (*kp < 0x20 || (*kp > 0x7E && (png_byte)*kp < 0xA1))
{
#if !defined(PNG_NO_STDIO) && !defined(_WIN32_WCE)
char msg[40];
 
sprintf(msg, "invalid keyword character 0x%02X", *kp);
png_warning(png_ptr, msg);
#else
png_warning(png_ptr, "invalid character in keyword");
#endif
*dp = ' ';
}
else
{
*dp = *kp;
}
}
*dp = '\0';
 
/* Remove any trailing white space. */
kp = *new_key + key_len - 1;
if (*kp == ' ')
{
png_warning(png_ptr, "trailing spaces removed from keyword");
 
while (*kp == ' ')
{
*(kp--) = '\0';
key_len--;
}
}
 
/* Remove any leading white space. */
kp = *new_key;
if (*kp == ' ')
{
png_warning(png_ptr, "leading spaces removed from keyword");
 
while (*kp == ' ')
{
kp++;
key_len--;
}
}
 
png_debug1(2, "Checking for multiple internal spaces in '%s'\n", kp);
 
/* Remove multiple internal spaces. */
for (kflag = 0, dp = *new_key; *kp != '\0'; kp++)
{
if (*kp == ' ' && kflag == 0)
{
*(dp++) = *kp;
kflag = 1;
}
else if (*kp == ' ')
{
key_len--;
kwarn=1;
}
else
{
*(dp++) = *kp;
kflag = 0;
}
}
*dp = '\0';
if(kwarn)
png_warning(png_ptr, "extra interior spaces removed from keyword");
 
if (key_len == 0)
{
png_free(png_ptr, *new_key);
*new_key=NULL;
png_warning(png_ptr, "Zero length keyword");
}
 
if (key_len > 79)
{
png_warning(png_ptr, "keyword length must be 1 - 79 characters");
new_key[79] = '\0';
key_len = 79;
}
 
return (key_len);
}
#endif
 
#if defined(PNG_WRITE_tEXt_SUPPORTED)
/* write a tEXt chunk */
void /* PRIVATE */
png_write_tEXt(png_structp png_ptr, png_charp key, png_charp text,
png_size_t text_len)
{
#ifdef PNG_USE_LOCAL_ARRAYS
PNG_tEXt;
#endif
png_size_t key_len;
png_charp new_key;
 
png_debug(1, "in png_write_tEXt\n");
if (key == NULL || (key_len = png_check_keyword(png_ptr, key, &new_key))==0)
{
png_warning(png_ptr, "Empty keyword in tEXt chunk");
return;
}
 
if (text == NULL || *text == '\0')
text_len = 0;
else
text_len = png_strlen(text);
 
/* make sure we include the 0 after the key */
png_write_chunk_start(png_ptr, (png_bytep)png_tEXt, (png_uint_32)key_len+text_len+1);
/*
* We leave it to the application to meet PNG-1.0 requirements on the
* contents of the text. PNG-1.0 through PNG-1.2 discourage the use of
* any non-Latin-1 characters except for NEWLINE. ISO PNG will forbid them.
* The NUL character is forbidden by PNG-1.0 through PNG-1.2 and ISO PNG.
*/
png_write_chunk_data(png_ptr, (png_bytep)new_key, key_len + 1);
if (text_len)
png_write_chunk_data(png_ptr, (png_bytep)text, text_len);
 
png_write_chunk_end(png_ptr);
png_free(png_ptr, new_key);
}
#endif
 
#if defined(PNG_WRITE_zTXt_SUPPORTED)
/* write a compressed text chunk */
void /* PRIVATE */
png_write_zTXt(png_structp png_ptr, png_charp key, png_charp text,
png_size_t text_len, int compression)
{
#ifdef PNG_USE_LOCAL_ARRAYS
PNG_zTXt;
#endif
png_size_t key_len;
char buf[1];
png_charp new_key;
compression_state comp;
 
png_debug(1, "in png_write_zTXt\n");
 
if (key == NULL || (key_len = png_check_keyword(png_ptr, key, &new_key))==0)
{
png_warning(png_ptr, "Empty keyword in zTXt chunk");
return;
}
 
if (text == NULL || *text == '\0' || compression==PNG_TEXT_COMPRESSION_NONE)
{
png_write_tEXt(png_ptr, new_key, text, (png_size_t)0);
png_free(png_ptr, new_key);
return;
}
 
text_len = png_strlen(text);
 
png_free(png_ptr, new_key);
 
/* compute the compressed data; do it now for the length */
text_len = png_text_compress(png_ptr, text, text_len, compression,
&comp);
 
/* write start of chunk */
png_write_chunk_start(png_ptr, (png_bytep)png_zTXt, (png_uint_32)
(key_len+text_len+2));
/* write key */
png_write_chunk_data(png_ptr, (png_bytep)key, key_len + 1);
buf[0] = (png_byte)compression;
/* write compression */
png_write_chunk_data(png_ptr, (png_bytep)buf, (png_size_t)1);
/* write the compressed data */
png_write_compressed_data_out(png_ptr, &comp);
 
/* close the chunk */
png_write_chunk_end(png_ptr);
}
#endif
 
#if defined(PNG_WRITE_iTXt_SUPPORTED)
/* write an iTXt chunk */
void /* PRIVATE */
png_write_iTXt(png_structp png_ptr, int compression, png_charp key,
png_charp lang, png_charp lang_key, png_charp text)
{
#ifdef PNG_USE_LOCAL_ARRAYS
PNG_iTXt;
#endif
png_size_t lang_len, key_len, lang_key_len, text_len;
png_charp new_lang, new_key;
png_byte cbuf[2];
compression_state comp;
 
png_debug(1, "in png_write_iTXt\n");
 
if (key == NULL || (key_len = png_check_keyword(png_ptr, key, &new_key))==0)
{
png_warning(png_ptr, "Empty keyword in iTXt chunk");
return;
}
if (lang == NULL || (lang_len = png_check_keyword(png_ptr, lang, &new_lang))==0)
{
png_warning(png_ptr, "Empty language field in iTXt chunk");
new_lang = NULL;
lang_len = 0;
}
 
if (lang_key == NULL)
lang_key_len = 0;
else
lang_key_len = png_strlen(lang_key);
 
if (text == NULL)
text_len = 0;
else
text_len = png_strlen(text);
 
/* compute the compressed data; do it now for the length */
text_len = png_text_compress(png_ptr, text, text_len, compression-2,
&comp);
 
 
/* make sure we include the compression flag, the compression byte,
* and the NULs after the key, lang, and lang_key parts */
 
png_write_chunk_start(png_ptr, (png_bytep)png_iTXt,
(png_uint_32)(
5 /* comp byte, comp flag, terminators for key, lang and lang_key */
+ key_len
+ lang_len
+ lang_key_len
+ text_len));
 
/*
* We leave it to the application to meet PNG-1.0 requirements on the
* contents of the text. PNG-1.0 through PNG-1.2 discourage the use of
* any non-Latin-1 characters except for NEWLINE. ISO PNG will forbid them.
* The NUL character is forbidden by PNG-1.0 through PNG-1.2 and ISO PNG.
*/
png_write_chunk_data(png_ptr, (png_bytep)new_key, key_len + 1);
 
/* set the compression flag */
if (compression == PNG_ITXT_COMPRESSION_NONE || \
compression == PNG_TEXT_COMPRESSION_NONE)
cbuf[0] = 0;
else /* compression == PNG_ITXT_COMPRESSION_zTXt */
cbuf[0] = 1;
/* set the compression method */
cbuf[1] = 0;
png_write_chunk_data(png_ptr, cbuf, 2);
 
cbuf[0] = 0;
png_write_chunk_data(png_ptr, (new_lang ? (png_bytep)new_lang : cbuf), lang_len + 1);
png_write_chunk_data(png_ptr, (lang_key ? (png_bytep)lang_key : cbuf), lang_key_len + 1);
png_write_compressed_data_out(png_ptr, &comp);
 
png_write_chunk_end(png_ptr);
png_free(png_ptr, new_key);
if (new_lang)
png_free(png_ptr, new_lang);
}
#endif
 
#if defined(PNG_WRITE_oFFs_SUPPORTED)
/* write the oFFs chunk */
void /* PRIVATE */
png_write_oFFs(png_structp png_ptr, png_int_32 x_offset, png_int_32 y_offset,
int unit_type)
{
#ifdef PNG_USE_LOCAL_ARRAYS
PNG_oFFs;
#endif
png_byte buf[9];
 
png_debug(1, "in png_write_oFFs\n");
if (unit_type >= PNG_OFFSET_LAST)
png_warning(png_ptr, "Unrecognized unit type for oFFs chunk");
 
png_save_int_32(buf, x_offset);
png_save_int_32(buf + 4, y_offset);
buf[8] = (png_byte)unit_type;
 
png_write_chunk(png_ptr, (png_bytep)png_oFFs, buf, (png_size_t)9);
}
#endif
 
#if defined(PNG_WRITE_pCAL_SUPPORTED)
/* write the pCAL chunk (described in the PNG extensions document) */
void /* PRIVATE */
png_write_pCAL(png_structp png_ptr, png_charp purpose, png_int_32 X0,
png_int_32 X1, int type, int nparams, png_charp units, png_charpp params)
{
#ifdef PNG_USE_LOCAL_ARRAYS
PNG_pCAL;
#endif
png_size_t purpose_len, units_len, total_len;
png_uint_32p params_len;
png_byte buf[10];
png_charp new_purpose;
int i;
 
png_debug1(1, "in png_write_pCAL (%d parameters)\n", nparams);
if (type >= PNG_EQUATION_LAST)
png_warning(png_ptr, "Unrecognized equation type for pCAL chunk");
 
purpose_len = png_check_keyword(png_ptr, purpose, &new_purpose) + 1;
png_debug1(3, "pCAL purpose length = %d\n", (int)purpose_len);
units_len = png_strlen(units) + (nparams == 0 ? 0 : 1);
png_debug1(3, "pCAL units length = %d\n", (int)units_len);
total_len = purpose_len + units_len + 10;
 
params_len = (png_uint_32p)png_malloc(png_ptr, (png_uint_32)(nparams
*sizeof(png_uint_32)));
 
/* Find the length of each parameter, making sure we don't count the
null terminator for the last parameter. */
for (i = 0; i < nparams; i++)
{
params_len[i] = png_strlen(params[i]) + (i == nparams - 1 ? 0 : 1);
png_debug2(3, "pCAL parameter %d length = %lu\n", i, params_len[i]);
total_len += (png_size_t)params_len[i];
}
 
png_debug1(3, "pCAL total length = %d\n", (int)total_len);
png_write_chunk_start(png_ptr, (png_bytep)png_pCAL, (png_uint_32)total_len);
png_write_chunk_data(png_ptr, (png_bytep)new_purpose, purpose_len);
png_save_int_32(buf, X0);
png_save_int_32(buf + 4, X1);
buf[8] = (png_byte)type;
buf[9] = (png_byte)nparams;
png_write_chunk_data(png_ptr, buf, (png_size_t)10);
png_write_chunk_data(png_ptr, (png_bytep)units, (png_size_t)units_len);
 
png_free(png_ptr, new_purpose);
 
for (i = 0; i < nparams; i++)
{
png_write_chunk_data(png_ptr, (png_bytep)params[i],
(png_size_t)params_len[i]);
}
 
png_free(png_ptr, params_len);
png_write_chunk_end(png_ptr);
}
#endif
 
#if defined(PNG_WRITE_sCAL_SUPPORTED)
/* write the sCAL chunk */
#if defined(PNG_FLOATING_POINT_SUPPORTED) && !defined(PNG_NO_STDIO)
void /* PRIVATE */
png_write_sCAL(png_structp png_ptr, int unit, double width,double height)
{
#ifdef PNG_USE_LOCAL_ARRAYS
PNG_sCAL;
#endif
png_size_t total_len;
char wbuf[32], hbuf[32];
 
png_debug(1, "in png_write_sCAL\n");
 
#if defined(_WIN32_WCE)
/* sprintf() function is not supported on WindowsCE */
{
wchar_t wc_buf[32];
swprintf(wc_buf, TEXT("%12.12e"), width);
WideCharToMultiByte(CP_ACP, 0, wc_buf, -1, wbuf, 32, NULL, NULL);
swprintf(wc_buf, TEXT("%12.12e"), height);
WideCharToMultiByte(CP_ACP, 0, wc_buf, -1, hbuf, 32, NULL, NULL);
}
#else
sprintf(wbuf, "%12.12e", width);
sprintf(hbuf, "%12.12e", height);
#endif
total_len = 1 + png_strlen(wbuf)+1 + png_strlen(hbuf);
 
png_debug1(3, "sCAL total length = %d\n", (int)total_len);
png_write_chunk_start(png_ptr, (png_bytep)png_sCAL, (png_uint_32)total_len);
png_write_chunk_data(png_ptr, (png_bytep)&unit, 1);
png_write_chunk_data(png_ptr, (png_bytep)wbuf, png_strlen(wbuf)+1);
png_write_chunk_data(png_ptr, (png_bytep)hbuf, png_strlen(hbuf));
 
png_write_chunk_end(png_ptr);
}
#else
#ifdef PNG_FIXED_POINT_SUPPORTED
void /* PRIVATE */
png_write_sCAL_s(png_structp png_ptr, int unit, png_charp width,
png_charp height)
{
#ifdef PNG_USE_LOCAL_ARRAYS
PNG_sCAL;
#endif
png_size_t total_len;
char wbuf[32], hbuf[32];
 
png_debug(1, "in png_write_sCAL_s\n");
 
png_strcpy(wbuf,(const char *)width);
png_strcpy(hbuf,(const char *)height);
total_len = 1 + png_strlen(wbuf)+1 + png_strlen(hbuf);
 
png_debug1(3, "sCAL total length = %d\n", total_len);
png_write_chunk_start(png_ptr, (png_bytep)png_sCAL, (png_uint_32)total_len);
png_write_chunk_data(png_ptr, (png_bytep)&unit, 1);
png_write_chunk_data(png_ptr, (png_bytep)wbuf, png_strlen(wbuf)+1);
png_write_chunk_data(png_ptr, (png_bytep)hbuf, png_strlen(hbuf));
 
png_write_chunk_end(png_ptr);
}
#endif
#endif
#endif
 
#if defined(PNG_WRITE_pHYs_SUPPORTED)
/* write the pHYs chunk */
void /* PRIVATE */
png_write_pHYs(png_structp png_ptr, png_uint_32 x_pixels_per_unit,
png_uint_32 y_pixels_per_unit,
int unit_type)
{
#ifdef PNG_USE_LOCAL_ARRAYS
PNG_pHYs;
#endif
png_byte buf[9];
 
png_debug(1, "in png_write_pHYs\n");
if (unit_type >= PNG_RESOLUTION_LAST)
png_warning(png_ptr, "Unrecognized unit type for pHYs chunk");
 
png_save_uint_32(buf, x_pixels_per_unit);
png_save_uint_32(buf + 4, y_pixels_per_unit);
buf[8] = (png_byte)unit_type;
 
png_write_chunk(png_ptr, (png_bytep)png_pHYs, buf, (png_size_t)9);
}
#endif
 
#if defined(PNG_WRITE_tIME_SUPPORTED)
/* Write the tIME chunk. Use either png_convert_from_struct_tm()
* or png_convert_from_time_t(), or fill in the structure yourself.
*/
void /* PRIVATE */
png_write_tIME(png_structp png_ptr, png_timep mod_time)
{
#ifdef PNG_USE_LOCAL_ARRAYS
PNG_tIME;
#endif
png_byte buf[7];
 
png_debug(1, "in png_write_tIME\n");
if (mod_time->month > 12 || mod_time->month < 1 ||
mod_time->day > 31 || mod_time->day < 1 ||
mod_time->hour > 23 || mod_time->second > 60)
{
png_warning(png_ptr, "Invalid time specified for tIME chunk");
return;
}
 
png_save_uint_16(buf, mod_time->year);
buf[2] = mod_time->month;
buf[3] = mod_time->day;
buf[4] = mod_time->hour;
buf[5] = mod_time->minute;
buf[6] = mod_time->second;
 
png_write_chunk(png_ptr, (png_bytep)png_tIME, buf, (png_size_t)7);
}
#endif
 
/* initializes the row writing capability of libpng */
void /* PRIVATE */
png_write_start_row(png_structp png_ptr)
{
#ifdef PNG_USE_LOCAL_ARRAYS
/* arrays to facilitate easy interlacing - use pass (0 - 6) as index */
 
/* start of interlace block */
int png_pass_start[7] = {0, 4, 0, 2, 0, 1, 0};
 
/* offset to next interlace block */
int png_pass_inc[7] = {8, 8, 4, 4, 2, 2, 1};
 
/* start of interlace block in the y direction */
int png_pass_ystart[7] = {0, 0, 4, 0, 2, 0, 1};
 
/* offset to next interlace block in the y direction */
int png_pass_yinc[7] = {8, 8, 8, 4, 4, 2, 2};
#endif
 
png_size_t buf_size;
 
png_debug(1, "in png_write_start_row\n");
buf_size = (png_size_t)(((png_ptr->width * png_ptr->usr_channels *
png_ptr->usr_bit_depth + 7) >> 3) + 1);
 
/* set up row buffer */
png_ptr->row_buf = (png_bytep)png_malloc(png_ptr, (png_uint_32)buf_size);
png_ptr->row_buf[0] = PNG_FILTER_VALUE_NONE;
 
/* set up filtering buffer, if using this filter */
if (png_ptr->do_filter & PNG_FILTER_SUB)
{
png_ptr->sub_row = (png_bytep)png_malloc(png_ptr,
(png_ptr->rowbytes + 1));
png_ptr->sub_row[0] = PNG_FILTER_VALUE_SUB;
}
 
/* We only need to keep the previous row if we are using one of these. */
if (png_ptr->do_filter & (PNG_FILTER_AVG | PNG_FILTER_UP | PNG_FILTER_PAETH))
{
/* set up previous row buffer */
png_ptr->prev_row = (png_bytep)png_malloc(png_ptr, (png_uint_32)buf_size);
png_memset(png_ptr->prev_row, 0, buf_size);
 
if (png_ptr->do_filter & PNG_FILTER_UP)
{
png_ptr->up_row = (png_bytep )png_malloc(png_ptr,
(png_ptr->rowbytes + 1));
png_ptr->up_row[0] = PNG_FILTER_VALUE_UP;
}
 
if (png_ptr->do_filter & PNG_FILTER_AVG)
{
png_ptr->avg_row = (png_bytep)png_malloc(png_ptr,
(png_ptr->rowbytes + 1));
png_ptr->avg_row[0] = PNG_FILTER_VALUE_AVG;
}
 
if (png_ptr->do_filter & PNG_FILTER_PAETH)
{
png_ptr->paeth_row = (png_bytep )png_malloc(png_ptr,
(png_ptr->rowbytes + 1));
png_ptr->paeth_row[0] = PNG_FILTER_VALUE_PAETH;
}
}
 
#ifdef PNG_WRITE_INTERLACING_SUPPORTED
/* if interlaced, we need to set up width and height of pass */
if (png_ptr->interlaced)
{
if (!(png_ptr->transformations & PNG_INTERLACE))
{
png_ptr->num_rows = (png_ptr->height + png_pass_yinc[0] - 1 -
png_pass_ystart[0]) / png_pass_yinc[0];
png_ptr->usr_width = (png_ptr->width + png_pass_inc[0] - 1 -
png_pass_start[0]) / png_pass_inc[0];
}
else
{
png_ptr->num_rows = png_ptr->height;
png_ptr->usr_width = png_ptr->width;
}
}
else
#endif
{
png_ptr->num_rows = png_ptr->height;
png_ptr->usr_width = png_ptr->width;
}
png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size;
png_ptr->zstream.next_out = png_ptr->zbuf;
}
 
/* Internal use only. Called when finished processing a row of data. */
void /* PRIVATE */
png_write_finish_row(png_structp png_ptr)
{
#ifdef PNG_USE_LOCAL_ARRAYS
/* arrays to facilitate easy interlacing - use pass (0 - 6) as index */
 
/* start of interlace block */
int png_pass_start[7] = {0, 4, 0, 2, 0, 1, 0};
 
/* offset to next interlace block */
int png_pass_inc[7] = {8, 8, 4, 4, 2, 2, 1};
 
/* start of interlace block in the y direction */
int png_pass_ystart[7] = {0, 0, 4, 0, 2, 0, 1};
 
/* offset to next interlace block in the y direction */
int png_pass_yinc[7] = {8, 8, 8, 4, 4, 2, 2};
#endif
 
int ret;
 
png_debug(1, "in png_write_finish_row\n");
/* next row */
png_ptr->row_number++;
 
/* see if we are done */
if (png_ptr->row_number < png_ptr->num_rows)
return;
 
#ifdef PNG_WRITE_INTERLACING_SUPPORTED
/* if interlaced, go to next pass */
if (png_ptr->interlaced)
{
png_ptr->row_number = 0;
if (png_ptr->transformations & PNG_INTERLACE)
{
png_ptr->pass++;
}
else
{
/* loop until we find a non-zero width or height pass */
do
{
png_ptr->pass++;
if (png_ptr->pass >= 7)
break;
png_ptr->usr_width = (png_ptr->width +
png_pass_inc[png_ptr->pass] - 1 -
png_pass_start[png_ptr->pass]) /
png_pass_inc[png_ptr->pass];
png_ptr->num_rows = (png_ptr->height +
png_pass_yinc[png_ptr->pass] - 1 -
png_pass_ystart[png_ptr->pass]) /
png_pass_yinc[png_ptr->pass];
if (png_ptr->transformations & PNG_INTERLACE)
break;
} while (png_ptr->usr_width == 0 || png_ptr->num_rows == 0);
 
}
 
/* reset the row above the image for the next pass */
if (png_ptr->pass < 7)
{
if (png_ptr->prev_row != NULL)
png_memset(png_ptr->prev_row, 0,
(png_size_t) (((png_uint_32)png_ptr->usr_channels *
(png_uint_32)png_ptr->usr_bit_depth *
png_ptr->width + 7) >> 3) + 1);
return;
}
}
#endif
 
/* if we get here, we've just written the last row, so we need
to flush the compressor */
do
{
/* tell the compressor we are done */
ret = deflate(&png_ptr->zstream, Z_FINISH);
/* check for an error */
if (ret == Z_OK)
{
/* check to see if we need more room */
if (!(png_ptr->zstream.avail_out))
{
png_write_IDAT(png_ptr, png_ptr->zbuf, png_ptr->zbuf_size);
png_ptr->zstream.next_out = png_ptr->zbuf;
png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size;
}
}
else if (ret != Z_STREAM_END)
{
if (png_ptr->zstream.msg != NULL)
png_error(png_ptr, png_ptr->zstream.msg);
else
png_error(png_ptr, "zlib error");
}
} while (ret != Z_STREAM_END);
 
/* write any extra space */
if (png_ptr->zstream.avail_out < png_ptr->zbuf_size)
{
png_write_IDAT(png_ptr, png_ptr->zbuf, png_ptr->zbuf_size -
png_ptr->zstream.avail_out);
}
 
deflateReset(&png_ptr->zstream);
}
 
#if defined(PNG_WRITE_INTERLACING_SUPPORTED)
/* Pick out the correct pixels for the interlace pass.
* The basic idea here is to go through the row with a source
* pointer and a destination pointer (sp and dp), and copy the
* correct pixels for the pass. As the row gets compacted,
* sp will always be >= dp, so we should never overwrite anything.
* See the default: case for the easiest code to understand.
*/
void /* PRIVATE */
png_do_write_interlace(png_row_infop row_info, png_bytep row, int pass)
{
#ifdef PNG_USE_LOCAL_ARRAYS
/* arrays to facilitate easy interlacing - use pass (0 - 6) as index */
 
/* start of interlace block */
int png_pass_start[7] = {0, 4, 0, 2, 0, 1, 0};
 
/* offset to next interlace block */
int png_pass_inc[7] = {8, 8, 4, 4, 2, 2, 1};
#endif
 
png_debug(1, "in png_do_write_interlace\n");
/* we don't have to do anything on the last pass (6) */
#if defined(PNG_USELESS_TESTS_SUPPORTED)
if (row != NULL && row_info != NULL && pass < 6)
#else
if (pass < 6)
#endif
{
/* each pixel depth is handled separately */
switch (row_info->pixel_depth)
{
case 1:
{
png_bytep sp;
png_bytep dp;
int shift;
int d;
int value;
png_uint_32 i;
png_uint_32 row_width = row_info->width;
 
dp = row;
d = 0;
shift = 7;
for (i = png_pass_start[pass]; i < row_width;
i += png_pass_inc[pass])
{
sp = row + (png_size_t)(i >> 3);
value = (int)(*sp >> (7 - (int)(i & 0x07))) & 0x01;
d |= (value << shift);
 
if (shift == 0)
{
shift = 7;
*dp++ = (png_byte)d;
d = 0;
}
else
shift--;
 
}
if (shift != 7)
*dp = (png_byte)d;
break;
}
case 2:
{
png_bytep sp;
png_bytep dp;
int shift;
int d;
int value;
png_uint_32 i;
png_uint_32 row_width = row_info->width;
 
dp = row;
shift = 6;
d = 0;
for (i = png_pass_start[pass]; i < row_width;
i += png_pass_inc[pass])
{
sp = row + (png_size_t)(i >> 2);
value = (*sp >> ((3 - (int)(i & 0x03)) << 1)) & 0x03;
d |= (value << shift);
 
if (shift == 0)
{
shift = 6;
*dp++ = (png_byte)d;
d = 0;
}
else
shift -= 2;
}
if (shift != 6)
*dp = (png_byte)d;
break;
}
case 4:
{
png_bytep sp;
png_bytep dp;
int shift;
int d;
int value;
png_uint_32 i;
png_uint_32 row_width = row_info->width;
 
dp = row;
shift = 4;
d = 0;
for (i = png_pass_start[pass]; i < row_width;
i += png_pass_inc[pass])
{
sp = row + (png_size_t)(i >> 1);
value = (*sp >> ((1 - (int)(i & 0x01)) << 2)) & 0x0f;
d |= (value << shift);
 
if (shift == 0)
{
shift = 4;
*dp++ = (png_byte)d;
d = 0;
}
else
shift -= 4;
}
if (shift != 4)
*dp = (png_byte)d;
break;
}
default:
{
png_bytep sp;
png_bytep dp;
png_uint_32 i;
png_uint_32 row_width = row_info->width;
png_size_t pixel_bytes;
 
/* start at the beginning */
dp = row;
/* find out how many bytes each pixel takes up */
pixel_bytes = (row_info->pixel_depth >> 3);
/* loop through the row, only looking at the pixels that
matter */
for (i = png_pass_start[pass]; i < row_width;
i += png_pass_inc[pass])
{
/* find out where the original pixel is */
sp = row + (png_size_t)i * pixel_bytes;
/* move the pixel */
if (dp != sp)
png_memcpy(dp, sp, pixel_bytes);
/* next pixel */
dp += pixel_bytes;
}
break;
}
}
/* set new row width */
row_info->width = (row_info->width +
png_pass_inc[pass] - 1 -
png_pass_start[pass]) /
png_pass_inc[pass];
row_info->rowbytes = ((row_info->width *
row_info->pixel_depth + 7) >> 3);
}
}
#endif
 
/* This filters the row, chooses which filter to use, if it has not already
* been specified by the application, and then writes the row out with the
* chosen filter.
*/
#define PNG_MAXSUM (~((png_uint_32)0) >> 1)
#define PNG_HISHIFT 10
#define PNG_LOMASK ((png_uint_32)0xffffL)
#define PNG_HIMASK ((png_uint_32)(~PNG_LOMASK >> PNG_HISHIFT))
void /* PRIVATE */
png_write_find_filter(png_structp png_ptr, png_row_infop row_info)
{
png_bytep prev_row, best_row, row_buf;
png_uint_32 mins, bpp;
png_byte filter_to_do = png_ptr->do_filter;
png_uint_32 row_bytes = row_info->rowbytes;
#if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED)
int num_p_filters = (int)png_ptr->num_prev_filters;
#endif
 
png_debug(1, "in png_write_find_filter\n");
/* find out how many bytes offset each pixel is */
bpp = (row_info->pixel_depth + 7) / 8;
 
prev_row = png_ptr->prev_row;
best_row = row_buf = png_ptr->row_buf;
mins = PNG_MAXSUM;
 
/* The prediction method we use is to find which method provides the
* smallest value when summing the absolute values of the distances
* from zero, using anything >= 128 as negative numbers. This is known
* as the "minimum sum of absolute differences" heuristic. Other
* heuristics are the "weighted minimum sum of absolute differences"
* (experimental and can in theory improve compression), and the "zlib
* predictive" method (not implemented yet), which does test compressions
* of lines using different filter methods, and then chooses the
* (series of) filter(s) that give minimum compressed data size (VERY
* computationally expensive).
*
* GRR 980525: consider also
* (1) minimum sum of absolute differences from running average (i.e.,
* keep running sum of non-absolute differences & count of bytes)
* [track dispersion, too? restart average if dispersion too large?]
* (1b) minimum sum of absolute differences from sliding average, probably
* with window size <= deflate window (usually 32K)
* (2) minimum sum of squared differences from zero or running average
* (i.e., ~ root-mean-square approach)
*/
 
 
/* We don't need to test the 'no filter' case if this is the only filter
* that has been chosen, as it doesn't actually do anything to the data.
*/
if ((filter_to_do & PNG_FILTER_NONE) &&
filter_to_do != PNG_FILTER_NONE)
{
png_bytep rp;
png_uint_32 sum = 0;
png_uint_32 i;
int v;
 
for (i = 0, rp = row_buf + 1; i < row_bytes; i++, rp++)
{
v = *rp;
sum += (v < 128) ? v : 256 - v;
}
 
#if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED)
if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED)
{
png_uint_32 sumhi, sumlo;
int j;
sumlo = sum & PNG_LOMASK;
sumhi = (sum >> PNG_HISHIFT) & PNG_HIMASK; /* Gives us some footroom */
 
/* Reduce the sum if we match any of the previous rows */
for (j = 0; j < num_p_filters; j++)
{
if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_NONE)
{
sumlo = (sumlo * png_ptr->filter_weights[j]) >>
PNG_WEIGHT_SHIFT;
sumhi = (sumhi * png_ptr->filter_weights[j]) >>
PNG_WEIGHT_SHIFT;
}
}
 
/* Factor in the cost of this filter (this is here for completeness,
* but it makes no sense to have a "cost" for the NONE filter, as
* it has the minimum possible computational cost - none).
*/
sumlo = (sumlo * png_ptr->filter_costs[PNG_FILTER_VALUE_NONE]) >>
PNG_COST_SHIFT;
sumhi = (sumhi * png_ptr->filter_costs[PNG_FILTER_VALUE_NONE]) >>
PNG_COST_SHIFT;
 
if (sumhi > PNG_HIMASK)
sum = PNG_MAXSUM;
else
sum = (sumhi << PNG_HISHIFT) + sumlo;
}
#endif
mins = sum;
}
 
/* sub filter */
if (filter_to_do == PNG_FILTER_SUB)
/* it's the only filter so no testing is needed */
{
png_bytep rp, lp, dp;
png_uint_32 i;
for (i = 0, rp = row_buf + 1, dp = png_ptr->sub_row + 1; i < bpp;
i++, rp++, dp++)
{
*dp = *rp;
}
for (lp = row_buf + 1; i < row_bytes;
i++, rp++, lp++, dp++)
{
*dp = (png_byte)(((int)*rp - (int)*lp) & 0xff);
}
best_row = png_ptr->sub_row;
}
 
else if (filter_to_do & PNG_FILTER_SUB)
{
png_bytep rp, dp, lp;
png_uint_32 sum = 0, lmins = mins;
png_uint_32 i;
int v;
 
#if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED)
/* We temporarily increase the "minimum sum" by the factor we
* would reduce the sum of this filter, so that we can do the
* early exit comparison without scaling the sum each time.
*/
if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED)
{
int j;
png_uint_32 lmhi, lmlo;
lmlo = lmins & PNG_LOMASK;
lmhi = (lmins >> PNG_HISHIFT) & PNG_HIMASK;
 
for (j = 0; j < num_p_filters; j++)
{
if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_SUB)
{
lmlo = (lmlo * png_ptr->inv_filter_weights[j]) >>
PNG_WEIGHT_SHIFT;
lmhi = (lmhi * png_ptr->inv_filter_weights[j]) >>
PNG_WEIGHT_SHIFT;
}
}
 
lmlo = (lmlo * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_SUB]) >>
PNG_COST_SHIFT;
lmhi = (lmhi * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_SUB]) >>
PNG_COST_SHIFT;
 
if (lmhi > PNG_HIMASK)
lmins = PNG_MAXSUM;
else
lmins = (lmhi << PNG_HISHIFT) + lmlo;
}
#endif
 
for (i = 0, rp = row_buf + 1, dp = png_ptr->sub_row + 1; i < bpp;
i++, rp++, dp++)
{
v = *dp = *rp;
 
sum += (v < 128) ? v : 256 - v;
}
for (lp = row_buf + 1; i < row_info->rowbytes;
i++, rp++, lp++, dp++)
{
v = *dp = (png_byte)(((int)*rp - (int)*lp) & 0xff);
 
sum += (v < 128) ? v : 256 - v;
 
if (sum > lmins) /* We are already worse, don't continue. */
break;
}
 
#if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED)
if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED)
{
int j;
png_uint_32 sumhi, sumlo;
sumlo = sum & PNG_LOMASK;
sumhi = (sum >> PNG_HISHIFT) & PNG_HIMASK;
 
for (j = 0; j < num_p_filters; j++)
{
if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_SUB)
{
sumlo = (sumlo * png_ptr->inv_filter_weights[j]) >>
PNG_WEIGHT_SHIFT;
sumhi = (sumhi * png_ptr->inv_filter_weights[j]) >>
PNG_WEIGHT_SHIFT;
}
}
 
sumlo = (sumlo * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_SUB]) >>
PNG_COST_SHIFT;
sumhi = (sumhi * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_SUB]) >>
PNG_COST_SHIFT;
 
if (sumhi > PNG_HIMASK)
sum = PNG_MAXSUM;
else
sum = (sumhi << PNG_HISHIFT) + sumlo;
}
#endif
 
if (sum < mins)
{
mins = sum;
best_row = png_ptr->sub_row;
}
}
 
/* up filter */
if (filter_to_do == PNG_FILTER_UP)
{
png_bytep rp, dp, pp;
png_uint_32 i;
 
for (i = 0, rp = row_buf + 1, dp = png_ptr->up_row + 1,
pp = prev_row + 1; i < row_bytes;
i++, rp++, pp++, dp++)
{
*dp = (png_byte)(((int)*rp - (int)*pp) & 0xff);
}
best_row = png_ptr->up_row;
}
 
else if (filter_to_do & PNG_FILTER_UP)
{
png_bytep rp, dp, pp;
png_uint_32 sum = 0, lmins = mins;
png_uint_32 i;
int v;
 
 
#if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED)
if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED)
{
int j;
png_uint_32 lmhi, lmlo;
lmlo = lmins & PNG_LOMASK;
lmhi = (lmins >> PNG_HISHIFT) & PNG_HIMASK;
 
for (j = 0; j < num_p_filters; j++)
{
if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_UP)
{
lmlo = (lmlo * png_ptr->inv_filter_weights[j]) >>
PNG_WEIGHT_SHIFT;
lmhi = (lmhi * png_ptr->inv_filter_weights[j]) >>
PNG_WEIGHT_SHIFT;
}
}
 
lmlo = (lmlo * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_UP]) >>
PNG_COST_SHIFT;
lmhi = (lmhi * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_UP]) >>
PNG_COST_SHIFT;
 
if (lmhi > PNG_HIMASK)
lmins = PNG_MAXSUM;
else
lmins = (lmhi << PNG_HISHIFT) + lmlo;
}
#endif
 
for (i = 0, rp = row_buf + 1, dp = png_ptr->up_row + 1,
pp = prev_row + 1; i < row_bytes; i++)
{
v = *dp++ = (png_byte)(((int)*rp++ - (int)*pp++) & 0xff);
 
sum += (v < 128) ? v : 256 - v;
 
if (sum > lmins) /* We are already worse, don't continue. */
break;
}
 
#if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED)
if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED)
{
int j;
png_uint_32 sumhi, sumlo;
sumlo = sum & PNG_LOMASK;
sumhi = (sum >> PNG_HISHIFT) & PNG_HIMASK;
 
for (j = 0; j < num_p_filters; j++)
{
if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_UP)
{
sumlo = (sumlo * png_ptr->filter_weights[j]) >>
PNG_WEIGHT_SHIFT;
sumhi = (sumhi * png_ptr->filter_weights[j]) >>
PNG_WEIGHT_SHIFT;
}
}
 
sumlo = (sumlo * png_ptr->filter_costs[PNG_FILTER_VALUE_UP]) >>
PNG_COST_SHIFT;
sumhi = (sumhi * png_ptr->filter_costs[PNG_FILTER_VALUE_UP]) >>
PNG_COST_SHIFT;
 
if (sumhi > PNG_HIMASK)
sum = PNG_MAXSUM;
else
sum = (sumhi << PNG_HISHIFT) + sumlo;
}
#endif
 
if (sum < mins)
{
mins = sum;
best_row = png_ptr->up_row;
}
}
 
/* avg filter */
if (filter_to_do == PNG_FILTER_AVG)
{
png_bytep rp, dp, pp, lp;
png_uint_32 i;
for (i = 0, rp = row_buf + 1, dp = png_ptr->avg_row + 1,
pp = prev_row + 1; i < bpp; i++)
{
*dp++ = (png_byte)(((int)*rp++ - ((int)*pp++ / 2)) & 0xff);
}
for (lp = row_buf + 1; i < row_bytes; i++)
{
*dp++ = (png_byte)(((int)*rp++ - (((int)*pp++ + (int)*lp++) / 2))
& 0xff);
}
best_row = png_ptr->avg_row;
}
 
else if (filter_to_do & PNG_FILTER_AVG)
{
png_bytep rp, dp, pp, lp;
png_uint_32 sum = 0, lmins = mins;
png_uint_32 i;
int v;
 
#if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED)
if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED)
{
int j;
png_uint_32 lmhi, lmlo;
lmlo = lmins & PNG_LOMASK;
lmhi = (lmins >> PNG_HISHIFT) & PNG_HIMASK;
 
for (j = 0; j < num_p_filters; j++)
{
if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_AVG)
{
lmlo = (lmlo * png_ptr->inv_filter_weights[j]) >>
PNG_WEIGHT_SHIFT;
lmhi = (lmhi * png_ptr->inv_filter_weights[j]) >>
PNG_WEIGHT_SHIFT;
}
}
 
lmlo = (lmlo * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_AVG]) >>
PNG_COST_SHIFT;
lmhi = (lmhi * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_AVG]) >>
PNG_COST_SHIFT;
 
if (lmhi > PNG_HIMASK)
lmins = PNG_MAXSUM;
else
lmins = (lmhi << PNG_HISHIFT) + lmlo;
}
#endif
 
for (i = 0, rp = row_buf + 1, dp = png_ptr->avg_row + 1,
pp = prev_row + 1; i < bpp; i++)
{
v = *dp++ = (png_byte)(((int)*rp++ - ((int)*pp++ / 2)) & 0xff);
 
sum += (v < 128) ? v : 256 - v;
}
for (lp = row_buf + 1; i < row_bytes; i++)
{
v = *dp++ =
(png_byte)(((int)*rp++ - (((int)*pp++ + (int)*lp++) / 2)) & 0xff);
 
sum += (v < 128) ? v : 256 - v;
 
if (sum > lmins) /* We are already worse, don't continue. */
break;
}
 
#if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED)
if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED)
{
int j;
png_uint_32 sumhi, sumlo;
sumlo = sum & PNG_LOMASK;
sumhi = (sum >> PNG_HISHIFT) & PNG_HIMASK;
 
for (j = 0; j < num_p_filters; j++)
{
if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_NONE)
{
sumlo = (sumlo * png_ptr->filter_weights[j]) >>
PNG_WEIGHT_SHIFT;
sumhi = (sumhi * png_ptr->filter_weights[j]) >>
PNG_WEIGHT_SHIFT;
}
}
 
sumlo = (sumlo * png_ptr->filter_costs[PNG_FILTER_VALUE_AVG]) >>
PNG_COST_SHIFT;
sumhi = (sumhi * png_ptr->filter_costs[PNG_FILTER_VALUE_AVG]) >>
PNG_COST_SHIFT;
 
if (sumhi > PNG_HIMASK)
sum = PNG_MAXSUM;
else
sum = (sumhi << PNG_HISHIFT) + sumlo;
}
#endif
 
if (sum < mins)
{
mins = sum;
best_row = png_ptr->avg_row;
}
}
 
/* Paeth filter */
if (filter_to_do == PNG_FILTER_PAETH)
{
png_bytep rp, dp, pp, cp, lp;
png_uint_32 i;
for (i = 0, rp = row_buf + 1, dp = png_ptr->paeth_row + 1,
pp = prev_row + 1; i < bpp; i++)
{
*dp++ = (png_byte)(((int)*rp++ - (int)*pp++) & 0xff);
}
 
for (lp = row_buf + 1, cp = prev_row + 1; i < row_bytes; i++)
{
int a, b, c, pa, pb, pc, p;
 
b = *pp++;
c = *cp++;
a = *lp++;
 
p = b - c;
pc = a - c;
 
#ifdef PNG_USE_ABS
pa = abs(p);
pb = abs(pc);
pc = abs(p + pc);
#else
pa = p < 0 ? -p : p;
pb = pc < 0 ? -pc : pc;
pc = (p + pc) < 0 ? -(p + pc) : p + pc;
#endif
 
p = (pa <= pb && pa <=pc) ? a : (pb <= pc) ? b : c;
 
*dp++ = (png_byte)(((int)*rp++ - p) & 0xff);
}
best_row = png_ptr->paeth_row;
}
 
else if (filter_to_do & PNG_FILTER_PAETH)
{
png_bytep rp, dp, pp, cp, lp;
png_uint_32 sum = 0, lmins = mins;
png_uint_32 i;
int v;
 
#if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED)
if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED)
{
int j;
png_uint_32 lmhi, lmlo;
lmlo = lmins & PNG_LOMASK;
lmhi = (lmins >> PNG_HISHIFT) & PNG_HIMASK;
 
for (j = 0; j < num_p_filters; j++)
{
if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_PAETH)
{
lmlo = (lmlo * png_ptr->inv_filter_weights[j]) >>
PNG_WEIGHT_SHIFT;
lmhi = (lmhi * png_ptr->inv_filter_weights[j]) >>
PNG_WEIGHT_SHIFT;
}
}
 
lmlo = (lmlo * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_PAETH]) >>
PNG_COST_SHIFT;
lmhi = (lmhi * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_PAETH]) >>
PNG_COST_SHIFT;
 
if (lmhi > PNG_HIMASK)
lmins = PNG_MAXSUM;
else
lmins = (lmhi << PNG_HISHIFT) + lmlo;
}
#endif
 
for (i = 0, rp = row_buf + 1, dp = png_ptr->paeth_row + 1,
pp = prev_row + 1; i < bpp; i++)
{
v = *dp++ = (png_byte)(((int)*rp++ - (int)*pp++) & 0xff);
 
sum += (v < 128) ? v : 256 - v;
}
 
for (lp = row_buf + 1, cp = prev_row + 1; i < row_bytes; i++)
{
int a, b, c, pa, pb, pc, p;
 
b = *pp++;
c = *cp++;
a = *lp++;
 
#ifndef PNG_SLOW_PAETH
p = b - c;
pc = a - c;
#ifdef PNG_USE_ABS
pa = abs(p);
pb = abs(pc);
pc = abs(p + pc);
#else
pa = p < 0 ? -p : p;
pb = pc < 0 ? -pc : pc;
pc = (p + pc) < 0 ? -(p + pc) : p + pc;
#endif
p = (pa <= pb && pa <=pc) ? a : (pb <= pc) ? b : c;
#else /* PNG_SLOW_PAETH */
p = a + b - c;
pa = abs(p - a);
pb = abs(p - b);
pc = abs(p - c);
if (pa <= pb && pa <= pc)
p = a;
else if (pb <= pc)
p = b;
else
p = c;
#endif /* PNG_SLOW_PAETH */
 
v = *dp++ = (png_byte)(((int)*rp++ - p) & 0xff);
 
sum += (v < 128) ? v : 256 - v;
 
if (sum > lmins) /* We are already worse, don't continue. */
break;
}
 
#if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED)
if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED)
{
int j;
png_uint_32 sumhi, sumlo;
sumlo = sum & PNG_LOMASK;
sumhi = (sum >> PNG_HISHIFT) & PNG_HIMASK;
 
for (j = 0; j < num_p_filters; j++)
{
if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_PAETH)
{
sumlo = (sumlo * png_ptr->filter_weights[j]) >>
PNG_WEIGHT_SHIFT;
sumhi = (sumhi * png_ptr->filter_weights[j]) >>
PNG_WEIGHT_SHIFT;
}
}
 
sumlo = (sumlo * png_ptr->filter_costs[PNG_FILTER_VALUE_PAETH]) >>
PNG_COST_SHIFT;
sumhi = (sumhi * png_ptr->filter_costs[PNG_FILTER_VALUE_PAETH]) >>
PNG_COST_SHIFT;
 
if (sumhi > PNG_HIMASK)
sum = PNG_MAXSUM;
else
sum = (sumhi << PNG_HISHIFT) + sumlo;
}
#endif
 
if (sum < mins)
{
best_row = png_ptr->paeth_row;
}
}
 
/* Do the actual writing of the filtered row data from the chosen filter. */
 
png_write_filtered_row(png_ptr, best_row);
 
#if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED)
/* Save the type of filter we picked this time for future calculations */
if (png_ptr->num_prev_filters > 0)
{
int j;
for (j = 1; j < num_p_filters; j++)
{
png_ptr->prev_filters[j] = png_ptr->prev_filters[j - 1];
}
png_ptr->prev_filters[j] = best_row[0];
}
#endif
}
 
 
/* Do the actual writing of a previously filtered row. */
void /* PRIVATE */
png_write_filtered_row(png_structp png_ptr, png_bytep filtered_row)
{
png_debug(1, "in png_write_filtered_row\n");
png_debug1(2, "filter = %d\n", filtered_row[0]);
/* set up the zlib input buffer */
 
png_ptr->zstream.next_in = filtered_row;
png_ptr->zstream.avail_in = (uInt)png_ptr->row_info.rowbytes + 1;
/* repeat until we have compressed all the data */
do
{
int ret; /* return of zlib */
 
/* compress the data */
ret = deflate(&png_ptr->zstream, Z_NO_FLUSH);
/* check for compression errors */
if (ret != Z_OK)
{
if (png_ptr->zstream.msg != NULL)
png_error(png_ptr, png_ptr->zstream.msg);
else
png_error(png_ptr, "zlib error");
}
 
/* see if it is time to write another IDAT */
if (!(png_ptr->zstream.avail_out))
{
/* write the IDAT and reset the zlib output buffer */
png_write_IDAT(png_ptr, png_ptr->zbuf, png_ptr->zbuf_size);
png_ptr->zstream.next_out = png_ptr->zbuf;
png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size;
}
/* repeat until all data has been compressed */
} while (png_ptr->zstream.avail_in);
 
/* swap the current and previous rows */
if (png_ptr->prev_row != NULL)
{
png_bytep tptr;
 
tptr = png_ptr->prev_row;
png_ptr->prev_row = png_ptr->row_buf;
png_ptr->row_buf = tptr;
}
 
/* finish row - updates counters and flushes zlib if last row */
png_write_finish_row(png_ptr);
 
#if defined(PNG_WRITE_FLUSH_SUPPORTED)
png_ptr->flush_rows++;
 
if (png_ptr->flush_dist > 0 &&
png_ptr->flush_rows >= png_ptr->flush_dist)
{
png_write_flush(png_ptr);
}
#endif
}
#endif /* PNG_WRITE_SUPPORTED */
/shark/trunk/ports/png/readme
0,0 → 1,15
Project: S.Ha.R.K.
PNG Lib and Zlib porting
 
Coordinators:
 
Giorgio Buttazzo <giorgio@sssup.it>
Paolo Gai <pj@gandalf.sssup.it>
 
Authors:
 
Giacomo Guidi <giacomo@gandalf.sssup.it>
 
Shark lib to open png graphic files
 
/shark/trunk/ports/png/pngasmrd.h
0,0 → 1,11
/* pngasmrd.h - assembler version of utilities to read a PNG file
*
* libpng 1.2.5 - October 3, 2002
* For conditions of distribution and use, see copyright notice in png.h
* Copyright (c) 2002 Glenn Randers-Pehrson
*
*/
 
/* This file is obsolete in libpng-1.0.9 and later; its contents now appear
* at the end of pngconf.h.
*/
/shark/trunk/ports/png/pngtest.c
0,0 → 1,1531
 
/* pngtest.c - a simple test program to test libpng
*
* libpng 1.2.5 - October 3, 2002
* For conditions of distribution and use, see copyright notice in png.h
* Copyright (c) 1998-2002 Glenn Randers-Pehrson
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
*
* This program reads in a PNG image, writes it out again, and then
* compares the two files. If the files are identical, this shows that
* the basic chunk handling, filtering, and (de)compression code is working
* properly. It does not currently test all of the transforms, although
* it probably should.
*
* The program will report "FAIL" in certain legitimate cases:
* 1) when the compression level or filter selection method is changed.
* 2) when the maximum IDAT size (PNG_ZBUF_SIZE in pngconf.h) is not 8192.
* 3) unknown unsafe-to-copy ancillary chunks or unknown critical chunks
* exist in the input file.
* 4) others not listed here...
* In these cases, it is best to check with another tool such as "pngcheck"
* to see what the differences between the two files are.
*
* If a filename is given on the command-line, then this file is used
* for the input, rather than the default "pngtest.png". This allows
* testing a wide variety of files easily. You can also test a number
* of files at once by typing "pngtest -m file1.png file2.png ..."
*/
 
#if defined(_WIN32_WCE)
# if _WIN32_WCE < 211
__error__ (f|w)printf functions are not supported on old WindowsCE.;
# endif
# include <windows.h>
# include <stdlib.h>
# define READFILE(file, data, length, check) \
if (ReadFile(file, data, length, &check,NULL)) check = 0
# define WRITEFILE(file, data, length, check)) \
if (WriteFile(file, data, length, &check, NULL)) check = 0
# define FCLOSE(file) CloseHandle(file)
#else
# include <stdio.h>
# include <stdlib.h>
# include <assert.h>
# define READFILE(file, data, length, check) \
check=(png_size_t)fread(data,(png_size_t)1,length,file)
# define WRITEFILE(file, data, length, check) \
check=(png_size_t)fwrite(data,(png_size_t)1, length, file)
# define FCLOSE(file) fclose(file)
#endif
 
#if defined(PNG_NO_STDIO)
# if defined(_WIN32_WCE)
typedef HANDLE png_FILE_p;
# else
typedef FILE * png_FILE_p;
# endif
#endif
 
/* Makes pngtest verbose so we can find problems (needs to be before png.h) */
#ifndef PNG_DEBUG
# define PNG_DEBUG 0
#endif
 
#if !PNG_DEBUG
# define SINGLE_ROWBUF_ALLOC /* makes buffer overruns easier to nail */
#endif
 
/* Turn on CPU timing
#define PNGTEST_TIMING
*/
 
#ifdef PNG_NO_FLOATING_POINT_SUPPORTED
#undef PNGTEST_TIMING
#endif
 
#ifdef PNGTEST_TIMING
static float t_start, t_stop, t_decode, t_encode, t_misc;
#include <time.h>
#endif
 
#include "png.h"
 
/* Define png_jmpbuf() in case we are using a pre-1.0.6 version of libpng */
#ifndef png_jmpbuf
# define png_jmpbuf(png_ptr) png_ptr->jmpbuf
#endif
 
#ifdef PNGTEST_TIMING
static float t_start, t_stop, t_decode, t_encode, t_misc;
#if !defined(PNG_tIME_SUPPORTED)
#include <time.h>
#endif
#endif
 
#if defined(PNG_TIME_RFC1123_SUPPORTED)
static int tIME_chunk_present=0;
static char tIME_string[30] = "no tIME chunk present in file";
#endif
 
static int verbose = 0;
 
int test_one_file PNGARG((PNG_CONST char *inname, PNG_CONST char *outname));
 
#ifdef __TURBOC__
#include <mem.h>
#endif
 
/* defined so I can write to a file on gui/windowing platforms */
/* #define STDERR stderr */
#define STDERR stdout /* for DOS */
 
/* example of using row callbacks to make a simple progress meter */
static int status_pass=1;
static int status_dots_requested=0;
static int status_dots=1;
 
void
#ifdef PNG_1_0_X
PNGAPI
#endif
read_row_callback(png_structp png_ptr, png_uint_32 row_number, int pass);
void
#ifdef PNG_1_0_X
PNGAPI
#endif
read_row_callback(png_structp png_ptr, png_uint_32 row_number, int pass)
{
if(png_ptr == NULL || row_number > PNG_MAX_UINT) return;
if(status_pass != pass)
{
cprintf("\n Pass %d: ",pass);
status_pass = pass;
status_dots = 31;
}
status_dots--;
if(status_dots == 0)
{
cprintf("\n ");
status_dots=30;
}
cprintf("r");
}
 
void
#ifdef PNG_1_0_X
PNGAPI
#endif
write_row_callback(png_structp png_ptr, png_uint_32 row_number, int pass);
void
#ifdef PNG_1_0_X
PNGAPI
#endif
write_row_callback(png_structp png_ptr, png_uint_32 row_number, int pass)
{
if(png_ptr == NULL || row_number > PNG_MAX_UINT || pass > 7) return;
cprintf("w");
}
 
 
#if defined(PNG_READ_USER_TRANSFORM_SUPPORTED)
/* Example of using user transform callback (we don't transform anything,
but merely examine the row filters. We set this to 256 rather than
5 in case illegal filter values are present.) */
static png_uint_32 filters_used[256];
void
#ifdef PNG_1_0_X
PNGAPI
#endif
count_filters(png_structp png_ptr, png_row_infop row_info, png_bytep data);
void
#ifdef PNG_1_0_X
PNGAPI
#endif
count_filters(png_structp png_ptr, png_row_infop row_info, png_bytep data)
{
if(png_ptr != NULL && row_info != NULL)
++filters_used[*(data-1)];
}
#endif
 
#if defined(PNG_WRITE_USER_TRANSFORM_SUPPORTED)
/* example of using user transform callback (we don't transform anything,
but merely count the zero samples) */
 
static png_uint_32 zero_samples;
 
void
#ifdef PNG_1_0_X
PNGAPI
#endif
count_zero_samples(png_structp png_ptr, png_row_infop row_info, png_bytep data);
void
#ifdef PNG_1_0_X
PNGAPI
#endif
count_zero_samples(png_structp png_ptr, png_row_infop row_info, png_bytep data)
{
png_bytep dp = data;
if(png_ptr == NULL)return;
 
/* contents of row_info:
* png_uint_32 width width of row
* png_uint_32 rowbytes number of bytes in row
* png_byte color_type color type of pixels
* png_byte bit_depth bit depth of samples
* png_byte channels number of channels (1-4)
* png_byte pixel_depth bits per pixel (depth*channels)
*/
 
 
/* counts the number of zero samples (or zero pixels if color_type is 3 */
 
if(row_info->color_type == 0 || row_info->color_type == 3)
{
int pos=0;
png_uint_32 n, nstop;
for (n=0, nstop=row_info->width; n<nstop; n++)
{
if(row_info->bit_depth == 1)
{
if(((*dp << pos++ ) & 0x80) == 0) zero_samples++;
if(pos == 8)
{
pos = 0;
dp++;
}
}
if(row_info->bit_depth == 2)
{
if(((*dp << (pos+=2)) & 0xc0) == 0) zero_samples++;
if(pos == 8)
{
pos = 0;
dp++;
}
}
if(row_info->bit_depth == 4)
{
if(((*dp << (pos+=4)) & 0xf0) == 0) zero_samples++;
if(pos == 8)
{
pos = 0;
dp++;
}
}
if(row_info->bit_depth == 8)
if(*dp++ == 0) zero_samples++;
if(row_info->bit_depth == 16)
{
if((*dp | *(dp+1)) == 0) zero_samples++;
dp+=2;
}
}
}
else /* other color types */
{
png_uint_32 n, nstop;
int channel;
int color_channels = row_info->channels;
if(row_info->color_type > 3)color_channels--;
 
for (n=0, nstop=row_info->width; n<nstop; n++)
{
for (channel = 0; channel < color_channels; channel++)
{
if(row_info->bit_depth == 8)
if(*dp++ == 0) zero_samples++;
if(row_info->bit_depth == 16)
{
if((*dp | *(dp+1)) == 0) zero_samples++;
dp+=2;
}
}
if(row_info->color_type > 3)
{
dp++;
if(row_info->bit_depth == 16)dp++;
}
}
}
}
#endif /* PNG_WRITE_USER_TRANSFORM_SUPPORTED */
 
static int wrote_question = 0;
 
#if defined(PNG_NO_STDIO)
/* START of code to validate stdio-free compilation */
/* These copies of the default read/write functions come from pngrio.c and */
/* pngwio.c. They allow "don't include stdio" testing of the library. */
/* This is the function that does the actual reading of data. If you are
not reading from a standard C stream, you should create a replacement
read_data function and use it at run time with png_set_read_fn(), rather
than changing the library. */
 
#ifndef USE_FAR_KEYWORD
static void
pngtest_read_data(png_structp png_ptr, png_bytep data, png_size_t length)
{
png_size_t check;
 
/* fread() returns 0 on error, so it is OK to store this in a png_size_t
* instead of an int, which is what fread() actually returns.
*/
READFILE((png_FILE_p)png_ptr->io_ptr, data, length, check);
 
if (check != length)
{
png_error(png_ptr, "Read Error!");
}
}
#else
/* this is the model-independent version. Since the standard I/O library
can't handle far buffers in the medium and small models, we have to copy
the data.
*/
 
#define NEAR_BUF_SIZE 1024
#define MIN(a,b) (a <= b ? a : b)
 
static void
pngtest_read_data(png_structp png_ptr, png_bytep data, png_size_t length)
{
int check;
png_byte *n_data;
png_FILE_p io_ptr;
 
/* Check if data really is near. If so, use usual code. */
n_data = (png_byte *)CVT_PTR_NOCHECK(data);
io_ptr = (png_FILE_p)CVT_PTR(png_ptr->io_ptr);
if ((png_bytep)n_data == data)
{
READFILE(io_ptr, n_data, length, check);
}
else
{
png_byte buf[NEAR_BUF_SIZE];
png_size_t read, remaining, err;
check = 0;
remaining = length;
do
{
read = MIN(NEAR_BUF_SIZE, remaining);
READFILE(io_ptr, buf, 1, err);
png_memcpy(data, buf, read); /* copy far buffer to near buffer */
if(err != read)
break;
else
check += err;
data += read;
remaining -= read;
}
while (remaining != 0);
}
if (check != length)
{
png_error(png_ptr, "read Error");
}
}
#endif /* USE_FAR_KEYWORD */
 
#if defined(PNG_WRITE_FLUSH_SUPPORTED)
static void
pngtest_flush(png_structp png_ptr)
{
#if !defined(_WIN32_WCE)
png_FILE_p io_ptr;
io_ptr = (png_FILE_p)CVT_PTR((png_ptr->io_ptr));
if (io_ptr != NULL)
fflush(io_ptr);
#endif
}
#endif
 
/* This is the function that does the actual writing of data. If you are
not writing to a standard C stream, you should create a replacement
write_data function and use it at run time with png_set_write_fn(), rather
than changing the library. */
#ifndef USE_FAR_KEYWORD
static void
pngtest_write_data(png_structp png_ptr, png_bytep data, png_size_t length)
{
png_uint_32 check;
 
WRITEFILE((png_FILE_p)png_ptr->io_ptr, data, length, check);
if (check != length)
{
png_error(png_ptr, "Write Error");
}
}
#else
/* this is the model-independent version. Since the standard I/O library
can't handle far buffers in the medium and small models, we have to copy
the data.
*/
 
#define NEAR_BUF_SIZE 1024
#define MIN(a,b) (a <= b ? a : b)
 
static void
pngtest_write_data(png_structp png_ptr, png_bytep data, png_size_t length)
{
png_uint_32 check;
png_byte *near_data; /* Needs to be "png_byte *" instead of "png_bytep" */
png_FILE_p io_ptr;
 
/* Check if data really is near. If so, use usual code. */
near_data = (png_byte *)CVT_PTR_NOCHECK(data);
io_ptr = (png_FILE_p)CVT_PTR(png_ptr->io_ptr);
if ((png_bytep)near_data == data)
{
WRITEFILE(io_ptr, near_data, length, check);
}
else
{
png_byte buf[NEAR_BUF_SIZE];
png_size_t written, remaining, err;
check = 0;
remaining = length;
do
{
written = MIN(NEAR_BUF_SIZE, remaining);
png_memcpy(buf, data, written); /* copy far buffer to near buffer */
WRITEFILE(io_ptr, buf, written, err);
if (err != written)
break;
else
check += err;
data += written;
remaining -= written;
}
while (remaining != 0);
}
if (check != length)
{
png_error(png_ptr, "Write Error");
}
}
 
#endif /* USE_FAR_KEYWORD */
 
/* This function is called when there is a warning, but the library thinks
* it can continue anyway. Replacement functions don't have to do anything
* here if you don't want to. In the default configuration, png_ptr is
* not used, but it is passed in case it may be useful.
*/
static void
pngtest_warning(png_structp png_ptr, png_const_charp message)
{
PNG_CONST char *name = "UNKNOWN (ERROR!)";
if (png_ptr != NULL && png_ptr->error_ptr != NULL)
name = png_ptr->error_ptr;
cprintf("%s: libpng warning: %s\n", name, message);
}
 
/* This is the default error handling function. Note that replacements for
* this function MUST NOT RETURN, or the program will likely crash. This
* function is used by default, or if the program supplies NULL for the
* error function pointer in png_set_error_fn().
*/
static void
pngtest_error(png_structp png_ptr, png_const_charp message)
{
pngtest_warning(png_ptr, message);
/* We can return because png_error calls the default handler, which is
* actually OK in this case. */
}
#endif /* PNG_NO_STDIO */
/* END of code to validate stdio-free compilation */
 
/* START of code to validate memory allocation and deallocation */
#ifdef PNG_USER_MEM_SUPPORTED
 
/* Allocate memory. For reasonable files, size should never exceed
64K. However, zlib may allocate more then 64K if you don't tell
it not to. See zconf.h and png.h for more information. zlib does
need to allocate exactly 64K, so whatever you call here must
have the ability to do that.
 
This piece of code can be compiled to validate max 64K allocations
by setting MAXSEG_64K in zlib zconf.h *or* PNG_MAX_MALLOC_64K. */
typedef struct memory_information
{
png_uint_32 size;
png_voidp pointer;
struct memory_information FAR *next;
} memory_information;
typedef memory_information FAR *memory_infop;
 
static memory_infop pinformation = NULL;
static int current_allocation = 0;
static int maximum_allocation = 0;
static int total_allocation = 0;
static int num_allocations = 0;
 
png_voidp png_debug_malloc PNGARG((png_structp png_ptr, png_uint_32 size));
void png_debug_free PNGARG((png_structp png_ptr, png_voidp ptr));
 
png_voidp
png_debug_malloc(png_structp png_ptr, png_uint_32 size)
{
 
/* png_malloc has already tested for NULL; png_create_struct calls
png_debug_malloc directly, with png_ptr == NULL which is OK */
 
if (size == 0)
return (NULL);
 
/* This calls the library allocator twice, once to get the requested
buffer and once to get a new free list entry. */
{
memory_infop pinfo = (memory_infop)png_malloc_default(png_ptr,
(png_uint_32)sizeof *pinfo);
pinfo->size = size;
current_allocation += size;
total_allocation += size;
num_allocations ++;
if (current_allocation > maximum_allocation)
maximum_allocation = current_allocation;
pinfo->pointer = (png_voidp)png_malloc_default(png_ptr, size);
pinfo->next = pinformation;
pinformation = pinfo;
/* Make sure the caller isn't assuming zeroed memory. */
png_memset(pinfo->pointer, 0xdd, pinfo->size);
#if PNG_DEBUG
if(verbose)
printf("png_malloc %lu bytes at %x\n",size,pinfo->pointer);
#endif
assert(pinfo->size != 12345678);
return (png_voidp)(pinfo->pointer);
}
}
 
/* Free a pointer. It is removed from the list at the same time. */
void
png_debug_free(png_structp png_ptr, png_voidp ptr)
{
if (png_ptr == NULL)
cprintf("NULL pointer to png_debug_free.\n");
if (ptr == 0)
{
#if 0 /* This happens all the time. */
cprintf("WARNING: freeing NULL pointer\n");
#endif
return;
}
 
/* Unlink the element from the list. */
{
memory_infop FAR *ppinfo = &pinformation;
for (;;)
{
memory_infop pinfo = *ppinfo;
if (pinfo->pointer == ptr)
{
*ppinfo = pinfo->next;
current_allocation -= pinfo->size;
if (current_allocation < 0)
cprintf("Duplicate free of memory\n");
/* We must free the list element too, but first kill
the memory that is to be freed. */
png_memset(ptr, 0x55, pinfo->size);
png_free_default(png_ptr, pinfo);
pinfo=NULL;
break;
}
if (pinfo->next == NULL)
{
cprintf("Pointer %x not found\n", (unsigned int)ptr);
break;
}
ppinfo = &pinfo->next;
}
}
 
/* Finally free the data. */
#if PNG_DEBUG
if(verbose)
cprintf("Freeing %x\n",ptr);
#endif
png_free_default(png_ptr, ptr);
ptr=NULL;
}
#endif /* PNG_USER_MEM_SUPPORTED */
/* END of code to test memory allocation/deallocation */
 
/* Test one file */
int
test_one_file(PNG_CONST char *inname, PNG_CONST char *outname)
{
static png_FILE_p fpin;
static png_FILE_p fpout; /* "static" prevents setjmp corruption */
png_structp read_ptr;
png_infop read_info_ptr, end_info_ptr;
#ifdef PNG_WRITE_SUPPORTED
png_structp write_ptr;
png_infop write_info_ptr;
png_infop write_end_info_ptr;
#else
png_structp write_ptr = NULL;
png_infop write_info_ptr = NULL;
png_infop write_end_info_ptr = NULL;
#endif
png_bytep row_buf;
png_uint_32 y;
png_uint_32 width, height;
int num_pass, pass;
int bit_depth, color_type;
#ifdef PNG_SETJMP_SUPPORTED
#ifdef USE_FAR_KEYWORD
jmp_buf jmpbuf;
#endif
#endif
 
#if defined(_WIN32_WCE)
TCHAR path[MAX_PATH];
#endif
char inbuf[256], outbuf[256];
 
row_buf = NULL;
 
#if defined(_WIN32_WCE)
MultiByteToWideChar(CP_ACP, 0, inname, -1, path, MAX_PATH);
if ((fpin = CreateFile(path, GENERIC_READ, 0, NULL, OPEN_EXISTING, 0, NULL)) == INVALID_HANDLE_VALUE)
#else
if ((fpin = fopen(inname, "rb")) == NULL)
#endif
{
cprintf("Could not find input file %s\n", inname);
return (1);
}
 
#if defined(_WIN32_WCE)
MultiByteToWideChar(CP_ACP, 0, outname, -1, path, MAX_PATH);
if ((fpout = CreateFile(path, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, 0, NULL)) == INVALID_HANDLE_VALUE)
#else
if ((fpout = fopen(outname, "wb")) == NULL)
#endif
{
cprintf("Could not open output file %s\n", outname);
FCLOSE(fpin);
return (1);
}
 
png_debug(0, "Allocating read and write structures\n");
#ifdef PNG_USER_MEM_SUPPORTED
read_ptr = png_create_read_struct_2(PNG_LIBPNG_VER_STRING, png_voidp_NULL,
png_error_ptr_NULL, png_error_ptr_NULL, png_voidp_NULL,
(png_malloc_ptr)png_debug_malloc, (png_free_ptr)png_debug_free);
#else
read_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, png_voidp_NULL,
png_error_ptr_NULL, png_error_ptr_NULL);
#endif
#if defined(PNG_NO_STDIO)
png_set_error_fn(read_ptr, (png_voidp)inname, pngtest_error,
pngtest_warning);
#endif
#ifdef PNG_WRITE_SUPPORTED
#ifdef PNG_USER_MEM_SUPPORTED
write_ptr = png_create_write_struct_2(PNG_LIBPNG_VER_STRING, png_voidp_NULL,
png_error_ptr_NULL, png_error_ptr_NULL, png_voidp_NULL,
(png_malloc_ptr)png_debug_malloc, (png_free_ptr)png_debug_free);
#else
write_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING, png_voidp_NULL,
png_error_ptr_NULL, png_error_ptr_NULL);
#endif
#if defined(PNG_NO_STDIO)
png_set_error_fn(write_ptr, (png_voidp)inname, pngtest_error,
pngtest_warning);
#endif
#endif
png_debug(0, "Allocating read_info, write_info and end_info structures\n");
read_info_ptr = png_create_info_struct(read_ptr);
end_info_ptr = png_create_info_struct(read_ptr);
#ifdef PNG_WRITE_SUPPORTED
write_info_ptr = png_create_info_struct(write_ptr);
write_end_info_ptr = png_create_info_struct(write_ptr);
#endif
 
#ifdef PNG_SETJMP_SUPPORTED
png_debug(0, "Setting jmpbuf for read struct\n");
#ifdef USE_FAR_KEYWORD
if (setjmp(jmpbuf))
#else
if (setjmp(png_jmpbuf(read_ptr)))
#endif
{
cprintf("%s -> %s: libpng read error\n", inname, outname);
if (row_buf)
png_free(read_ptr, row_buf);
png_destroy_read_struct(&read_ptr, &read_info_ptr, &end_info_ptr);
#ifdef PNG_WRITE_SUPPORTED
png_destroy_info_struct(write_ptr, &write_end_info_ptr);
png_destroy_write_struct(&write_ptr, &write_info_ptr);
#endif
FCLOSE(fpin);
FCLOSE(fpout);
return (1);
}
#ifdef USE_FAR_KEYWORD
png_memcpy(png_jmpbuf(read_ptr),jmpbuf,sizeof(jmp_buf));
#endif
 
#ifdef PNG_WRITE_SUPPORTED
png_debug(0, "Setting jmpbuf for write struct\n");
#ifdef USE_FAR_KEYWORD
if (setjmp(jmpbuf))
#else
if (setjmp(png_jmpbuf(write_ptr)))
#endif
{
cprintf("%s -> %s: libpng write error\n", inname, outname);
png_destroy_read_struct(&read_ptr, &read_info_ptr, &end_info_ptr);
png_destroy_info_struct(write_ptr, &write_end_info_ptr);
#ifdef PNG_WRITE_SUPPORTED
png_destroy_write_struct(&write_ptr, &write_info_ptr);
#endif
FCLOSE(fpin);
FCLOSE(fpout);
return (1);
}
#ifdef USE_FAR_KEYWORD
png_memcpy(png_jmpbuf(write_ptr),jmpbuf,sizeof(jmp_buf));
#endif
#endif
#endif
 
png_debug(0, "Initializing input and output streams\n");
#if !defined(PNG_NO_STDIO)
png_init_io(read_ptr, fpin);
# ifdef PNG_WRITE_SUPPORTED
png_init_io(write_ptr, fpout);
# endif
#else
png_set_read_fn(read_ptr, (png_voidp)fpin, pngtest_read_data);
# ifdef PNG_WRITE_SUPPORTED
png_set_write_fn(write_ptr, (png_voidp)fpout, pngtest_write_data,
# if defined(PNG_WRITE_FLUSH_SUPPORTED)
pngtest_flush);
# else
NULL);
# endif
# endif
#endif
if(status_dots_requested == 1)
{
#ifdef PNG_WRITE_SUPPORTED
png_set_write_status_fn(write_ptr, write_row_callback);
#endif
png_set_read_status_fn(read_ptr, read_row_callback);
}
else
{
#ifdef PNG_WRITE_SUPPORTED
png_set_write_status_fn(write_ptr, png_write_status_ptr_NULL);
#endif
png_set_read_status_fn(read_ptr, png_read_status_ptr_NULL);
}
 
#if defined(PNG_READ_USER_TRANSFORM_SUPPORTED)
{
int i;
for(i=0; i<256; i++)
filters_used[i]=0;
png_set_read_user_transform_fn(read_ptr, count_filters);
}
#endif
#if defined(PNG_WRITE_USER_TRANSFORM_SUPPORTED)
zero_samples=0;
png_set_write_user_transform_fn(write_ptr, count_zero_samples);
#endif
 
#define HANDLE_CHUNK_IF_SAFE 2
#define HANDLE_CHUNK_ALWAYS 3
#if defined(PNG_READ_UNKNOWN_CHUNKS_SUPPORTED)
png_set_keep_unknown_chunks(read_ptr, HANDLE_CHUNK_ALWAYS,
png_bytep_NULL, 0);
#endif
#if defined(PNG_WRITE_UNKNOWN_CHUNKS_SUPPORTED)
png_set_keep_unknown_chunks(write_ptr, HANDLE_CHUNK_IF_SAFE,
png_bytep_NULL, 0);
#endif
 
png_debug(0, "Reading info struct\n");
png_read_info(read_ptr, read_info_ptr);
 
png_debug(0, "Transferring info struct\n");
{
int interlace_type, compression_type, filter_type;
 
if (png_get_IHDR(read_ptr, read_info_ptr, &width, &height, &bit_depth,
&color_type, &interlace_type, &compression_type, &filter_type))
{
png_set_IHDR(write_ptr, write_info_ptr, width, height, bit_depth,
#if defined(PNG_WRITE_INTERLACING_SUPPORTED)
color_type, interlace_type, compression_type, filter_type);
#else
color_type, PNG_INTERLACE_NONE, compression_type, filter_type);
#endif
}
}
#if defined(PNG_FIXED_POINT_SUPPORTED)
#if defined(PNG_cHRM_SUPPORTED)
{
png_fixed_point white_x, white_y, red_x, red_y, green_x, green_y, blue_x,
blue_y;
if (png_get_cHRM_fixed(read_ptr, read_info_ptr, &white_x, &white_y, &red_x,
&red_y, &green_x, &green_y, &blue_x, &blue_y))
{
png_set_cHRM_fixed(write_ptr, write_info_ptr, white_x, white_y, red_x,
red_y, green_x, green_y, blue_x, blue_y);
}
}
#endif
#if defined(PNG_gAMA_SUPPORTED)
{
png_fixed_point gamma;
 
if (png_get_gAMA_fixed(read_ptr, read_info_ptr, &gamma))
{
png_set_gAMA_fixed(write_ptr, write_info_ptr, gamma);
}
}
#endif
#else /* Use floating point versions */
#if defined(PNG_FLOATING_POINT_SUPPORTED)
#if defined(PNG_cHRM_SUPPORTED)
{
double white_x, white_y, red_x, red_y, green_x, green_y, blue_x,
blue_y;
if (png_get_cHRM(read_ptr, read_info_ptr, &white_x, &white_y, &red_x,
&red_y, &green_x, &green_y, &blue_x, &blue_y))
{
png_set_cHRM(write_ptr, write_info_ptr, white_x, white_y, red_x,
red_y, green_x, green_y, blue_x, blue_y);
}
}
#endif
#if defined(PNG_gAMA_SUPPORTED)
{
double gamma;
 
if (png_get_gAMA(read_ptr, read_info_ptr, &gamma))
{
png_set_gAMA(write_ptr, write_info_ptr, gamma);
}
}
#endif
#endif /* floating point */
#endif /* fixed point */
#if defined(PNG_iCCP_SUPPORTED)
{
png_charp name;
png_charp profile;
png_uint_32 proflen;
int compression_type;
 
if (png_get_iCCP(read_ptr, read_info_ptr, &name, &compression_type,
&profile, &proflen))
{
png_set_iCCP(write_ptr, write_info_ptr, name, compression_type,
profile, proflen);
}
}
#endif
#if defined(PNG_sRGB_SUPPORTED)
{
int intent;
 
if (png_get_sRGB(read_ptr, read_info_ptr, &intent))
{
png_set_sRGB(write_ptr, write_info_ptr, intent);
}
}
#endif
{
png_colorp palette;
int num_palette;
 
if (png_get_PLTE(read_ptr, read_info_ptr, &palette, &num_palette))
{
png_set_PLTE(write_ptr, write_info_ptr, palette, num_palette);
}
}
#if defined(PNG_bKGD_SUPPORTED)
{
png_color_16p background;
 
if (png_get_bKGD(read_ptr, read_info_ptr, &background))
{
png_set_bKGD(write_ptr, write_info_ptr, background);
}
}
#endif
#if defined(PNG_hIST_SUPPORTED)
{
png_uint_16p hist;
 
if (png_get_hIST(read_ptr, read_info_ptr, &hist))
{
png_set_hIST(write_ptr, write_info_ptr, hist);
}
}
#endif
#if defined(PNG_oFFs_SUPPORTED)
{
png_int_32 offset_x, offset_y;
int unit_type;
 
if (png_get_oFFs(read_ptr, read_info_ptr,&offset_x,&offset_y,&unit_type))
{
png_set_oFFs(write_ptr, write_info_ptr, offset_x, offset_y, unit_type);
}
}
#endif
#if defined(PNG_pCAL_SUPPORTED)
{
png_charp purpose, units;
png_charpp params;
png_int_32 X0, X1;
int type, nparams;
 
if (png_get_pCAL(read_ptr, read_info_ptr, &purpose, &X0, &X1, &type,
&nparams, &units, &params))
{
png_set_pCAL(write_ptr, write_info_ptr, purpose, X0, X1, type,
nparams, units, params);
}
}
#endif
#if defined(PNG_pHYs_SUPPORTED)
{
png_uint_32 res_x, res_y;
int unit_type;
 
if (png_get_pHYs(read_ptr, read_info_ptr, &res_x, &res_y, &unit_type))
{
png_set_pHYs(write_ptr, write_info_ptr, res_x, res_y, unit_type);
}
}
#endif
#if defined(PNG_sBIT_SUPPORTED)
{
png_color_8p sig_bit;
 
if (png_get_sBIT(read_ptr, read_info_ptr, &sig_bit))
{
png_set_sBIT(write_ptr, write_info_ptr, sig_bit);
}
}
#endif
#if defined(PNG_sCAL_SUPPORTED)
#ifdef PNG_FLOATING_POINT_SUPPORTED
{
int unit;
double scal_width, scal_height;
 
if (png_get_sCAL(read_ptr, read_info_ptr, &unit, &scal_width,
&scal_height))
{
png_set_sCAL(write_ptr, write_info_ptr, unit, scal_width, scal_height);
}
}
#else
#ifdef PNG_FIXED_POINT_SUPPORTED
{
int unit;
png_charp scal_width, scal_height;
 
if (png_get_sCAL_s(read_ptr, read_info_ptr, &unit, &scal_width,
&scal_height))
{
png_set_sCAL_s(write_ptr, write_info_ptr, unit, scal_width, scal_height);
}
}
#endif
#endif
#endif
#if defined(PNG_TEXT_SUPPORTED)
{
png_textp text_ptr;
int num_text;
 
if (png_get_text(read_ptr, read_info_ptr, &text_ptr, &num_text) > 0)
{
png_debug1(0, "Handling %d iTXt/tEXt/zTXt chunks\n", num_text);
png_set_text(write_ptr, write_info_ptr, text_ptr, num_text);
}
}
#endif
#if defined(PNG_tIME_SUPPORTED)
{
png_timep mod_time;
 
if (png_get_tIME(read_ptr, read_info_ptr, &mod_time))
{
png_set_tIME(write_ptr, write_info_ptr, mod_time);
#if defined(PNG_TIME_RFC1123_SUPPORTED)
/* we have to use png_strcpy instead of "=" because the string
pointed to by png_convert_to_rfc1123() gets free'ed before
we use it */
png_strcpy(tIME_string,png_convert_to_rfc1123(read_ptr, mod_time));
tIME_chunk_present++;
#endif /* PNG_TIME_RFC1123_SUPPORTED */
}
}
#endif
#if defined(PNG_tRNS_SUPPORTED)
{
png_bytep trans;
int num_trans;
png_color_16p trans_values;
 
if (png_get_tRNS(read_ptr, read_info_ptr, &trans, &num_trans,
&trans_values))
{
png_set_tRNS(write_ptr, write_info_ptr, trans, num_trans,
trans_values);
}
}
#endif
#if defined(PNG_WRITE_UNKNOWN_CHUNKS_SUPPORTED)
{
png_unknown_chunkp unknowns;
int num_unknowns = (int)png_get_unknown_chunks(read_ptr, read_info_ptr,
&unknowns);
if (num_unknowns)
{
png_size_t i;
png_set_unknown_chunks(write_ptr, write_info_ptr, unknowns,
num_unknowns);
/* copy the locations from the read_info_ptr. The automatically
generated locations in write_info_ptr are wrong because we
haven't written anything yet */
for (i = 0; i < (png_size_t)num_unknowns; i++)
png_set_unknown_chunk_location(write_ptr, write_info_ptr, i,
unknowns[i].location);
}
}
#endif
 
#ifdef PNG_WRITE_SUPPORTED
png_debug(0, "\nWriting info struct\n");
 
/* If we wanted, we could write info in two steps:
png_write_info_before_PLTE(write_ptr, write_info_ptr);
*/
png_write_info(write_ptr, write_info_ptr);
#endif
 
#ifdef SINGLE_ROWBUF_ALLOC
png_debug(0, "\nAllocating row buffer...");
row_buf = (png_bytep)png_malloc(read_ptr,
png_get_rowbytes(read_ptr, read_info_ptr));
png_debug1(0, "0x%08lx\n\n", (unsigned long)row_buf);
#endif /* SINGLE_ROWBUF_ALLOC */
png_debug(0, "Writing row data\n");
 
#if defined(PNG_READ_INTERLACING_SUPPORTED) || \
defined(PNG_WRITE_INTERLACING_SUPPORTED)
num_pass = png_set_interlace_handling(read_ptr);
# ifdef PNG_WRITE_SUPPORTED
png_set_interlace_handling(write_ptr);
# endif
#else
num_pass=1;
#endif
 
#ifdef PNGTEST_TIMING
t_stop = (float)clock();
t_misc += (t_stop - t_start);
t_start = t_stop;
#endif
for (pass = 0; pass < num_pass; pass++)
{
png_debug1(0, "Writing row data for pass %d\n",pass);
for (y = 0; y < height; y++)
{
#ifndef SINGLE_ROWBUF_ALLOC
png_debug2(0, "\nAllocating row buffer (pass %d, y = %ld)...", pass,y);
row_buf = (png_bytep)png_malloc(read_ptr,
png_get_rowbytes(read_ptr, read_info_ptr));
png_debug2(0, "0x%08lx (%ld bytes)\n", (unsigned long)row_buf,
png_get_rowbytes(read_ptr, read_info_ptr));
#endif /* !SINGLE_ROWBUF_ALLOC */
png_read_rows(read_ptr, (png_bytepp)&row_buf, png_bytepp_NULL, 1);
 
#ifdef PNG_WRITE_SUPPORTED
#ifdef PNGTEST_TIMING
t_stop = (float)clock();
t_decode += (t_stop - t_start);
t_start = t_stop;
#endif
png_write_rows(write_ptr, (png_bytepp)&row_buf, 1);
#ifdef PNGTEST_TIMING
t_stop = (float)clock();
t_encode += (t_stop - t_start);
t_start = t_stop;
#endif
#endif /* PNG_WRITE_SUPPORTED */
 
#ifndef SINGLE_ROWBUF_ALLOC
png_debug2(0, "Freeing row buffer (pass %d, y = %ld)\n\n", pass, y);
png_free(read_ptr, row_buf);
#endif /* !SINGLE_ROWBUF_ALLOC */
}
}
 
#if defined(PNG_READ_UNKNOWN_CHUNKS_SUPPORTED)
png_free_data(read_ptr, read_info_ptr, PNG_FREE_UNKN, -1);
#endif
#if defined(PNG_WRITE_UNKNOWN_CHUNKS_SUPPORTED)
png_free_data(write_ptr, write_info_ptr, PNG_FREE_UNKN, -1);
#endif
 
png_debug(0, "Reading and writing end_info data\n");
 
png_read_end(read_ptr, end_info_ptr);
#if defined(PNG_TEXT_SUPPORTED)
{
png_textp text_ptr;
int num_text;
 
if (png_get_text(read_ptr, end_info_ptr, &text_ptr, &num_text) > 0)
{
png_debug1(0, "Handling %d iTXt/tEXt/zTXt chunks\n", num_text);
png_set_text(write_ptr, write_end_info_ptr, text_ptr, num_text);
}
}
#endif
#if defined(PNG_tIME_SUPPORTED)
{
png_timep mod_time;
 
if (png_get_tIME(read_ptr, end_info_ptr, &mod_time))
{
png_set_tIME(write_ptr, write_end_info_ptr, mod_time);
#if defined(PNG_TIME_RFC1123_SUPPORTED)
/* we have to use png_strcpy instead of "=" because the string
pointed to by png_convert_to_rfc1123() gets free'ed before
we use it */
png_strcpy(tIME_string,png_convert_to_rfc1123(read_ptr, mod_time));
tIME_chunk_present++;
#endif /* PNG_TIME_RFC1123_SUPPORTED */
}
}
#endif
#if defined(PNG_WRITE_UNKNOWN_CHUNKS_SUPPORTED)
{
png_unknown_chunkp unknowns;
int num_unknowns;
num_unknowns = (int)png_get_unknown_chunks(read_ptr, end_info_ptr,
&unknowns);
if (num_unknowns)
{
png_size_t i;
png_set_unknown_chunks(write_ptr, write_end_info_ptr, unknowns,
num_unknowns);
/* copy the locations from the read_info_ptr. The automatically
generated locations in write_end_info_ptr are wrong because we
haven't written the end_info yet */
for (i = 0; i < (png_size_t)num_unknowns; i++)
png_set_unknown_chunk_location(write_ptr, write_end_info_ptr, i,
unknowns[i].location);
}
}
#endif
#ifdef PNG_WRITE_SUPPORTED
png_write_end(write_ptr, write_end_info_ptr);
#endif
 
#ifdef PNG_EASY_ACCESS_SUPPORTED
if(verbose)
{
png_uint_32 iwidth, iheight;
iwidth = png_get_image_width(write_ptr, write_info_ptr);
iheight = png_get_image_height(write_ptr, write_info_ptr);
cprintf("Image width = %lu, height = %lu\n",
iwidth, iheight);
}
#endif
 
png_debug(0, "Destroying data structs\n");
#ifdef SINGLE_ROWBUF_ALLOC
png_debug(1, "destroying row_buf for read_ptr\n");
png_free(read_ptr, row_buf);
row_buf=NULL;
#endif /* SINGLE_ROWBUF_ALLOC */
png_debug(1, "destroying read_ptr, read_info_ptr, end_info_ptr\n");
png_destroy_read_struct(&read_ptr, &read_info_ptr, &end_info_ptr);
#ifdef PNG_WRITE_SUPPORTED
png_debug(1, "destroying write_end_info_ptr\n");
png_destroy_info_struct(write_ptr, &write_end_info_ptr);
png_debug(1, "destroying write_ptr, write_info_ptr\n");
png_destroy_write_struct(&write_ptr, &write_info_ptr);
#endif
png_debug(0, "Destruction complete.\n");
 
FCLOSE(fpin);
FCLOSE(fpout);
 
png_debug(0, "Opening files for comparison\n");
#if defined(_WIN32_WCE)
MultiByteToWideChar(CP_ACP, 0, inname, -1, path, MAX_PATH);
if ((fpin = CreateFile(path, GENERIC_READ, 0, NULL, OPEN_EXISTING, 0, NULL)) == INVALID_HANDLE_VALUE)
#else
if ((fpin = fopen(inname, "rb")) == NULL)
#endif
{
cprintf("Could not find file %s\n", inname);
return (1);
}
 
#if defined(_WIN32_WCE)
MultiByteToWideChar(CP_ACP, 0, outname, -1, path, MAX_PATH);
if ((fpout = CreateFile(path, GENERIC_READ, 0, NULL, OPEN_EXISTING, 0, NULL)) == INVALID_HANDLE_VALUE)
#else
if ((fpout = fopen(outname, "rb")) == NULL)
#endif
{
cprintf("Could not find file %s\n", outname);
FCLOSE(fpin);
return (1);
}
 
for(;;)
{
png_size_t num_in, num_out;
 
READFILE(fpin, inbuf, 1, num_in);
READFILE(fpout, outbuf, 1, num_out);
 
if (num_in != num_out)
{
cprintf("\nFiles %s and %s are of a different size\n",
inname, outname);
if(wrote_question == 0)
{
cprintf(" Was %s written with the same maximum IDAT chunk size (%d bytes),",
inname,PNG_ZBUF_SIZE);
cprintf("\n filtering heuristic (libpng default), compression");
cprintf(" level (zlib default),\n and zlib version (%s)?\n\n",
ZLIB_VERSION);
wrote_question=1;
}
FCLOSE(fpin);
FCLOSE(fpout);
return (0);
}
 
if (!num_in)
break;
 
if (png_memcmp(inbuf, outbuf, num_in))
{
cprintf("\nFiles %s and %s are different\n", inname, outname);
if(wrote_question == 0)
{
cprintf(" Was %s written with the same maximum IDAT chunk size (%d bytes),",
inname,PNG_ZBUF_SIZE);
cprintf("\n filtering heuristic (libpng default), compression");
cprintf(" level (zlib default),\n and zlib version (%s)?\n\n",
ZLIB_VERSION);
wrote_question=1;
}
FCLOSE(fpin);
FCLOSE(fpout);
return (0);
}
}
 
FCLOSE(fpin);
FCLOSE(fpout);
 
return (0);
}
 
/* input and output filenames */
#ifdef RISCOS
static PNG_CONST char *inname = "pngtest/png";
static PNG_CONST char *outname = "pngout/png";
#else
static PNG_CONST char *inname = "pngtest.png";
static PNG_CONST char *outname = "pngout.png";
#endif
 
int
main(int argc, char *argv[])
{
int multiple = 0;
int ierror = 0;
 
cprintf("Testing libpng version %s\n", PNG_LIBPNG_VER_STRING);
cprintf(" with zlib version %s\n", ZLIB_VERSION);
cprintf("%s",png_get_copyright(NULL));
/* Show the version of libpng used in building the library */
cprintf(" library (%lu):%s", png_access_version_number(),
png_get_header_version(NULL));
/* Show the version of libpng used in building the application */
cprintf(" pngtest (%lu):%s", (unsigned long)PNG_LIBPNG_VER,
PNG_HEADER_VERSION_STRING);
cprintf(" sizeof(png_struct)=%ld, sizeof(png_info)=%ld\n",
(long)sizeof(png_struct), (long)sizeof(png_info));
 
/* Do some consistency checking on the memory allocation settings, I'm
not sure this matters, but it is nice to know, the first of these
tests should be impossible because of the way the macros are set
in pngconf.h */
#if defined(MAXSEG_64K) && !defined(PNG_MAX_MALLOC_64K)
cprintf(" NOTE: Zlib compiled for max 64k, libpng not\n");
#endif
/* I think the following can happen. */
#if !defined(MAXSEG_64K) && defined(PNG_MAX_MALLOC_64K)
cprintf(" NOTE: libpng compiled for max 64k, zlib not\n");
#endif
 
if (strcmp(png_libpng_ver, PNG_LIBPNG_VER_STRING))
{
cprintf("Warning: versions are different between png.h and png.c\n");
cprintf(" png.h version: %s\n", PNG_LIBPNG_VER_STRING);
cprintf(" png.c version: %s\n\n", png_libpng_ver);
++ierror;
}
 
if (argc > 1)
{
if (strcmp(argv[1], "-m") == 0)
{
multiple = 1;
status_dots_requested = 0;
}
else if (strcmp(argv[1], "-mv") == 0 ||
strcmp(argv[1], "-vm") == 0 )
{
multiple = 1;
verbose = 1;
status_dots_requested = 1;
}
else if (strcmp(argv[1], "-v") == 0)
{
verbose = 1;
status_dots_requested = 1;
inname = argv[2];
}
else
{
inname = argv[1];
status_dots_requested = 0;
}
}
 
if (!multiple && argc == 3+verbose)
outname = argv[2+verbose];
 
if ((!multiple && argc > 3+verbose) || (multiple && argc < 2))
{
cprintf("usage: %s [infile.png] [outfile.png]\n\t%s -m {infile.png}\n",
argv[0], argv[0]);
cprintf(" reads/writes one PNG file (without -m) or multiple files (-m)\n");
cprintf(" with -m %s is used as a temporary file\n", outname);
exit(1);
}
 
if (multiple)
{
int i;
#ifdef PNG_USER_MEM_SUPPORTED
int allocation_now = current_allocation;
#endif
for (i=2; i<argc; ++i)
{
#if defined(PNG_READ_USER_TRANSFORM_SUPPORTED)
int k;
#endif
int kerror;
cprintf("Testing %s:",argv[i]);
kerror = test_one_file(argv[i], outname);
if (kerror == 0)
{
#if defined(PNG_WRITE_USER_TRANSFORM_SUPPORTED)
cprintf("\n PASS (%lu zero samples)\n",zero_samples);
#else
cprintf(" PASS\n");
#endif
#if defined(PNG_READ_USER_TRANSFORM_SUPPORTED)
for (k=0; k<256; k++)
if(filters_used[k])
cprintf(" Filter %d was used %lu times\n",
k,filters_used[k]);
#endif
#if defined(PNG_TIME_RFC1123_SUPPORTED)
if(tIME_chunk_present != 0)
cprintf(" tIME = %s\n",tIME_string);
tIME_chunk_present = 0;
#endif /* PNG_TIME_RFC1123_SUPPORTED */
}
else
{
cprintf(" FAIL\n");
ierror += kerror;
}
#ifdef PNG_USER_MEM_SUPPORTED
if (allocation_now != current_allocation)
cprintf("MEMORY ERROR: %d bytes lost\n",
current_allocation-allocation_now);
if (current_allocation != 0)
{
memory_infop pinfo = pinformation;
 
cprintf("MEMORY ERROR: %d bytes still allocated\n",
current_allocation);
while (pinfo != NULL)
{
cprintf(" %lu bytes at %x\n", pinfo->size,
(unsigned int) pinfo->pointer);
pinfo = pinfo->next;
}
}
#endif
}
#ifdef PNG_USER_MEM_SUPPORTED
cprintf(" Current memory allocation: %10d bytes\n",
current_allocation);
cprintf(" Maximum memory allocation: %10d bytes\n",
maximum_allocation);
cprintf(" Total memory allocation: %10d bytes\n",
total_allocation);
cprintf(" Number of allocations: %10d\n",
num_allocations);
#endif
}
else
{
int i;
for (i=0; i<3; ++i)
{
int kerror;
#ifdef PNG_USER_MEM_SUPPORTED
int allocation_now = current_allocation;
#endif
if (i == 1) status_dots_requested = 1;
else if(verbose == 0)status_dots_requested = 0;
if (i == 0 || verbose == 1 || ierror != 0)
cprintf("Testing %s:",inname);
kerror = test_one_file(inname, outname);
if(kerror == 0)
{
if(verbose == 1 || i == 2)
{
#if defined(PNG_READ_USER_TRANSFORM_SUPPORTED)
int k;
#endif
#if defined(PNG_WRITE_USER_TRANSFORM_SUPPORTED)
cprintf("\n PASS (%lu zero samples)\n",zero_samples);
#else
cprintf(" PASS\n");
#endif
#if defined(PNG_READ_USER_TRANSFORM_SUPPORTED)
for (k=0; k<256; k++)
if(filters_used[k])
cprintf(" Filter %d was used %lu times\n",
k,filters_used[k]);
#endif
#if defined(PNG_TIME_RFC1123_SUPPORTED)
if(tIME_chunk_present != 0)
cprintf(" tIME = %s\n",tIME_string);
#endif /* PNG_TIME_RFC1123_SUPPORTED */
}
}
else
{
if(verbose == 0 && i != 2)
cprintf("Testing %s:",inname);
cprintf(" FAIL\n");
ierror += kerror;
}
#ifdef PNG_USER_MEM_SUPPORTED
if (allocation_now != current_allocation)
cprintf("MEMORY ERROR: %d bytes lost\n",
current_allocation-allocation_now);
if (current_allocation != 0)
{
memory_infop pinfo = pinformation;
 
cprintf("MEMORY ERROR: %d bytes still allocated\n",
current_allocation);
while (pinfo != NULL)
{
cprintf(" %lu bytes at %x\n",
pinfo->size, (unsigned int)pinfo->pointer);
pinfo = pinfo->next;
}
}
#endif
}
#ifdef PNG_USER_MEM_SUPPORTED
cprintf(" Current memory allocation: %10d bytes\n",
current_allocation);
cprintf(" Maximum memory allocation: %10d bytes\n",
maximum_allocation);
cprintf(" Total memory allocation: %10d bytes\n",
total_allocation);
cprintf(" Number of allocations: %10d\n",
num_allocations);
#endif
}
 
#ifdef PNGTEST_TIMING
t_stop = (float)clock();
t_misc += (t_stop - t_start);
t_start = t_stop;
cprintf(" CPU time used = %.3f seconds",
(t_misc+t_decode+t_encode)/(float)CLOCKS_PER_SEC);
cprintf(" (decoding %.3f,\n",
t_decode/(float)CLOCKS_PER_SEC);
cprintf(" encoding %.3f ,",
t_encode/(float)CLOCKS_PER_SEC);
cprintf(" other %.3f seconds)\n\n",
t_misc/(float)CLOCKS_PER_SEC);
#endif
 
if (ierror == 0)
cprintf("libpng passes test\n");
else
cprintf("libpng FAILS test\n");
return (int)(ierror != 0);
}
 
/* Generate a compiler error if there is an old png.h in the search path. */
typedef version_1_2_5 your_png_h_is_not_version_1_2_5;
/shark/trunk/ports/png/pngrtran.c
0,0 → 1,4175
 
/* pngrtran.c - transforms the data in a row for PNG readers
*
* libpng 1.2.5 - October 3, 2002
* For conditions of distribution and use, see copyright notice in png.h
* Copyright (c) 1998-2002 Glenn Randers-Pehrson
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
*
* This file contains functions optionally called by an application
* in order to tell libpng how to handle data when reading a PNG.
* Transformations that are used in both reading and writing are
* in pngtrans.c.
*/
 
#define PNG_INTERNAL
#include "png.h"
 
/* Set the action on getting a CRC error for an ancillary or critical chunk. */
void PNGAPI
png_set_crc_action(png_structp png_ptr, int crit_action, int ancil_action)
{
png_debug(1, "in png_set_crc_action\n");
/* Tell libpng how we react to CRC errors in critical chunks */
switch (crit_action)
{
case PNG_CRC_NO_CHANGE: /* leave setting as is */
break;
case PNG_CRC_WARN_USE: /* warn/use data */
png_ptr->flags &= ~PNG_FLAG_CRC_CRITICAL_MASK;
png_ptr->flags |= PNG_FLAG_CRC_CRITICAL_USE;
break;
case PNG_CRC_QUIET_USE: /* quiet/use data */
png_ptr->flags &= ~PNG_FLAG_CRC_CRITICAL_MASK;
png_ptr->flags |= PNG_FLAG_CRC_CRITICAL_USE |
PNG_FLAG_CRC_CRITICAL_IGNORE;
break;
case PNG_CRC_WARN_DISCARD: /* not a valid action for critical data */
png_warning(png_ptr, "Can't discard critical data on CRC error.");
case PNG_CRC_ERROR_QUIT: /* error/quit */
case PNG_CRC_DEFAULT:
default:
png_ptr->flags &= ~PNG_FLAG_CRC_CRITICAL_MASK;
break;
}
 
switch (ancil_action)
{
case PNG_CRC_NO_CHANGE: /* leave setting as is */
break;
case PNG_CRC_WARN_USE: /* warn/use data */
png_ptr->flags &= ~PNG_FLAG_CRC_ANCILLARY_MASK;
png_ptr->flags |= PNG_FLAG_CRC_ANCILLARY_USE;
break;
case PNG_CRC_QUIET_USE: /* quiet/use data */
png_ptr->flags &= ~PNG_FLAG_CRC_ANCILLARY_MASK;
png_ptr->flags |= PNG_FLAG_CRC_ANCILLARY_USE |
PNG_FLAG_CRC_ANCILLARY_NOWARN;
break;
case PNG_CRC_ERROR_QUIT: /* error/quit */
png_ptr->flags &= ~PNG_FLAG_CRC_ANCILLARY_MASK;
png_ptr->flags |= PNG_FLAG_CRC_ANCILLARY_NOWARN;
break;
case PNG_CRC_WARN_DISCARD: /* warn/discard data */
case PNG_CRC_DEFAULT:
default:
png_ptr->flags &= ~PNG_FLAG_CRC_ANCILLARY_MASK;
break;
}
}
 
#if defined(PNG_READ_BACKGROUND_SUPPORTED) && \
defined(PNG_FLOATING_POINT_SUPPORTED)
/* handle alpha and tRNS via a background color */
void PNGAPI
png_set_background(png_structp png_ptr,
png_color_16p background_color, int background_gamma_code,
int need_expand, double background_gamma)
{
png_debug(1, "in png_set_background\n");
if (background_gamma_code == PNG_BACKGROUND_GAMMA_UNKNOWN)
{
png_warning(png_ptr, "Application must supply a known background gamma");
return;
}
 
png_ptr->transformations |= PNG_BACKGROUND;
png_memcpy(&(png_ptr->background), background_color, sizeof(png_color_16));
png_ptr->background_gamma = (float)background_gamma;
png_ptr->background_gamma_type = (png_byte)(background_gamma_code);
png_ptr->transformations |= (need_expand ? PNG_BACKGROUND_EXPAND : 0);
 
/* Note: if need_expand is set and color_type is either RGB or RGB_ALPHA
* (in which case need_expand is superfluous anyway), the background color
* might actually be gray yet not be flagged as such. This is not a problem
* for the current code, which uses PNG_BACKGROUND_IS_GRAY only to
* decide when to do the png_do_gray_to_rgb() transformation.
*/
if ((need_expand && !(png_ptr->color_type & PNG_COLOR_MASK_COLOR)) ||
(!need_expand && background_color->red == background_color->green &&
background_color->red == background_color->blue))
png_ptr->mode |= PNG_BACKGROUND_IS_GRAY;
}
#endif
 
#if defined(PNG_READ_16_TO_8_SUPPORTED)
/* strip 16 bit depth files to 8 bit depth */
void PNGAPI
png_set_strip_16(png_structp png_ptr)
{
png_debug(1, "in png_set_strip_16\n");
png_ptr->transformations |= PNG_16_TO_8;
}
#endif
 
#if defined(PNG_READ_STRIP_ALPHA_SUPPORTED)
void PNGAPI
png_set_strip_alpha(png_structp png_ptr)
{
png_debug(1, "in png_set_strip_alpha\n");
png_ptr->transformations |= PNG_STRIP_ALPHA;
}
#endif
 
#if defined(PNG_READ_DITHER_SUPPORTED)
/* Dither file to 8 bit. Supply a palette, the current number
* of elements in the palette, the maximum number of elements
* allowed, and a histogram if possible. If the current number
* of colors is greater then the maximum number, the palette will be
* modified to fit in the maximum number. "full_dither" indicates
* whether we need a dithering cube set up for RGB images, or if we
* simply are reducing the number of colors in a paletted image.
*/
 
typedef struct png_dsort_struct
{
struct png_dsort_struct FAR * next;
png_byte left;
png_byte right;
} png_dsort;
typedef png_dsort FAR * png_dsortp;
typedef png_dsort FAR * FAR * png_dsortpp;
 
void PNGAPI
png_set_dither(png_structp png_ptr, png_colorp palette,
int num_palette, int maximum_colors, png_uint_16p histogram,
int full_dither)
{
png_debug(1, "in png_set_dither\n");
png_ptr->transformations |= PNG_DITHER;
 
if (!full_dither)
{
int i;
 
png_ptr->dither_index = (png_bytep)png_malloc(png_ptr,
(png_uint_32)(num_palette * sizeof (png_byte)));
for (i = 0; i < num_palette; i++)
png_ptr->dither_index[i] = (png_byte)i;
}
 
if (num_palette > maximum_colors)
{
if (histogram != NULL)
{
/* This is easy enough, just throw out the least used colors.
Perhaps not the best solution, but good enough. */
 
int i;
 
/* initialize an array to sort colors */
png_ptr->dither_sort = (png_bytep)png_malloc(png_ptr,
(png_uint_32)(num_palette * sizeof (png_byte)));
 
/* initialize the dither_sort array */
for (i = 0; i < num_palette; i++)
png_ptr->dither_sort[i] = (png_byte)i;
 
/* Find the least used palette entries by starting a
bubble sort, and running it until we have sorted
out enough colors. Note that we don't care about
sorting all the colors, just finding which are
least used. */
 
for (i = num_palette - 1; i >= maximum_colors; i--)
{
int done; /* to stop early if the list is pre-sorted */
int j;
 
done = 1;
for (j = 0; j < i; j++)
{
if (histogram[png_ptr->dither_sort[j]]
< histogram[png_ptr->dither_sort[j + 1]])
{
png_byte t;
 
t = png_ptr->dither_sort[j];
png_ptr->dither_sort[j] = png_ptr->dither_sort[j + 1];
png_ptr->dither_sort[j + 1] = t;
done = 0;
}
}
if (done)
break;
}
 
/* swap the palette around, and set up a table, if necessary */
if (full_dither)
{
int j = num_palette;
 
/* put all the useful colors within the max, but don't
move the others */
for (i = 0; i < maximum_colors; i++)
{
if ((int)png_ptr->dither_sort[i] >= maximum_colors)
{
do
j--;
while ((int)png_ptr->dither_sort[j] >= maximum_colors);
palette[i] = palette[j];
}
}
}
else
{
int j = num_palette;
 
/* move all the used colors inside the max limit, and
develop a translation table */
for (i = 0; i < maximum_colors; i++)
{
/* only move the colors we need to */
if ((int)png_ptr->dither_sort[i] >= maximum_colors)
{
png_color tmp_color;
 
do
j--;
while ((int)png_ptr->dither_sort[j] >= maximum_colors);
 
tmp_color = palette[j];
palette[j] = palette[i];
palette[i] = tmp_color;
/* indicate where the color went */
png_ptr->dither_index[j] = (png_byte)i;
png_ptr->dither_index[i] = (png_byte)j;
}
}
 
/* find closest color for those colors we are not using */
for (i = 0; i < num_palette; i++)
{
if ((int)png_ptr->dither_index[i] >= maximum_colors)
{
int min_d, k, min_k, d_index;
 
/* find the closest color to one we threw out */
d_index = png_ptr->dither_index[i];
min_d = PNG_COLOR_DIST(palette[d_index], palette[0]);
for (k = 1, min_k = 0; k < maximum_colors; k++)
{
int d;
 
d = PNG_COLOR_DIST(palette[d_index], palette[k]);
 
if (d < min_d)
{
min_d = d;
min_k = k;
}
}
/* point to closest color */
png_ptr->dither_index[i] = (png_byte)min_k;
}
}
}
png_free(png_ptr, png_ptr->dither_sort);
png_ptr->dither_sort=NULL;
}
else
{
/* This is much harder to do simply (and quickly). Perhaps
we need to go through a median cut routine, but those
don't always behave themselves with only a few colors
as input. So we will just find the closest two colors,
and throw out one of them (chosen somewhat randomly).
[We don't understand this at all, so if someone wants to
work on improving it, be our guest - AED, GRP]
*/
int i;
int max_d;
int num_new_palette;
png_dsortp t;
png_dsortpp hash;
 
t=NULL;
 
/* initialize palette index arrays */
png_ptr->index_to_palette = (png_bytep)png_malloc(png_ptr,
(png_uint_32)(num_palette * sizeof (png_byte)));
png_ptr->palette_to_index = (png_bytep)png_malloc(png_ptr,
(png_uint_32)(num_palette * sizeof (png_byte)));
 
/* initialize the sort array */
for (i = 0; i < num_palette; i++)
{
png_ptr->index_to_palette[i] = (png_byte)i;
png_ptr->palette_to_index[i] = (png_byte)i;
}
 
hash = (png_dsortpp)png_malloc(png_ptr, (png_uint_32)(769 *
sizeof (png_dsortp)));
for (i = 0; i < 769; i++)
hash[i] = NULL;
/* png_memset(hash, 0, 769 * sizeof (png_dsortp)); */
 
num_new_palette = num_palette;
 
/* initial wild guess at how far apart the farthest pixel
pair we will be eliminating will be. Larger
numbers mean more areas will be allocated, Smaller
numbers run the risk of not saving enough data, and
having to do this all over again.
 
I have not done extensive checking on this number.
*/
max_d = 96;
 
while (num_new_palette > maximum_colors)
{
for (i = 0; i < num_new_palette - 1; i++)
{
int j;
 
for (j = i + 1; j < num_new_palette; j++)
{
int d;
 
d = PNG_COLOR_DIST(palette[i], palette[j]);
 
if (d <= max_d)
{
 
t = (png_dsortp)png_malloc_warn(png_ptr,
(png_uint_32)(sizeof(png_dsort)));
if (t == NULL)
break;
t->next = hash[d];
t->left = (png_byte)i;
t->right = (png_byte)j;
hash[d] = t;
}
}
if (t == NULL)
break;
}
 
if (t != NULL)
for (i = 0; i <= max_d; i++)
{
if (hash[i] != NULL)
{
png_dsortp p;
 
for (p = hash[i]; p; p = p->next)
{
if ((int)png_ptr->index_to_palette[p->left]
< num_new_palette &&
(int)png_ptr->index_to_palette[p->right]
< num_new_palette)
{
int j, next_j;
 
if (num_new_palette & 0x01)
{
j = p->left;
next_j = p->right;
}
else
{
j = p->right;
next_j = p->left;
}
 
num_new_palette--;
palette[png_ptr->index_to_palette[j]]
= palette[num_new_palette];
if (!full_dither)
{
int k;
 
for (k = 0; k < num_palette; k++)
{
if (png_ptr->dither_index[k] ==
png_ptr->index_to_palette[j])
png_ptr->dither_index[k] =
png_ptr->index_to_palette[next_j];
if ((int)png_ptr->dither_index[k] ==
num_new_palette)
png_ptr->dither_index[k] =
png_ptr->index_to_palette[j];
}
}
 
png_ptr->index_to_palette[png_ptr->palette_to_index
[num_new_palette]] = png_ptr->index_to_palette[j];
png_ptr->palette_to_index[png_ptr->index_to_palette[j]]
= png_ptr->palette_to_index[num_new_palette];
 
png_ptr->index_to_palette[j] = (png_byte)num_new_palette;
png_ptr->palette_to_index[num_new_palette] = (png_byte)j;
}
if (num_new_palette <= maximum_colors)
break;
}
if (num_new_palette <= maximum_colors)
break;
}
}
 
for (i = 0; i < 769; i++)
{
if (hash[i] != NULL)
{
png_dsortp p = hash[i];
while (p)
{
t = p->next;
png_free(png_ptr, p);
p = t;
}
}
hash[i] = 0;
}
max_d += 96;
}
png_free(png_ptr, hash);
png_free(png_ptr, png_ptr->palette_to_index);
png_free(png_ptr, png_ptr->index_to_palette);
png_ptr->palette_to_index=NULL;
png_ptr->index_to_palette=NULL;
}
num_palette = maximum_colors;
}
if (png_ptr->palette == NULL)
{
png_ptr->palette = palette;
}
png_ptr->num_palette = (png_uint_16)num_palette;
 
if (full_dither)
{
int i;
png_bytep distance;
int total_bits = PNG_DITHER_RED_BITS + PNG_DITHER_GREEN_BITS +
PNG_DITHER_BLUE_BITS;
int num_red = (1 << PNG_DITHER_RED_BITS);
int num_green = (1 << PNG_DITHER_GREEN_BITS);
int num_blue = (1 << PNG_DITHER_BLUE_BITS);
png_size_t num_entries = ((png_size_t)1 << total_bits);
 
png_ptr->palette_lookup = (png_bytep )png_malloc(png_ptr,
(png_uint_32)(num_entries * sizeof (png_byte)));
 
png_memset(png_ptr->palette_lookup, 0, num_entries * sizeof (png_byte));
 
distance = (png_bytep)png_malloc(png_ptr, (png_uint_32)(num_entries *
sizeof(png_byte)));
 
png_memset(distance, 0xff, num_entries * sizeof(png_byte));
 
for (i = 0; i < num_palette; i++)
{
int ir, ig, ib;
int r = (palette[i].red >> (8 - PNG_DITHER_RED_BITS));
int g = (palette[i].green >> (8 - PNG_DITHER_GREEN_BITS));
int b = (palette[i].blue >> (8 - PNG_DITHER_BLUE_BITS));
 
for (ir = 0; ir < num_red; ir++)
{
int dr = abs(ir - r);
int index_r = (ir << (PNG_DITHER_BLUE_BITS + PNG_DITHER_GREEN_BITS));
 
for (ig = 0; ig < num_green; ig++)
{
int dg = abs(ig - g);
int dt = dr + dg;
int dm = ((dr > dg) ? dr : dg);
int index_g = index_r | (ig << PNG_DITHER_BLUE_BITS);
 
for (ib = 0; ib < num_blue; ib++)
{
int d_index = index_g | ib;
int db = abs(ib - b);
int dmax = ((dm > db) ? dm : db);
int d = dmax + dt + db;
 
if (d < (int)distance[d_index])
{
distance[d_index] = (png_byte)d;
png_ptr->palette_lookup[d_index] = (png_byte)i;
}
}
}
}
}
 
png_free(png_ptr, distance);
}
}
#endif
 
#if defined(PNG_READ_GAMMA_SUPPORTED) && defined(PNG_FLOATING_POINT_SUPPORTED)
/* Transform the image from the file_gamma to the screen_gamma. We
* only do transformations on images where the file_gamma and screen_gamma
* are not close reciprocals, otherwise it slows things down slightly, and
* also needlessly introduces small errors.
*
* We will turn off gamma transformation later if no semitransparent entries
* are present in the tRNS array for palette images. We can't do it here
* because we don't necessarily have the tRNS chunk yet.
*/
void PNGAPI
png_set_gamma(png_structp png_ptr, double scrn_gamma, double file_gamma)
{
png_debug(1, "in png_set_gamma\n");
if ((fabs(scrn_gamma * file_gamma - 1.0) > PNG_GAMMA_THRESHOLD) ||
(png_ptr->color_type & PNG_COLOR_MASK_ALPHA) ||
(png_ptr->color_type == PNG_COLOR_TYPE_PALETTE))
png_ptr->transformations |= PNG_GAMMA;
png_ptr->gamma = (float)file_gamma;
png_ptr->screen_gamma = (float)scrn_gamma;
}
#endif
 
#if defined(PNG_READ_EXPAND_SUPPORTED)
/* Expand paletted images to RGB, expand grayscale images of
* less than 8-bit depth to 8-bit depth, and expand tRNS chunks
* to alpha channels.
*/
void PNGAPI
png_set_expand(png_structp png_ptr)
{
png_debug(1, "in png_set_expand\n");
png_ptr->transformations |= PNG_EXPAND;
}
 
/* GRR 19990627: the following three functions currently are identical
* to png_set_expand(). However, it is entirely reasonable that someone
* might wish to expand an indexed image to RGB but *not* expand a single,
* fully transparent palette entry to a full alpha channel--perhaps instead
* convert tRNS to the grayscale/RGB format (16-bit RGB value), or replace
* the transparent color with a particular RGB value, or drop tRNS entirely.
* IOW, a future version of the library may make the transformations flag
* a bit more fine-grained, with separate bits for each of these three
* functions.
*
* More to the point, these functions make it obvious what libpng will be
* doing, whereas "expand" can (and does) mean any number of things.
*/
 
/* Expand paletted images to RGB. */
void PNGAPI
png_set_palette_to_rgb(png_structp png_ptr)
{
png_debug(1, "in png_set_expand\n");
png_ptr->transformations |= PNG_EXPAND;
}
 
/* Expand grayscale images of less than 8-bit depth to 8 bits. */
void PNGAPI
png_set_gray_1_2_4_to_8(png_structp png_ptr)
{
png_debug(1, "in png_set_expand\n");
png_ptr->transformations |= PNG_EXPAND;
}
 
/* Expand tRNS chunks to alpha channels. */
void PNGAPI
png_set_tRNS_to_alpha(png_structp png_ptr)
{
png_debug(1, "in png_set_expand\n");
png_ptr->transformations |= PNG_EXPAND;
}
#endif /* defined(PNG_READ_EXPAND_SUPPORTED) */
 
#if defined(PNG_READ_GRAY_TO_RGB_SUPPORTED)
void PNGAPI
png_set_gray_to_rgb(png_structp png_ptr)
{
png_debug(1, "in png_set_gray_to_rgb\n");
png_ptr->transformations |= PNG_GRAY_TO_RGB;
}
#endif
 
#if defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
#if defined(PNG_FLOATING_POINT_SUPPORTED)
/* Convert a RGB image to a grayscale of the same width. This allows us,
* for example, to convert a 24 bpp RGB image into an 8 bpp grayscale image.
*/
 
void PNGAPI
png_set_rgb_to_gray(png_structp png_ptr, int error_action, double red,
double green)
{
int red_fixed = (int)((float)red*100000.0 + 0.5);
int green_fixed = (int)((float)green*100000.0 + 0.5);
png_set_rgb_to_gray_fixed(png_ptr, error_action, red_fixed, green_fixed);
}
#endif
 
void PNGAPI
png_set_rgb_to_gray_fixed(png_structp png_ptr, int error_action,
png_fixed_point red, png_fixed_point green)
{
png_debug(1, "in png_set_rgb_to_gray\n");
switch(error_action)
{
case 1: png_ptr->transformations |= PNG_RGB_TO_GRAY;
break;
case 2: png_ptr->transformations |= PNG_RGB_TO_GRAY_WARN;
break;
case 3: png_ptr->transformations |= PNG_RGB_TO_GRAY_ERR;
}
if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
#if defined(PNG_READ_EXPAND_SUPPORTED)
png_ptr->transformations |= PNG_EXPAND;
#else
{
png_warning(png_ptr, "Cannot do RGB_TO_GRAY without EXPAND_SUPPORTED.");
png_ptr->transformations &= ~PNG_RGB_TO_GRAY;
}
#endif
{
png_uint_16 red_int, green_int;
if(red < 0 || green < 0)
{
red_int = 6968; /* .212671 * 32768 + .5 */
green_int = 23434; /* .715160 * 32768 + .5 */
}
else if(red + green < 100000L)
{
red_int = (png_uint_16)(((png_uint_32)red*32768L)/100000L);
green_int = (png_uint_16)(((png_uint_32)green*32768L)/100000L);
}
else
{
png_warning(png_ptr, "ignoring out of range rgb_to_gray coefficients");
red_int = 6968;
green_int = 23434;
}
png_ptr->rgb_to_gray_red_coeff = red_int;
png_ptr->rgb_to_gray_green_coeff = green_int;
png_ptr->rgb_to_gray_blue_coeff = (png_uint_16)(32768-red_int-green_int);
}
}
#endif
 
#if defined(PNG_READ_USER_TRANSFORM_SUPPORTED) || \
defined(PNG_WRITE_USER_TRANSFORM_SUPPORTED) || \
defined(PNG_LEGACY_SUPPORTED)
void PNGAPI
png_set_read_user_transform_fn(png_structp png_ptr, png_user_transform_ptr
read_user_transform_fn)
{
png_debug(1, "in png_set_read_user_transform_fn\n");
#if defined(PNG_READ_USER_TRANSFORM_SUPPORTED)
png_ptr->transformations |= PNG_USER_TRANSFORM;
png_ptr->read_user_transform_fn = read_user_transform_fn;
#endif
#ifdef PNG_LEGACY_SUPPORTED
if(read_user_transform_fn)
png_warning(png_ptr,
"This version of libpng does not support user transforms");
#endif
}
#endif
 
/* Initialize everything needed for the read. This includes modifying
* the palette.
*/
void /* PRIVATE */
png_init_read_transformations(png_structp png_ptr)
{
png_debug(1, "in png_init_read_transformations\n");
#if defined(PNG_USELESS_TESTS_SUPPORTED)
if(png_ptr != NULL)
#endif
{
#if defined(PNG_READ_BACKGROUND_SUPPORTED) || defined(PNG_READ_SHIFT_SUPPORTED) \
|| defined(PNG_READ_GAMMA_SUPPORTED)
int color_type = png_ptr->color_type;
#endif
 
#if defined(PNG_READ_EXPAND_SUPPORTED) && defined(PNG_READ_BACKGROUND_SUPPORTED)
if ((png_ptr->transformations & PNG_BACKGROUND_EXPAND) &&
(png_ptr->transformations & PNG_EXPAND))
{
if (!(color_type & PNG_COLOR_MASK_COLOR)) /* i.e., GRAY or GRAY_ALPHA */
{
/* expand background chunk. */
switch (png_ptr->bit_depth)
{
case 1:
png_ptr->background.gray *= (png_uint_16)0xff;
png_ptr->background.red = png_ptr->background.green
= png_ptr->background.blue = png_ptr->background.gray;
break;
case 2:
png_ptr->background.gray *= (png_uint_16)0x55;
png_ptr->background.red = png_ptr->background.green
= png_ptr->background.blue = png_ptr->background.gray;
break;
case 4:
png_ptr->background.gray *= (png_uint_16)0x11;
png_ptr->background.red = png_ptr->background.green
= png_ptr->background.blue = png_ptr->background.gray;
break;
case 8:
case 16:
png_ptr->background.red = png_ptr->background.green
= png_ptr->background.blue = png_ptr->background.gray;
break;
}
}
else if (color_type == PNG_COLOR_TYPE_PALETTE)
{
png_ptr->background.red =
png_ptr->palette[png_ptr->background.index].red;
png_ptr->background.green =
png_ptr->palette[png_ptr->background.index].green;
png_ptr->background.blue =
png_ptr->palette[png_ptr->background.index].blue;
 
#if defined(PNG_READ_INVERT_ALPHA_SUPPORTED)
if (png_ptr->transformations & PNG_INVERT_ALPHA)
{
#if defined(PNG_READ_EXPAND_SUPPORTED)
if (!(png_ptr->transformations & PNG_EXPAND))
#endif
{
/* invert the alpha channel (in tRNS) unless the pixels are
going to be expanded, in which case leave it for later */
int i,istop;
istop=(int)png_ptr->num_trans;
for (i=0; i<istop; i++)
png_ptr->trans[i] = (png_byte)(255 - png_ptr->trans[i]);
}
}
#endif
 
}
}
#endif
 
#if defined(PNG_READ_BACKGROUND_SUPPORTED) && defined(PNG_READ_GAMMA_SUPPORTED)
png_ptr->background_1 = png_ptr->background;
#endif
#if defined(PNG_READ_GAMMA_SUPPORTED) && defined(PNG_FLOATING_POINT_SUPPORTED)
 
if ((color_type == PNG_COLOR_TYPE_PALETTE && png_ptr->num_trans != 0)
&& (fabs(png_ptr->screen_gamma * png_ptr->gamma - 1.0)
< PNG_GAMMA_THRESHOLD))
{
int i,k;
k=0;
for (i=0; i<png_ptr->num_trans; i++)
{
if (png_ptr->trans[i] != 0 && png_ptr->trans[i] != 0xff)
k=1; /* partial transparency is present */
}
if (k == 0)
png_ptr->transformations &= (~PNG_GAMMA);
}
 
if (png_ptr->transformations & (PNG_GAMMA | PNG_RGB_TO_GRAY))
{
png_build_gamma_table(png_ptr);
#if defined(PNG_READ_BACKGROUND_SUPPORTED)
if (png_ptr->transformations & PNG_BACKGROUND)
{
if (color_type == PNG_COLOR_TYPE_PALETTE)
{
/* could skip if no transparency and
*/
png_color back, back_1;
png_colorp palette = png_ptr->palette;
int num_palette = png_ptr->num_palette;
int i;
if (png_ptr->background_gamma_type == PNG_BACKGROUND_GAMMA_FILE)
{
back.red = png_ptr->gamma_table[png_ptr->background.red];
back.green = png_ptr->gamma_table[png_ptr->background.green];
back.blue = png_ptr->gamma_table[png_ptr->background.blue];
 
back_1.red = png_ptr->gamma_to_1[png_ptr->background.red];
back_1.green = png_ptr->gamma_to_1[png_ptr->background.green];
back_1.blue = png_ptr->gamma_to_1[png_ptr->background.blue];
}
else
{
double g, gs;
 
switch (png_ptr->background_gamma_type)
{
case PNG_BACKGROUND_GAMMA_SCREEN:
g = (png_ptr->screen_gamma);
gs = 1.0;
break;
case PNG_BACKGROUND_GAMMA_FILE:
g = 1.0 / (png_ptr->gamma);
gs = 1.0 / (png_ptr->gamma * png_ptr->screen_gamma);
break;
case PNG_BACKGROUND_GAMMA_UNIQUE:
g = 1.0 / (png_ptr->background_gamma);
gs = 1.0 / (png_ptr->background_gamma *
png_ptr->screen_gamma);
break;
default:
g = 1.0; /* back_1 */
gs = 1.0; /* back */
}
 
if ( fabs(gs - 1.0) < PNG_GAMMA_THRESHOLD)
{
back.red = (png_byte)png_ptr->background.red;
back.green = (png_byte)png_ptr->background.green;
back.blue = (png_byte)png_ptr->background.blue;
}
else
{
back.red = (png_byte)(pow(
(double)png_ptr->background.red/255, gs) * 255.0 + .5);
back.green = (png_byte)(pow(
(double)png_ptr->background.green/255, gs) * 255.0 + .5);
back.blue = (png_byte)(pow(
(double)png_ptr->background.blue/255, gs) * 255.0 + .5);
}
 
back_1.red = (png_byte)(pow(
(double)png_ptr->background.red/255, g) * 255.0 + .5);
back_1.green = (png_byte)(pow(
(double)png_ptr->background.green/255, g) * 255.0 + .5);
back_1.blue = (png_byte)(pow(
(double)png_ptr->background.blue/255, g) * 255.0 + .5);
}
for (i = 0; i < num_palette; i++)
{
if (i < (int)png_ptr->num_trans && png_ptr->trans[i] != 0xff)
{
if (png_ptr->trans[i] == 0)
{
palette[i] = back;
}
else /* if (png_ptr->trans[i] != 0xff) */
{
png_byte v, w;
 
v = png_ptr->gamma_to_1[palette[i].red];
png_composite(w, v, png_ptr->trans[i], back_1.red);
palette[i].red = png_ptr->gamma_from_1[w];
 
v = png_ptr->gamma_to_1[palette[i].green];
png_composite(w, v, png_ptr->trans[i], back_1.green);
palette[i].green = png_ptr->gamma_from_1[w];
 
v = png_ptr->gamma_to_1[palette[i].blue];
png_composite(w, v, png_ptr->trans[i], back_1.blue);
palette[i].blue = png_ptr->gamma_from_1[w];
}
}
else
{
palette[i].red = png_ptr->gamma_table[palette[i].red];
palette[i].green = png_ptr->gamma_table[palette[i].green];
palette[i].blue = png_ptr->gamma_table[palette[i].blue];
}
}
}
/* if (png_ptr->background_gamma_type!=PNG_BACKGROUND_GAMMA_UNKNOWN) */
else
/* color_type != PNG_COLOR_TYPE_PALETTE */
{
double m = (double)(((png_uint_32)1 << png_ptr->bit_depth) - 1);
double g = 1.0;
double gs = 1.0;
 
switch (png_ptr->background_gamma_type)
{
case PNG_BACKGROUND_GAMMA_SCREEN:
g = (png_ptr->screen_gamma);
gs = 1.0;
break;
case PNG_BACKGROUND_GAMMA_FILE:
g = 1.0 / (png_ptr->gamma);
gs = 1.0 / (png_ptr->gamma * png_ptr->screen_gamma);
break;
case PNG_BACKGROUND_GAMMA_UNIQUE:
g = 1.0 / (png_ptr->background_gamma);
gs = 1.0 / (png_ptr->background_gamma *
png_ptr->screen_gamma);
break;
}
 
png_ptr->background_1.gray = (png_uint_16)(pow(
(double)png_ptr->background.gray / m, g) * m + .5);
png_ptr->background.gray = (png_uint_16)(pow(
(double)png_ptr->background.gray / m, gs) * m + .5);
 
if ((png_ptr->background.red != png_ptr->background.green) ||
(png_ptr->background.red != png_ptr->background.blue) ||
(png_ptr->background.red != png_ptr->background.gray))
{
/* RGB or RGBA with color background */
png_ptr->background_1.red = (png_uint_16)(pow(
(double)png_ptr->background.red / m, g) * m + .5);
png_ptr->background_1.green = (png_uint_16)(pow(
(double)png_ptr->background.green / m, g) * m + .5);
png_ptr->background_1.blue = (png_uint_16)(pow(
(double)png_ptr->background.blue / m, g) * m + .5);
png_ptr->background.red = (png_uint_16)(pow(
(double)png_ptr->background.red / m, gs) * m + .5);
png_ptr->background.green = (png_uint_16)(pow(
(double)png_ptr->background.green / m, gs) * m + .5);
png_ptr->background.blue = (png_uint_16)(pow(
(double)png_ptr->background.blue / m, gs) * m + .5);
}
else
{
/* GRAY, GRAY ALPHA, RGB, or RGBA with gray background */
png_ptr->background_1.red = png_ptr->background_1.green
= png_ptr->background_1.blue = png_ptr->background_1.gray;
png_ptr->background.red = png_ptr->background.green
= png_ptr->background.blue = png_ptr->background.gray;
}
}
}
else
/* transformation does not include PNG_BACKGROUND */
#endif /* PNG_READ_BACKGROUND_SUPPORTED */
if (color_type == PNG_COLOR_TYPE_PALETTE)
{
png_colorp palette = png_ptr->palette;
int num_palette = png_ptr->num_palette;
int i;
 
for (i = 0; i < num_palette; i++)
{
palette[i].red = png_ptr->gamma_table[palette[i].red];
palette[i].green = png_ptr->gamma_table[palette[i].green];
palette[i].blue = png_ptr->gamma_table[palette[i].blue];
}
}
}
#if defined(PNG_READ_BACKGROUND_SUPPORTED)
else
#endif
#endif /* PNG_READ_GAMMA_SUPPORTED && PNG_FLOATING_POINT_SUPPORTED */
#if defined(PNG_READ_BACKGROUND_SUPPORTED)
/* No GAMMA transformation */
if ((png_ptr->transformations & PNG_BACKGROUND) &&
(color_type == PNG_COLOR_TYPE_PALETTE))
{
int i;
int istop = (int)png_ptr->num_trans;
png_color back;
png_colorp palette = png_ptr->palette;
 
back.red = (png_byte)png_ptr->background.red;
back.green = (png_byte)png_ptr->background.green;
back.blue = (png_byte)png_ptr->background.blue;
 
for (i = 0; i < istop; i++)
{
if (png_ptr->trans[i] == 0)
{
palette[i] = back;
}
else if (png_ptr->trans[i] != 0xff)
{
/* The png_composite() macro is defined in png.h */
png_composite(palette[i].red, palette[i].red,
png_ptr->trans[i], back.red);
png_composite(palette[i].green, palette[i].green,
png_ptr->trans[i], back.green);
png_composite(palette[i].blue, palette[i].blue,
png_ptr->trans[i], back.blue);
}
}
}
#endif /* PNG_READ_BACKGROUND_SUPPORTED */
 
#if defined(PNG_READ_SHIFT_SUPPORTED)
if ((png_ptr->transformations & PNG_SHIFT) &&
(color_type == PNG_COLOR_TYPE_PALETTE))
{
png_uint_16 i;
png_uint_16 istop = png_ptr->num_palette;
int sr = 8 - png_ptr->sig_bit.red;
int sg = 8 - png_ptr->sig_bit.green;
int sb = 8 - png_ptr->sig_bit.blue;
 
if (sr < 0 || sr > 8)
sr = 0;
if (sg < 0 || sg > 8)
sg = 0;
if (sb < 0 || sb > 8)
sb = 0;
for (i = 0; i < istop; i++)
{
png_ptr->palette[i].red >>= sr;
png_ptr->palette[i].green >>= sg;
png_ptr->palette[i].blue >>= sb;
}
}
#endif /* PNG_READ_SHIFT_SUPPORTED */
}
#if !defined(PNG_READ_GAMMA_SUPPORTED) && !defined(PNG_READ_SHIFT_SUPPORTED) \
&& !defined(PNG_READ_BACKGROUND_SUPPORTED)
if(png_ptr)
return;
#endif
}
 
/* Modify the info structure to reflect the transformations. The
* info should be updated so a PNG file could be written with it,
* assuming the transformations result in valid PNG data.
*/
void /* PRIVATE */
png_read_transform_info(png_structp png_ptr, png_infop info_ptr)
{
png_debug(1, "in png_read_transform_info\n");
#if defined(PNG_READ_EXPAND_SUPPORTED)
if (png_ptr->transformations & PNG_EXPAND)
{
if (info_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
{
if (png_ptr->num_trans)
info_ptr->color_type = PNG_COLOR_TYPE_RGB_ALPHA;
else
info_ptr->color_type = PNG_COLOR_TYPE_RGB;
info_ptr->bit_depth = 8;
info_ptr->num_trans = 0;
}
else
{
if (png_ptr->num_trans)
info_ptr->color_type |= PNG_COLOR_MASK_ALPHA;
if (info_ptr->bit_depth < 8)
info_ptr->bit_depth = 8;
info_ptr->num_trans = 0;
}
}
#endif
 
#if defined(PNG_READ_BACKGROUND_SUPPORTED)
if (png_ptr->transformations & PNG_BACKGROUND)
{
info_ptr->color_type &= ~PNG_COLOR_MASK_ALPHA;
info_ptr->num_trans = 0;
info_ptr->background = png_ptr->background;
}
#endif
 
#if defined(PNG_READ_GAMMA_SUPPORTED)
if (png_ptr->transformations & PNG_GAMMA)
{
#ifdef PNG_FLOATING_POINT_SUPPORTED
info_ptr->gamma = png_ptr->gamma;
#endif
#ifdef PNG_FIXED_POINT_SUPPORTED
info_ptr->int_gamma = png_ptr->int_gamma;
#endif
}
#endif
 
#if defined(PNG_READ_16_TO_8_SUPPORTED)
if ((png_ptr->transformations & PNG_16_TO_8) && (info_ptr->bit_depth == 16))
info_ptr->bit_depth = 8;
#endif
 
#if defined(PNG_READ_DITHER_SUPPORTED)
if (png_ptr->transformations & PNG_DITHER)
{
if (((info_ptr->color_type == PNG_COLOR_TYPE_RGB) ||
(info_ptr->color_type == PNG_COLOR_TYPE_RGB_ALPHA)) &&
png_ptr->palette_lookup && info_ptr->bit_depth == 8)
{
info_ptr->color_type = PNG_COLOR_TYPE_PALETTE;
}
}
#endif
 
#if defined(PNG_READ_PACK_SUPPORTED)
if ((png_ptr->transformations & PNG_PACK) && (info_ptr->bit_depth < 8))
info_ptr->bit_depth = 8;
#endif
 
#if defined(PNG_READ_GRAY_TO_RGB_SUPPORTED)
if (png_ptr->transformations & PNG_GRAY_TO_RGB)
info_ptr->color_type |= PNG_COLOR_MASK_COLOR;
#endif
 
#if defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
if (png_ptr->transformations & PNG_RGB_TO_GRAY)
info_ptr->color_type &= ~PNG_COLOR_MASK_COLOR;
#endif
 
if (info_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
info_ptr->channels = 1;
else if (info_ptr->color_type & PNG_COLOR_MASK_COLOR)
info_ptr->channels = 3;
else
info_ptr->channels = 1;
 
#if defined(PNG_READ_STRIP_ALPHA_SUPPORTED)
if (png_ptr->transformations & PNG_STRIP_ALPHA)
info_ptr->color_type &= ~PNG_COLOR_MASK_ALPHA;
#endif
 
if (info_ptr->color_type & PNG_COLOR_MASK_ALPHA)
info_ptr->channels++;
 
#if defined(PNG_READ_FILLER_SUPPORTED)
/* STRIP_ALPHA and FILLER allowed: MASK_ALPHA bit stripped above */
if ((png_ptr->transformations & PNG_FILLER) &&
((info_ptr->color_type == PNG_COLOR_TYPE_RGB) ||
(info_ptr->color_type == PNG_COLOR_TYPE_GRAY)))
{
info_ptr->channels++;
#if 0 /* if adding a true alpha channel not just filler */
info_ptr->color_type |= PNG_COLOR_MASK_ALPHA;
#endif
}
#endif
 
#if defined(PNG_USER_TRANSFORM_PTR_SUPPORTED) && \
defined(PNG_READ_USER_TRANSFORM_SUPPORTED)
if(png_ptr->transformations & PNG_USER_TRANSFORM)
{
if(info_ptr->bit_depth < png_ptr->user_transform_depth)
info_ptr->bit_depth = png_ptr->user_transform_depth;
if(info_ptr->channels < png_ptr->user_transform_channels)
info_ptr->channels = png_ptr->user_transform_channels;
}
#endif
 
info_ptr->pixel_depth = (png_byte)(info_ptr->channels *
info_ptr->bit_depth);
info_ptr->rowbytes = ((info_ptr->width * info_ptr->pixel_depth + 7) >> 3);
 
#if !defined(PNG_READ_EXPAND_SUPPORTED)
if(png_ptr)
return;
#endif
}
 
/* Transform the row. The order of transformations is significant,
* and is very touchy. If you add a transformation, take care to
* decide how it fits in with the other transformations here.
*/
void /* PRIVATE */
png_do_read_transformations(png_structp png_ptr)
{
png_debug(1, "in png_do_read_transformations\n");
#if !defined(PNG_USELESS_TESTS_SUPPORTED)
if (png_ptr->row_buf == NULL)
{
#if !defined(PNG_NO_STDIO) && !defined(_WIN32_WCE)
char msg[50];
 
sprintf(msg, "NULL row buffer for row %ld, pass %d", png_ptr->row_number,
png_ptr->pass);
png_error(png_ptr, msg);
#else
png_error(png_ptr, "NULL row buffer");
#endif
}
#endif
 
#if defined(PNG_READ_EXPAND_SUPPORTED)
if (png_ptr->transformations & PNG_EXPAND)
{
if (png_ptr->row_info.color_type == PNG_COLOR_TYPE_PALETTE)
{
png_do_expand_palette(&(png_ptr->row_info), png_ptr->row_buf + 1,
png_ptr->palette, png_ptr->trans, png_ptr->num_trans);
}
else
{
if (png_ptr->num_trans)
png_do_expand(&(png_ptr->row_info), png_ptr->row_buf + 1,
&(png_ptr->trans_values));
else
png_do_expand(&(png_ptr->row_info), png_ptr->row_buf + 1,
NULL);
}
}
#endif
 
#if defined(PNG_READ_STRIP_ALPHA_SUPPORTED)
if (png_ptr->transformations & PNG_STRIP_ALPHA)
png_do_strip_filler(&(png_ptr->row_info), png_ptr->row_buf + 1,
PNG_FLAG_FILLER_AFTER);
#endif
 
#if defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
if (png_ptr->transformations & PNG_RGB_TO_GRAY)
{
int rgb_error =
png_do_rgb_to_gray(png_ptr, &(png_ptr->row_info), png_ptr->row_buf + 1);
if(rgb_error)
{
png_ptr->rgb_to_gray_status=1;
if(png_ptr->transformations == PNG_RGB_TO_GRAY_WARN)
png_warning(png_ptr, "png_do_rgb_to_gray found nongray pixel");
if(png_ptr->transformations == PNG_RGB_TO_GRAY_ERR)
png_error(png_ptr, "png_do_rgb_to_gray found nongray pixel");
}
}
#endif
 
/*
From Andreas Dilger e-mail to png-implement, 26 March 1998:
 
In most cases, the "simple transparency" should be done prior to doing
gray-to-RGB, or you will have to test 3x as many bytes to check if a
pixel is transparent. You would also need to make sure that the
transparency information is upgraded to RGB.
 
To summarize, the current flow is:
- Gray + simple transparency -> compare 1 or 2 gray bytes and composite
with background "in place" if transparent,
convert to RGB if necessary
- Gray + alpha -> composite with gray background and remove alpha bytes,
convert to RGB if necessary
 
To support RGB backgrounds for gray images we need:
- Gray + simple transparency -> convert to RGB + simple transparency, compare
3 or 6 bytes and composite with background
"in place" if transparent (3x compare/pixel
compared to doing composite with gray bkgrnd)
- Gray + alpha -> convert to RGB + alpha, composite with background and
remove alpha bytes (3x float operations/pixel
compared with composite on gray background)
 
Greg's change will do this. The reason it wasn't done before is for
performance, as this increases the per-pixel operations. If we would check
in advance if the background was gray or RGB, and position the gray-to-RGB
transform appropriately, then it would save a lot of work/time.
*/
 
#if defined(PNG_READ_GRAY_TO_RGB_SUPPORTED)
/* if gray -> RGB, do so now only if background is non-gray; else do later
* for performance reasons */
if ((png_ptr->transformations & PNG_GRAY_TO_RGB) &&
!(png_ptr->mode & PNG_BACKGROUND_IS_GRAY))
png_do_gray_to_rgb(&(png_ptr->row_info), png_ptr->row_buf + 1);
#endif
 
#if defined(PNG_READ_BACKGROUND_SUPPORTED)
if ((png_ptr->transformations & PNG_BACKGROUND) &&
((png_ptr->num_trans != 0 ) ||
(png_ptr->color_type & PNG_COLOR_MASK_ALPHA)))
png_do_background(&(png_ptr->row_info), png_ptr->row_buf + 1,
&(png_ptr->trans_values), &(png_ptr->background)
#if defined(PNG_READ_GAMMA_SUPPORTED)
, &(png_ptr->background_1),
png_ptr->gamma_table, png_ptr->gamma_from_1,
png_ptr->gamma_to_1, png_ptr->gamma_16_table,
png_ptr->gamma_16_from_1, png_ptr->gamma_16_to_1,
png_ptr->gamma_shift
#endif
);
#endif
 
#if defined(PNG_READ_GAMMA_SUPPORTED)
if ((png_ptr->transformations & PNG_GAMMA) &&
#if defined(PNG_READ_BACKGROUND_SUPPORTED)
!((png_ptr->transformations & PNG_BACKGROUND) &&
((png_ptr->num_trans != 0) ||
(png_ptr->color_type & PNG_COLOR_MASK_ALPHA))) &&
#endif
(png_ptr->color_type != PNG_COLOR_TYPE_PALETTE))
png_do_gamma(&(png_ptr->row_info), png_ptr->row_buf + 1,
png_ptr->gamma_table, png_ptr->gamma_16_table,
png_ptr->gamma_shift);
#endif
 
#if defined(PNG_READ_16_TO_8_SUPPORTED)
if (png_ptr->transformations & PNG_16_TO_8)
png_do_chop(&(png_ptr->row_info), png_ptr->row_buf + 1);
#endif
 
#if defined(PNG_READ_DITHER_SUPPORTED)
if (png_ptr->transformations & PNG_DITHER)
{
png_do_dither((png_row_infop)&(png_ptr->row_info), png_ptr->row_buf + 1,
png_ptr->palette_lookup, png_ptr->dither_index);
if(png_ptr->row_info.rowbytes == (png_uint_32)0)
png_error(png_ptr, "png_do_dither returned rowbytes=0");
}
#endif
 
#if defined(PNG_READ_INVERT_SUPPORTED)
if (png_ptr->transformations & PNG_INVERT_MONO)
png_do_invert(&(png_ptr->row_info), png_ptr->row_buf + 1);
#endif
 
#if defined(PNG_READ_SHIFT_SUPPORTED)
if (png_ptr->transformations & PNG_SHIFT)
png_do_unshift(&(png_ptr->row_info), png_ptr->row_buf + 1,
&(png_ptr->shift));
#endif
 
#if defined(PNG_READ_PACK_SUPPORTED)
if (png_ptr->transformations & PNG_PACK)
png_do_unpack(&(png_ptr->row_info), png_ptr->row_buf + 1);
#endif
 
#if defined(PNG_READ_BGR_SUPPORTED)
if (png_ptr->transformations & PNG_BGR)
png_do_bgr(&(png_ptr->row_info), png_ptr->row_buf + 1);
#endif
 
#if defined(PNG_READ_PACKSWAP_SUPPORTED)
if (png_ptr->transformations & PNG_PACKSWAP)
png_do_packswap(&(png_ptr->row_info), png_ptr->row_buf + 1);
#endif
 
#if defined(PNG_READ_GRAY_TO_RGB_SUPPORTED)
/* if gray -> RGB, do so now only if we did not do so above */
if ((png_ptr->transformations & PNG_GRAY_TO_RGB) &&
(png_ptr->mode & PNG_BACKGROUND_IS_GRAY))
png_do_gray_to_rgb(&(png_ptr->row_info), png_ptr->row_buf + 1);
#endif
 
#if defined(PNG_READ_FILLER_SUPPORTED)
if (png_ptr->transformations & PNG_FILLER)
png_do_read_filler(&(png_ptr->row_info), png_ptr->row_buf + 1,
(png_uint_32)png_ptr->filler, png_ptr->flags);
#endif
 
#if defined(PNG_READ_INVERT_ALPHA_SUPPORTED)
if (png_ptr->transformations & PNG_INVERT_ALPHA)
png_do_read_invert_alpha(&(png_ptr->row_info), png_ptr->row_buf + 1);
#endif
 
#if defined(PNG_READ_SWAP_ALPHA_SUPPORTED)
if (png_ptr->transformations & PNG_SWAP_ALPHA)
png_do_read_swap_alpha(&(png_ptr->row_info), png_ptr->row_buf + 1);
#endif
 
#if defined(PNG_READ_SWAP_SUPPORTED)
if (png_ptr->transformations & PNG_SWAP_BYTES)
png_do_swap(&(png_ptr->row_info), png_ptr->row_buf + 1);
#endif
 
#if defined(PNG_READ_USER_TRANSFORM_SUPPORTED)
if (png_ptr->transformations & PNG_USER_TRANSFORM)
{
if(png_ptr->read_user_transform_fn != NULL)
(*(png_ptr->read_user_transform_fn)) /* user read transform function */
(png_ptr, /* png_ptr */
&(png_ptr->row_info), /* row_info: */
/* png_uint_32 width; width of row */
/* png_uint_32 rowbytes; number of bytes in row */
/* png_byte color_type; color type of pixels */
/* png_byte bit_depth; bit depth of samples */
/* png_byte channels; number of channels (1-4) */
/* png_byte pixel_depth; bits per pixel (depth*channels) */
png_ptr->row_buf + 1); /* start of pixel data for row */
#if defined(PNG_USER_TRANSFORM_PTR_SUPPORTED)
if(png_ptr->user_transform_depth)
png_ptr->row_info.bit_depth = png_ptr->user_transform_depth;
if(png_ptr->user_transform_channels)
png_ptr->row_info.channels = png_ptr->user_transform_channels;
#endif
png_ptr->row_info.pixel_depth = (png_byte)(png_ptr->row_info.bit_depth *
png_ptr->row_info.channels);
png_ptr->row_info.rowbytes = (png_ptr->row_info.width *
png_ptr->row_info.pixel_depth+7)>>3;
}
#endif
 
}
 
#if defined(PNG_READ_PACK_SUPPORTED)
/* Unpack pixels of 1, 2, or 4 bits per pixel into 1 byte per pixel,
* without changing the actual values. Thus, if you had a row with
* a bit depth of 1, you would end up with bytes that only contained
* the numbers 0 or 1. If you would rather they contain 0 and 255, use
* png_do_shift() after this.
*/
void /* PRIVATE */
png_do_unpack(png_row_infop row_info, png_bytep row)
{
png_debug(1, "in png_do_unpack\n");
#if defined(PNG_USELESS_TESTS_SUPPORTED)
if (row != NULL && row_info != NULL && row_info->bit_depth < 8)
#else
if (row_info->bit_depth < 8)
#endif
{
png_uint_32 i;
png_uint_32 row_width=row_info->width;
 
switch (row_info->bit_depth)
{
case 1:
{
png_bytep sp = row + (png_size_t)((row_width - 1) >> 3);
png_bytep dp = row + (png_size_t)row_width - 1;
png_uint_32 shift = 7 - (int)((row_width + 7) & 0x07);
for (i = 0; i < row_width; i++)
{
*dp = (png_byte)((*sp >> shift) & 0x01);
if (shift == 7)
{
shift = 0;
sp--;
}
else
shift++;
 
dp--;
}
break;
}
case 2:
{
 
png_bytep sp = row + (png_size_t)((row_width - 1) >> 2);
png_bytep dp = row + (png_size_t)row_width - 1;
png_uint_32 shift = (int)((3 - ((row_width + 3) & 0x03)) << 1);
for (i = 0; i < row_width; i++)
{
*dp = (png_byte)((*sp >> shift) & 0x03);
if (shift == 6)
{
shift = 0;
sp--;
}
else
shift += 2;
 
dp--;
}
break;
}
case 4:
{
png_bytep sp = row + (png_size_t)((row_width - 1) >> 1);
png_bytep dp = row + (png_size_t)row_width - 1;
png_uint_32 shift = (int)((1 - ((row_width + 1) & 0x01)) << 2);
for (i = 0; i < row_width; i++)
{
*dp = (png_byte)((*sp >> shift) & 0x0f);
if (shift == 4)
{
shift = 0;
sp--;
}
else
shift = 4;
 
dp--;
}
break;
}
}
row_info->bit_depth = 8;
row_info->pixel_depth = (png_byte)(8 * row_info->channels);
row_info->rowbytes = row_width * row_info->channels;
}
}
#endif
 
#if defined(PNG_READ_SHIFT_SUPPORTED)
/* Reverse the effects of png_do_shift. This routine merely shifts the
* pixels back to their significant bits values. Thus, if you have
* a row of bit depth 8, but only 5 are significant, this will shift
* the values back to 0 through 31.
*/
void /* PRIVATE */
png_do_unshift(png_row_infop row_info, png_bytep row, png_color_8p sig_bits)
{
png_debug(1, "in png_do_unshift\n");
if (
#if defined(PNG_USELESS_TESTS_SUPPORTED)
row != NULL && row_info != NULL && sig_bits != NULL &&
#endif
row_info->color_type != PNG_COLOR_TYPE_PALETTE)
{
int shift[4];
int channels = 0;
int c;
png_uint_16 value = 0;
png_uint_32 row_width = row_info->width;
 
if (row_info->color_type & PNG_COLOR_MASK_COLOR)
{
shift[channels++] = row_info->bit_depth - sig_bits->red;
shift[channels++] = row_info->bit_depth - sig_bits->green;
shift[channels++] = row_info->bit_depth - sig_bits->blue;
}
else
{
shift[channels++] = row_info->bit_depth - sig_bits->gray;
}
if (row_info->color_type & PNG_COLOR_MASK_ALPHA)
{
shift[channels++] = row_info->bit_depth - sig_bits->alpha;
}
 
for (c = 0; c < channels; c++)
{
if (shift[c] <= 0)
shift[c] = 0;
else
value = 1;
}
 
if (!value)
return;
 
switch (row_info->bit_depth)
{
case 2:
{
png_bytep bp;
png_uint_32 i;
png_uint_32 istop = row_info->rowbytes;
 
for (bp = row, i = 0; i < istop; i++)
{
*bp >>= 1;
*bp++ &= 0x55;
}
break;
}
case 4:
{
png_bytep bp = row;
png_uint_32 i;
png_uint_32 istop = row_info->rowbytes;
png_byte mask = (png_byte)((((int)0xf0 >> shift[0]) & (int)0xf0) |
(png_byte)((int)0xf >> shift[0]));
 
for (i = 0; i < istop; i++)
{
*bp >>= shift[0];
*bp++ &= mask;
}
break;
}
case 8:
{
png_bytep bp = row;
png_uint_32 i;
png_uint_32 istop = row_width * channels;
 
for (i = 0; i < istop; i++)
{
*bp++ >>= shift[i%channels];
}
break;
}
case 16:
{
png_bytep bp = row;
png_uint_32 i;
png_uint_32 istop = channels * row_width;
 
for (i = 0; i < istop; i++)
{
value = (png_uint_16)((*bp << 8) + *(bp + 1));
value >>= shift[i%channels];
*bp++ = (png_byte)(value >> 8);
*bp++ = (png_byte)(value & 0xff);
}
break;
}
}
}
}
#endif
 
#if defined(PNG_READ_16_TO_8_SUPPORTED)
/* chop rows of bit depth 16 down to 8 */
void /* PRIVATE */
png_do_chop(png_row_infop row_info, png_bytep row)
{
png_debug(1, "in png_do_chop\n");
#if defined(PNG_USELESS_TESTS_SUPPORTED)
if (row != NULL && row_info != NULL && row_info->bit_depth == 16)
#else
if (row_info->bit_depth == 16)
#endif
{
png_bytep sp = row;
png_bytep dp = row;
png_uint_32 i;
png_uint_32 istop = row_info->width * row_info->channels;
 
for (i = 0; i<istop; i++, sp += 2, dp++)
{
#if defined(PNG_READ_16_TO_8_ACCURATE_SCALE_SUPPORTED)
/* This does a more accurate scaling of the 16-bit color
* value, rather than a simple low-byte truncation.
*
* What the ideal calculation should be:
* *dp = (((((png_uint_32)(*sp) << 8) |
* (png_uint_32)(*(sp + 1))) * 255 + 127) / (png_uint_32)65535L;
*
* GRR: no, I think this is what it really should be:
* *dp = (((((png_uint_32)(*sp) << 8) |
* (png_uint_32)(*(sp + 1))) + 128L) / (png_uint_32)257L;
*
* GRR: here's the exact calculation with shifts:
* temp = (((png_uint_32)(*sp) << 8) | (png_uint_32)(*(sp + 1))) + 128L;
* *dp = (temp - (temp >> 8)) >> 8;
*
* Approximate calculation with shift/add instead of multiply/divide:
* *dp = ((((png_uint_32)(*sp) << 8) |
* (png_uint_32)((int)(*(sp + 1)) - *sp)) + 128) >> 8;
*
* What we actually do to avoid extra shifting and conversion:
*/
 
*dp = *sp + ((((int)(*(sp + 1)) - *sp) > 128) ? 1 : 0);
#else
/* Simply discard the low order byte */
*dp = *sp;
#endif
}
row_info->bit_depth = 8;
row_info->pixel_depth = (png_byte)(8 * row_info->channels);
row_info->rowbytes = row_info->width * row_info->channels;
}
}
#endif
 
#if defined(PNG_READ_SWAP_ALPHA_SUPPORTED)
void /* PRIVATE */
png_do_read_swap_alpha(png_row_infop row_info, png_bytep row)
{
png_debug(1, "in png_do_read_swap_alpha\n");
#if defined(PNG_USELESS_TESTS_SUPPORTED)
if (row != NULL && row_info != NULL)
#endif
{
png_uint_32 row_width = row_info->width;
if (row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA)
{
/* This converts from RGBA to ARGB */
if (row_info->bit_depth == 8)
{
png_bytep sp = row + row_info->rowbytes;
png_bytep dp = sp;
png_byte save;
png_uint_32 i;
 
for (i = 0; i < row_width; i++)
{
save = *(--sp);
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = save;
}
}
/* This converts from RRGGBBAA to AARRGGBB */
else
{
png_bytep sp = row + row_info->rowbytes;
png_bytep dp = sp;
png_byte save[2];
png_uint_32 i;
 
for (i = 0; i < row_width; i++)
{
save[0] = *(--sp);
save[1] = *(--sp);
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = save[0];
*(--dp) = save[1];
}
}
}
else if (row_info->color_type == PNG_COLOR_TYPE_GRAY_ALPHA)
{
/* This converts from GA to AG */
if (row_info->bit_depth == 8)
{
png_bytep sp = row + row_info->rowbytes;
png_bytep dp = sp;
png_byte save;
png_uint_32 i;
 
for (i = 0; i < row_width; i++)
{
save = *(--sp);
*(--dp) = *(--sp);
*(--dp) = save;
}
}
/* This converts from GGAA to AAGG */
else
{
png_bytep sp = row + row_info->rowbytes;
png_bytep dp = sp;
png_byte save[2];
png_uint_32 i;
 
for (i = 0; i < row_width; i++)
{
save[0] = *(--sp);
save[1] = *(--sp);
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = save[0];
*(--dp) = save[1];
}
}
}
}
}
#endif
 
#if defined(PNG_READ_INVERT_ALPHA_SUPPORTED)
void /* PRIVATE */
png_do_read_invert_alpha(png_row_infop row_info, png_bytep row)
{
png_debug(1, "in png_do_read_invert_alpha\n");
#if defined(PNG_USELESS_TESTS_SUPPORTED)
if (row != NULL && row_info != NULL)
#endif
{
png_uint_32 row_width = row_info->width;
if (row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA)
{
/* This inverts the alpha channel in RGBA */
if (row_info->bit_depth == 8)
{
png_bytep sp = row + row_info->rowbytes;
png_bytep dp = sp;
png_uint_32 i;
 
for (i = 0; i < row_width; i++)
{
*(--dp) = (png_byte)(255 - *(--sp));
 
/* This does nothing:
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = *(--sp);
We can replace it with:
*/
sp-=3;
dp=sp;
}
}
/* This inverts the alpha channel in RRGGBBAA */
else
{
png_bytep sp = row + row_info->rowbytes;
png_bytep dp = sp;
png_uint_32 i;
 
for (i = 0; i < row_width; i++)
{
*(--dp) = (png_byte)(255 - *(--sp));
*(--dp) = (png_byte)(255 - *(--sp));
 
/* This does nothing:
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = *(--sp);
We can replace it with:
*/
sp-=6;
dp=sp;
}
}
}
else if (row_info->color_type == PNG_COLOR_TYPE_GRAY_ALPHA)
{
/* This inverts the alpha channel in GA */
if (row_info->bit_depth == 8)
{
png_bytep sp = row + row_info->rowbytes;
png_bytep dp = sp;
png_uint_32 i;
 
for (i = 0; i < row_width; i++)
{
*(--dp) = (png_byte)(255 - *(--sp));
*(--dp) = *(--sp);
}
}
/* This inverts the alpha channel in GGAA */
else
{
png_bytep sp = row + row_info->rowbytes;
png_bytep dp = sp;
png_uint_32 i;
 
for (i = 0; i < row_width; i++)
{
*(--dp) = (png_byte)(255 - *(--sp));
*(--dp) = (png_byte)(255 - *(--sp));
/*
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*/
sp-=2;
dp=sp;
}
}
}
}
}
#endif
 
#if defined(PNG_READ_FILLER_SUPPORTED)
/* Add filler channel if we have RGB color */
void /* PRIVATE */
png_do_read_filler(png_row_infop row_info, png_bytep row,
png_uint_32 filler, png_uint_32 flags)
{
png_uint_32 i;
png_uint_32 row_width = row_info->width;
 
png_byte hi_filler = (png_byte)((filler>>8) & 0xff);
png_byte lo_filler = (png_byte)(filler & 0xff);
 
png_debug(1, "in png_do_read_filler\n");
if (
#if defined(PNG_USELESS_TESTS_SUPPORTED)
row != NULL && row_info != NULL &&
#endif
row_info->color_type == PNG_COLOR_TYPE_GRAY)
{
if(row_info->bit_depth == 8)
{
/* This changes the data from G to GX */
if (flags & PNG_FLAG_FILLER_AFTER)
{
png_bytep sp = row + (png_size_t)row_width;
png_bytep dp = sp + (png_size_t)row_width;
for (i = 1; i < row_width; i++)
{
*(--dp) = lo_filler;
*(--dp) = *(--sp);
}
*(--dp) = lo_filler;
row_info->channels = 2;
row_info->pixel_depth = 16;
row_info->rowbytes = row_width * 2;
}
/* This changes the data from G to XG */
else
{
png_bytep sp = row + (png_size_t)row_width;
png_bytep dp = sp + (png_size_t)row_width;
for (i = 0; i < row_width; i++)
{
*(--dp) = *(--sp);
*(--dp) = lo_filler;
}
row_info->channels = 2;
row_info->pixel_depth = 16;
row_info->rowbytes = row_width * 2;
}
}
else if(row_info->bit_depth == 16)
{
/* This changes the data from GG to GGXX */
if (flags & PNG_FLAG_FILLER_AFTER)
{
png_bytep sp = row + (png_size_t)row_width;
png_bytep dp = sp + (png_size_t)row_width;
for (i = 1; i < row_width; i++)
{
*(--dp) = hi_filler;
*(--dp) = lo_filler;
*(--dp) = *(--sp);
*(--dp) = *(--sp);
}
*(--dp) = hi_filler;
*(--dp) = lo_filler;
row_info->channels = 2;
row_info->pixel_depth = 32;
row_info->rowbytes = row_width * 4;
}
/* This changes the data from GG to XXGG */
else
{
png_bytep sp = row + (png_size_t)row_width;
png_bytep dp = sp + (png_size_t)row_width;
for (i = 0; i < row_width; i++)
{
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = hi_filler;
*(--dp) = lo_filler;
}
row_info->channels = 2;
row_info->pixel_depth = 32;
row_info->rowbytes = row_width * 4;
}
}
} /* COLOR_TYPE == GRAY */
else if (row_info->color_type == PNG_COLOR_TYPE_RGB)
{
if(row_info->bit_depth == 8)
{
/* This changes the data from RGB to RGBX */
if (flags & PNG_FLAG_FILLER_AFTER)
{
png_bytep sp = row + (png_size_t)row_width * 3;
png_bytep dp = sp + (png_size_t)row_width;
for (i = 1; i < row_width; i++)
{
*(--dp) = lo_filler;
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = *(--sp);
}
*(--dp) = lo_filler;
row_info->channels = 4;
row_info->pixel_depth = 32;
row_info->rowbytes = row_width * 4;
}
/* This changes the data from RGB to XRGB */
else
{
png_bytep sp = row + (png_size_t)row_width * 3;
png_bytep dp = sp + (png_size_t)row_width;
for (i = 0; i < row_width; i++)
{
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = lo_filler;
}
row_info->channels = 4;
row_info->pixel_depth = 32;
row_info->rowbytes = row_width * 4;
}
}
else if(row_info->bit_depth == 16)
{
/* This changes the data from RRGGBB to RRGGBBXX */
if (flags & PNG_FLAG_FILLER_AFTER)
{
png_bytep sp = row + (png_size_t)row_width * 3;
png_bytep dp = sp + (png_size_t)row_width;
for (i = 1; i < row_width; i++)
{
*(--dp) = hi_filler;
*(--dp) = lo_filler;
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = *(--sp);
}
*(--dp) = hi_filler;
*(--dp) = lo_filler;
row_info->channels = 4;
row_info->pixel_depth = 64;
row_info->rowbytes = row_width * 8;
}
/* This changes the data from RRGGBB to XXRRGGBB */
else
{
png_bytep sp = row + (png_size_t)row_width * 3;
png_bytep dp = sp + (png_size_t)row_width;
for (i = 0; i < row_width; i++)
{
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = hi_filler;
*(--dp) = lo_filler;
}
row_info->channels = 4;
row_info->pixel_depth = 64;
row_info->rowbytes = row_width * 8;
}
}
} /* COLOR_TYPE == RGB */
}
#endif
 
#if defined(PNG_READ_GRAY_TO_RGB_SUPPORTED)
/* expand grayscale files to RGB, with or without alpha */
void /* PRIVATE */
png_do_gray_to_rgb(png_row_infop row_info, png_bytep row)
{
png_uint_32 i;
png_uint_32 row_width = row_info->width;
 
png_debug(1, "in png_do_gray_to_rgb\n");
if (row_info->bit_depth >= 8 &&
#if defined(PNG_USELESS_TESTS_SUPPORTED)
row != NULL && row_info != NULL &&
#endif
!(row_info->color_type & PNG_COLOR_MASK_COLOR))
{
if (row_info->color_type == PNG_COLOR_TYPE_GRAY)
{
if (row_info->bit_depth == 8)
{
png_bytep sp = row + (png_size_t)row_width - 1;
png_bytep dp = sp + (png_size_t)row_width * 2;
for (i = 0; i < row_width; i++)
{
*(dp--) = *sp;
*(dp--) = *sp;
*(dp--) = *(sp--);
}
}
else
{
png_bytep sp = row + (png_size_t)row_width * 2 - 1;
png_bytep dp = sp + (png_size_t)row_width * 4;
for (i = 0; i < row_width; i++)
{
*(dp--) = *sp;
*(dp--) = *(sp - 1);
*(dp--) = *sp;
*(dp--) = *(sp - 1);
*(dp--) = *(sp--);
*(dp--) = *(sp--);
}
}
}
else if (row_info->color_type == PNG_COLOR_TYPE_GRAY_ALPHA)
{
if (row_info->bit_depth == 8)
{
png_bytep sp = row + (png_size_t)row_width * 2 - 1;
png_bytep dp = sp + (png_size_t)row_width * 2;
for (i = 0; i < row_width; i++)
{
*(dp--) = *(sp--);
*(dp--) = *sp;
*(dp--) = *sp;
*(dp--) = *(sp--);
}
}
else
{
png_bytep sp = row + (png_size_t)row_width * 4 - 1;
png_bytep dp = sp + (png_size_t)row_width * 4;
for (i = 0; i < row_width; i++)
{
*(dp--) = *(sp--);
*(dp--) = *(sp--);
*(dp--) = *sp;
*(dp--) = *(sp - 1);
*(dp--) = *sp;
*(dp--) = *(sp - 1);
*(dp--) = *(sp--);
*(dp--) = *(sp--);
}
}
}
row_info->channels += (png_byte)2;
row_info->color_type |= PNG_COLOR_MASK_COLOR;
row_info->pixel_depth = (png_byte)(row_info->channels *
row_info->bit_depth);
row_info->rowbytes = ((row_width *
row_info->pixel_depth + 7) >> 3);
}
}
#endif
 
#if defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
/* reduce RGB files to grayscale, with or without alpha
* using the equation given in Poynton's ColorFAQ at
* <http://www.inforamp.net/~poynton/>
* Copyright (c) 1998-01-04 Charles Poynton poynton@inforamp.net
*
* Y = 0.212671 * R + 0.715160 * G + 0.072169 * B
*
* We approximate this with
*
* Y = 0.21268 * R + 0.7151 * G + 0.07217 * B
*
* which can be expressed with integers as
*
* Y = (6969 * R + 23434 * G + 2365 * B)/32768
*
* The calculation is to be done in a linear colorspace.
*
* Other integer coefficents can be used via png_set_rgb_to_gray().
*/
int /* PRIVATE */
png_do_rgb_to_gray(png_structp png_ptr, png_row_infop row_info, png_bytep row)
 
{
png_uint_32 i;
 
png_uint_32 row_width = row_info->width;
int rgb_error = 0;
 
png_debug(1, "in png_do_rgb_to_gray\n");
if (
#if defined(PNG_USELESS_TESTS_SUPPORTED)
row != NULL && row_info != NULL &&
#endif
(row_info->color_type & PNG_COLOR_MASK_COLOR))
{
png_uint_32 rc = png_ptr->rgb_to_gray_red_coeff;
png_uint_32 gc = png_ptr->rgb_to_gray_green_coeff;
png_uint_32 bc = png_ptr->rgb_to_gray_blue_coeff;
 
if (row_info->color_type == PNG_COLOR_TYPE_RGB)
{
if (row_info->bit_depth == 8)
{
#if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED)
if (png_ptr->gamma_from_1 != NULL && png_ptr->gamma_to_1 != NULL)
{
png_bytep sp = row;
png_bytep dp = row;
 
for (i = 0; i < row_width; i++)
{
png_byte red = png_ptr->gamma_to_1[*(sp++)];
png_byte green = png_ptr->gamma_to_1[*(sp++)];
png_byte blue = png_ptr->gamma_to_1[*(sp++)];
if(red != green || red != blue)
{
rgb_error |= 1;
*(dp++) = png_ptr->gamma_from_1[
(rc*red+gc*green+bc*blue)>>15];
}
else
*(dp++) = *(sp-1);
}
}
else
#endif
{
png_bytep sp = row;
png_bytep dp = row;
for (i = 0; i < row_width; i++)
{
png_byte red = *(sp++);
png_byte green = *(sp++);
png_byte blue = *(sp++);
if(red != green || red != blue)
{
rgb_error |= 1;
*(dp++) = (png_byte)((rc*red+gc*green+bc*blue)>>15);
}
else
*(dp++) = *(sp-1);
}
}
}
 
else /* RGB bit_depth == 16 */
{
#if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED)
if (png_ptr->gamma_16_to_1 != NULL &&
png_ptr->gamma_16_from_1 != NULL)
{
png_bytep sp = row;
png_bytep dp = row;
for (i = 0; i < row_width; i++)
{
png_uint_16 red, green, blue, w;
 
red = (png_uint_16)(((*(sp))<<8) | *(sp+1)); sp+=2;
green = (png_uint_16)(((*(sp))<<8) | *(sp+1)); sp+=2;
blue = (png_uint_16)(((*(sp))<<8) | *(sp+1)); sp+=2;
 
if(red == green && red == blue)
w = red;
else
{
png_uint_16 red_1 = png_ptr->gamma_16_to_1[(red&0xff) >>
png_ptr->gamma_shift][red>>8];
png_uint_16 green_1 = png_ptr->gamma_16_to_1[(green&0xff) >>
png_ptr->gamma_shift][green>>8];
png_uint_16 blue_1 = png_ptr->gamma_16_to_1[(blue&0xff) >>
png_ptr->gamma_shift][blue>>8];
png_uint_16 gray16 = (png_uint_16)((rc*red_1 + gc*green_1
+ bc*blue_1)>>15);
w = png_ptr->gamma_16_from_1[(gray16&0xff) >>
png_ptr->gamma_shift][gray16 >> 8];
rgb_error |= 1;
}
 
*(dp++) = (png_byte)((w>>8) & 0xff);
*(dp++) = (png_byte)(w & 0xff);
}
}
else
#endif
{
png_bytep sp = row;
png_bytep dp = row;
for (i = 0; i < row_width; i++)
{
png_uint_16 red, green, blue, gray16;
 
red = (png_uint_16)(((*(sp))<<8) | *(sp+1)); sp+=2;
green = (png_uint_16)(((*(sp))<<8) | *(sp+1)); sp+=2;
blue = (png_uint_16)(((*(sp))<<8) | *(sp+1)); sp+=2;
 
if(red != green || red != blue)
rgb_error |= 1;
gray16 = (png_uint_16)((rc*red + gc*green + bc*blue)>>15);
*(dp++) = (png_byte)((gray16>>8) & 0xff);
*(dp++) = (png_byte)(gray16 & 0xff);
}
}
}
}
if (row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA)
{
if (row_info->bit_depth == 8)
{
#if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED)
if (png_ptr->gamma_from_1 != NULL && png_ptr->gamma_to_1 != NULL)
{
png_bytep sp = row;
png_bytep dp = row;
for (i = 0; i < row_width; i++)
{
png_byte red = png_ptr->gamma_to_1[*(sp++)];
png_byte green = png_ptr->gamma_to_1[*(sp++)];
png_byte blue = png_ptr->gamma_to_1[*(sp++)];
if(red != green || red != blue)
rgb_error |= 1;
*(dp++) = png_ptr->gamma_from_1
[(rc*red + gc*green + bc*blue)>>15];
*(dp++) = *(sp++); /* alpha */
}
}
else
#endif
{
png_bytep sp = row;
png_bytep dp = row;
for (i = 0; i < row_width; i++)
{
png_byte red = *(sp++);
png_byte green = *(sp++);
png_byte blue = *(sp++);
if(red != green || red != blue)
rgb_error |= 1;
*(dp++) = (png_byte)((gc*red + gc*green + bc*blue)>>8);
*(dp++) = *(sp++); /* alpha */
}
}
}
else /* RGBA bit_depth == 16 */
{
#if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED)
if (png_ptr->gamma_16_to_1 != NULL &&
png_ptr->gamma_16_from_1 != NULL)
{
png_bytep sp = row;
png_bytep dp = row;
for (i = 0; i < row_width; i++)
{
png_uint_16 red, green, blue, w;
 
red = (png_uint_16)(((*(sp))<<8) | *(sp+1)); sp+=2;
green = (png_uint_16)(((*(sp))<<8) | *(sp+1)); sp+=2;
blue = (png_uint_16)(((*(sp))<<8) | *(sp+1)); sp+=2;
 
if(red == green && red == blue)
w = red;
else
{
png_uint_16 red_1 = png_ptr->gamma_16_to_1[(red&0xff) >>
png_ptr->gamma_shift][red>>8];
png_uint_16 green_1 = png_ptr->gamma_16_to_1[(green&0xff) >>
png_ptr->gamma_shift][green>>8];
png_uint_16 blue_1 = png_ptr->gamma_16_to_1[(blue&0xff) >>
png_ptr->gamma_shift][blue>>8];
png_uint_16 gray16 = (png_uint_16)((rc * red_1
+ gc * green_1 + bc * blue_1)>>15);
w = png_ptr->gamma_16_from_1[(gray16&0xff) >>
png_ptr->gamma_shift][gray16 >> 8];
rgb_error |= 1;
}
 
*(dp++) = (png_byte)((w>>8) & 0xff);
*(dp++) = (png_byte)(w & 0xff);
*(dp++) = *(sp++); /* alpha */
*(dp++) = *(sp++);
}
}
else
#endif
{
png_bytep sp = row;
png_bytep dp = row;
for (i = 0; i < row_width; i++)
{
png_uint_16 red, green, blue, gray16;
red = (png_uint_16)((*(sp)<<8) | *(sp+1)); sp+=2;
green = (png_uint_16)((*(sp)<<8) | *(sp+1)); sp+=2;
blue = (png_uint_16)((*(sp)<<8) | *(sp+1)); sp+=2;
if(red != green || red != blue)
rgb_error |= 1;
gray16 = (png_uint_16)((rc*red + gc*green + bc*blue)>>15);
*(dp++) = (png_byte)((gray16>>8) & 0xff);
*(dp++) = (png_byte)(gray16 & 0xff);
*(dp++) = *(sp++); /* alpha */
*(dp++) = *(sp++);
}
}
}
}
row_info->channels -= (png_byte)2;
row_info->color_type &= ~PNG_COLOR_MASK_COLOR;
row_info->pixel_depth = (png_byte)(row_info->channels *
row_info->bit_depth);
row_info->rowbytes = ((row_width *
row_info->pixel_depth + 7) >> 3);
}
return rgb_error;
}
#endif
 
/* Build a grayscale palette. Palette is assumed to be 1 << bit_depth
* large of png_color. This lets grayscale images be treated as
* paletted. Most useful for gamma correction and simplification
* of code.
*/
void PNGAPI
png_build_grayscale_palette(int bit_depth, png_colorp palette)
{
int num_palette;
int color_inc;
int i;
int v;
 
png_debug(1, "in png_do_build_grayscale_palette\n");
if (palette == NULL)
return;
 
switch (bit_depth)
{
case 1:
num_palette = 2;
color_inc = 0xff;
break;
case 2:
num_palette = 4;
color_inc = 0x55;
break;
case 4:
num_palette = 16;
color_inc = 0x11;
break;
case 8:
num_palette = 256;
color_inc = 1;
break;
default:
num_palette = 0;
color_inc = 0;
break;
}
 
for (i = 0, v = 0; i < num_palette; i++, v += color_inc)
{
palette[i].red = (png_byte)v;
palette[i].green = (png_byte)v;
palette[i].blue = (png_byte)v;
}
}
 
/* This function is currently unused. Do we really need it? */
#if defined(PNG_READ_DITHER_SUPPORTED) && defined(PNG_CORRECT_PALETTE_SUPPORTED)
void /* PRIVATE */
png_correct_palette(png_structp png_ptr, png_colorp palette,
int num_palette)
{
png_debug(1, "in png_correct_palette\n");
#if defined(PNG_READ_BACKGROUND_SUPPORTED) && \
defined(PNG_READ_GAMMA_SUPPORTED) && defined(PNG_FLOATING_POINT_SUPPORTED)
if (png_ptr->transformations & (PNG_GAMMA | PNG_BACKGROUND))
{
png_color back, back_1;
 
if (png_ptr->background_gamma_type == PNG_BACKGROUND_GAMMA_FILE)
{
back.red = png_ptr->gamma_table[png_ptr->background.red];
back.green = png_ptr->gamma_table[png_ptr->background.green];
back.blue = png_ptr->gamma_table[png_ptr->background.blue];
 
back_1.red = png_ptr->gamma_to_1[png_ptr->background.red];
back_1.green = png_ptr->gamma_to_1[png_ptr->background.green];
back_1.blue = png_ptr->gamma_to_1[png_ptr->background.blue];
}
else
{
double g;
 
g = 1.0 / (png_ptr->background_gamma * png_ptr->screen_gamma);
 
if (png_ptr->background_gamma_type == PNG_BACKGROUND_GAMMA_SCREEN ||
fabs(g - 1.0) < PNG_GAMMA_THRESHOLD)
{
back.red = png_ptr->background.red;
back.green = png_ptr->background.green;
back.blue = png_ptr->background.blue;
}
else
{
back.red =
(png_byte)(pow((double)png_ptr->background.red/255, g) *
255.0 + 0.5);
back.green =
(png_byte)(pow((double)png_ptr->background.green/255, g) *
255.0 + 0.5);
back.blue =
(png_byte)(pow((double)png_ptr->background.blue/255, g) *
255.0 + 0.5);
}
 
g = 1.0 / png_ptr->background_gamma;
 
back_1.red =
(png_byte)(pow((double)png_ptr->background.red/255, g) *
255.0 + 0.5);
back_1.green =
(png_byte)(pow((double)png_ptr->background.green/255, g) *
255.0 + 0.5);
back_1.blue =
(png_byte)(pow((double)png_ptr->background.blue/255, g) *
255.0 + 0.5);
}
 
if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
{
png_uint_32 i;
 
for (i = 0; i < (png_uint_32)num_palette; i++)
{
if (i < png_ptr->num_trans && png_ptr->trans[i] == 0)
{
palette[i] = back;
}
else if (i < png_ptr->num_trans && png_ptr->trans[i] != 0xff)
{
png_byte v, w;
 
v = png_ptr->gamma_to_1[png_ptr->palette[i].red];
png_composite(w, v, png_ptr->trans[i], back_1.red);
palette[i].red = png_ptr->gamma_from_1[w];
 
v = png_ptr->gamma_to_1[png_ptr->palette[i].green];
png_composite(w, v, png_ptr->trans[i], back_1.green);
palette[i].green = png_ptr->gamma_from_1[w];
 
v = png_ptr->gamma_to_1[png_ptr->palette[i].blue];
png_composite(w, v, png_ptr->trans[i], back_1.blue);
palette[i].blue = png_ptr->gamma_from_1[w];
}
else
{
palette[i].red = png_ptr->gamma_table[palette[i].red];
palette[i].green = png_ptr->gamma_table[palette[i].green];
palette[i].blue = png_ptr->gamma_table[palette[i].blue];
}
}
}
else
{
int i;
 
for (i = 0; i < num_palette; i++)
{
if (palette[i].red == (png_byte)png_ptr->trans_values.gray)
{
palette[i] = back;
}
else
{
palette[i].red = png_ptr->gamma_table[palette[i].red];
palette[i].green = png_ptr->gamma_table[palette[i].green];
palette[i].blue = png_ptr->gamma_table[palette[i].blue];
}
}
}
}
else
#endif
#if defined(PNG_READ_GAMMA_SUPPORTED)
if (png_ptr->transformations & PNG_GAMMA)
{
int i;
 
for (i = 0; i < num_palette; i++)
{
palette[i].red = png_ptr->gamma_table[palette[i].red];
palette[i].green = png_ptr->gamma_table[palette[i].green];
palette[i].blue = png_ptr->gamma_table[palette[i].blue];
}
}
#if defined(PNG_READ_BACKGROUND_SUPPORTED)
else
#endif
#endif
#if defined(PNG_READ_BACKGROUND_SUPPORTED)
if (png_ptr->transformations & PNG_BACKGROUND)
{
if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
{
png_color back;
 
back.red = (png_byte)png_ptr->background.red;
back.green = (png_byte)png_ptr->background.green;
back.blue = (png_byte)png_ptr->background.blue;
 
for (i = 0; i < (int)png_ptr->num_trans; i++)
{
if (png_ptr->trans[i] == 0)
{
palette[i].red = back.red;
palette[i].green = back.green;
palette[i].blue = back.blue;
}
else if (png_ptr->trans[i] != 0xff)
{
png_composite(palette[i].red, png_ptr->palette[i].red,
png_ptr->trans[i], back.red);
png_composite(palette[i].green, png_ptr->palette[i].green,
png_ptr->trans[i], back.green);
png_composite(palette[i].blue, png_ptr->palette[i].blue,
png_ptr->trans[i], back.blue);
}
}
}
else /* assume grayscale palette (what else could it be?) */
{
int i;
 
for (i = 0; i < num_palette; i++)
{
if (i == (png_byte)png_ptr->trans_values.gray)
{
palette[i].red = (png_byte)png_ptr->background.red;
palette[i].green = (png_byte)png_ptr->background.green;
palette[i].blue = (png_byte)png_ptr->background.blue;
}
}
}
}
#endif
}
#endif
 
#if defined(PNG_READ_BACKGROUND_SUPPORTED)
/* Replace any alpha or transparency with the supplied background color.
* "background" is already in the screen gamma, while "background_1" is
* at a gamma of 1.0. Paletted files have already been taken care of.
*/
void /* PRIVATE */
png_do_background(png_row_infop row_info, png_bytep row,
png_color_16p trans_values, png_color_16p background
#if defined(PNG_READ_GAMMA_SUPPORTED)
, png_color_16p background_1,
png_bytep gamma_table, png_bytep gamma_from_1, png_bytep gamma_to_1,
png_uint_16pp gamma_16, png_uint_16pp gamma_16_from_1,
png_uint_16pp gamma_16_to_1, int gamma_shift
#endif
)
{
png_bytep sp, dp;
png_uint_32 i;
png_uint_32 row_width=row_info->width;
int shift;
 
png_debug(1, "in png_do_background\n");
if (background != NULL &&
#if defined(PNG_USELESS_TESTS_SUPPORTED)
row != NULL && row_info != NULL &&
#endif
(!(row_info->color_type & PNG_COLOR_MASK_ALPHA) ||
(row_info->color_type != PNG_COLOR_TYPE_PALETTE && trans_values)))
{
switch (row_info->color_type)
{
case PNG_COLOR_TYPE_GRAY:
{
switch (row_info->bit_depth)
{
case 1:
{
sp = row;
shift = 7;
for (i = 0; i < row_width; i++)
{
if ((png_uint_16)((*sp >> shift) & 0x01)
== trans_values->gray)
{
*sp &= (png_byte)((0x7f7f >> (7 - shift)) & 0xff);
*sp |= (png_byte)(background->gray << shift);
}
if (!shift)
{
shift = 7;
sp++;
}
else
shift--;
}
break;
}
case 2:
{
#if defined(PNG_READ_GAMMA_SUPPORTED)
if (gamma_table != NULL)
{
sp = row;
shift = 6;
for (i = 0; i < row_width; i++)
{
if ((png_uint_16)((*sp >> shift) & 0x03)
== trans_values->gray)
{
*sp &= (png_byte)((0x3f3f >> (6 - shift)) & 0xff);
*sp |= (png_byte)(background->gray << shift);
}
else
{
png_byte p = (png_byte)((*sp >> shift) & 0x03);
png_byte g = (png_byte)((gamma_table [p | (p << 2) |
(p << 4) | (p << 6)] >> 6) & 0x03);
*sp &= (png_byte)((0x3f3f >> (6 - shift)) & 0xff);
*sp |= (png_byte)(g << shift);
}
if (!shift)
{
shift = 6;
sp++;
}
else
shift -= 2;
}
}
else
#endif
{
sp = row;
shift = 6;
for (i = 0; i < row_width; i++)
{
if ((png_uint_16)((*sp >> shift) & 0x03)
== trans_values->gray)
{
*sp &= (png_byte)((0x3f3f >> (6 - shift)) & 0xff);
*sp |= (png_byte)(background->gray << shift);
}
if (!shift)
{
shift = 6;
sp++;
}
else
shift -= 2;
}
}
break;
}
case 4:
{
#if defined(PNG_READ_GAMMA_SUPPORTED)
if (gamma_table != NULL)
{
sp = row;
shift = 4;
for (i = 0; i < row_width; i++)
{
if ((png_uint_16)((*sp >> shift) & 0x0f)
== trans_values->gray)
{
*sp &= (png_byte)((0xf0f >> (4 - shift)) & 0xff);
*sp |= (png_byte)(background->gray << shift);
}
else
{
png_byte p = (png_byte)((*sp >> shift) & 0x0f);
png_byte g = (png_byte)((gamma_table[p |
(p << 4)] >> 4) & 0x0f);
*sp &= (png_byte)((0xf0f >> (4 - shift)) & 0xff);
*sp |= (png_byte)(g << shift);
}
if (!shift)
{
shift = 4;
sp++;
}
else
shift -= 4;
}
}
else
#endif
{
sp = row;
shift = 4;
for (i = 0; i < row_width; i++)
{
if ((png_uint_16)((*sp >> shift) & 0x0f)
== trans_values->gray)
{
*sp &= (png_byte)((0xf0f >> (4 - shift)) & 0xff);
*sp |= (png_byte)(background->gray << shift);
}
if (!shift)
{
shift = 4;
sp++;
}
else
shift -= 4;
}
}
break;
}
case 8:
{
#if defined(PNG_READ_GAMMA_SUPPORTED)
if (gamma_table != NULL)
{
sp = row;
for (i = 0; i < row_width; i++, sp++)
{
if (*sp == trans_values->gray)
{
*sp = (png_byte)background->gray;
}
else
{
*sp = gamma_table[*sp];
}
}
}
else
#endif
{
sp = row;
for (i = 0; i < row_width; i++, sp++)
{
if (*sp == trans_values->gray)
{
*sp = (png_byte)background->gray;
}
}
}
break;
}
case 16:
{
#if defined(PNG_READ_GAMMA_SUPPORTED)
if (gamma_16 != NULL)
{
sp = row;
for (i = 0; i < row_width; i++, sp += 2)
{
png_uint_16 v;
 
v = (png_uint_16)(((*sp) << 8) + *(sp + 1));
if (v == trans_values->gray)
{
/* background is already in screen gamma */
*sp = (png_byte)((background->gray >> 8) & 0xff);
*(sp + 1) = (png_byte)(background->gray & 0xff);
}
else
{
v = gamma_16[*(sp + 1) >> gamma_shift][*sp];
*sp = (png_byte)((v >> 8) & 0xff);
*(sp + 1) = (png_byte)(v & 0xff);
}
}
}
else
#endif
{
sp = row;
for (i = 0; i < row_width; i++, sp += 2)
{
png_uint_16 v;
 
v = (png_uint_16)(((*sp) << 8) + *(sp + 1));
if (v == trans_values->gray)
{
*sp = (png_byte)((background->gray >> 8) & 0xff);
*(sp + 1) = (png_byte)(background->gray & 0xff);
}
}
}
break;
}
}
break;
}
case PNG_COLOR_TYPE_RGB:
{
if (row_info->bit_depth == 8)
{
#if defined(PNG_READ_GAMMA_SUPPORTED)
if (gamma_table != NULL)
{
sp = row;
for (i = 0; i < row_width; i++, sp += 3)
{
if (*sp == trans_values->red &&
*(sp + 1) == trans_values->green &&
*(sp + 2) == trans_values->blue)
{
*sp = (png_byte)background->red;
*(sp + 1) = (png_byte)background->green;
*(sp + 2) = (png_byte)background->blue;
}
else
{
*sp = gamma_table[*sp];
*(sp + 1) = gamma_table[*(sp + 1)];
*(sp + 2) = gamma_table[*(sp + 2)];
}
}
}
else
#endif
{
sp = row;
for (i = 0; i < row_width; i++, sp += 3)
{
if (*sp == trans_values->red &&
*(sp + 1) == trans_values->green &&
*(sp + 2) == trans_values->blue)
{
*sp = (png_byte)background->red;
*(sp + 1) = (png_byte)background->green;
*(sp + 2) = (png_byte)background->blue;
}
}
}
}
else /* if (row_info->bit_depth == 16) */
{
#if defined(PNG_READ_GAMMA_SUPPORTED)
if (gamma_16 != NULL)
{
sp = row;
for (i = 0; i < row_width; i++, sp += 6)
{
png_uint_16 r = (png_uint_16)(((*sp) << 8) + *(sp + 1));
png_uint_16 g = (png_uint_16)(((*(sp+2)) << 8) + *(sp+3));
png_uint_16 b = (png_uint_16)(((*(sp+4)) << 8) + *(sp+5));
if (r == trans_values->red && g == trans_values->green &&
b == trans_values->blue)
{
/* background is already in screen gamma */
*sp = (png_byte)((background->red >> 8) & 0xff);
*(sp + 1) = (png_byte)(background->red & 0xff);
*(sp + 2) = (png_byte)((background->green >> 8) & 0xff);
*(sp + 3) = (png_byte)(background->green & 0xff);
*(sp + 4) = (png_byte)((background->blue >> 8) & 0xff);
*(sp + 5) = (png_byte)(background->blue & 0xff);
}
else
{
png_uint_16 v = gamma_16[*(sp + 1) >> gamma_shift][*sp];
*sp = (png_byte)((v >> 8) & 0xff);
*(sp + 1) = (png_byte)(v & 0xff);
v = gamma_16[*(sp + 3) >> gamma_shift][*(sp + 2)];
*(sp + 2) = (png_byte)((v >> 8) & 0xff);
*(sp + 3) = (png_byte)(v & 0xff);
v = gamma_16[*(sp + 5) >> gamma_shift][*(sp + 4)];
*(sp + 4) = (png_byte)((v >> 8) & 0xff);
*(sp + 5) = (png_byte)(v & 0xff);
}
}
}
else
#endif
{
sp = row;
for (i = 0; i < row_width; i++, sp += 6)
{
png_uint_16 r = (png_uint_16)(((*sp) << 8) + *(sp+1));
png_uint_16 g = (png_uint_16)(((*(sp+2)) << 8) + *(sp+3));
png_uint_16 b = (png_uint_16)(((*(sp+4)) << 8) + *(sp+5));
 
if (r == trans_values->red && g == trans_values->green &&
b == trans_values->blue)
{
*sp = (png_byte)((background->red >> 8) & 0xff);
*(sp + 1) = (png_byte)(background->red & 0xff);
*(sp + 2) = (png_byte)((background->green >> 8) & 0xff);
*(sp + 3) = (png_byte)(background->green & 0xff);
*(sp + 4) = (png_byte)((background->blue >> 8) & 0xff);
*(sp + 5) = (png_byte)(background->blue & 0xff);
}
}
}
}
break;
}
case PNG_COLOR_TYPE_GRAY_ALPHA:
{
if (row_info->bit_depth == 8)
{
#if defined(PNG_READ_GAMMA_SUPPORTED)
if (gamma_to_1 != NULL && gamma_from_1 != NULL &&
gamma_table != NULL)
{
sp = row;
dp = row;
for (i = 0; i < row_width; i++, sp += 2, dp++)
{
png_uint_16 a = *(sp + 1);
 
if (a == 0xff)
{
*dp = gamma_table[*sp];
}
else if (a == 0)
{
/* background is already in screen gamma */
*dp = (png_byte)background->gray;
}
else
{
png_byte v, w;
 
v = gamma_to_1[*sp];
png_composite(w, v, a, background_1->gray);
*dp = gamma_from_1[w];
}
}
}
else
#endif
{
sp = row;
dp = row;
for (i = 0; i < row_width; i++, sp += 2, dp++)
{
png_byte a = *(sp + 1);
 
if (a == 0xff)
{
*dp = *sp;
}
#if defined(PNG_READ_GAMMA_SUPPORTED)
else if (a == 0)
{
*dp = (png_byte)background->gray;
}
else
{
png_composite(*dp, *sp, a, background_1->gray);
}
#else
*dp = (png_byte)background->gray;
#endif
}
}
}
else /* if (png_ptr->bit_depth == 16) */
{
#if defined(PNG_READ_GAMMA_SUPPORTED)
if (gamma_16 != NULL && gamma_16_from_1 != NULL &&
gamma_16_to_1 != NULL)
{
sp = row;
dp = row;
for (i = 0; i < row_width; i++, sp += 4, dp += 2)
{
png_uint_16 a = (png_uint_16)(((*(sp+2)) << 8) + *(sp+3));
 
if (a == (png_uint_16)0xffff)
{
png_uint_16 v;
 
v = gamma_16[*(sp + 1) >> gamma_shift][*sp];
*dp = (png_byte)((v >> 8) & 0xff);
*(dp + 1) = (png_byte)(v & 0xff);
}
#if defined(PNG_READ_GAMMA_SUPPORTED)
else if (a == 0)
#else
else
#endif
{
/* background is already in screen gamma */
*dp = (png_byte)((background->gray >> 8) & 0xff);
*(dp + 1) = (png_byte)(background->gray & 0xff);
}
#if defined(PNG_READ_GAMMA_SUPPORTED)
else
{
png_uint_16 g, v, w;
 
g = gamma_16_to_1[*(sp + 1) >> gamma_shift][*sp];
png_composite_16(v, g, a, background_1->gray);
w = gamma_16_from_1[(v&0xff) >> gamma_shift][v >> 8];
*dp = (png_byte)((w >> 8) & 0xff);
*(dp + 1) = (png_byte)(w & 0xff);
}
#endif
}
}
else
#endif
{
sp = row;
dp = row;
for (i = 0; i < row_width; i++, sp += 4, dp += 2)
{
png_uint_16 a = (png_uint_16)(((*(sp+2)) << 8) + *(sp+3));
if (a == (png_uint_16)0xffff)
{
png_memcpy(dp, sp, 2);
}
#if defined(PNG_READ_GAMMA_SUPPORTED)
else if (a == 0)
#else
else
#endif
{
*dp = (png_byte)((background->gray >> 8) & 0xff);
*(dp + 1) = (png_byte)(background->gray & 0xff);
}
#if defined(PNG_READ_GAMMA_SUPPORTED)
else
{
png_uint_16 g, v;
 
g = (png_uint_16)(((*sp) << 8) + *(sp + 1));
png_composite_16(v, g, a, background_1->gray);
*dp = (png_byte)((v >> 8) & 0xff);
*(dp + 1) = (png_byte)(v & 0xff);
}
#endif
}
}
}
break;
}
case PNG_COLOR_TYPE_RGB_ALPHA:
{
if (row_info->bit_depth == 8)
{
#if defined(PNG_READ_GAMMA_SUPPORTED)
if (gamma_to_1 != NULL && gamma_from_1 != NULL &&
gamma_table != NULL)
{
sp = row;
dp = row;
for (i = 0; i < row_width; i++, sp += 4, dp += 3)
{
png_byte a = *(sp + 3);
 
if (a == 0xff)
{
*dp = gamma_table[*sp];
*(dp + 1) = gamma_table[*(sp + 1)];
*(dp + 2) = gamma_table[*(sp + 2)];
}
else if (a == 0)
{
/* background is already in screen gamma */
*dp = (png_byte)background->red;
*(dp + 1) = (png_byte)background->green;
*(dp + 2) = (png_byte)background->blue;
}
else
{
png_byte v, w;
 
v = gamma_to_1[*sp];
png_composite(w, v, a, background_1->red);
*dp = gamma_from_1[w];
v = gamma_to_1[*(sp + 1)];
png_composite(w, v, a, background_1->green);
*(dp + 1) = gamma_from_1[w];
v = gamma_to_1[*(sp + 2)];
png_composite(w, v, a, background_1->blue);
*(dp + 2) = gamma_from_1[w];
}
}
}
else
#endif
{
sp = row;
dp = row;
for (i = 0; i < row_width; i++, sp += 4, dp += 3)
{
png_byte a = *(sp + 3);
 
if (a == 0xff)
{
*dp = *sp;
*(dp + 1) = *(sp + 1);
*(dp + 2) = *(sp + 2);
}
else if (a == 0)
{
*dp = (png_byte)background->red;
*(dp + 1) = (png_byte)background->green;
*(dp + 2) = (png_byte)background->blue;
}
else
{
png_composite(*dp, *sp, a, background->red);
png_composite(*(dp + 1), *(sp + 1), a,
background->green);
png_composite(*(dp + 2), *(sp + 2), a,
background->blue);
}
}
}
}
else /* if (row_info->bit_depth == 16) */
{
#if defined(PNG_READ_GAMMA_SUPPORTED)
if (gamma_16 != NULL && gamma_16_from_1 != NULL &&
gamma_16_to_1 != NULL)
{
sp = row;
dp = row;
for (i = 0; i < row_width; i++, sp += 8, dp += 6)
{
png_uint_16 a = (png_uint_16)(((png_uint_16)(*(sp + 6))
<< 8) + (png_uint_16)(*(sp + 7)));
if (a == (png_uint_16)0xffff)
{
png_uint_16 v;
 
v = gamma_16[*(sp + 1) >> gamma_shift][*sp];
*dp = (png_byte)((v >> 8) & 0xff);
*(dp + 1) = (png_byte)(v & 0xff);
v = gamma_16[*(sp + 3) >> gamma_shift][*(sp + 2)];
*(dp + 2) = (png_byte)((v >> 8) & 0xff);
*(dp + 3) = (png_byte)(v & 0xff);
v = gamma_16[*(sp + 5) >> gamma_shift][*(sp + 4)];
*(dp + 4) = (png_byte)((v >> 8) & 0xff);
*(dp + 5) = (png_byte)(v & 0xff);
}
else if (a == 0)
{
/* background is already in screen gamma */
*dp = (png_byte)((background->red >> 8) & 0xff);
*(dp + 1) = (png_byte)(background->red & 0xff);
*(dp + 2) = (png_byte)((background->green >> 8) & 0xff);
*(dp + 3) = (png_byte)(background->green & 0xff);
*(dp + 4) = (png_byte)((background->blue >> 8) & 0xff);
*(dp + 5) = (png_byte)(background->blue & 0xff);
}
else
{
png_uint_16 v, w, x;
 
v = gamma_16_to_1[*(sp + 1) >> gamma_shift][*sp];
png_composite_16(w, v, a, background_1->red);
x = gamma_16_from_1[((w&0xff) >> gamma_shift)][w >> 8];
*dp = (png_byte)((x >> 8) & 0xff);
*(dp + 1) = (png_byte)(x & 0xff);
v = gamma_16_to_1[*(sp + 3) >> gamma_shift][*(sp + 2)];
png_composite_16(w, v, a, background_1->green);
x = gamma_16_from_1[((w&0xff) >> gamma_shift)][w >> 8];
*(dp + 2) = (png_byte)((x >> 8) & 0xff);
*(dp + 3) = (png_byte)(x & 0xff);
v = gamma_16_to_1[*(sp + 5) >> gamma_shift][*(sp + 4)];
png_composite_16(w, v, a, background_1->blue);
x = gamma_16_from_1[(w & 0xff) >> gamma_shift][w >> 8];
*(dp + 4) = (png_byte)((x >> 8) & 0xff);
*(dp + 5) = (png_byte)(x & 0xff);
}
}
}
else
#endif
{
sp = row;
dp = row;
for (i = 0; i < row_width; i++, sp += 8, dp += 6)
{
png_uint_16 a = (png_uint_16)(((png_uint_16)(*(sp + 6))
<< 8) + (png_uint_16)(*(sp + 7)));
if (a == (png_uint_16)0xffff)
{
png_memcpy(dp, sp, 6);
}
else if (a == 0)
{
*dp = (png_byte)((background->red >> 8) & 0xff);
*(dp + 1) = (png_byte)(background->red & 0xff);
*(dp + 2) = (png_byte)((background->green >> 8) & 0xff);
*(dp + 3) = (png_byte)(background->green & 0xff);
*(dp + 4) = (png_byte)((background->blue >> 8) & 0xff);
*(dp + 5) = (png_byte)(background->blue & 0xff);
}
else
{
png_uint_16 v;
 
png_uint_16 r = (png_uint_16)(((*sp) << 8) + *(sp + 1));
png_uint_16 g = (png_uint_16)(((*(sp + 2)) << 8)
+ *(sp + 3));
png_uint_16 b = (png_uint_16)(((*(sp + 4)) << 8)
+ *(sp + 5));
 
png_composite_16(v, r, a, background->red);
*dp = (png_byte)((v >> 8) & 0xff);
*(dp + 1) = (png_byte)(v & 0xff);
png_composite_16(v, g, a, background->green);
*(dp + 2) = (png_byte)((v >> 8) & 0xff);
*(dp + 3) = (png_byte)(v & 0xff);
png_composite_16(v, b, a, background->blue);
*(dp + 4) = (png_byte)((v >> 8) & 0xff);
*(dp + 5) = (png_byte)(v & 0xff);
}
}
}
}
break;
}
}
 
if (row_info->color_type & PNG_COLOR_MASK_ALPHA)
{
row_info->color_type &= ~PNG_COLOR_MASK_ALPHA;
row_info->channels--;
row_info->pixel_depth = (png_byte)(row_info->channels *
row_info->bit_depth);
row_info->rowbytes = ((row_width *
row_info->pixel_depth + 7) >> 3);
}
}
}
#endif
 
#if defined(PNG_READ_GAMMA_SUPPORTED)
/* Gamma correct the image, avoiding the alpha channel. Make sure
* you do this after you deal with the transparency issue on grayscale
* or RGB images. If your bit depth is 8, use gamma_table, if it
* is 16, use gamma_16_table and gamma_shift. Build these with
* build_gamma_table().
*/
void /* PRIVATE */
png_do_gamma(png_row_infop row_info, png_bytep row,
png_bytep gamma_table, png_uint_16pp gamma_16_table,
int gamma_shift)
{
png_bytep sp;
png_uint_32 i;
png_uint_32 row_width=row_info->width;
 
png_debug(1, "in png_do_gamma\n");
if (
#if defined(PNG_USELESS_TESTS_SUPPORTED)
row != NULL && row_info != NULL &&
#endif
((row_info->bit_depth <= 8 && gamma_table != NULL) ||
(row_info->bit_depth == 16 && gamma_16_table != NULL)))
{
switch (row_info->color_type)
{
case PNG_COLOR_TYPE_RGB:
{
if (row_info->bit_depth == 8)
{
sp = row;
for (i = 0; i < row_width; i++)
{
*sp = gamma_table[*sp];
sp++;
*sp = gamma_table[*sp];
sp++;
*sp = gamma_table[*sp];
sp++;
}
}
else /* if (row_info->bit_depth == 16) */
{
sp = row;
for (i = 0; i < row_width; i++)
{
png_uint_16 v;
 
v = gamma_16_table[*(sp + 1) >> gamma_shift][*sp];
*sp = (png_byte)((v >> 8) & 0xff);
*(sp + 1) = (png_byte)(v & 0xff);
sp += 2;
v = gamma_16_table[*(sp + 1) >> gamma_shift][*sp];
*sp = (png_byte)((v >> 8) & 0xff);
*(sp + 1) = (png_byte)(v & 0xff);
sp += 2;
v = gamma_16_table[*(sp + 1) >> gamma_shift][*sp];
*sp = (png_byte)((v >> 8) & 0xff);
*(sp + 1) = (png_byte)(v & 0xff);
sp += 2;
}
}
break;
}
case PNG_COLOR_TYPE_RGB_ALPHA:
{
if (row_info->bit_depth == 8)
{
sp = row;
for (i = 0; i < row_width; i++)
{
*sp = gamma_table[*sp];
sp++;
*sp = gamma_table[*sp];
sp++;
*sp = gamma_table[*sp];
sp++;
sp++;
}
}
else /* if (row_info->bit_depth == 16) */
{
sp = row;
for (i = 0; i < row_width; i++)
{
png_uint_16 v = gamma_16_table[*(sp + 1) >> gamma_shift][*sp];
*sp = (png_byte)((v >> 8) & 0xff);
*(sp + 1) = (png_byte)(v & 0xff);
sp += 2;
v = gamma_16_table[*(sp + 1) >> gamma_shift][*sp];
*sp = (png_byte)((v >> 8) & 0xff);
*(sp + 1) = (png_byte)(v & 0xff);
sp += 2;
v = gamma_16_table[*(sp + 1) >> gamma_shift][*sp];
*sp = (png_byte)((v >> 8) & 0xff);
*(sp + 1) = (png_byte)(v & 0xff);
sp += 4;
}
}
break;
}
case PNG_COLOR_TYPE_GRAY_ALPHA:
{
if (row_info->bit_depth == 8)
{
sp = row;
for (i = 0; i < row_width; i++)
{
*sp = gamma_table[*sp];
sp += 2;
}
}
else /* if (row_info->bit_depth == 16) */
{
sp = row;
for (i = 0; i < row_width; i++)
{
png_uint_16 v = gamma_16_table[*(sp + 1) >> gamma_shift][*sp];
*sp = (png_byte)((v >> 8) & 0xff);
*(sp + 1) = (png_byte)(v & 0xff);
sp += 4;
}
}
break;
}
case PNG_COLOR_TYPE_GRAY:
{
if (row_info->bit_depth == 2)
{
sp = row;
for (i = 0; i < row_width; i += 4)
{
int a = *sp & 0xc0;
int b = *sp & 0x30;
int c = *sp & 0x0c;
int d = *sp & 0x03;
 
*sp = (png_byte)(
((((int)gamma_table[a|(a>>2)|(a>>4)|(a>>6)]) ) & 0xc0)|
((((int)gamma_table[(b<<2)|b|(b>>2)|(b>>4)])>>2) & 0x30)|
((((int)gamma_table[(c<<4)|(c<<2)|c|(c>>2)])>>4) & 0x0c)|
((((int)gamma_table[(d<<6)|(d<<4)|(d<<2)|d])>>6) ));
sp++;
}
}
if (row_info->bit_depth == 4)
{
sp = row;
for (i = 0; i < row_width; i += 2)
{
int msb = *sp & 0xf0;
int lsb = *sp & 0x0f;
 
*sp = (png_byte)((((int)gamma_table[msb | (msb >> 4)]) & 0xf0)
| (((int)gamma_table[(lsb << 4) | lsb]) >> 4));
sp++;
}
}
else if (row_info->bit_depth == 8)
{
sp = row;
for (i = 0; i < row_width; i++)
{
*sp = gamma_table[*sp];
sp++;
}
}
else if (row_info->bit_depth == 16)
{
sp = row;
for (i = 0; i < row_width; i++)
{
png_uint_16 v = gamma_16_table[*(sp + 1) >> gamma_shift][*sp];
*sp = (png_byte)((v >> 8) & 0xff);
*(sp + 1) = (png_byte)(v & 0xff);
sp += 2;
}
}
break;
}
}
}
}
#endif
 
#if defined(PNG_READ_EXPAND_SUPPORTED)
/* Expands a palette row to an RGB or RGBA row depending
* upon whether you supply trans and num_trans.
*/
void /* PRIVATE */
png_do_expand_palette(png_row_infop row_info, png_bytep row,
png_colorp palette, png_bytep trans, int num_trans)
{
int shift, value;
png_bytep sp, dp;
png_uint_32 i;
png_uint_32 row_width=row_info->width;
 
png_debug(1, "in png_do_expand_palette\n");
if (
#if defined(PNG_USELESS_TESTS_SUPPORTED)
row != NULL && row_info != NULL &&
#endif
row_info->color_type == PNG_COLOR_TYPE_PALETTE)
{
if (row_info->bit_depth < 8)
{
switch (row_info->bit_depth)
{
case 1:
{
sp = row + (png_size_t)((row_width - 1) >> 3);
dp = row + (png_size_t)row_width - 1;
shift = 7 - (int)((row_width + 7) & 0x07);
for (i = 0; i < row_width; i++)
{
if ((*sp >> shift) & 0x01)
*dp = 1;
else
*dp = 0;
if (shift == 7)
{
shift = 0;
sp--;
}
else
shift++;
 
dp--;
}
break;
}
case 2:
{
sp = row + (png_size_t)((row_width - 1) >> 2);
dp = row + (png_size_t)row_width - 1;
shift = (int)((3 - ((row_width + 3) & 0x03)) << 1);
for (i = 0; i < row_width; i++)
{
value = (*sp >> shift) & 0x03;
*dp = (png_byte)value;
if (shift == 6)
{
shift = 0;
sp--;
}
else
shift += 2;
 
dp--;
}
break;
}
case 4:
{
sp = row + (png_size_t)((row_width - 1) >> 1);
dp = row + (png_size_t)row_width - 1;
shift = (int)((row_width & 0x01) << 2);
for (i = 0; i < row_width; i++)
{
value = (*sp >> shift) & 0x0f;
*dp = (png_byte)value;
if (shift == 4)
{
shift = 0;
sp--;
}
else
shift += 4;
 
dp--;
}
break;
}
}
row_info->bit_depth = 8;
row_info->pixel_depth = 8;
row_info->rowbytes = row_width;
}
switch (row_info->bit_depth)
{
case 8:
{
if (trans != NULL)
{
sp = row + (png_size_t)row_width - 1;
dp = row + (png_size_t)(row_width << 2) - 1;
 
for (i = 0; i < row_width; i++)
{
if ((int)(*sp) >= num_trans)
*dp-- = 0xff;
else
*dp-- = trans[*sp];
*dp-- = palette[*sp].blue;
*dp-- = palette[*sp].green;
*dp-- = palette[*sp].red;
sp--;
}
row_info->bit_depth = 8;
row_info->pixel_depth = 32;
row_info->rowbytes = row_width * 4;
row_info->color_type = 6;
row_info->channels = 4;
}
else
{
sp = row + (png_size_t)row_width - 1;
dp = row + (png_size_t)(row_width * 3) - 1;
 
for (i = 0; i < row_width; i++)
{
*dp-- = palette[*sp].blue;
*dp-- = palette[*sp].green;
*dp-- = palette[*sp].red;
sp--;
}
row_info->bit_depth = 8;
row_info->pixel_depth = 24;
row_info->rowbytes = row_width * 3;
row_info->color_type = 2;
row_info->channels = 3;
}
break;
}
}
}
}
 
/* If the bit depth < 8, it is expanded to 8. Also, if the
* transparency value is supplied, an alpha channel is built.
*/
void /* PRIVATE */
png_do_expand(png_row_infop row_info, png_bytep row,
png_color_16p trans_value)
{
int shift, value;
png_bytep sp, dp;
png_uint_32 i;
png_uint_32 row_width=row_info->width;
 
png_debug(1, "in png_do_expand\n");
#if defined(PNG_USELESS_TESTS_SUPPORTED)
if (row != NULL && row_info != NULL)
#endif
{
if (row_info->color_type == PNG_COLOR_TYPE_GRAY)
{
png_uint_16 gray = (png_uint_16)(trans_value ? trans_value->gray : 0);
 
if (row_info->bit_depth < 8)
{
switch (row_info->bit_depth)
{
case 1:
{
gray = (png_uint_16)(gray*0xff);
sp = row + (png_size_t)((row_width - 1) >> 3);
dp = row + (png_size_t)row_width - 1;
shift = 7 - (int)((row_width + 7) & 0x07);
for (i = 0; i < row_width; i++)
{
if ((*sp >> shift) & 0x01)
*dp = 0xff;
else
*dp = 0;
if (shift == 7)
{
shift = 0;
sp--;
}
else
shift++;
 
dp--;
}
break;
}
case 2:
{
gray = (png_uint_16)(gray*0x55);
sp = row + (png_size_t)((row_width - 1) >> 2);
dp = row + (png_size_t)row_width - 1;
shift = (int)((3 - ((row_width + 3) & 0x03)) << 1);
for (i = 0; i < row_width; i++)
{
value = (*sp >> shift) & 0x03;
*dp = (png_byte)(value | (value << 2) | (value << 4) |
(value << 6));
if (shift == 6)
{
shift = 0;
sp--;
}
else
shift += 2;
 
dp--;
}
break;
}
case 4:
{
gray = (png_uint_16)(gray*0x11);
sp = row + (png_size_t)((row_width - 1) >> 1);
dp = row + (png_size_t)row_width - 1;
shift = (int)((1 - ((row_width + 1) & 0x01)) << 2);
for (i = 0; i < row_width; i++)
{
value = (*sp >> shift) & 0x0f;
*dp = (png_byte)(value | (value << 4));
if (shift == 4)
{
shift = 0;
sp--;
}
else
shift = 4;
 
dp--;
}
break;
}
}
row_info->bit_depth = 8;
row_info->pixel_depth = 8;
row_info->rowbytes = row_width;
}
 
if (trans_value != NULL)
{
if (row_info->bit_depth == 8)
{
sp = row + (png_size_t)row_width - 1;
dp = row + (png_size_t)(row_width << 1) - 1;
for (i = 0; i < row_width; i++)
{
if (*sp == gray)
*dp-- = 0;
else
*dp-- = 0xff;
*dp-- = *sp--;
}
}
else if (row_info->bit_depth == 16)
{
sp = row + row_info->rowbytes - 1;
dp = row + (row_info->rowbytes << 1) - 1;
for (i = 0; i < row_width; i++)
{
if (((png_uint_16)*(sp) |
((png_uint_16)*(sp - 1) << 8)) == gray)
{
*dp-- = 0;
*dp-- = 0;
}
else
{
*dp-- = 0xff;
*dp-- = 0xff;
}
*dp-- = *sp--;
*dp-- = *sp--;
}
}
row_info->color_type = PNG_COLOR_TYPE_GRAY_ALPHA;
row_info->channels = 2;
row_info->pixel_depth = (png_byte)(row_info->bit_depth << 1);
row_info->rowbytes =
((row_width * row_info->pixel_depth) >> 3);
}
}
else if (row_info->color_type == PNG_COLOR_TYPE_RGB && trans_value)
{
if (row_info->bit_depth == 8)
{
sp = row + (png_size_t)row_info->rowbytes - 1;
dp = row + (png_size_t)(row_width << 2) - 1;
for (i = 0; i < row_width; i++)
{
if (*(sp - 2) == trans_value->red &&
*(sp - 1) == trans_value->green &&
*(sp - 0) == trans_value->blue)
*dp-- = 0;
else
*dp-- = 0xff;
*dp-- = *sp--;
*dp-- = *sp--;
*dp-- = *sp--;
}
}
else if (row_info->bit_depth == 16)
{
sp = row + row_info->rowbytes - 1;
dp = row + (png_size_t)(row_width << 3) - 1;
for (i = 0; i < row_width; i++)
{
if ((((png_uint_16)*(sp - 4) |
((png_uint_16)*(sp - 5) << 8)) == trans_value->red) &&
(((png_uint_16)*(sp - 2) |
((png_uint_16)*(sp - 3) << 8)) == trans_value->green) &&
(((png_uint_16)*(sp - 0) |
((png_uint_16)*(sp - 1) << 8)) == trans_value->blue))
{
*dp-- = 0;
*dp-- = 0;
}
else
{
*dp-- = 0xff;
*dp-- = 0xff;
}
*dp-- = *sp--;
*dp-- = *sp--;
*dp-- = *sp--;
*dp-- = *sp--;
*dp-- = *sp--;
*dp-- = *sp--;
}
}
row_info->color_type = PNG_COLOR_TYPE_RGB_ALPHA;
row_info->channels = 4;
row_info->pixel_depth = (png_byte)(row_info->bit_depth << 2);
row_info->rowbytes =
((row_width * row_info->pixel_depth) >> 3);
}
}
}
#endif
 
#if defined(PNG_READ_DITHER_SUPPORTED)
void /* PRIVATE */
png_do_dither(png_row_infop row_info, png_bytep row,
png_bytep palette_lookup, png_bytep dither_lookup)
{
png_bytep sp, dp;
png_uint_32 i;
png_uint_32 row_width=row_info->width;
 
png_debug(1, "in png_do_dither\n");
#if defined(PNG_USELESS_TESTS_SUPPORTED)
if (row != NULL && row_info != NULL)
#endif
{
if (row_info->color_type == PNG_COLOR_TYPE_RGB &&
palette_lookup && row_info->bit_depth == 8)
{
int r, g, b, p;
sp = row;
dp = row;
for (i = 0; i < row_width; i++)
{
r = *sp++;
g = *sp++;
b = *sp++;
 
/* this looks real messy, but the compiler will reduce
it down to a reasonable formula. For example, with
5 bits per color, we get:
p = (((r >> 3) & 0x1f) << 10) |
(((g >> 3) & 0x1f) << 5) |
((b >> 3) & 0x1f);
*/
p = (((r >> (8 - PNG_DITHER_RED_BITS)) &
((1 << PNG_DITHER_RED_BITS) - 1)) <<
(PNG_DITHER_GREEN_BITS + PNG_DITHER_BLUE_BITS)) |
(((g >> (8 - PNG_DITHER_GREEN_BITS)) &
((1 << PNG_DITHER_GREEN_BITS) - 1)) <<
(PNG_DITHER_BLUE_BITS)) |
((b >> (8 - PNG_DITHER_BLUE_BITS)) &
((1 << PNG_DITHER_BLUE_BITS) - 1));
 
*dp++ = palette_lookup[p];
}
row_info->color_type = PNG_COLOR_TYPE_PALETTE;
row_info->channels = 1;
row_info->pixel_depth = row_info->bit_depth;
row_info->rowbytes =
((row_width * row_info->pixel_depth + 7) >> 3);
}
else if (row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA &&
palette_lookup != NULL && row_info->bit_depth == 8)
{
int r, g, b, p;
sp = row;
dp = row;
for (i = 0; i < row_width; i++)
{
r = *sp++;
g = *sp++;
b = *sp++;
sp++;
 
p = (((r >> (8 - PNG_DITHER_RED_BITS)) &
((1 << PNG_DITHER_RED_BITS) - 1)) <<
(PNG_DITHER_GREEN_BITS + PNG_DITHER_BLUE_BITS)) |
(((g >> (8 - PNG_DITHER_GREEN_BITS)) &
((1 << PNG_DITHER_GREEN_BITS) - 1)) <<
(PNG_DITHER_BLUE_BITS)) |
((b >> (8 - PNG_DITHER_BLUE_BITS)) &
((1 << PNG_DITHER_BLUE_BITS) - 1));
 
*dp++ = palette_lookup[p];
}
row_info->color_type = PNG_COLOR_TYPE_PALETTE;
row_info->channels = 1;
row_info->pixel_depth = row_info->bit_depth;
row_info->rowbytes =
((row_width * row_info->pixel_depth + 7) >> 3);
}
else if (row_info->color_type == PNG_COLOR_TYPE_PALETTE &&
dither_lookup && row_info->bit_depth == 8)
{
sp = row;
for (i = 0; i < row_width; i++, sp++)
{
*sp = dither_lookup[*sp];
}
}
}
}
#endif
 
#ifdef PNG_FLOATING_POINT_SUPPORTED
#if defined(PNG_READ_GAMMA_SUPPORTED)
static int png_gamma_shift[] =
{0x10, 0x21, 0x42, 0x84, 0x110, 0x248, 0x550, 0xff0};
 
/* We build the 8- or 16-bit gamma tables here. Note that for 16-bit
* tables, we don't make a full table if we are reducing to 8-bit in
* the future. Note also how the gamma_16 tables are segmented so that
* we don't need to allocate > 64K chunks for a full 16-bit table.
*/
void /* PRIVATE */
png_build_gamma_table(png_structp png_ptr)
{
png_debug(1, "in png_build_gamma_table\n");
if(png_ptr->gamma != 0.0)
{
if (png_ptr->bit_depth <= 8)
{
int i;
double g;
 
if (png_ptr->screen_gamma > .000001)
g = 1.0 / (png_ptr->gamma * png_ptr->screen_gamma);
else
g = 1.0;
 
png_ptr->gamma_table = (png_bytep)png_malloc(png_ptr,
(png_uint_32)256);
 
for (i = 0; i < 256; i++)
{
png_ptr->gamma_table[i] = (png_byte)(pow((double)i / 255.0,
g) * 255.0 + .5);
}
 
#if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
if (png_ptr->transformations & ((PNG_BACKGROUND) | PNG_RGB_TO_GRAY))
{
 
g = 1.0 / (png_ptr->gamma);
 
png_ptr->gamma_to_1 = (png_bytep)png_malloc(png_ptr,
(png_uint_32)256);
 
for (i = 0; i < 256; i++)
{
png_ptr->gamma_to_1[i] = (png_byte)(pow((double)i / 255.0,
g) * 255.0 + .5);
}
 
 
png_ptr->gamma_from_1 = (png_bytep)png_malloc(png_ptr,
(png_uint_32)256);
 
if(png_ptr->screen_gamma > 0.000001)
g = 1.0 / png_ptr->screen_gamma;
else
g = png_ptr->gamma; /* probably doing rgb_to_gray */
 
for (i = 0; i < 256; i++)
{
png_ptr->gamma_from_1[i] = (png_byte)(pow((double)i / 255.0,
g) * 255.0 + .5);
 
}
}
#endif /* PNG_READ_BACKGROUND_SUPPORTED || PNG_RGB_TO_GRAY_SUPPORTED */
}
else
{
double g;
int i, j, shift, num;
int sig_bit;
png_uint_32 ig;
 
if (png_ptr->color_type & PNG_COLOR_MASK_COLOR)
{
sig_bit = (int)png_ptr->sig_bit.red;
if ((int)png_ptr->sig_bit.green > sig_bit)
sig_bit = png_ptr->sig_bit.green;
if ((int)png_ptr->sig_bit.blue > sig_bit)
sig_bit = png_ptr->sig_bit.blue;
}
else
{
sig_bit = (int)png_ptr->sig_bit.gray;
}
 
if (sig_bit > 0)
shift = 16 - sig_bit;
else
shift = 0;
 
if (png_ptr->transformations & PNG_16_TO_8)
{
if (shift < (16 - PNG_MAX_GAMMA_8))
shift = (16 - PNG_MAX_GAMMA_8);
}
 
if (shift > 8)
shift = 8;
if (shift < 0)
shift = 0;
 
png_ptr->gamma_shift = (png_byte)shift;
 
num = (1 << (8 - shift));
 
if (png_ptr->screen_gamma > .000001)
g = 1.0 / (png_ptr->gamma * png_ptr->screen_gamma);
else
g = 1.0;
 
png_ptr->gamma_16_table = (png_uint_16pp)png_malloc(png_ptr,
(png_uint_32)(num * sizeof (png_uint_16p)));
 
if (png_ptr->transformations & (PNG_16_TO_8 | PNG_BACKGROUND))
{
double fin, fout;
png_uint_32 last, max;
 
for (i = 0; i < num; i++)
{
png_ptr->gamma_16_table[i] = (png_uint_16p)png_malloc(png_ptr,
(png_uint_32)(256 * sizeof (png_uint_16)));
}
 
g = 1.0 / g;
last = 0;
for (i = 0; i < 256; i++)
{
fout = ((double)i + 0.5) / 256.0;
fin = pow(fout, g);
max = (png_uint_32)(fin * (double)((png_uint_32)num << 8));
while (last <= max)
{
png_ptr->gamma_16_table[(int)(last & (0xff >> shift))]
[(int)(last >> (8 - shift))] = (png_uint_16)(
(png_uint_16)i | ((png_uint_16)i << 8));
last++;
}
}
while (last < ((png_uint_32)num << 8))
{
png_ptr->gamma_16_table[(int)(last & (0xff >> shift))]
[(int)(last >> (8 - shift))] = (png_uint_16)65535L;
last++;
}
}
else
{
for (i = 0; i < num; i++)
{
png_ptr->gamma_16_table[i] = (png_uint_16p)png_malloc(png_ptr,
(png_uint_32)(256 * sizeof (png_uint_16)));
 
ig = (((png_uint_32)i * (png_uint_32)png_gamma_shift[shift]) >> 4);
for (j = 0; j < 256; j++)
{
png_ptr->gamma_16_table[i][j] =
(png_uint_16)(pow((double)(ig + ((png_uint_32)j << 8)) /
65535.0, g) * 65535.0 + .5);
}
}
}
 
#if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
if (png_ptr->transformations & (PNG_BACKGROUND | PNG_RGB_TO_GRAY))
{
 
g = 1.0 / (png_ptr->gamma);
 
png_ptr->gamma_16_to_1 = (png_uint_16pp)png_malloc(png_ptr,
(png_uint_32)(num * sizeof (png_uint_16p )));
 
for (i = 0; i < num; i++)
{
png_ptr->gamma_16_to_1[i] = (png_uint_16p)png_malloc(png_ptr,
(png_uint_32)(256 * sizeof (png_uint_16)));
 
ig = (((png_uint_32)i *
(png_uint_32)png_gamma_shift[shift]) >> 4);
for (j = 0; j < 256; j++)
{
png_ptr->gamma_16_to_1[i][j] =
(png_uint_16)(pow((double)(ig + ((png_uint_32)j << 8)) /
65535.0, g) * 65535.0 + .5);
}
}
 
if(png_ptr->screen_gamma > 0.000001)
g = 1.0 / png_ptr->screen_gamma;
else
g = png_ptr->gamma; /* probably doing rgb_to_gray */
 
png_ptr->gamma_16_from_1 = (png_uint_16pp)png_malloc(png_ptr,
(png_uint_32)(num * sizeof (png_uint_16p)));
 
for (i = 0; i < num; i++)
{
png_ptr->gamma_16_from_1[i] = (png_uint_16p)png_malloc(png_ptr,
(png_uint_32)(256 * sizeof (png_uint_16)));
 
ig = (((png_uint_32)i *
(png_uint_32)png_gamma_shift[shift]) >> 4);
for (j = 0; j < 256; j++)
{
png_ptr->gamma_16_from_1[i][j] =
(png_uint_16)(pow((double)(ig + ((png_uint_32)j << 8)) /
65535.0, g) * 65535.0 + .5);
}
}
}
#endif /* PNG_READ_BACKGROUND_SUPPORTED || PNG_RGB_TO_GRAY_SUPPORTED */
}
}
}
#endif
/* To do: install integer version of png_build_gamma_table here */
#endif
 
#if defined(PNG_MNG_FEATURES_SUPPORTED)
/* undoes intrapixel differencing */
void /* PRIVATE */
png_do_read_intrapixel(png_row_infop row_info, png_bytep row)
{
png_debug(1, "in png_do_read_intrapixel\n");
if (
#if defined(PNG_USELESS_TESTS_SUPPORTED)
row != NULL && row_info != NULL &&
#endif
(row_info->color_type & PNG_COLOR_MASK_COLOR))
{
int bytes_per_pixel;
png_uint_32 row_width = row_info->width;
if (row_info->bit_depth == 8)
{
png_bytep rp;
png_uint_32 i;
 
if (row_info->color_type == PNG_COLOR_TYPE_RGB)
bytes_per_pixel = 3;
else if (row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA)
bytes_per_pixel = 4;
else
return;
 
for (i = 0, rp = row; i < row_width; i++, rp += bytes_per_pixel)
{
*(rp) = (png_byte)((256 + *rp + *(rp+1))&0xff);
*(rp+2) = (png_byte)((256 + *(rp+2) + *(rp+1))&0xff);
}
}
else if (row_info->bit_depth == 16)
{
png_bytep rp;
png_uint_32 i;
 
if (row_info->color_type == PNG_COLOR_TYPE_RGB)
bytes_per_pixel = 6;
else if (row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA)
bytes_per_pixel = 8;
else
return;
 
for (i = 0, rp = row; i < row_width; i++, rp += bytes_per_pixel)
{
png_uint_32 s0=*(rp )<<8 | *(rp+1);
png_uint_32 s1=*(rp+2)<<8 | *(rp+3);
png_uint_32 s2=*(rp+4)<<8 | *(rp+5);
png_uint_32 red=(65536+s0+s1)&0xffff;
png_uint_32 blue=(65536+s2+s1)&0xffff;
*(rp ) = (png_byte)((red>>8)&0xff);
*(rp+1) = (png_byte)(red&0xff);
*(rp+4) = (png_byte)((blue>>8)&0xff);
*(rp+5) = (png_byte)(blue&0xff);
}
}
}
}
#endif /* PNG_MNG_FEATURES_SUPPORTED */
/shark/trunk/ports/mpg123/makefile
0,0 → 1,33
#
# The mpeg library
#
 
# (see sources for copyrights)
 
ifndef BASE
BASE=../..
endif
 
include $(BASE)/config/config.mk
 
LIBRARY = mp3
 
OBJS_PATH = $(BASE)/ports/mpg123
 
OBJS= decode.o dct64.o common.o decode_2to1.o decode_4to1.o \
tabinit.o layer1.o layer2.o layer3.o
 
#mpg123.o httpget.o xfermem.o
#buffer.o getlopt.o
 
 
#OBJS= $(patsubst %.c,%.o,$(SRCS))
 
#C_WARN += -Wno-unused -Wno-uninitialized -Wno-implicit-function-declaration \
# -Wno-switch -Wno-return-type
 
#C_DEF += -DNOCONTROLS
C_INC += -I.
 
include $(BASE)/config/lib.mk
 
/shark/trunk/ports/mpg123/mpg123.h
0,0 → 1,228
/*
* mpg123 defines
* used source: musicout.h from mpegaudio package
*/
 
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <signal.h>
#include <math.h>
 
#include <unistd.h>
 
#ifdef OS2
#include <float.h>
#endif
 
 
#define MPG123_REMOTE
#define SHUFFLESUPPORT
#ifdef HPUX
#define random rand
#define srandom srand
#endif
 
#define FRONTEND_SAJBER 1
#define FRONTEND_TK3PLAY 2
 
 
#ifdef SGI
#include <audio.h>
#endif
 
#include "xfermem.h"
 
#ifdef SUNOS
#define memmove(dst,src,size) bcopy(src,dst,size)
#endif
 
#ifdef REAL_IS_FLOAT
# define real float
#elif defined(REAL_IS_LONG_DOUBLE)
# define real long double
#else
# define real double
#endif
 
#ifdef __GNUC__
#define INLINE inline
#else
#define INLINE
#endif
 
#if defined(LINUX) || defined(__FreeBSD__)
#define VOXWARE
#endif
 
#include "audio.h"
 
/* AUDIOBUFSIZE = n*64 with n=1,2,3 ... */
#define AUDIOBUFSIZE 16384
 
#define FALSE 0
#define TRUE 1
 
#define MAX_NAME_SIZE 81
#define SBLIMIT 32
#define SCALE_BLOCK 12
#define SSLIMIT 18
 
#define MPG_MD_STEREO 0
#define MPG_MD_JOINT_STEREO 1
#define MPG_MD_DUAL_CHANNEL 2
#define MPG_MD_MONO 3
 
#define MAXOUTBURST 32768
 
 
struct al_table
{
short bits;
short d;
};
 
struct frame {
struct al_table *alloc;
int (*synth)(real *,int,unsigned char *);
int (*synth_mono)(real *,unsigned char *);
int stereo;
int jsbound;
int single;
int II_sblimit;
int lsf;
int mpeg25;
int down_sample;
int header_change;
int block_size;
int lay;
int (*do_layer)(struct frame *fr,int,struct audio_info_struct *);
int error_protection;
int bitrate_index;
int sampling_frequency;
int padding;
int extension;
int mode;
int mode_ext;
int copyright;
int original;
int emphasis;
};
 
extern int outmode;
extern int tryresync;
extern int quiet;
extern int halfspeed;
extern int usebuffer;
extern int buffer_fd[2];
extern txfermem *buffermem;
extern char *prgName, *prgVersion;
 
#ifndef OS2
extern void buffer_loop(struct audio_info_struct *ai, sigset_t *oldsigset);
#endif
 
/* ------ Declarations from "httpget.c" ------ */
 
extern char *proxyurl;
extern unsigned long proxyip;
extern FILE *http_open (char *url);
 
/* ------ Declarations from "common.c" ------ */
 
extern void audio_flush(int, struct audio_info_struct *);
extern void (*catchsignal(int signum, void(*handler)()))();
 
extern void print_header(struct frame *);
extern void print_header_compact(struct frame *);
 
extern char *strndup(const char *src, int num);
extern int split_dir_file(const char *path, char **dname, char **fname);
 
extern unsigned int get1bit(void);
extern unsigned int getbits(int);
extern unsigned int getbits_fast(int);
 
extern void set_pointer(long);
 
extern unsigned char *pcm_sample;
extern int pcm_point;
extern int audiobufsize;
 
#ifdef VARMODESUPPORT
extern int varmode;
extern int playlimit;
#endif
 
struct III_sideinfo
{
unsigned main_data_begin;
unsigned private_bits;
struct {
struct gr_info_s {
int scfsi;
unsigned part2_3_length;
unsigned big_values;
unsigned scalefac_compress;
unsigned block_type;
unsigned mixed_block_flag;
unsigned table_select[3];
unsigned subblock_gain[3];
unsigned maxband[3];
unsigned maxbandl;
unsigned maxb;
unsigned region1start;
unsigned region2start;
unsigned preflag;
unsigned scalefac_scale;
unsigned count1table_select;
real *full_gain[3];
real *pow2gain;
} gr[2];
} ch[2];
};
 
extern void open_stream(char *,int fd);
extern void close_stream(void);
extern long tell_stream(void);
extern void read_frame_init (void);
extern int read_frame(struct frame *fr);
extern int back_frame(struct frame *fr,int num);
extern void play_frame(int init,struct frame *fr);
extern int do_layer3(struct frame *fr,int,struct audio_info_struct *);
extern int do_layer2(struct frame *fr,int,struct audio_info_struct *);
extern int do_layer1(struct frame *fr,int,struct audio_info_struct *);
extern int synth_1to1 (real *,int,unsigned char *);
extern int synth_1to1_8bit (real *,int,unsigned char *);
extern int synth_2to1 (real *,int,unsigned char *);
extern int synth_2to1_8bit (real *,int,unsigned char *);
extern int synth_4to1 (real *,int,unsigned char *);
extern int synth_4to1_8bit (real *,int,unsigned char *);
extern int synth_1to1_mono (real *,unsigned char *);
extern int synth_1to1_8bit_mono (real *,unsigned char *);
extern int synth_2to1_mono (real *,unsigned char *);
extern int synth_2to1_8bit_mono (real *,unsigned char *);
extern int synth_4to1_mono (real *,unsigned char *);
extern int synth_4to1_8bit_mono (real *,unsigned char *);
extern void rewindNbits(int bits);
extern int hsstell(void);
extern void set_pointer(long);
extern void huffman_decoder(int ,int *);
extern void huffman_count1(int,int *);
 
extern void init_layer3(int);
extern void init_layer2(void);
extern void make_decode_tables(long scale);
extern void make_conv16to8_table(int);
extern void dct64(real *,real *,real *);
 
extern void control_sajber(struct frame *fr);
extern void control_tk3play(struct frame *fr);
 
extern unsigned char *conv16to8;
extern long freqs[7];
extern real muls[27][64];
extern real decwin[512+32];
extern real *pnts[5];
 
 
/shark/trunk/ports/mpg123/layer2.c
0,0 → 1,265
/*
* Mpeg Layer-2 audio decoder
* --------------------------
* copyright (c) 1995 by Michael Hipp, All rights reserved. See also 'README'
*
*/
 
#include "mpg123.h"
 
static int grp_3tab[32 * 3] = { 0, }; /* used: 27 */
static int grp_5tab[128 * 3] = { 0, }; /* used: 125 */
static int grp_9tab[1024 * 3] = { 0, }; /* used: 729 */
 
real muls[27][64]; /* also used by layer 1 */
 
void init_layer2(void)
{
static double mulmul[27] = {
0.0 , -2.0/3.0 , 2.0/3.0 ,
2.0/7.0 , 2.0/15.0 , 2.0/31.0, 2.0/63.0 , 2.0/127.0 , 2.0/255.0 ,
2.0/511.0 , 2.0/1023.0 , 2.0/2047.0 , 2.0/4095.0 , 2.0/8191.0 ,
2.0/16383.0 , 2.0/32767.0 , 2.0/65535.0 ,
-4.0/5.0 , -2.0/5.0 , 2.0/5.0, 4.0/5.0 ,
-8.0/9.0 , -4.0/9.0 , -2.0/9.0 , 2.0/9.0 , 4.0/9.0 , 8.0/9.0 };
static int base[3][9] = {
{ 1 , 0, 2 , } ,
{ 17, 18, 0 , 19, 20 , } ,
{ 21, 1, 22, 23, 0, 24, 25, 2, 26 } };
int i,j,k,l,len;
real *table;
static int tablen[3] = { 3 , 5 , 9 };
static int *itable,*tables[3] = { grp_3tab , grp_5tab , grp_9tab };
 
for(i=0;i<3;i++)
{
itable = tables[i];
len = tablen[i];
for(j=0;j<len;j++)
for(k=0;k<len;k++)
for(l=0;l<len;l++)
{
*itable++ = base[i][l];
*itable++ = base[i][k];
*itable++ = base[i][j];
}
}
 
for(k=0;k<27;k++)
{
double m=mulmul[k];
table = muls[k];
for(j=3,i=0;i<63;i++,j--)
*table++ = m * pow(2.0,(double) j / 3.0);
*table++ = 0.0;
}
}
 
 
void II_step_one(unsigned int *bit_alloc,int *scale,struct frame *fr)
{
int stereo = fr->stereo-1;
int sblimit = fr->II_sblimit;
int jsbound = fr->jsbound;
int sblimit2 = fr->II_sblimit<<stereo;
struct al_table *alloc1 = fr->alloc;
int i;
static unsigned int scfsi_buf[64];
unsigned int *scfsi,*bita;
int sc,step;
 
bita = bit_alloc;
if(stereo)
{
for (i=jsbound;i;i--,alloc1+=(1<<step))
{
*bita++ = (char) getbits(step=alloc1->bits);
*bita++ = (char) getbits(step);
}
for (i=sblimit-jsbound;i;i--,alloc1+=(1<<step))
{
bita[0] = (char) getbits(step=alloc1->bits);
bita[1] = bita[0];
bita+=2;
}
bita = bit_alloc;
scfsi=scfsi_buf;
for (i=sblimit2;i;i--)
if (*bita++)
*scfsi++ = (char) getbits_fast(2);
}
else /* mono */
{
for (i=sblimit;i;i--,alloc1+=(1<<step))
*bita++ = (char) getbits(step=alloc1->bits);
bita = bit_alloc;
scfsi=scfsi_buf;
for (i=sblimit;i;i--)
if (*bita++)
*scfsi++ = (char) getbits_fast(2);
}
 
bita = bit_alloc;
scfsi=scfsi_buf;
for (i=sblimit2;i;i--)
if (*bita++)
switch (*scfsi++)
{
case 0:
*scale++ = getbits_fast(6);
*scale++ = getbits_fast(6);
*scale++ = getbits_fast(6);
break;
case 1 :
*scale++ = sc = getbits_fast(6);
*scale++ = sc;
*scale++ = getbits_fast(6);
break;
case 2:
*scale++ = sc = getbits_fast(6);
*scale++ = sc;
*scale++ = sc;
break;
default: /* case 3 */
*scale++ = getbits_fast(6);
*scale++ = sc = getbits_fast(6);
*scale++ = sc;
break;
}
 
}
 
void II_step_two(unsigned int *bit_alloc,real fraction[2][4][SBLIMIT],int *scale,struct frame *fr,int x1)
{
int i,j,k,ba;
int stereo = fr->stereo;
int sblimit = fr->II_sblimit;
int jsbound = fr->jsbound;
struct al_table *alloc2,*alloc1 = fr->alloc;
unsigned int *bita=bit_alloc;
int d1,step;
 
for (i=0;i<jsbound;i++,alloc1+=(1<<step))
{
step = alloc1->bits;
for (j=0;j<stereo;j++)
{
if ( (ba=*bita++) )
{
k=(alloc2 = alloc1+ba)->bits;
if( (d1=alloc2->d) < 0)
{
real cm=muls[k][scale[x1]];
fraction[j][0][i] = ((real) ((int)getbits(k) + d1)) * cm;
fraction[j][1][i] = ((real) ((int)getbits(k) + d1)) * cm;
fraction[j][2][i] = ((real) ((int)getbits(k) + d1)) * cm;
}
else
{
static int *table[] = { 0,0,0,grp_3tab,0,grp_5tab,0,0,0,grp_9tab };
unsigned int idx,*tab,m=scale[x1];
idx = (unsigned int) getbits(k);
tab = (unsigned int *) (table[d1] + idx + idx + idx);
fraction[j][0][i] = muls[*tab++][m];
fraction[j][1][i] = muls[*tab++][m];
fraction[j][2][i] = muls[*tab][m];
}
scale+=3;
}
else
fraction[j][0][i] = fraction[j][1][i] = fraction[j][2][i] = 0.0;
}
}
 
for (i=jsbound;i<sblimit;i++,alloc1+=(1<<step))
{
step = alloc1->bits;
bita++; /* channel 1 and channel 2 bitalloc are the same */
if ( (ba=*bita++) )
{
k=(alloc2 = alloc1+ba)->bits;
if( (d1=alloc2->d) < 0)
{
real cm;
cm=muls[k][scale[x1+3]];
fraction[1][0][i] = (fraction[0][0][i] = (real) ((int)getbits(k) + d1) ) * cm;
fraction[1][1][i] = (fraction[0][1][i] = (real) ((int)getbits(k) + d1) ) * cm;
fraction[1][2][i] = (fraction[0][2][i] = (real) ((int)getbits(k) + d1) ) * cm;
cm=muls[k][scale[x1]];
fraction[0][0][i] *= cm; fraction[0][1][i] *= cm; fraction[0][2][i] *= cm;
}
else
{
static int *table[] = { 0,0,0,grp_3tab,0,grp_5tab,0,0,0,grp_9tab };
unsigned int idx,*tab,m1,m2;
m1 = scale[x1]; m2 = scale[x1+3];
idx = (unsigned int) getbits(k);
tab = (unsigned int *) (table[d1] + idx + idx + idx);
fraction[0][0][i] = muls[*tab][m1]; fraction[1][0][i] = muls[*tab++][m2];
fraction[0][1][i] = muls[*tab][m1]; fraction[1][1][i] = muls[*tab++][m2];
fraction[0][2][i] = muls[*tab][m1]; fraction[1][2][i] = muls[*tab][m2];
}
scale+=6;
}
else {
fraction[0][0][i] = fraction[0][1][i] = fraction[0][2][i] =
fraction[1][0][i] = fraction[1][1][i] = fraction[1][2][i] = 0.0;
}
/*
should we use individual scalefac for channel 2 or
is the current way the right one , where we just copy channel 1 to
channel 2 ??
The current 'strange' thing is, that we throw away the scalefac
values for the second channel ...!!
-> changed .. now we use the scalefac values of channel one !!
*/
}
 
if(sblimit > (SBLIMIT>>fr->down_sample) )
sblimit = SBLIMIT>>fr->down_sample;
 
for(i=sblimit;i<SBLIMIT;i++)
for (j=0;j<stereo;j++)
fraction[j][0][i] = fraction[j][1][i] = fraction[j][2][i] = 0.0;
 
}
 
int do_layer2(struct frame *fr,int outmode,struct audio_info_struct *ai)
{
int clip=0;
int i,j;
int stereo = fr->stereo;
real fraction[2][4][SBLIMIT]; /* pick_table clears unused subbands */
unsigned int bit_alloc[64];
int scale[192];
int single = fr->single;
 
if(stereo == 1 || single == 3)
single = 0;
 
II_step_one(bit_alloc, scale, fr);
 
for (i=0;i<SCALE_BLOCK;i++)
{
II_step_two(bit_alloc,fraction,scale,fr,i>>2);
for (j=0;j<3;j++)
{
if(single >= 0)
{
clip += (fr->synth_mono) (fraction[single][j],pcm_sample+pcm_point);
}
else {
clip += (fr->synth) (fraction[0][j],0,pcm_sample+pcm_point);
clip += (fr->synth) (fraction[1][j],1,pcm_sample+pcm_point);
}
pcm_point += fr->block_size;
 
if(pcm_point == audiobufsize)
audio_flush(outmode,ai);
}
}
 
return clip;
}
 
 
/shark/trunk/ports/mpg123/layer3.c
0,0 → 1,2112
/*
* Mpeg Layer-3 audio decoder
* --------------------------
* copyright (c) 1995,1996,1997 by Michael Hipp.
* All rights reserved. See also 'README'
*
* - I'm currently working on that .. needs a few more optimizations,
* though the code is now fast enough to run in realtime on a 100Mhz 486
* - a few personal notes are in german ..
*
* used source:
* mpeg1_iis package
*/
 
#include "mpg123.h"
#include "huffman.h"
 
#if 0
#include "get1bit.h"
#endif
 
static real ispow[8207];
static real aa_ca[8],aa_cs[8];
static real COS1[12][6];
static real win[4][36];
static real win1[4][36];
static real gainpow2[256+118+4];
static real COS9[9];
static real COS6_1,COS6_2;
static real tfcos36[9];
static real tfcos12[3];
#ifdef NEW_DCT9
static real cos9[3],cos18[3];
#endif
 
struct bandInfoStruct {
int longIdx[23];
int longDiff[22];
int shortIdx[14];
int shortDiff[13];
};
 
int longLimit[7][23];
int shortLimit[7][14];
 
struct bandInfoStruct bandInfo[7] = {
 
/* MPEG 1.0 */
{ {0,4,8,12,16,20,24,30,36,44,52,62,74, 90,110,134,162,196,238,288,342,418,576},
{4,4,4,4,4,4,6,6,8, 8,10,12,16,20,24,28,34,42,50,54, 76,158},
{0,4*3,8*3,12*3,16*3,22*3,30*3,40*3,52*3,66*3, 84*3,106*3,136*3,192*3},
{4,4,4,4,6,8,10,12,14,18,22,30,56} } ,
 
{ {0,4,8,12,16,20,24,30,36,42,50,60,72, 88,106,128,156,190,230,276,330,384,576},
{4,4,4,4,4,4,6,6,6, 8,10,12,16,18,22,28,34,40,46,54, 54,192},
{0,4*3,8*3,12*3,16*3,22*3,28*3,38*3,50*3,64*3, 80*3,100*3,126*3,192*3},
{4,4,4,4,6,6,10,12,14,16,20,26,66} } ,
 
{ {0,4,8,12,16,20,24,30,36,44,54,66,82,102,126,156,194,240,296,364,448,550,576} ,
{4,4,4,4,4,4,6,6,8,10,12,16,20,24,30,38,46,56,68,84,102, 26} ,
{0,4*3,8*3,12*3,16*3,22*3,30*3,42*3,58*3,78*3,104*3,138*3,180*3,192*3} ,
{4,4,4,4,6,8,12,16,20,26,34,42,12} } ,
 
/* MPEG 2.0 */
{ {0,6,12,18,24,30,36,44,54,66,80,96,116,140,168,200,238,284,336,396,464,522,576},
{6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54 } ,
{0,4*3,8*3,12*3,18*3,24*3,32*3,42*3,56*3,74*3,100*3,132*3,174*3,192*3} ,
{4,4,4,6,6,8,10,14,18,26,32,42,18 } } ,
 
{ {0,6,12,18,24,30,36,44,54,66,80,96,114,136,162,194,232,278,330,394,464,540,576},
{6,6,6,6,6,6,8,10,12,14,16,18,22,26,32,38,46,52,64,70,76,36 } ,
{0,4*3,8*3,12*3,18*3,26*3,36*3,48*3,62*3,80*3,104*3,136*3,180*3,192*3} ,
{4,4,4,6,8,10,12,14,18,24,32,44,12 } } ,
 
{ {0,6,12,18,24,30,36,44,54,66,80,96,116,140,168,200,238,284,336,396,464,522,576},
{6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54 },
{0,4*3,8*3,12*3,18*3,26*3,36*3,48*3,62*3,80*3,104*3,134*3,174*3,192*3},
{4,4,4,6,8,10,12,14,18,24,30,40,18 } } ,
 
/* MPEG 2.5, wrong! table (it's just a copy of MPEG 2.0/44.1kHz) */
{ {0,6,12,18,24,30,36,44,54,66,80,96,116,140,168,200,238,284,336,396,464,522,576},
{6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54 } ,
{0,4*3,8*3,12*3,18*3,24*3,32*3,42*3,56*3,74*3,100*3,132*3,174*3,192*3} ,
{4,4,4,6,6,8,10,14,18,26,32,42,18 } } ,
};
 
static int mapbuf0[7][152];
static int mapbuf1[7][156];
static int mapbuf2[7][44];
static int *map[7][3];
static int *mapend[7][3];
 
static unsigned int n_slen2[512]; /* MPEG 2.0 slen for 'normal' mode */
static unsigned int i_slen2[256]; /* MPEG 2.0 slen for intensity stereo */
 
static real tan1_1[16],tan2_1[16],tan1_2[16],tan2_2[16];
static real pow1_1[2][16],pow2_1[2][16],pow1_2[2][16],pow2_2[2][16];
 
/*
* init tables for layer-3
*/
void init_layer3(int down_samp)
{
int i,j,k,l;
 
for(i=-256;i<118+4;i++)
gainpow2[i+256] = pow((double)2.0,-0.25 * (double) (i+210) );
 
for(i=0;i<8207;i++)
ispow[i] = pow((double)i,(double)4.0/3.0);
 
for (i=0;i<8;i++)
{
static double Ci[8]={-0.6,-0.535,-0.33,-0.185,-0.095,-0.041,-0.0142,-0.0037};
double sq=sqrt(1.0+Ci[i]*Ci[i]);
aa_cs[i] = 1.0/sq;
aa_ca[i] = Ci[i]/sq;
}
 
for(i=0;i<18;i++)
{
win[0][i] = win[1][i] = 0.5 * sin( M_PI / 72.0 * (double) (2*(i+0) +1) ) / cos ( M_PI * (double) (2*(i+0) +19) / 72.0 );
win[0][i+18] = win[3][i+18] = 0.5 * sin( M_PI / 72.0 * (double) (2*(i+18)+1) ) / cos ( M_PI * (double) (2*(i+18)+19) / 72.0 );
}
for(i=0;i<6;i++)
{
win[1][i+18] = 0.5 / cos ( M_PI * (double) (2*(i+18)+19) / 72.0 );
win[3][i+12] = 0.5 / cos ( M_PI * (double) (2*(i+12)+19) / 72.0 );
win[1][i+24] = 0.5 * sin( M_PI / 24.0 * (double) (2*i+13) ) / cos ( M_PI * (double) (2*(i+24)+19) / 72.0 );
win[1][i+30] = win[3][i] = 0.0;
win[3][i+6 ] = 0.5 * sin( M_PI / 24.0 * (double) (2*i+1) ) / cos ( M_PI * (double) (2*(i+6 )+19) / 72.0 );
}
 
for(i=0;i<9;i++)
COS9[i] = cos( M_PI / 18.0 * (double) i);
 
for(i=0;i<9;i++)
tfcos36[i] = 0.5 / cos ( M_PI * (double) (i*2+1) / 36.0 );
for(i=0;i<3;i++)
tfcos12[i] = 0.5 / cos ( M_PI * (double) (i*2+1) / 12.0 );
 
COS6_1 = cos( M_PI / 6.0 * (double) 1);
COS6_2 = cos( M_PI / 6.0 * (double) 2);
 
#ifdef NEW_DCT9
cos9[0] = cos(1.0*M_PI/9.0);
cos9[1] = cos(5.0*M_PI/9.0);
cos9[2] = cos(7.0*M_PI/9.0);
cos18[0] = cos(1.0*M_PI/18.0);
cos18[1] = cos(11.0*M_PI/18.0);
cos18[2] = cos(13.0*M_PI/18.0);
#endif
 
for(i=0;i<12;i++)
{
win[2][i] = 0.5 * sin( M_PI / 24.0 * (double) (2*i+1) ) / cos ( M_PI * (double) (2*i+7) / 24.0 );
for(j=0;j<6;j++)
COS1[i][j] = cos( M_PI / 24.0 * (double) ((2*i+7)*(2*j+1)) );
}
 
for(j=0;j<4;j++) {
static int len[4] = { 36,36,12,36 };
for(i=0;i<len[j];i+=2)
win1[j][i] = + win[j][i];
for(i=1;i<len[j];i+=2)
win1[j][i] = - win[j][i];
}
 
for(i=0;i<16;i++)
{
double t = tan( (double) i * M_PI / 12.0 );
tan1_1[i] = t / (1.0+t);
tan2_1[i] = 1.0 / (1.0 + t);
tan1_2[i] = M_SQRT2 * t / (1.0+t);
tan2_2[i] = M_SQRT2 / (1.0 + t);
 
for(j=0;j<2;j++) {
double base = pow(2.0,-0.25*(j+1.0));
double p1=1.0,p2=1.0;
if(i > 0) {
if( i & 1 )
p1 = pow(base,(i+1.0)*0.5);
else
p2 = pow(base,i*0.5);
}
pow1_1[j][i] = p1;
pow2_1[j][i] = p2;
pow1_2[j][i] = M_SQRT2 * p1;
pow2_2[j][i] = M_SQRT2 * p2;
}
}
 
for(j=0;j<7;j++)
{
struct bandInfoStruct *bi = &bandInfo[j];
int *mp;
int cb,lwin;
int *bdf;
 
mp = map[j][0] = mapbuf0[j];
bdf = bi->longDiff;
for(i=0,cb = 0; cb < 8 ; cb++,i+=*bdf++) {
*mp++ = (*bdf) >> 1;
*mp++ = i;
*mp++ = 3;
*mp++ = cb;
}
bdf = bi->shortDiff+3;
for(cb=3;cb<13;cb++) {
int l = (*bdf++) >> 1;
for(lwin=0;lwin<3;lwin++) {
*mp++ = l;
*mp++ = i + lwin;
*mp++ = lwin;
*mp++ = cb;
}
i += 6*l;
}
mapend[j][0] = mp;
 
mp = map[j][1] = mapbuf1[j];
bdf = bi->shortDiff+0;
for(i=0,cb=0;cb<13;cb++) {
int l = (*bdf++) >> 1;
for(lwin=0;lwin<3;lwin++) {
*mp++ = l;
*mp++ = i + lwin;
*mp++ = lwin;
*mp++ = cb;
}
i += 6*l;
}
mapend[j][1] = mp;
 
mp = map[j][2] = mapbuf2[j];
bdf = bi->longDiff;
for(cb = 0; cb < 22 ; cb++) {
*mp++ = (*bdf++) >> 1;
*mp++ = cb;
}
mapend[j][2] = mp;
 
}
 
for(j=0;j<7;j++) {
for(i=0;i<23;i++) {
longLimit[j][i] = (bandInfo[j].longIdx[i] - 1 + 8) / 18 + 1;
if(longLimit[j][i] > (SBLIMIT >> down_samp) )
longLimit[j][i] = SBLIMIT >> down_samp;
}
for(i=0;i<14;i++) {
shortLimit[j][i] = (bandInfo[j].shortIdx[i] - 1) / 18 + 1;
if(shortLimit[j][i] > (SBLIMIT >> down_samp) )
shortLimit[j][i] = SBLIMIT >> down_samp;
}
}
 
for(i=0;i<5;i++) {
for(j=0;j<6;j++) {
for(k=0;k<6;k++) {
int n = k + j * 6 + i * 36;
i_slen2[n] = i|(j<<3)|(k<<6)|(3<<12);
}
}
}
for(i=0;i<4;i++) {
for(j=0;j<4;j++) {
for(k=0;k<4;k++) {
int n = k + j * 4 + i * 16;
i_slen2[n+180] = i|(j<<3)|(k<<6)|(4<<12);
}
}
}
for(i=0;i<4;i++) {
for(j=0;j<3;j++) {
int n = j + i * 3;
i_slen2[n+244] = i|(j<<3) | (5<<12);
n_slen2[n+500] = i|(j<<3) | (2<<12) | (1<<15);
}
}
 
for(i=0;i<5;i++) {
for(j=0;j<5;j++) {
for(k=0;k<4;k++) {
for(l=0;l<4;l++) {
int n = l + k * 4 + j * 16 + i * 80;
n_slen2[n] = i|(j<<3)|(k<<6)|(l<<9)|(0<<12);
}
}
}
}
for(i=0;i<5;i++) {
for(j=0;j<5;j++) {
for(k=0;k<4;k++) {
int n = k + j * 4 + i * 20;
n_slen2[n+400] = i|(j<<3)|(k<<6)|(1<<12);
}
}
}
}
 
/*
* read additional side information
*/
static void III_get_side_info_1(struct III_sideinfo *si,int stereo,
int ms_stereo,long sfreq,int single)
{
int ch, gr;
int powdiff = (single == 3) ? 4 : 0;
 
si->main_data_begin = getbits(9);
if (stereo == 1)
si->private_bits = getbits_fast(5);
else
si->private_bits = getbits_fast(3);
 
for (ch=0; ch<stereo; ch++) {
si->ch[ch].gr[0].scfsi = -1;
si->ch[ch].gr[1].scfsi = getbits_fast(4);
}
 
for (gr=0; gr<2; gr++)
{
for (ch=0; ch<stereo; ch++)
{
register struct gr_info_s *gr_info = &(si->ch[ch].gr[gr]);
 
gr_info->part2_3_length = getbits(12);
gr_info->big_values = getbits_fast(9);
gr_info->pow2gain = gainpow2+256 - getbits_fast(8) + powdiff;
if(ms_stereo)
gr_info->pow2gain += 2;
gr_info->scalefac_compress = getbits_fast(4);
/* window-switching flag == 1 for block_Type != 0 .. and block-type == 0 -> win-sw-flag = 0 */
if(get1bit())
{
int i;
gr_info->block_type = getbits_fast(2);
gr_info->mixed_block_flag = get1bit();
gr_info->table_select[0] = getbits_fast(5);
gr_info->table_select[1] = getbits_fast(5);
/*
* table_select[2] not needed, because there is no region2,
* but to satisfy some verifications tools we set it either.
*/
gr_info->table_select[2] = 0;
for(i=0;i<3;i++)
gr_info->full_gain[i] = gr_info->pow2gain + (getbits_fast(3)<<3);
 
if(gr_info->block_type == 0) {
fprintf(stderr,"Blocktype == 0 and window-switching == 1 not allowed.\n");
exit(1);
}
/* region_count/start parameters are implicit in this case. */
gr_info->region1start = 36>>1;
gr_info->region2start = 576>>1;
}
else
{
int i,r0c,r1c;
for (i=0; i<3; i++)
gr_info->table_select[i] = getbits_fast(5);
r0c = getbits_fast(4);
r1c = getbits_fast(3);
gr_info->region1start = bandInfo[sfreq].longIdx[r0c+1] >> 1 ;
gr_info->region2start = bandInfo[sfreq].longIdx[r0c+1+r1c+1] >> 1;
gr_info->block_type = 0;
gr_info->mixed_block_flag = 0;
}
gr_info->preflag = get1bit();
gr_info->scalefac_scale = get1bit();
gr_info->count1table_select = get1bit();
}
}
}
 
/*
* Side Info for MPEG 2.0 / LSF
*/
static void III_get_side_info_2(struct III_sideinfo *si,int stereo,
int ms_stereo,long sfreq,int single)
{
int ch;
int powdiff = (single == 3) ? 4 : 0;
 
si->main_data_begin = getbits(8);
if (stereo == 1)
si->private_bits = get1bit();
else
si->private_bits = getbits_fast(2);
 
for (ch=0; ch<stereo; ch++)
{
register struct gr_info_s *gr_info = &(si->ch[ch].gr[0]);
 
gr_info->part2_3_length = getbits(12);
gr_info->big_values = getbits_fast(9);
gr_info->pow2gain = gainpow2+256 - getbits_fast(8) + powdiff;
if(ms_stereo)
gr_info->pow2gain += 2;
gr_info->scalefac_compress = getbits(9);
/* window-switching flag == 1 for block_Type != 0 .. and block-type == 0 -> win-sw-flag = 0 */
if(get1bit())
{
int i;
gr_info->block_type = getbits_fast(2);
gr_info->mixed_block_flag = get1bit();
gr_info->table_select[0] = getbits_fast(5);
gr_info->table_select[1] = getbits_fast(5);
/*
* table_select[2] not needed, because there is no region2,
* but to satisfy some verifications tools we set it either.
*/
gr_info->table_select[2] = 0;
for(i=0;i<3;i++)
gr_info->full_gain[i] = gr_info->pow2gain + (getbits_fast(3)<<3);
 
if(gr_info->block_type == 0) {
fprintf(stderr,"Blocktype == 0 and window-switching == 1 not allowed.\n");
exit(1);
}
/* region_count/start parameters are implicit in this case. */
/* check this again! */
if(gr_info->block_type == 2)
gr_info->region1start = 36>>1;
else {
gr_info->region1start = 54>>1;
}
gr_info->region2start = 576>>1;
}
else
{
int i,r0c,r1c;
for (i=0; i<3; i++)
gr_info->table_select[i] = getbits_fast(5);
r0c = getbits_fast(4);
r1c = getbits_fast(3);
gr_info->region1start = bandInfo[sfreq].longIdx[r0c+1] >> 1 ;
gr_info->region2start = bandInfo[sfreq].longIdx[r0c+1+r1c+1] >> 1;
gr_info->block_type = 0;
gr_info->mixed_block_flag = 0;
}
gr_info->scalefac_scale = get1bit();
gr_info->count1table_select = get1bit();
}
}
 
/*
* read scalefactors
*/
static int III_get_scale_factors_1(int *scf,struct gr_info_s *gr_info)
{
static unsigned char slen[2][16] = {
{0, 0, 0, 0, 3, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4},
{0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 1, 2, 3, 2, 3}
};
int numbits;
int num0 = slen[0][gr_info->scalefac_compress];
int num1 = slen[1][gr_info->scalefac_compress];
 
if (gr_info->block_type == 2)
{
int i=18;
numbits = (num0 + num1) * 18;
 
if (gr_info->mixed_block_flag) {
for (i=8;i;i--)
*scf++ = getbits_fast(num0);
i = 9;
numbits -= num0; /* num0 * 17 + num1 * 18 */
}
 
for (;i;i--)
*scf++ = getbits_fast(num0);
for (i = 18; i; i--)
*scf++ = getbits_fast(num1);
*scf++ = 0; *scf++ = 0; *scf++ = 0; /* short[13][0..2] = 0 */
}
else
{
int i;
int scfsi = gr_info->scfsi;
 
if(scfsi < 0) { /* scfsi < 0 => granule == 0 */
for(i=11;i;i--)
*scf++ = getbits_fast(num0);
for(i=10;i;i--)
*scf++ = getbits_fast(num1);
numbits = (num0 + num1) * 10 + num0;
}
else {
numbits = 0;
if(!(scfsi & 0x8)) {
for (i=6;i;i--)
*scf++ = getbits_fast(num0);
numbits += num0 * 6;
}
else {
*scf++ = 0; *scf++ = 0; *scf++ = 0; /* set to ZERO necessary? */
*scf++ = 0; *scf++ = 0; *scf++ = 0;
}
 
if(!(scfsi & 0x4)) {
for (i=5;i;i--)
*scf++ = getbits_fast(num0);
numbits += num0 * 5;
}
else {
*scf++ = 0; *scf++ = 0; *scf++ = 0; /* set to ZERO necessary? */
*scf++ = 0; *scf++ = 0;
}
 
if(!(scfsi & 0x2)) {
for(i=5;i;i--)
*scf++ = getbits_fast(num1);
numbits += num1 * 5;
}
else {
*scf++ = 0; *scf++ = 0; *scf++ = 0; /* set to ZERO necessary? */
*scf++ = 0; *scf++ = 0;
}
 
if(!(scfsi & 0x1)) {
for (i=5;i;i--)
*scf++ = getbits_fast(num1);
numbits += num1 * 5;
}
else {
*scf++ = 0; *scf++ = 0; *scf++ = 0; /* set to ZERO necessary? */
*scf++ = 0; *scf++ = 0;
}
}
 
*scf++ = 0; /* no l[21] in original sources */
}
return numbits;
}
 
static int III_get_scale_factors_2(int *scf,struct gr_info_s *gr_info,int i_stereo)
{
unsigned char *pnt;
int i,j;
unsigned int slen;
int n = 0;
int numbits = 0;
 
static unsigned char stab[3][6][4] = {
{ { 6, 5, 5,5 } , { 6, 5, 7,3 } , { 11,10,0,0} ,
{ 7, 7, 7,0 } , { 6, 6, 6,3 } , { 8, 8,5,0} } ,
{ { 9, 9, 9,9 } , { 9, 9,12,6 } , { 18,18,0,0} ,
{12,12,12,0 } , {12, 9, 9,6 } , { 15,12,9,0} } ,
{ { 6, 9, 9,9 } , { 6, 9,12,6 } , { 15,18,0,0} ,
{ 6,15,12,0 } , { 6,12, 9,6 } , { 6,18,9,0} } };
 
if(i_stereo) /* i_stereo AND second channel -> do_layer3() checks this */
slen = i_slen2[gr_info->scalefac_compress>>1];
else
slen = n_slen2[gr_info->scalefac_compress];
 
gr_info->preflag = (slen>>15) & 0x1;
 
n = 0;
if( gr_info->block_type == 2 ) {
n++;
if(gr_info->mixed_block_flag)
n++;
}
 
pnt = stab[n][(slen>>12)&0x7];
 
for(i=0;i<4;i++) {
int num = slen & 0x7;
slen >>= 3;
if(num) {
for(j=0;j<pnt[i];j++)
*scf++ = getbits(num);
numbits += pnt[i] * num;
}
else {
for(j=0;j<pnt[i];j++)
*scf++ = 0;
}
}
n = (n << 1) + 1;
for(i=0;i<n;i++)
*scf++ = 0;
 
return numbits;
}
 
static int pretab1[22] = {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,3,3,3,2,0};
static int pretab2[22] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
 
/*
* don't forget to apply the same changes to III_dequantize_sample_ms() !!!
*/
static int III_dequantize_sample(real xr[SBLIMIT][SSLIMIT],int *scf,
struct gr_info_s *gr_info,int sfreq,int part2bits)
{
int shift = 1 + gr_info->scalefac_scale;
real *xrpnt = (real *) xr;
int l[3],l3;
int part2remain = gr_info->part2_3_length - part2bits;
int *me;
 
{
int bv = gr_info->big_values;
int region1 = gr_info->region1start;
int region2 = gr_info->region2start;
 
l3 = ((576>>1)-bv)>>1;
/*
* we may lose the 'odd' bit here !!
* check this later again
*/
if(bv <= region1) {
l[0] = bv; l[1] = 0; l[2] = 0;
}
else {
l[0] = region1;
if(bv <= region2) {
l[1] = bv - l[0]; l[2] = 0;
}
else {
l[1] = region2 - l[0]; l[2] = bv - region2;
}
}
}
if(gr_info->block_type == 2) {
int i,max[4];
int step=0,lwin=0,cb=0;
register real v = 0.0;
register int *m,mc;
 
if(gr_info->mixed_block_flag) {
max[3] = -1;
max[0] = max[1] = max[2] = 2;
m = map[sfreq][0];
me = mapend[sfreq][0];
}
else {
max[0] = max[1] = max[2] = max[3] = -1;
/* max[3] not really needed in this case */
m = map[sfreq][1];
me = mapend[sfreq][1];
}
 
mc = 0;
for(i=0;i<2;i++) {
int lp = l[i];
struct newhuff *h = ht+gr_info->table_select[i];
for(;lp;lp--,mc--) {
register int x,y;
if( (!mc) ) {
mc = *m++;
xrpnt = ((real *) xr) + (*m++);
lwin = *m++;
cb = *m++;
if(lwin == 3) {
v = gr_info->pow2gain[(*scf++) << shift];
step = 1;
}
else {
v = gr_info->full_gain[lwin][(*scf++) << shift];
step = 3;
}
}
{
register short *val = h->table;
while((y=*val++)<0) {
if (get1bit())
val -= y;
part2remain--;
}
x = y >> 4;
y &= 0xf;
}
if(x == 15) {
max[lwin] = cb;
part2remain -= h->linbits+1;
x += getbits(h->linbits);
if(get1bit())
*xrpnt = -ispow[x] * v;
else
*xrpnt = ispow[x] * v;
}
else if(x) {
max[lwin] = cb;
if(get1bit())
*xrpnt = -ispow[x] * v;
else
*xrpnt = ispow[x] * v;
part2remain--;
}
else
*xrpnt = 0.0;
xrpnt += step;
if(y == 15) {
max[lwin] = cb;
part2remain -= h->linbits+1;
y += getbits(h->linbits);
if(get1bit())
*xrpnt = -ispow[y] * v;
else
*xrpnt = ispow[y] * v;
}
else if(y) {
max[lwin] = cb;
if(get1bit())
*xrpnt = -ispow[y] * v;
else
*xrpnt = ispow[y] * v;
part2remain--;
}
else
*xrpnt = 0.0;
xrpnt += step;
}
}
for(;l3 && (part2remain > 0);l3--) {
struct newhuff *h = htc+gr_info->count1table_select;
register short *val = h->table,a;
 
while((a=*val++)<0) {
part2remain--;
if(part2remain < 0) {
part2remain++;
a = 0;
break;
}
if (get1bit())
val -= a;
}
 
for(i=0;i<4;i++) {
if(!(i & 1)) {
if(!mc) {
mc = *m++;
xrpnt = ((real *) xr) + (*m++);
lwin = *m++;
cb = *m++;
if(lwin == 3) {
v = gr_info->pow2gain[(*scf++) << shift];
step = 1;
}
else {
v = gr_info->full_gain[lwin][(*scf++) << shift];
step = 3;
}
}
mc--;
}
if( (a & (0x8>>i)) ) {
max[lwin] = cb;
part2remain--;
if(part2remain < 0) {
part2remain++;
break;
}
if(get1bit())
*xrpnt = -v;
else
*xrpnt = v;
}
else
*xrpnt = 0.0;
xrpnt += step;
}
}
while( m < me ) {
if(!mc) {
mc = *m++;
xrpnt = ((real *) xr) + *m++;
if( (*m++) == 3)
step = 1;
else
step = 3;
m++; /* cb */
}
mc--;
*xrpnt = 0.0;
xrpnt += step;
*xrpnt = 0.0;
xrpnt += step;
}
 
gr_info->maxband[0] = max[0]+1;
gr_info->maxband[1] = max[1]+1;
gr_info->maxband[2] = max[2]+1;
gr_info->maxbandl = max[3]+1;
 
{
int rmax = max[0] > max[1] ? max[0] : max[1];
rmax = (rmax > max[2] ? rmax : max[2]) + 1;
gr_info->maxb = rmax ? shortLimit[sfreq][rmax] : longLimit[sfreq][max[3]+1];
}
 
}
else {
int *pretab = gr_info->preflag ? pretab1 : pretab2;
int i,max = -1;
int cb = 0;
register int *m = map[sfreq][2];
register real v = 0.0;
register int mc = 0;
me = mapend[sfreq][2];
 
for(i=0;i<3;i++) {
int lp = l[i];
struct newhuff *h = ht+gr_info->table_select[i];
 
for(;lp;lp--,mc--) {
int x,y;
 
if(!mc) {
mc = *m++;
v = gr_info->pow2gain[((*scf++) + (*pretab++)) << shift];
cb = *m++;
}
{
register short *val = h->table;
while((y=*val++)<0) {
if (get1bit())
val -= y;
part2remain--;
}
x = y >> 4;
y &= 0xf;
}
if (x == 15) {
max = cb;
part2remain -= h->linbits+1;
x += getbits(h->linbits);
if(get1bit())
*xrpnt++ = -ispow[x] * v;
else
*xrpnt++ = ispow[x] * v;
}
else if(x) {
max = cb;
if(get1bit())
*xrpnt++ = -ispow[x] * v;
else
*xrpnt++ = ispow[x] * v;
part2remain--;
}
else
*xrpnt++ = 0.0;
 
if (y == 15) {
max = cb;
part2remain -= h->linbits+1;
y += getbits(h->linbits);
if(get1bit())
*xrpnt++ = -ispow[y] * v;
else
*xrpnt++ = ispow[y] * v;
}
else if(y) {
max = cb;
if(get1bit())
*xrpnt++ = -ispow[y] * v;
else
*xrpnt++ = ispow[y] * v;
part2remain--;
}
else
*xrpnt++ = 0.0;
}
}
 
for(;l3 && (part2remain > 0);l3--) {
struct newhuff *h = htc+gr_info->count1table_select;
register short *val = h->table,a;
 
while((a=*val++)<0) {
part2remain--;
if(part2remain < 0) {
part2remain++;
a = 0;
break;
}
if (get1bit())
val -= a;
}
 
for(i=0;i<4;i++) {
if(!(i & 1)) {
if(!mc) {
mc = *m++;
cb = *m++;
v = gr_info->pow2gain[((*scf++) + (*pretab++)) << shift];
}
mc--;
}
if ( (a & (0x8>>i)) ) {
max = cb;
part2remain--;
if(part2remain < 0) {
part2remain++;
break;
}
if(get1bit())
*xrpnt++ = -v;
else
*xrpnt++ = v;
}
else
*xrpnt++ = 0.0;
}
}
for(i=(&xr[SBLIMIT][SSLIMIT]-xrpnt)>>1;i;i--) {
*xrpnt++ = 0.0;
*xrpnt++ = 0.0;
}
 
gr_info->maxbandl = max+1;
gr_info->maxb = longLimit[sfreq][gr_info->maxbandl];
}
 
while( part2remain > 16 ) {
getbits(16); /* Dismiss stuffing Bits */
part2remain -= 16;
}
if(part2remain > 0)
getbits(part2remain);
else if(part2remain < 0) {
fprintf(stderr,"mpg123: Can't rewind stream by %d bits!\n",-part2remain);
return 1; /* -> error */
}
return 0;
}
 
static int III_dequantize_sample_ms(real xr[2][SBLIMIT][SSLIMIT],int *scf,
struct gr_info_s *gr_info,int sfreq,int part2bits)
{
int shift = 1 + gr_info->scalefac_scale;
real *xrpnt = (real *) xr[1];
real *xr0pnt = (real *) xr[0];
int l[3],l3;
int part2remain = gr_info->part2_3_length - part2bits;
int *me;
 
{
int bv = gr_info->big_values;
int region1 = gr_info->region1start;
int region2 = gr_info->region2start;
 
l3 = ((576>>1)-bv)>>1;
/*
* we may lose the 'odd' bit here !!
* check this later gain
*/
if(bv <= region1) {
l[0] = bv; l[1] = 0; l[2] = 0;
}
else {
l[0] = region1;
if(bv <= region2) {
l[1] = bv - l[0]; l[2] = 0;
}
else {
l[1] = region2 - l[0]; l[2] = bv - region2;
}
}
}
if(gr_info->block_type == 2) {
int i,max[4];
int step=0,lwin=0,cb=0;
register real v = 0.0;
register int *m,mc = 0;
 
if(gr_info->mixed_block_flag) {
max[3] = -1;
max[0] = max[1] = max[2] = 2;
m = map[sfreq][0];
me = mapend[sfreq][0];
}
else {
max[0] = max[1] = max[2] = max[3] = -1;
/* max[3] not really needed in this case */
m = map[sfreq][1];
me = mapend[sfreq][1];
}
 
for(i=0;i<2;i++) {
int lp = l[i];
struct newhuff *h = ht+gr_info->table_select[i];
for(;lp;lp--,mc--) {
int x,y;
 
if(!mc) {
mc = *m++;
xrpnt = ((real *) xr[1]) + *m;
xr0pnt = ((real *) xr[0]) + *m++;
lwin = *m++;
cb = *m++;
if(lwin == 3) {
v = gr_info->pow2gain[(*scf++) << shift];
step = 1;
}
else {
v = gr_info->full_gain[lwin][(*scf++) << shift];
step = 3;
}
}
{
register short *val = h->table;
while((y=*val++)<0) {
if (get1bit())
val -= y;
part2remain--;
}
x = y >> 4;
y &= 0xf;
}
if(x == 15) {
max[lwin] = cb;
part2remain -= h->linbits+1;
x += getbits(h->linbits);
if(get1bit()) {
real a = ispow[x] * v;
*xrpnt = *xr0pnt + a;
*xr0pnt -= a;
}
else {
real a = ispow[x] * v;
*xrpnt = *xr0pnt - a;
*xr0pnt += a;
}
}
else if(x) {
max[lwin] = cb;
if(get1bit()) {
real a = ispow[x] * v;
*xrpnt = *xr0pnt + a;
*xr0pnt -= a;
}
else {
real a = ispow[x] * v;
*xrpnt = *xr0pnt - a;
*xr0pnt += a;
}
part2remain--;
}
else
*xrpnt = *xr0pnt;
xrpnt += step;
xr0pnt += step;
 
if(y == 15) {
max[lwin] = cb;
part2remain -= h->linbits+1;
y += getbits(h->linbits);
if(get1bit()) {
real a = ispow[y] * v;
*xrpnt = *xr0pnt + a;
*xr0pnt -= a;
}
else {
real a = ispow[y] * v;
*xrpnt = *xr0pnt - a;
*xr0pnt += a;
}
}
else if(y) {
max[lwin] = cb;
if(get1bit()) {
real a = ispow[y] * v;
*xrpnt = *xr0pnt + a;
*xr0pnt -= a;
}
else {
real a = ispow[y] * v;
*xrpnt = *xr0pnt - a;
*xr0pnt += a;
}
part2remain--;
}
else
*xrpnt = *xr0pnt;
xrpnt += step;
xr0pnt += step;
}
}
 
for(;l3 && (part2remain > 0);l3--) {
struct newhuff *h = htc+gr_info->count1table_select;
register short *val = h->table,a;
 
while((a=*val++)<0) {
part2remain--;
if(part2remain < 0) {
part2remain++;
a = 0;
break;
}
if (get1bit())
val -= a;
}
 
for(i=0;i<4;i++) {
if(!(i & 1)) {
if(!mc) {
mc = *m++;
xrpnt = ((real *) xr[1]) + *m;
xr0pnt = ((real *) xr[0]) + *m++;
lwin = *m++;
cb = *m++;
if(lwin == 3) {
v = gr_info->pow2gain[(*scf++) << shift];
step = 1;
}
else {
v = gr_info->full_gain[lwin][(*scf++) << shift];
step = 3;
}
}
mc--;
}
if( (a & (0x8>>i)) ) {
max[lwin] = cb;
part2remain--;
if(part2remain < 0) {
part2remain++;
break;
}
if(get1bit()) {
*xrpnt = *xr0pnt + v;
*xr0pnt -= v;
}
else {
*xrpnt = *xr0pnt - v;
*xr0pnt += v;
}
}
else
*xrpnt = *xr0pnt;
xrpnt += step;
xr0pnt += step;
}
}
while( m < me ) {
if(!mc) {
mc = *m++;
xrpnt = ((real *) xr) + *m;
xr0pnt = ((real *) xr) + *m++;
if(*m++ == 3)
step = 1;
else
step = 3;
m++; /* cb */
}
mc--;
*xrpnt = *xr0pnt;
xrpnt += step;
xr0pnt += step;
*xrpnt = *xr0pnt;
xrpnt += step;
xr0pnt += step;
}
 
gr_info->maxband[0] = max[0]+1;
gr_info->maxband[1] = max[1]+1;
gr_info->maxband[2] = max[2]+1;
gr_info->maxbandl = max[3]+1;
 
{
int rmax = max[0] > max[1] ? max[0] : max[1];
rmax = (rmax > max[2] ? rmax : max[2]) + 1;
gr_info->maxb = rmax ? shortLimit[sfreq][rmax] : longLimit[sfreq][max[3]+1];
}
}
else {
int *pretab = gr_info->preflag ? pretab1 : pretab2;
int i,max = -1;
int cb = 0;
register int mc=0,*m = map[sfreq][2];
register real v = 0.0;
me = mapend[sfreq][2];
 
for(i=0;i<3;i++) {
int lp = l[i];
struct newhuff *h = ht+gr_info->table_select[i];
 
for(;lp;lp--,mc--) {
int x,y;
if(!mc) {
mc = *m++;
cb = *m++;
v = gr_info->pow2gain[((*scf++) + (*pretab++)) << shift];
}
{
register short *val = h->table;
while((y=*val++)<0) {
if (get1bit())
val -= y;
part2remain--;
}
x = y >> 4;
y &= 0xf;
}
if (x == 15) {
max = cb;
part2remain -= h->linbits+1;
x += getbits(h->linbits);
if(get1bit()) {
real a = ispow[x] * v;
*xrpnt++ = *xr0pnt + a;
*xr0pnt++ -= a;
}
else {
real a = ispow[x] * v;
*xrpnt++ = *xr0pnt - a;
*xr0pnt++ += a;
}
}
else if(x) {
max = cb;
if(get1bit()) {
real a = ispow[x] * v;
*xrpnt++ = *xr0pnt + a;
*xr0pnt++ -= a;
}
else {
real a = ispow[x] * v;
*xrpnt++ = *xr0pnt - a;
*xr0pnt++ += a;
}
part2remain--;
}
else
*xrpnt++ = *xr0pnt++;
 
if (y == 15) {
max = cb;
part2remain -= h->linbits+1;
y += getbits(h->linbits);
if(get1bit()) {
real a = ispow[y] * v;
*xrpnt++ = *xr0pnt + a;
*xr0pnt++ -= a;
}
else {
real a = ispow[y] * v;
*xrpnt++ = *xr0pnt - a;
*xr0pnt++ += a;
}
}
else if(y) {
max = cb;
if(get1bit()) {
real a = ispow[y] * v;
*xrpnt++ = *xr0pnt + a;
*xr0pnt++ -= a;
}
else {
real a = ispow[y] * v;
*xrpnt++ = *xr0pnt - a;
*xr0pnt++ += a;
}
part2remain--;
}
else
*xrpnt++ = *xr0pnt++;
}
}
 
for(;l3 && (part2remain > 0);l3--) {
struct newhuff *h = htc+gr_info->count1table_select;
register short *val = h->table,a;
 
while((a=*val++)<0) {
part2remain--;
if(part2remain < 0) {
part2remain++;
a = 0;
break;
}
if (get1bit())
val -= a;
}
 
for(i=0;i<4;i++) {
if(!(i & 1)) {
if(!mc) {
mc = *m++;
cb = *m++;
v = gr_info->pow2gain[((*scf++) + (*pretab++)) << shift];
}
mc--;
}
if ( (a & (0x8>>i)) ) {
max = cb;
part2remain--;
if(part2remain <= 0) {
part2remain++;
break;
}
if(get1bit()) {
*xrpnt++ = *xr0pnt + v;
*xr0pnt++ -= v;
}
else {
*xrpnt++ = *xr0pnt - v;
*xr0pnt++ += v;
}
}
else
*xrpnt++ = *xr0pnt++;
}
}
for(i=(&xr[1][SBLIMIT][SSLIMIT]-xrpnt)>>1;i;i--) {
*xrpnt++ = *xr0pnt++;
*xrpnt++ = *xr0pnt++;
}
 
gr_info->maxbandl = max+1;
gr_info->maxb = longLimit[sfreq][gr_info->maxbandl];
}
 
while ( part2remain > 16 ) {
getbits(16); /* Dismiss stuffing Bits */
part2remain -= 16;
}
if(part2remain > 0 )
getbits(part2remain);
else if(part2remain < 0) {
fprintf(stderr,"mpg123_ms: Can't rewind stream by %d bits!\n",-part2remain);
return 1; /* -> error */
}
return 0;
}
 
/*
* III_stereo: calculate real channel values for Joint-I-Stereo-mode
*/
static void III_i_stereo(real xr_buf[2][SBLIMIT][SSLIMIT],int *scalefac,
struct gr_info_s *gr_info,int sfreq,int ms_stereo,int lsf)
{
real (*xr)[SBLIMIT*SSLIMIT] = (real (*)[SBLIMIT*SSLIMIT] ) xr_buf;
struct bandInfoStruct *bi = &bandInfo[sfreq];
real *tab1,*tab2;
 
if(lsf) {
int p = gr_info->scalefac_compress & 0x1;
if(ms_stereo) {
tab1 = pow1_2[p]; tab2 = pow2_2[p];
}
else {
tab1 = pow1_1[p]; tab2 = pow2_1[p];
}
}
else {
if(ms_stereo) {
tab1 = tan1_2; tab2 = tan2_2;
}
else {
tab1 = tan1_1; tab2 = tan2_1;
}
}
 
if (gr_info->block_type == 2)
{
int lwin,do_l = 0;
if( gr_info->mixed_block_flag )
do_l = 1;
 
for (lwin=0;lwin<3;lwin++) /* process each window */
{
/* get first band with zero values */
int is_p,sb,idx,sfb = gr_info->maxband[lwin]; /* sfb is minimal 3 for mixed mode */
if(sfb > 3)
do_l = 0;
 
for(;sfb<12;sfb++)
{
is_p = scalefac[sfb*3+lwin-gr_info->mixed_block_flag]; /* scale: 0-15 */
if(is_p != 7) {
real t1,t2;
sb = bi->shortDiff[sfb];
idx = bi->shortIdx[sfb] + lwin;
t1 = tab1[is_p]; t2 = tab2[is_p];
for (; sb > 0; sb--,idx+=3)
{
real v = xr[0][idx];
xr[0][idx] = v * t1;
xr[1][idx] = v * t2;
}
}
}
 
#if 1
/* in the original: copy 10 to 11 , here: copy 11 to 12
maybe still wrong??? (copy 12 to 13?) */
is_p = scalefac[11*3+lwin-gr_info->mixed_block_flag]; /* scale: 0-15 */
sb = bi->shortDiff[12];
idx = bi->shortIdx[12] + lwin;
#else
is_p = scalefac[10*3+lwin-gr_info->mixed_block_flag]; /* scale: 0-15 */
sb = bi->shortDiff[11];
idx = bi->shortIdx[11] + lwin;
#endif
if(is_p != 7)
{
real t1,t2;
t1 = tab1[is_p]; t2 = tab2[is_p];
for ( ; sb > 0; sb--,idx+=3 )
{
real v = xr[0][idx];
xr[0][idx] = v * t1;
xr[1][idx] = v * t2;
}
}
} /* end for(lwin; .. ; . ) */
 
if (do_l)
{
/* also check l-part, if ALL bands in the three windows are 'empty'
* and mode = mixed_mode
*/
int sfb = gr_info->maxbandl;
int idx = bi->longIdx[sfb];
 
for ( ; sfb<8; sfb++ )
{
int sb = bi->longDiff[sfb];
int is_p = scalefac[sfb]; /* scale: 0-15 */
if(is_p != 7) {
real t1,t2;
t1 = tab1[is_p]; t2 = tab2[is_p];
for ( ; sb > 0; sb--,idx++)
{
real v = xr[0][idx];
xr[0][idx] = v * t1;
xr[1][idx] = v * t2;
}
}
else
idx += sb;
}
}
}
else /* ((gr_info->block_type != 2)) */
{
int sfb = gr_info->maxbandl;
int is_p,idx = bi->longIdx[sfb];
for ( ; sfb<21; sfb++)
{
int sb = bi->longDiff[sfb];
is_p = scalefac[sfb]; /* scale: 0-15 */
if(is_p != 7) {
real t1,t2;
t1 = tab1[is_p]; t2 = tab2[is_p];
for ( ; sb > 0; sb--,idx++)
{
real v = xr[0][idx];
xr[0][idx] = v * t1;
xr[1][idx] = v * t2;
}
}
else
idx += sb;
}
 
is_p = scalefac[20]; /* copy l-band 20 to l-band 21 */
if(is_p != 7)
{
int sb;
real t1 = tab1[is_p],t2 = tab2[is_p];
 
for ( sb = bi->longDiff[21]; sb > 0; sb--,idx++ )
{
real v = xr[0][idx];
xr[0][idx] = v * t1;
xr[1][idx] = v * t2;
}
}
} /* ... */
}
 
static void III_antialias(real xr[SBLIMIT][SSLIMIT],struct gr_info_s *gr_info)
{
int sblim;
 
if(gr_info->block_type == 2)
{
if(!gr_info->mixed_block_flag)
return;
sblim = 1;
}
else {
sblim = gr_info->maxb-1;
}
 
/* 31 alias-reduction operations between each pair of sub-bands */
/* with 8 butterflies between each pair */
 
{
int sb;
real *xr1=(real *) xr[1];
 
for(sb=sblim;sb;sb--,xr1+=10)
{
int ss;
real *cs=aa_cs,*ca=aa_ca;
real *xr2 = xr1;
 
for(ss=7;ss>=0;ss--)
{ /* upper and lower butterfly inputs */
register real bu = *--xr2,bd = *xr1;
*xr2 = (bu * (*cs) ) - (bd * (*ca) );
*xr1++ = (bd * (*cs++) ) + (bu * (*ca++) );
}
}
}
}
 
/*
// This is an optimized DCT from Jeff Tsay's maplay 1.2+ package.
// Saved one multiplication by doing the 'twiddle factor' stuff
// together with the window mul. (MH)
//
// This uses Byeong Gi Lee's Fast Cosine Transform algorithm, but the
// 9 point IDCT needs to be reduced further. Unfortunately, I don't
// know how to do that, because 9 is not an even number. - Jeff.
//
//////////////////////////////////////////////////////////////////
//
// 9 Point Inverse Discrete Cosine Transform
//
// This piece of code is Copyright 1997 Mikko Tommila and is freely usable
// by anybody. The algorithm itself is of course in the public domain.
//
// Again derived heuristically from the 9-point WFTA.
//
// The algorithm is optimized (?) for speed, not for small rounding errors or
// good readability.
//
// 36 additions, 11 multiplications
//
// Again this is very likely sub-optimal.
//
// The code is optimized to use a minimum number of temporary variables,
// so it should compile quite well even on 8-register Intel x86 processors.
// This makes the code quite obfuscated and very difficult to understand.
//
// References:
// [1] S. Winograd: "On Computing the Discrete Fourier Transform",
// Mathematics of Computation, Volume 32, Number 141, January 1978,
// Pages 175-199
*/
 
/*------------------------------------------------------------------*/
/* */
/* Function: Calculation of the inverse MDCT */
/* */
/*------------------------------------------------------------------*/
 
static void dct36(real *inbuf,real *o1,real *o2,real *wintab,real *tsbuf)
{
#ifdef NEW_DCT9
real tmp[18];
#endif
 
{
register real *in = inbuf;
 
in[17]+=in[16]; in[16]+=in[15]; in[15]+=in[14];
in[14]+=in[13]; in[13]+=in[12]; in[12]+=in[11];
in[11]+=in[10]; in[10]+=in[9]; in[9] +=in[8];
in[8] +=in[7]; in[7] +=in[6]; in[6] +=in[5];
in[5] +=in[4]; in[4] +=in[3]; in[3] +=in[2];
in[2] +=in[1]; in[1] +=in[0];
 
in[17]+=in[15]; in[15]+=in[13]; in[13]+=in[11]; in[11]+=in[9];
in[9] +=in[7]; in[7] +=in[5]; in[5] +=in[3]; in[3] +=in[1];
 
 
#ifdef NEW_DCT9
{
real t0, t1, t2, t3, t4, t5, t6, t7;
 
t1 = COS6_2 * in[12];
t2 = COS6_2 * (in[8] + in[16] - in[4]);
 
t3 = in[0] + t1;
t4 = in[0] - t1 - t1;
t5 = t4 - t2;
 
t0 = cos9[0] * (in[4] + in[8]);
t1 = cos9[1] * (in[8] - in[16]);
 
tmp[4] = t4 + t2 + t2;
t2 = cos9[2] * (in[4] + in[16]);
 
t6 = t3 - t0 - t2;
t0 += t3 + t1;
t3 += t2 - t1;
 
t2 = cos18[0] * (in[2] + in[10]);
t4 = cos18[1] * (in[10] - in[14]);
t7 = COS6_1 * in[6];
 
t1 = t2 + t4 + t7;
tmp[0] = t0 + t1;
tmp[8] = t0 - t1;
t1 = cos18[2] * (in[2] + in[14]);
t2 += t1 - t7;
 
tmp[3] = t3 + t2;
t0 = COS6_1 * (in[10] + in[14] - in[2]);
tmp[5] = t3 - t2;
 
t4 -= t1 + t7;
 
tmp[1] = t5 - t0;
tmp[7] = t5 + t0;
tmp[2] = t6 + t4;
tmp[6] = t6 - t4;
}
 
{
real t0, t1, t2, t3, t4, t5, t6, t7;
 
t1 = COS6_2 * in[13];
t2 = COS6_2 * (in[9] + in[17] - in[5]);
 
t3 = in[1] + t1;
t4 = in[1] - t1 - t1;
t5 = t4 - t2;
 
t0 = cos9[0] * (in[5] + in[9]);
t1 = cos9[1] * (in[9] - in[17]);
 
tmp[13] = (t4 + t2 + t2) * tfcos36[17-13];
t2 = cos9[2] * (in[5] + in[17]);
 
t6 = t3 - t0 - t2;
t0 += t3 + t1;
t3 += t2 - t1;
 
t2 = cos18[0] * (in[3] + in[11]);
t4 = cos18[1] * (in[11] - in[15]);
t7 = COS6_1 * in[7];
 
t1 = t2 + t4 + t7;
tmp[17] = (t0 + t1) * tfcos36[17-17];
tmp[9] = (t0 - t1) * tfcos36[17-9];
t1 = cos18[2] * (in[3] + in[15]);
t2 += t1 - t7;
 
tmp[14] = (t3 + t2) * tfcos36[17-14];
t0 = COS6_1 * (in[11] + in[15] - in[3]);
tmp[12] = (t3 - t2) * tfcos36[17-12];
 
t4 -= t1 + t7;
 
tmp[16] = (t5 - t0) * tfcos36[17-16];
tmp[10] = (t5 + t0) * tfcos36[17-10];
tmp[15] = (t6 + t4) * tfcos36[17-15];
tmp[11] = (t6 - t4) * tfcos36[17-11];
}
 
#define MACRO(v) { \
real tmpval; \
real sum0 = tmp[(v)]; \
real sum1 = tmp[17-(v)]; \
out2[9+(v)] = (tmpval = sum0 + sum1) * w[27+(v)]; \
out2[8-(v)] = tmpval * w[26-(v)]; \
sum0 -= sum1; \
ts[SBLIMIT*(8-(v))] = out1[8-(v)] + sum0 * w[8-(v)]; \
ts[SBLIMIT*(9+(v))] = out1[9+(v)] + sum0 * w[9+(v)]; }
 
{
register real *out2 = o2;
register real *w = wintab;
register real *out1 = o1;
register real *ts = tsbuf;
 
MACRO(0);
MACRO(1);
MACRO(2);
MACRO(3);
MACRO(4);
MACRO(5);
MACRO(6);
MACRO(7);
MACRO(8);
}
 
#else
 
{
 
#define MACRO0(v) { \
real tmp; \
out2[9+(v)] = (tmp = sum0 + sum1) * w[27+(v)]; \
out2[8-(v)] = tmp * w[26-(v)]; } \
sum0 -= sum1; \
ts[SBLIMIT*(8-(v))] = out1[8-(v)] + sum0 * w[8-(v)]; \
ts[SBLIMIT*(9+(v))] = out1[9+(v)] + sum0 * w[9+(v)];
#define MACRO1(v) { \
real sum0,sum1; \
sum0 = tmp1a + tmp2a; \
sum1 = (tmp1b + tmp2b) * tfcos36[(v)]; \
MACRO0(v); }
#define MACRO2(v) { \
real sum0,sum1; \
sum0 = tmp2a - tmp1a; \
sum1 = (tmp2b - tmp1b) * tfcos36[(v)]; \
MACRO0(v); }
 
register const real *c = COS9;
register real *out2 = o2;
register real *w = wintab;
register real *out1 = o1;
register real *ts = tsbuf;
 
real ta33,ta66,tb33,tb66;
 
ta33 = in[2*3+0] * c[3];
ta66 = in[2*6+0] * c[6];
tb33 = in[2*3+1] * c[3];
tb66 = in[2*6+1] * c[6];
 
{
real tmp1a,tmp2a,tmp1b,tmp2b;
tmp1a = in[2*1+0] * c[1] + ta33 + in[2*5+0] * c[5] + in[2*7+0] * c[7];
tmp1b = in[2*1+1] * c[1] + tb33 + in[2*5+1] * c[5] + in[2*7+1] * c[7];
tmp2a = in[2*0+0] + in[2*2+0] * c[2] + in[2*4+0] * c[4] + ta66 + in[2*8+0] * c[8];
tmp2b = in[2*0+1] + in[2*2+1] * c[2] + in[2*4+1] * c[4] + tb66 + in[2*8+1] * c[8];
 
MACRO1(0);
MACRO2(8);
}
 
{
real tmp1a,tmp2a,tmp1b,tmp2b;
tmp1a = ( in[2*1+0] - in[2*5+0] - in[2*7+0] ) * c[3];
tmp1b = ( in[2*1+1] - in[2*5+1] - in[2*7+1] ) * c[3];
tmp2a = ( in[2*2+0] - in[2*4+0] - in[2*8+0] ) * c[6] - in[2*6+0] + in[2*0+0];
tmp2b = ( in[2*2+1] - in[2*4+1] - in[2*8+1] ) * c[6] - in[2*6+1] + in[2*0+1];
 
MACRO1(1);
MACRO2(7);
}
 
{
real tmp1a,tmp2a,tmp1b,tmp2b;
tmp1a = in[2*1+0] * c[5] - ta33 - in[2*5+0] * c[7] + in[2*7+0] * c[1];
tmp1b = in[2*1+1] * c[5] - tb33 - in[2*5+1] * c[7] + in[2*7+1] * c[1];
tmp2a = in[2*0+0] - in[2*2+0] * c[8] - in[2*4+0] * c[2] + ta66 + in[2*8+0] * c[4];
tmp2b = in[2*0+1] - in[2*2+1] * c[8] - in[2*4+1] * c[2] + tb66 + in[2*8+1] * c[4];
 
MACRO1(2);
MACRO2(6);
}
 
{
real tmp1a,tmp2a,tmp1b,tmp2b;
tmp1a = in[2*1+0] * c[7] - ta33 + in[2*5+0] * c[1] - in[2*7+0] * c[5];
tmp1b = in[2*1+1] * c[7] - tb33 + in[2*5+1] * c[1] - in[2*7+1] * c[5];
tmp2a = in[2*0+0] - in[2*2+0] * c[4] + in[2*4+0] * c[8] + ta66 - in[2*8+0] * c[2];
tmp2b = in[2*0+1] - in[2*2+1] * c[4] + in[2*4+1] * c[8] + tb66 - in[2*8+1] * c[2];
 
MACRO1(3);
MACRO2(5);
}
 
{
real sum0,sum1;
sum0 = in[2*0+0] - in[2*2+0] + in[2*4+0] - in[2*6+0] + in[2*8+0];
sum1 = (in[2*0+1] - in[2*2+1] + in[2*4+1] - in[2*6+1] + in[2*8+1] ) * tfcos36[4];
MACRO0(4);
}
}
#endif
 
}
}
 
/*
* new DCT12
*/
static void dct12(real *in,real *rawout1,real *rawout2,register real *wi,register real *ts)
{
#define DCT12_PART1 \
in5 = in[5*3]; \
in5 += (in4 = in[4*3]); \
in4 += (in3 = in[3*3]); \
in3 += (in2 = in[2*3]); \
in2 += (in1 = in[1*3]); \
in1 += (in0 = in[0*3]); \
\
in5 += in3; in3 += in1; \
\
in2 *= COS6_1; \
in3 *= COS6_1; \
 
#define DCT12_PART2 \
in0 += in4 * COS6_2; \
\
in4 = in0 + in2; \
in0 -= in2; \
\
in1 += in5 * COS6_2; \
\
in5 = (in1 + in3) * tfcos12[0]; \
in1 = (in1 - in3) * tfcos12[2]; \
\
in3 = in4 + in5; \
in4 -= in5; \
\
in2 = in0 + in1; \
in0 -= in1;
 
 
{
real in0,in1,in2,in3,in4,in5;
register real *out1 = rawout1;
ts[SBLIMIT*0] = out1[0]; ts[SBLIMIT*1] = out1[1]; ts[SBLIMIT*2] = out1[2];
ts[SBLIMIT*3] = out1[3]; ts[SBLIMIT*4] = out1[4]; ts[SBLIMIT*5] = out1[5];
DCT12_PART1
 
{
real tmp0,tmp1 = (in0 - in4);
{
real tmp2 = (in1 - in5) * tfcos12[1];
tmp0 = tmp1 + tmp2;
tmp1 -= tmp2;
}
ts[(17-1)*SBLIMIT] = out1[17-1] + tmp0 * wi[11-1];
ts[(12+1)*SBLIMIT] = out1[12+1] + tmp0 * wi[6+1];
ts[(6 +1)*SBLIMIT] = out1[6 +1] + tmp1 * wi[1];
ts[(11-1)*SBLIMIT] = out1[11-1] + tmp1 * wi[5-1];
}
 
DCT12_PART2
 
ts[(17-0)*SBLIMIT] = out1[17-0] + in2 * wi[11-0];
ts[(12+0)*SBLIMIT] = out1[12+0] + in2 * wi[6+0];
ts[(12+2)*SBLIMIT] = out1[12+2] + in3 * wi[6+2];
ts[(17-2)*SBLIMIT] = out1[17-2] + in3 * wi[11-2];
 
ts[(6+0)*SBLIMIT] = out1[6+0] + in0 * wi[0];
ts[(11-0)*SBLIMIT] = out1[11-0] + in0 * wi[5-0];
ts[(6+2)*SBLIMIT] = out1[6+2] + in4 * wi[2];
ts[(11-2)*SBLIMIT] = out1[11-2] + in4 * wi[5-2];
}
 
in++;
 
{
real in0,in1,in2,in3,in4,in5;
register real *out2 = rawout2;
DCT12_PART1
 
{
real tmp0,tmp1 = (in0 - in4);
{
real tmp2 = (in1 - in5) * tfcos12[1];
tmp0 = tmp1 + tmp2;
tmp1 -= tmp2;
}
out2[5-1] = tmp0 * wi[11-1];
out2[0+1] = tmp0 * wi[6+1];
ts[(12+1)*SBLIMIT] += tmp1 * wi[1];
ts[(17-1)*SBLIMIT] += tmp1 * wi[5-1];
}
 
DCT12_PART2
 
out2[5-0] = in2 * wi[11-0];
out2[0+0] = in2 * wi[6+0];
out2[0+2] = in3 * wi[6+2];
out2[5-2] = in3 * wi[11-2];
 
ts[(12+0)*SBLIMIT] += in0 * wi[0];
ts[(17-0)*SBLIMIT] += in0 * wi[5-0];
ts[(12+2)*SBLIMIT] += in4 * wi[2];
ts[(17-2)*SBLIMIT] += in4 * wi[5-2];
}
 
in++;
 
{
real in0,in1,in2,in3,in4,in5;
register real *out2 = rawout2;
out2[12]=out2[13]=out2[14]=out2[15]=out2[16]=out2[17]=0.0;
 
DCT12_PART1
 
{
real tmp0,tmp1 = (in0 - in4);
{
real tmp2 = (in1 - in5) * tfcos12[1];
tmp0 = tmp1 + tmp2;
tmp1 -= tmp2;
}
out2[11-1] = tmp0 * wi[11-1];
out2[6 +1] = tmp0 * wi[6+1];
out2[0+1] += tmp1 * wi[1];
out2[5-1] += tmp1 * wi[5-1];
}
 
DCT12_PART2
 
out2[11-0] = in2 * wi[11-0];
out2[6 +0] = in2 * wi[6+0];
out2[6 +2] = in3 * wi[6+2];
out2[11-2] = in3 * wi[11-2];
 
out2[0+0] += in0 * wi[0];
out2[5-0] += in0 * wi[5-0];
out2[0+2] += in4 * wi[2];
out2[5-2] += in4 * wi[5-2];
}
}
 
/*
* III_hybrid
*/
static void III_hybrid(real fsIn[SBLIMIT][SSLIMIT],real tsOut[SSLIMIT][SBLIMIT],
int ch,struct gr_info_s *gr_info)
{
real *tspnt = (real *) tsOut;
static real block[2][2][SBLIMIT*SSLIMIT] = { { { 0, } } };
static int blc[2]={0,0};
real *rawout1,*rawout2;
int bt;
int sb = 0;
 
{
int b = blc[ch];
rawout1=block[b][ch];
b=-b+1;
rawout2=block[b][ch];
blc[ch] = b;
}
 
if(gr_info->mixed_block_flag) {
sb = 2;
dct36(fsIn[0],rawout1,rawout2,win[0],tspnt);
dct36(fsIn[1],rawout1+18,rawout2+18,win1[0],tspnt+1);
rawout1 += 36; rawout2 += 36; tspnt += 2;
}
bt = gr_info->block_type;
if(bt == 2) {
for (; sb<gr_info->maxb; sb+=2,tspnt+=2,rawout1+=36,rawout2+=36) {
dct12(fsIn[sb],rawout1,rawout2,win[2],tspnt);
dct12(fsIn[sb+1],rawout1+18,rawout2+18,win1[2],tspnt+1);
}
}
else {
for (; sb<gr_info->maxb; sb+=2,tspnt+=2,rawout1+=36,rawout2+=36) {
dct36(fsIn[sb],rawout1,rawout2,win[bt],tspnt);
dct36(fsIn[sb+1],rawout1+18,rawout2+18,win1[bt],tspnt+1);
}
}
 
for(;sb<SBLIMIT;sb++,tspnt++) {
int i;
for(i=0;i<SSLIMIT;i++) {
tspnt[i*SBLIMIT] = *rawout1++;
*rawout2++ = 0.0;
}
}
}
 
/*
* main layer3 handler
*/
int do_layer3(struct frame *fr,int outmode,struct audio_info_struct *ai)
{
int gr, ch, ss,clip=0;
int scalefacs[39]; /* max 39 for short[13][3] mode, mixed: 38, long: 22 */
struct III_sideinfo sideinfo;
int stereo = fr->stereo;
int single = fr->single;
int ms_stereo,i_stereo;
int sfreq = fr->sampling_frequency;
int stereo1,granules;
 
if(stereo == 1) {
stereo1 = 1;
single = 0;
}
else if(single >= 0)
stereo1 = 1;
else
stereo1 = 2;
 
ms_stereo = (fr->mode == MPG_MD_JOINT_STEREO) && (fr->mode_ext & 0x2);
i_stereo = (fr->mode == MPG_MD_JOINT_STEREO) && (fr->mode_ext & 0x1);
 
if(fr->lsf) {
granules = 1;
III_get_side_info_2(&sideinfo,stereo,ms_stereo,sfreq,single);
}
else {
granules = 2;
III_get_side_info_1(&sideinfo,stereo,ms_stereo,sfreq,single);
}
 
set_pointer(sideinfo.main_data_begin);
 
for (gr=0;gr<granules;gr++)
{
static real hybridIn[2][SBLIMIT][SSLIMIT];
static real hybridOut[2][SSLIMIT][SBLIMIT];
 
{
struct gr_info_s *gr_info = &(sideinfo.ch[0].gr[gr]);
long part2bits;
if(fr->lsf)
part2bits = III_get_scale_factors_2(scalefacs,gr_info,0);
else
part2bits = III_get_scale_factors_1(scalefacs,gr_info);
if(III_dequantize_sample(hybridIn[0], scalefacs,gr_info,sfreq,part2bits))
return clip;
}
if(stereo == 2) {
struct gr_info_s *gr_info = &(sideinfo.ch[1].gr[gr]);
long part2bits;
if(fr->lsf)
part2bits = III_get_scale_factors_2(scalefacs,gr_info,i_stereo);
else
part2bits = III_get_scale_factors_1(scalefacs,gr_info);
if(ms_stereo) {
if(III_dequantize_sample_ms(hybridIn,scalefacs,gr_info,sfreq,part2bits))
return clip;
}
else {
if(III_dequantize_sample(hybridIn[1],scalefacs,gr_info,sfreq,part2bits))
return clip;
}
 
if(i_stereo)
III_i_stereo(hybridIn,scalefacs,gr_info,sfreq,ms_stereo,fr->lsf);
 
 
if(ms_stereo || i_stereo || (single == 3) ) {
if(gr_info->maxb > sideinfo.ch[0].gr[gr].maxb)
sideinfo.ch[0].gr[gr].maxb = gr_info->maxb;
else
gr_info->maxb = sideinfo.ch[0].gr[gr].maxb;
}
 
switch(single) {
case 3:
{
register int i;
register real *in0 = (real *) hybridIn[0],*in1 = (real *) hybridIn[1];
for(i=0;i<SSLIMIT*gr_info->maxb;i++,in0++)
*in0 = (*in0 + *in1++); /* *0.5 done by pow-scale */
}
break;
case 1:
{
register int i;
register real *in0 = (real *) hybridIn[0],*in1 = (real *) hybridIn[1];
for(i=0;i<SSLIMIT*gr_info->maxb;i++)
*in0++ = *in1++;
}
break;
}
}
 
for(ch=0;ch<stereo1;ch++) {
struct gr_info_s *gr_info = &(sideinfo.ch[ch].gr[gr]);
III_antialias(hybridIn[ch],gr_info);
III_hybrid(hybridIn[ch], hybridOut[ch], ch,gr_info);
}
 
for(ss=0;ss<SSLIMIT;ss++) {
if(single >= 0) {
clip += (fr->synth_mono)(hybridOut[0][ss],pcm_sample+pcm_point);
}
else {
clip += (fr->synth)(hybridOut[0][ss],0,pcm_sample+pcm_point);
clip += (fr->synth)(hybridOut[1][ss],1,pcm_sample+pcm_point);
}
pcm_point += fr->block_size;
 
#ifdef VARMODESUPPORT
if (playlimit < 128) {
pcm_point -= playlimit >> 1;
playlimit = 0;
}
else
playlimit -= 128;
#endif
 
if(pcm_point >= audiobufsize)
audio_flush(outmode,ai);
}
}
return clip;
}
 
 
/shark/trunk/ports/mpg123/dct64_i3.c
0,0 → 1,315
 
/*
* Discrete Cosine Tansform (DCT) for subband synthesis
* optimized for machines with no auto-increment.
* The performance is highly compiler dependend. Maybe
* the dct64.c version for 'normal' processor may be faster
* even for Intel processors.
*/
 
#include "mpg123.h"
 
static void dct64_1(real *out0,real *out1,real *b1,real *b2,real *samples)
{
 
{
register real *costab = pnts[0];
 
b1[0x00] = samples[0x00] + samples[0x1F];
b1[0x1F] = (samples[0x00] - samples[0x1F]) * costab[0x0];
 
b1[0x01] = samples[0x01] + samples[0x1E];
b1[0x1E] = (samples[0x01] - samples[0x1E]) * costab[0x1];
 
b1[0x02] = samples[0x02] + samples[0x1D];
b1[0x1D] = (samples[0x02] - samples[0x1D]) * costab[0x2];
 
b1[0x03] = samples[0x03] + samples[0x1C];
b1[0x1C] = (samples[0x03] - samples[0x1C]) * costab[0x3];
 
b1[0x04] = samples[0x04] + samples[0x1B];
b1[0x1B] = (samples[0x04] - samples[0x1B]) * costab[0x4];
 
b1[0x05] = samples[0x05] + samples[0x1A];
b1[0x1A] = (samples[0x05] - samples[0x1A]) * costab[0x5];
 
b1[0x06] = samples[0x06] + samples[0x19];
b1[0x19] = (samples[0x06] - samples[0x19]) * costab[0x6];
 
b1[0x07] = samples[0x07] + samples[0x18];
b1[0x18] = (samples[0x07] - samples[0x18]) * costab[0x7];
 
b1[0x08] = samples[0x08] + samples[0x17];
b1[0x17] = (samples[0x08] - samples[0x17]) * costab[0x8];
 
b1[0x09] = samples[0x09] + samples[0x16];
b1[0x16] = (samples[0x09] - samples[0x16]) * costab[0x9];
 
b1[0x0A] = samples[0x0A] + samples[0x15];
b1[0x15] = (samples[0x0A] - samples[0x15]) * costab[0xA];
 
b1[0x0B] = samples[0x0B] + samples[0x14];
b1[0x14] = (samples[0x0B] - samples[0x14]) * costab[0xB];
 
b1[0x0C] = samples[0x0C] + samples[0x13];
b1[0x13] = (samples[0x0C] - samples[0x13]) * costab[0xC];
 
b1[0x0D] = samples[0x0D] + samples[0x12];
b1[0x12] = (samples[0x0D] - samples[0x12]) * costab[0xD];
 
b1[0x0E] = samples[0x0E] + samples[0x11];
b1[0x11] = (samples[0x0E] - samples[0x11]) * costab[0xE];
 
b1[0x0F] = samples[0x0F] + samples[0x10];
b1[0x10] = (samples[0x0F] - samples[0x10]) * costab[0xF];
}
 
 
{
register real *costab = pnts[1];
 
b2[0x00] = b1[0x00] + b1[0x0F];
b2[0x0F] = (b1[0x00] - b1[0x0F]) * costab[0];
b2[0x01] = b1[0x01] + b1[0x0E];
b2[0x0E] = (b1[0x01] - b1[0x0E]) * costab[1];
b2[0x02] = b1[0x02] + b1[0x0D];
b2[0x0D] = (b1[0x02] - b1[0x0D]) * costab[2];
b2[0x03] = b1[0x03] + b1[0x0C];
b2[0x0C] = (b1[0x03] - b1[0x0C]) * costab[3];
b2[0x04] = b1[0x04] + b1[0x0B];
b2[0x0B] = (b1[0x04] - b1[0x0B]) * costab[4];
b2[0x05] = b1[0x05] + b1[0x0A];
b2[0x0A] = (b1[0x05] - b1[0x0A]) * costab[5];
b2[0x06] = b1[0x06] + b1[0x09];
b2[0x09] = (b1[0x06] - b1[0x09]) * costab[6];
b2[0x07] = b1[0x07] + b1[0x08];
b2[0x08] = (b1[0x07] - b1[0x08]) * costab[7];
 
b2[0x10] = b1[0x10] + b1[0x1F];
b2[0x1F] = (b1[0x1F] - b1[0x10]) * costab[0];
b2[0x11] = b1[0x11] + b1[0x1E];
b2[0x1E] = (b1[0x1E] - b1[0x11]) * costab[1];
b2[0x12] = b1[0x12] + b1[0x1D];
b2[0x1D] = (b1[0x1D] - b1[0x12]) * costab[2];
b2[0x13] = b1[0x13] + b1[0x1C];
b2[0x1C] = (b1[0x1C] - b1[0x13]) * costab[3];
b2[0x14] = b1[0x14] + b1[0x1B];
b2[0x1B] = (b1[0x1B] - b1[0x14]) * costab[4];
b2[0x15] = b1[0x15] + b1[0x1A];
b2[0x1A] = (b1[0x1A] - b1[0x15]) * costab[5];
b2[0x16] = b1[0x16] + b1[0x19];
b2[0x19] = (b1[0x19] - b1[0x16]) * costab[6];
b2[0x17] = b1[0x17] + b1[0x18];
b2[0x18] = (b1[0x18] - b1[0x17]) * costab[7];
}
 
{
register real *costab = pnts[2];
 
b1[0x00] = b2[0x00] + b2[0x07];
b1[0x07] = (b2[0x00] - b2[0x07]) * costab[0];
b1[0x01] = b2[0x01] + b2[0x06];
b1[0x06] = (b2[0x01] - b2[0x06]) * costab[1];
b1[0x02] = b2[0x02] + b2[0x05];
b1[0x05] = (b2[0x02] - b2[0x05]) * costab[2];
b1[0x03] = b2[0x03] + b2[0x04];
b1[0x04] = (b2[0x03] - b2[0x04]) * costab[3];
 
b1[0x08] = b2[0x08] + b2[0x0F];
b1[0x0F] = (b2[0x0F] - b2[0x08]) * costab[0];
b1[0x09] = b2[0x09] + b2[0x0E];
b1[0x0E] = (b2[0x0E] - b2[0x09]) * costab[1];
b1[0x0A] = b2[0x0A] + b2[0x0D];
b1[0x0D] = (b2[0x0D] - b2[0x0A]) * costab[2];
b1[0x0B] = b2[0x0B] + b2[0x0C];
b1[0x0C] = (b2[0x0C] - b2[0x0B]) * costab[3];
 
b1[0x10] = b2[0x10] + b2[0x17];
b1[0x17] = (b2[0x10] - b2[0x17]) * costab[0];
b1[0x11] = b2[0x11] + b2[0x16];
b1[0x16] = (b2[0x11] - b2[0x16]) * costab[1];
b1[0x12] = b2[0x12] + b2[0x15];
b1[0x15] = (b2[0x12] - b2[0x15]) * costab[2];
b1[0x13] = b2[0x13] + b2[0x14];
b1[0x14] = (b2[0x13] - b2[0x14]) * costab[3];
 
b1[0x18] = b2[0x18] + b2[0x1F];
b1[0x1F] = (b2[0x1F] - b2[0x18]) * costab[0];
b1[0x19] = b2[0x19] + b2[0x1E];
b1[0x1E] = (b2[0x1E] - b2[0x19]) * costab[1];
b1[0x1A] = b2[0x1A] + b2[0x1D];
b1[0x1D] = (b2[0x1D] - b2[0x1A]) * costab[2];
b1[0x1B] = b2[0x1B] + b2[0x1C];
b1[0x1C] = (b2[0x1C] - b2[0x1B]) * costab[3];
}
 
{
register real const cos0 = pnts[3][0];
register real const cos1 = pnts[3][1];
 
b2[0x00] = b1[0x00] + b1[0x03];
b2[0x03] = (b1[0x00] - b1[0x03]) * cos0;
b2[0x01] = b1[0x01] + b1[0x02];
b2[0x02] = (b1[0x01] - b1[0x02]) * cos1;
 
b2[0x04] = b1[0x04] + b1[0x07];
b2[0x07] = (b1[0x07] - b1[0x04]) * cos0;
b2[0x05] = b1[0x05] + b1[0x06];
b2[0x06] = (b1[0x06] - b1[0x05]) * cos1;
 
b2[0x08] = b1[0x08] + b1[0x0B];
b2[0x0B] = (b1[0x08] - b1[0x0B]) * cos0;
b2[0x09] = b1[0x09] + b1[0x0A];
b2[0x0A] = (b1[0x09] - b1[0x0A]) * cos1;
b2[0x0C] = b1[0x0C] + b1[0x0F];
b2[0x0F] = (b1[0x0F] - b1[0x0C]) * cos0;
b2[0x0D] = b1[0x0D] + b1[0x0E];
b2[0x0E] = (b1[0x0E] - b1[0x0D]) * cos1;
 
b2[0x10] = b1[0x10] + b1[0x13];
b2[0x13] = (b1[0x10] - b1[0x13]) * cos0;
b2[0x11] = b1[0x11] + b1[0x12];
b2[0x12] = (b1[0x11] - b1[0x12]) * cos1;
 
b2[0x14] = b1[0x14] + b1[0x17];
b2[0x17] = (b1[0x17] - b1[0x14]) * cos0;
b2[0x15] = b1[0x15] + b1[0x16];
b2[0x16] = (b1[0x16] - b1[0x15]) * cos1;
 
b2[0x18] = b1[0x18] + b1[0x1B];
b2[0x1B] = (b1[0x18] - b1[0x1B]) * cos0;
b2[0x19] = b1[0x19] + b1[0x1A];
b2[0x1A] = (b1[0x19] - b1[0x1A]) * cos1;
 
b2[0x1C] = b1[0x1C] + b1[0x1F];
b2[0x1F] = (b1[0x1F] - b1[0x1C]) * cos0;
b2[0x1D] = b1[0x1D] + b1[0x1E];
b2[0x1E] = (b1[0x1E] - b1[0x1D]) * cos1;
}
 
{
register real const cos0 = pnts[4][0];
 
b1[0x00] = b2[0x00] + b2[0x01];
b1[0x01] = (b2[0x00] - b2[0x01]) * cos0;
b1[0x02] = b2[0x02] + b2[0x03];
b1[0x03] = (b2[0x03] - b2[0x02]) * cos0;
b1[0x02] += b1[0x03];
 
b1[0x04] = b2[0x04] + b2[0x05];
b1[0x05] = (b2[0x04] - b2[0x05]) * cos0;
b1[0x06] = b2[0x06] + b2[0x07];
b1[0x07] = (b2[0x07] - b2[0x06]) * cos0;
b1[0x06] += b1[0x07];
b1[0x04] += b1[0x06];
b1[0x06] += b1[0x05];
b1[0x05] += b1[0x07];
 
b1[0x08] = b2[0x08] + b2[0x09];
b1[0x09] = (b2[0x08] - b2[0x09]) * cos0;
b1[0x0A] = b2[0x0A] + b2[0x0B];
b1[0x0B] = (b2[0x0B] - b2[0x0A]) * cos0;
b1[0x0A] += b1[0x0B];
 
b1[0x0C] = b2[0x0C] + b2[0x0D];
b1[0x0D] = (b2[0x0C] - b2[0x0D]) * cos0;
b1[0x0E] = b2[0x0E] + b2[0x0F];
b1[0x0F] = (b2[0x0F] - b2[0x0E]) * cos0;
b1[0x0E] += b1[0x0F];
b1[0x0C] += b1[0x0E];
b1[0x0E] += b1[0x0D];
b1[0x0D] += b1[0x0F];
 
b1[0x10] = b2[0x10] + b2[0x11];
b1[0x11] = (b2[0x10] - b2[0x11]) * cos0;
b1[0x12] = b2[0x12] + b2[0x13];
b1[0x13] = (b2[0x13] - b2[0x12]) * cos0;
b1[0x12] += b1[0x13];
 
b1[0x14] = b2[0x14] + b2[0x15];
b1[0x15] = (b2[0x14] - b2[0x15]) * cos0;
b1[0x16] = b2[0x16] + b2[0x17];
b1[0x17] = (b2[0x17] - b2[0x16]) * cos0;
b1[0x16] += b1[0x17];
b1[0x14] += b1[0x16];
b1[0x16] += b1[0x15];
b1[0x15] += b1[0x17];
 
b1[0x18] = b2[0x18] + b2[0x19];
b1[0x19] = (b2[0x18] - b2[0x19]) * cos0;
b1[0x1A] = b2[0x1A] + b2[0x1B];
b1[0x1B] = (b2[0x1B] - b2[0x1A]) * cos0;
b1[0x1A] += b1[0x1B];
 
b1[0x1C] = b2[0x1C] + b2[0x1D];
b1[0x1D] = (b2[0x1C] - b2[0x1D]) * cos0;
b1[0x1E] = b2[0x1E] + b2[0x1F];
b1[0x1F] = (b2[0x1F] - b2[0x1E]) * cos0;
b1[0x1E] += b1[0x1F];
b1[0x1C] += b1[0x1E];
b1[0x1E] += b1[0x1D];
b1[0x1D] += b1[0x1F];
}
 
out0[0x10*16] = b1[0x00];
out0[0x10*12] = b1[0x04];
out0[0x10* 8] = b1[0x02];
out0[0x10* 4] = b1[0x06];
out0[0x10* 0] = b1[0x01];
out1[0x10* 0] = b1[0x01];
out1[0x10* 4] = b1[0x05];
out1[0x10* 8] = b1[0x03];
out1[0x10*12] = b1[0x07];
 
b1[0x08] += b1[0x0C];
out0[0x10*14] = b1[0x08];
b1[0x0C] += b1[0x0a];
out0[0x10*10] = b1[0x0C];
b1[0x0A] += b1[0x0E];
out0[0x10* 6] = b1[0x0A];
b1[0x0E] += b1[0x09];
out0[0x10* 2] = b1[0x0E];
b1[0x09] += b1[0x0D];
out1[0x10* 2] = b1[0x09];
b1[0x0D] += b1[0x0B];
out1[0x10* 6] = b1[0x0D];
b1[0x0B] += b1[0x0F];
out1[0x10*10] = b1[0x0B];
out1[0x10*14] = b1[0x0F];
 
b1[0x18] += b1[0x1C];
out0[0x10*15] = b1[0x10] + b1[0x18];
out0[0x10*13] = b1[0x18] + b1[0x14];
b1[0x1C] += b1[0x1a];
out0[0x10*11] = b1[0x14] + b1[0x1C];
out0[0x10* 9] = b1[0x1C] + b1[0x12];
b1[0x1A] += b1[0x1E];
out0[0x10* 7] = b1[0x12] + b1[0x1A];
out0[0x10* 5] = b1[0x1A] + b1[0x16];
b1[0x1E] += b1[0x19];
out0[0x10* 3] = b1[0x16] + b1[0x1E];
out0[0x10* 1] = b1[0x1E] + b1[0x11];
b1[0x19] += b1[0x1D];
out1[0x10* 1] = b1[0x11] + b1[0x19];
out1[0x10* 3] = b1[0x19] + b1[0x15];
b1[0x1D] += b1[0x1B];
out1[0x10* 5] = b1[0x15] + b1[0x1D];
out1[0x10* 7] = b1[0x1D] + b1[0x13];
b1[0x1B] += b1[0x1F];
out1[0x10* 9] = b1[0x13] + b1[0x1B];
out1[0x10*11] = b1[0x1B] + b1[0x17];
out1[0x10*13] = b1[0x17] + b1[0x1F];
out1[0x10*15] = b1[0x1F];
}
 
/*
* the call via dct64 is a trick to force GCC to use
* (new) registers for the b1,b2 pointer to the bufs[xx] field
*/
void dct64(real *a,real *b,real *c)
{
real bufs[0x40];
dct64_1(a,b,bufs,bufs+0x20,c);
}
 
/shark/trunk/ports/mpg123/getbits_.s
0,0 → 1,73
.globl _wordpointer
.type _wordpointer,@object
.size _wordpointer,4
 
.globl _bitindex
.type _bitindex,@object
.size _bitindex,4
 
.globl _getbits
.type _getbits,@function
_getbits:
cmpl $0,4(%esp)
jne .L1
xorl %eax,%eax
ret
 
.L1:
movl _wordpointer,%ecx
movzbl (%ecx),%eax
shll $16,%eax
movb 1(%ecx),%ah
movb 2(%ecx),%al
movl _bitindex,%ecx
shll $8,%eax
shll %cl,%eax
movl 4(%esp),%ecx
addl %ecx,_bitindex
negl %ecx
addl $32,%ecx
shrl %cl,%eax
movl _bitindex,%ecx
sarl $3,%ecx
addl %ecx,_wordpointer
andl $7,_bitindex
ret
 
 
 
.globl _getbits_fast
.type _getbits_fast,@function
_getbits_fast:
movl _wordpointer,%ecx
movzbl 1(%ecx),%eax
movb (%ecx),%ah
movl _bitindex,%ecx
shlw %cl,%ax
movl 4(%esp),%ecx
addl %ecx,_bitindex
negl %ecx
addl $16,%ecx
shrl %cl,%eax
movl _bitindex,%ecx
sarl $3,%ecx
addl %ecx,_wordpointer
andl $7,_bitindex
ret
 
 
 
.globl _get1bit
.type _get1bit,@function
_get1bit:
movl _wordpointer,%ecx
movzbl (%ecx),%eax
movl _bitindex,%ecx
incl %ecx
rolb %cl,%al
andb $1,%al
movl %ecx,_bitindex
andl $7,_bitindex
sarl $3,%ecx
addl %ecx,_wordpointer
ret
/shark/trunk/ports/mpg123/control.c
0,0 → 1,220
/*
* Control interface to front ends.
* written/copyrights 1997 by Michael Hipp
*/
 
#include <stdio.h>
 
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>
 
#include <linux/socket.h>
/* <sys/socket.h> */
 
#include "jukebox/controldata.h"
#include "mpg123.h"
 
#define MODE_STOPPED 0
#define MODE_PLAYING 1
#define MODE_PAUSED 2
 
extern FILE *filept;
extern int tabsel_123[2][3][16];
 
int sajber_sendmsg(int type,int data)
{
TControlMsg msg;
msg.type = type;
msg.data = data;
return write(1,&msg,sizeof(TControlMsg));
}
 
void control_sajber(struct frame *fr)
{
struct timeval timeout;
fd_set readfds;
int n;
int mode = MODE_STOPPED;
TControlMsg smsg,rmsg;
struct msghdr msghdr;
struct m_cmsghdr cmsghdr;
struct iovec iovec[1];
char buf[2];
int init = 0;
int framecnt = 0;
 
while(1) {
timeout.tv_sec = 0;
timeout.tv_usec = 0;
FD_ZERO(&readfds);
FD_SET(0,&readfds);
 
if(mode == MODE_PLAYING) {
n = select(32,&readfds,NULL,NULL,&timeout);
if(n == 0) {
if(!read_frame(fr)) {
mode = MODE_STOPPED;
close_stream();
sajber_sendmsg(MSG_NEXT,0);
continue;
}
play_frame(init,fr);
if(init) {
AudioInfo sai;
sai.bitrate = tabsel_123[fr->lsf][fr->lay-1][fr->bitrate_index] * 1000;
sai.frequency = freqs[fr->sampling_frequency];
sai.stereo = fr->stereo;
sai.type = fr->lay;
sai.sample = 16;
sajber_sendmsg(MSG_INFO,TRUE);
write(1,&sai,sizeof(AudioInfo));
init = 0;
}
framecnt++;
if(!(framecnt & 0xf)) {
sajber_sendmsg(MSG_FRAMES,framecnt);
sajber_sendmsg(MSG_POSITION,tell_stream());
}
}
}
else {
while(1) {
n = select(32,&readfds,NULL,NULL,NULL);
if(n > 0)
break;
}
}
if(n < 0) {
exit(1);
}
if(n > 0) {
int len;
len = read(0,&rmsg,sizeof(TControlMsg));
if(len != sizeof(TControlMsg)) {
fprintf(stderr,"Error reading control message!\n");
exit(1);
}
#if 0
fprintf(stderr,"%d.%d\n",rmsg.type,rmsg.data);
#endif
switch(rmsg.type) {
case MSG_CTRL:
switch(rmsg.data) {
case FORWARD_STEP:
if(mode != MODE_STOPPED) {
int i;
for(i=0;i<16;i++) {
read_frame(fr);
if(framecnt && fr->lay == 3)
set_pointer(512);
framecnt++;
}
}
sajber_sendmsg(MSG_RESPONSE,FORWARD_STEP);
break;
case FORWARD_BEGIN:
sajber_sendmsg(MSG_RESPONSE,FORWARD_BEGIN);
break;
case FORWARD_END:
sajber_sendmsg(MSG_RESPONSE,FORWARD_END);
break;
case REWIND_BEGIN:
sajber_sendmsg(MSG_RESPONSE,REWIND_BEGIN);
break;
case REWIND_STEP:
if(back_frame(fr,16) == 0)
framecnt -= 16;
else
framecnt = 0;
sajber_sendmsg(MSG_RESPONSE,REWIND_STEP);
break;
case REWIND_END:
sajber_sendmsg(MSG_RESPONSE,REWIND_END);
break;
case PLAY_STOP:
mode = MODE_STOPPED;
close_stream();
break;
case PLAY_PAUSE:
mode = MODE_PAUSED;
break;
}
break;
case MSG_BUFFER:
break;
case MSG_SONG:
if(mode == MODE_PLAYING) {
close_stream();
mode = MODE_STOPPED;
}
 
iovec[0].iov_base = buf;
iovec[0].iov_len = 2;
/*
* this control message 'delivers' a given file
* descriptor to another process ..
* the sent descriptor can then be accesed by the
* child process.
*/
cmsghdr.cmsg_len = sizeof(cmsghdr);
cmsghdr.cmsg_level = SOL_SOCKET;
cmsghdr.cmsg_type = SCM_RIGHTS;
 
msghdr.msg_name = NULL;
msghdr.msg_namelen = 0;
msghdr.msg_iov = iovec;
msghdr.msg_iovlen = 1;
msghdr.msg_control = &cmsghdr;
msghdr.msg_controllen = sizeof(cmsghdr);
 
if(recvmsg(0,&msghdr,0) < 0) {
perror("recvmsg");
exit(1);
}
 
open_stream(NULL,cmsghdr.fd);
mode = MODE_PLAYING;
init = 1;
framecnt = 0;
read_frame_init();
break;
case MSG_QUIT:
exit(0);
break;
case MSG_QUERY:
smsg.type = MSG_RESPONSE;
smsg.data = FALSE;
switch(rmsg.data) {
case QUERY_PLAYING:
if(mode == MODE_PLAYING)
smsg.data = TRUE;
break;
case QUERY_PAUSED:
if(mode == MODE_PAUSED)
smsg.data = TRUE;
break;
}
write(1,&smsg,sizeof(TControlMsg));
break;
case MSG_BUFAHEAD:
break;
case MSG_SEEK:
break;
case MSG_PRIORITY:
break;
case MSG_RELEASE:
break;
}
}
}
}
 
void control_tk3play(struct frame *fr)
{
 
}
 
 
/shark/trunk/ports/mpg123/decode.c
0,0 → 1,168
/*
* Mpeg Layer-1,2,3 audio decoder
* ------------------------------
* copyright (c) 1995,1996,1997 by Michael Hipp, All rights reserved.
* See also 'README'
*
*/
 
#include <stdlib.h>
#include <math.h>
#include <string.h>
 
#include "mpg123.h"
 
#define WRITE_SAMPLE(samples,sum,clip) \
if( (sum) > 32767.0) { *(samples) = 0x7fff; (clip)++; } \
else if( (sum) < -32768.0) { *(samples) = -0x8000; (clip)++; } \
else { *(samples) = sum; }
 
int synth_1to1_8bit(real *bandPtr,int channel,unsigned char *samples)
{
short samples_tmp[64];
short *tmp1 = samples_tmp + channel;
int i,ret;
 
samples += channel;
ret = synth_1to1(bandPtr,channel,(unsigned char *) samples_tmp);
 
for(i=0;i<32;i++) {
*samples = conv16to8[*tmp1>>4];
samples += 2;
tmp1 += 2;
}
 
return ret;
}
 
int synth_1to1_8bit_mono(real *bandPtr,unsigned char *samples)
{
short samples_tmp[64];
short *tmp1 = samples_tmp;
int i,ret;
 
ret = synth_1to1(bandPtr,0,(unsigned char *) samples_tmp);
 
for(i=0;i<32;i++) {
*samples++ = conv16to8[*tmp1>>4];
*samples++ = conv16to8[*tmp1>>4];
tmp1 += 2;
}
 
return ret;
}
 
int synth_1to1_mono(real *bandPtr,unsigned char *samples)
{
int i,ret = synth_1to1(bandPtr,0,samples);
for(i=0;i<32;i++) {
((short *)samples)[1] = ((short *)samples)[0];
samples+=4;
}
return ret;
}
 
 
int synth_1to1(real *bandPtr,int channel,unsigned char *out)
{
static real buffs[2][2][0x110];
static int bo = 1;
short *samples = (short *) out;
 
real *b0,(*buf)[0x110];
int clip = 0;
int bo1;
static const int step = 2;
 
if(!channel) {
bo--;
bo &= 0xf;
buf = buffs[0];
}
else {
samples++;
buf = buffs[1];
}
 
if(bo & 0x1) {
b0 = buf[0];
bo1 = bo;
dct64(buf[1]+((bo+1)&0xf),buf[0]+bo,bandPtr);
}
else {
b0 = buf[1];
bo1 = bo+1;
dct64(buf[0]+bo,buf[1]+bo+1,bandPtr);
}
 
 
{
register int j;
real *window = decwin + 16 - bo1;
for (j=16;j;j--,window+=0x10,samples+=step)
{
real sum;
sum = *window++ * *b0++;
sum -= *window++ * *b0++;
sum += *window++ * *b0++;
sum -= *window++ * *b0++;
sum += *window++ * *b0++;
sum -= *window++ * *b0++;
sum += *window++ * *b0++;
sum -= *window++ * *b0++;
sum += *window++ * *b0++;
sum -= *window++ * *b0++;
sum += *window++ * *b0++;
sum -= *window++ * *b0++;
sum += *window++ * *b0++;
sum -= *window++ * *b0++;
sum += *window++ * *b0++;
sum -= *window++ * *b0++;
 
WRITE_SAMPLE(samples,sum,clip);
}
 
{
real sum;
sum = window[0x0] * b0[0x0];
sum += window[0x2] * b0[0x2];
sum += window[0x4] * b0[0x4];
sum += window[0x6] * b0[0x6];
sum += window[0x8] * b0[0x8];
sum += window[0xA] * b0[0xA];
sum += window[0xC] * b0[0xC];
sum += window[0xE] * b0[0xE];
WRITE_SAMPLE(samples,sum,clip);
b0-=0x10,window-=0x20,samples+=step;
}
window += bo1<<1;
 
for (j=15;j;j--,b0-=0x20,window-=0x10,samples+=step)
{
real sum;
sum = -*(--window) * *b0++;
sum -= *(--window) * *b0++;
sum -= *(--window) * *b0++;
sum -= *(--window) * *b0++;
sum -= *(--window) * *b0++;
sum -= *(--window) * *b0++;
sum -= *(--window) * *b0++;
sum -= *(--window) * *b0++;
sum -= *(--window) * *b0++;
sum -= *(--window) * *b0++;
sum -= *(--window) * *b0++;
sum -= *(--window) * *b0++;
sum -= *(--window) * *b0++;
sum -= *(--window) * *b0++;
sum -= *(--window) * *b0++;
sum -= *(--window) * *b0++;
 
WRITE_SAMPLE(samples,sum,clip);
}
}
 
return clip;
}
 
 
/shark/trunk/ports/mpg123/dct64.c
0,0 → 1,168
 
/*
* Discrete Cosine Tansform (DCT) for subband synthesis
*
* -funroll-loops (for gcc) will remove the loops for better performance
* using loops in the source-code enhances readabillity
*/
 
/*
* TODO: write an optimized version for the down-sampling modes
* (in these modes the bands 16-31 (2:1) or 8-31 (4:1) are zero
*/
 
#include "mpg123.h"
 
void dct64(real *out0,real *out1,real *samples)
{
real bufs[64];
 
{
register int i,j;
register real *b1,*b2,*bs,*costab;
 
b1 = samples;
bs = bufs;
costab = pnts[0]+16;
b2 = b1 + 32;
 
for(i=15;i>=0;i--)
*bs++ = (*b1++ + *--b2);
for(i=15;i>=0;i--)
*bs++ = (*--b2 - *b1++) * *--costab;
 
b1 = bufs;
costab = pnts[1]+8;
b2 = b1 + 16;
 
{
for(i=7;i>=0;i--)
*bs++ = (*b1++ + *--b2);
for(i=7;i>=0;i--)
*bs++ = (*--b2 - *b1++) * *--costab;
b2 += 32;
costab += 8;
for(i=7;i>=0;i--)
*bs++ = (*b1++ + *--b2);
for(i=7;i>=0;i--)
*bs++ = (*b1++ - *--b2) * *--costab;
b2 += 32;
}
 
bs = bufs;
costab = pnts[2];
b2 = b1 + 8;
 
for(j=2;j;j--)
{
for(i=3;i>=0;i--)
*bs++ = (*b1++ + *--b2);
for(i=3;i>=0;i--)
*bs++ = (*--b2 - *b1++) * costab[i];
b2 += 16;
for(i=3;i>=0;i--)
*bs++ = (*b1++ + *--b2);
for(i=3;i>=0;i--)
*bs++ = (*b1++ - *--b2) * costab[i];
b2 += 16;
}
 
b1 = bufs;
costab = pnts[3];
b2 = b1 + 4;
 
for(j=4;j;j--)
{
*bs++ = (*b1++ + *--b2);
*bs++ = (*b1++ + *--b2);
*bs++ = (*--b2 - *b1++) * costab[1];
*bs++ = (*--b2 - *b1++) * costab[0];
b2 += 8;
*bs++ = (*b1++ + *--b2);
*bs++ = (*b1++ + *--b2);
*bs++ = (*b1++ - *--b2) * costab[1];
*bs++ = (*b1++ - *--b2) * costab[0];
b2 += 8;
}
bs = bufs;
costab = pnts[4];
 
for(j=8;j;j--)
{
real v0,v1;
v0=*b1++; v1 = *b1++;
*bs++ = (v0 + v1);
*bs++ = (v0 - v1) * (*costab);
v0=*b1++; v1 = *b1++;
*bs++ = (v0 + v1);
*bs++ = (v1 - v0) * (*costab);
}
 
}
 
 
{
register real *b1;
register int i;
 
for(b1=bufs,i=8;i;i--,b1+=4)
b1[2] += b1[3];
 
for(b1=bufs,i=4;i;i--,b1+=8)
{
b1[4] += b1[6];
b1[6] += b1[5];
b1[5] += b1[7];
}
 
for(b1=bufs,i=2;i;i--,b1+=16)
{
b1[8] += b1[12];
b1[12] += b1[10];
b1[10] += b1[14];
b1[14] += b1[9];
b1[9] += b1[13];
b1[13] += b1[11];
b1[11] += b1[15];
}
}
 
 
out0[0x10*16] = bufs[0];
out0[0x10*15] = bufs[16+0] + bufs[16+8];
out0[0x10*14] = bufs[8];
out0[0x10*13] = bufs[16+8] + bufs[16+4];
out0[0x10*12] = bufs[4];
out0[0x10*11] = bufs[16+4] + bufs[16+12];
out0[0x10*10] = bufs[12];
out0[0x10* 9] = bufs[16+12] + bufs[16+2];
out0[0x10* 8] = bufs[2];
out0[0x10* 7] = bufs[16+2] + bufs[16+10];
out0[0x10* 6] = bufs[10];
out0[0x10* 5] = bufs[16+10] + bufs[16+6];
out0[0x10* 4] = bufs[6];
out0[0x10* 3] = bufs[16+6] + bufs[16+14];
out0[0x10* 2] = bufs[14];
out0[0x10* 1] = bufs[16+14] + bufs[16+1];
out0[0x10* 0] = bufs[1];
 
out1[0x10* 0] = bufs[1];
out1[0x10* 1] = bufs[16+1] + bufs[16+9];
out1[0x10* 2] = bufs[9];
out1[0x10* 3] = bufs[16+9] + bufs[16+5];
out1[0x10* 4] = bufs[5];
out1[0x10* 5] = bufs[16+5] + bufs[16+13];
out1[0x10* 6] = bufs[13];
out1[0x10* 7] = bufs[16+13] + bufs[16+3];
out1[0x10* 8] = bufs[3];
out1[0x10* 9] = bufs[16+3] + bufs[16+11];
out1[0x10*10] = bufs[11];
out1[0x10*11] = bufs[16+11] + bufs[16+7];
out1[0x10*12] = bufs[7];
out1[0x10*13] = bufs[16+7] + bufs[16+15];
out1[0x10*14] = bufs[15];
out1[0x10*15] = bufs[16+15];
 
}
 
 
/shark/trunk/ports/mpg123/decode_2to1.c
0,0 → 1,176
/*
* Mpeg Layer-1,2,3 audio decoder
* ------------------------------
* copyright (c) 1995 by Michael Hipp, All rights reserved. See also 'README'
* version for slower machines .. decodes only every second sample
* sounds like 24000,22050 or 16000 kHz .. (depending on original sample freq.)
*
*/
 
#include <stdlib.h>
#include <math.h>
#include <string.h>
 
#include "mpg123.h"
 
#define WRITE_SAMPLE(samples,sum,clip) \
if( (sum) > 32767.0) { *(samples) = 0x7fff; (clip)++; } \
else if( (sum) < -32768.0) { *(samples) = -0x8000; (clip)++; } \
else { *(samples) = sum; }
 
int synth_2to1_8bit(real *bandPtr,int channel,unsigned char *samples)
{
short samples_tmp[32];
short *tmp1 = samples_tmp + channel;
int i,ret;
 
samples += channel;
ret = synth_2to1(bandPtr,channel,(unsigned char *) samples_tmp);
 
for(i=0;i<16;i++) {
*samples = conv16to8[*tmp1>>4];
samples += 2;
tmp1 += 2;
}
 
return ret;
}
 
int synth_2to1_8bit_mono(real *bandPtr,unsigned char *samples)
{
short samples_tmp[32];
short *tmp1 = samples_tmp;
int i,ret;
 
ret = synth_2to1(bandPtr,0,(unsigned char *) samples_tmp);
 
for(i=0;i<16;i++) {
*samples++ = conv16to8[*tmp1>>4];
*samples++ = conv16to8[*tmp1>>4];
tmp1 += 2;
}
 
return ret;
}
 
int synth_2to1_mono(real *bandPtr,unsigned char *samples)
{
int i,ret = synth_2to1(bandPtr,0,samples);
for(i=0;i<16;i++) {
((short *)samples)[1] = ((short *)samples)[0];
samples+=4;
}
return ret;
}
 
int synth_2to1(real *bandPtr,int channel,unsigned char *out)
{
static real buffs[2][2][0x110];
static const int step = 2;
static int bo = 1;
short *samples = (short *) out;
 
real *b0,(*buf)[0x110];
int clip = 0;
int bo1;
 
if(!channel) {
bo--;
bo &= 0xf;
buf = buffs[0];
}
else {
samples++;
buf = buffs[1];
}
 
if(bo & 0x1) {
b0 = buf[0];
bo1 = bo;
dct64(buf[1]+((bo+1)&0xf),buf[0]+bo,bandPtr);
}
else {
b0 = buf[1];
bo1 = bo+1;
dct64(buf[0]+bo,buf[1]+bo+1,bandPtr);
}
 
{
register int j;
real *window = decwin + 16 - bo1;
 
for (j=8;j;j--,b0+=0x10,window+=0x30)
{
real sum;
sum = *window++ * *b0++;
sum -= *window++ * *b0++;
sum += *window++ * *b0++;
sum -= *window++ * *b0++;
sum += *window++ * *b0++;
sum -= *window++ * *b0++;
sum += *window++ * *b0++;
sum -= *window++ * *b0++;
sum += *window++ * *b0++;
sum -= *window++ * *b0++;
sum += *window++ * *b0++;
sum -= *window++ * *b0++;
sum += *window++ * *b0++;
sum -= *window++ * *b0++;
sum += *window++ * *b0++;
sum -= *window++ * *b0++;
 
WRITE_SAMPLE(samples,sum,clip); samples += step;
#if 0
WRITE_SAMPLE(samples,sum,clip); samples += step;
#endif
}
 
{
real sum;
sum = window[0x0] * b0[0x0];
sum += window[0x2] * b0[0x2];
sum += window[0x4] * b0[0x4];
sum += window[0x6] * b0[0x6];
sum += window[0x8] * b0[0x8];
sum += window[0xA] * b0[0xA];
sum += window[0xC] * b0[0xC];
sum += window[0xE] * b0[0xE];
WRITE_SAMPLE(samples,sum,clip); samples += step;
#if 0
WRITE_SAMPLE(samples,sum,clip); samples += step;
#endif
b0-=0x20,window-=0x40;
}
window += bo1<<1;
 
for (j=7;j;j--,b0-=0x30,window-=0x30)
{
real sum;
sum = -*(--window) * *b0++;
sum -= *(--window) * *b0++;
sum -= *(--window) * *b0++;
sum -= *(--window) * *b0++;
sum -= *(--window) * *b0++;
sum -= *(--window) * *b0++;
sum -= *(--window) * *b0++;
sum -= *(--window) * *b0++;
sum -= *(--window) * *b0++;
sum -= *(--window) * *b0++;
sum -= *(--window) * *b0++;
sum -= *(--window) * *b0++;
sum -= *(--window) * *b0++;
sum -= *(--window) * *b0++;
sum -= *(--window) * *b0++;
sum -= *(--window) * *b0++;
 
WRITE_SAMPLE(samples,sum,clip); samples += step;
#if 0
WRITE_SAMPLE(samples,sum,clip); samples += step;
#endif
}
}
 
return clip;
}
 
 
/shark/trunk/ports/mpg123/decode_4to1.c
0,0 → 1,183
/*
* Mpeg Layer-1,2,3 audio decoder
* ------------------------------
* copyright (c) 1995,1996,1997 by Michael Hipp, All rights reserved.
* See also 'README'
* version for slower machines .. decodes only every fourth sample
* dunno why it sounds THIS annoying (maybe we should adapt the window?)
* absolutely not optimized for this operation
*/
 
#include <stdlib.h>
#include <math.h>
#include <string.h>
 
#include "mpg123.h"
 
#define WRITE_SAMPLE(samples,sum,clip) \
if( (sum) > 32767.0) { *(samples) = 0x7fff; (clip)++; } \
else if( (sum) < -32768.0) { *(samples) = -0x8000; (clip)++; } \
else { *(samples) = sum; }
 
int synth_4to1_8bit(real *bandPtr,int channel,unsigned char *samples)
{
short samples_tmp[16];
short *tmp1 = samples_tmp + channel;
int i,ret;
 
samples += channel;
ret = synth_4to1(bandPtr,channel,(unsigned char *) samples_tmp);
 
for(i=0;i<8;i++) {
*samples = conv16to8[*tmp1>>4];
samples += 2;
tmp1 += 2;
}
 
return ret;
}
 
int synth_4to1_8bit_mono(real *bandPtr,unsigned char *samples)
{
short samples_tmp[16];
short *tmp1 = samples_tmp;
int i,ret;
 
ret = synth_4to1(bandPtr,0,(unsigned char *) samples_tmp);
 
for(i=0;i<8;i++) {
*samples++ = conv16to8[*tmp1>>4];
*samples++ = conv16to8[*tmp1>>4];
tmp1 += 2;
}
 
return ret;
}
 
int synth_4to1_mono(real *bandPtr,unsigned char *samples)
{
int i,ret = synth_4to1(bandPtr,0,samples);
for(i=0;i<8;i++) {
((short *)samples)[1] = ((short *)samples)[0];
samples+=4;
}
return ret;
}
 
int synth_4to1(real *bandPtr,int channel,unsigned char *out)
{
static real buffs[2][2][0x110];
static const int step = 2;
static int bo = 1;
short *samples = (short *) out;
 
real *b0,(*buf)[0x110];
int clip = 0;
int bo1;
 
if(!channel) {
bo--;
bo &= 0xf;
buf = buffs[0];
}
else {
samples++;
buf = buffs[1];
}
 
if(bo & 0x1) {
b0 = buf[0];
bo1 = bo;
dct64(buf[1]+((bo+1)&0xf),buf[0]+bo,bandPtr);
}
else {
b0 = buf[1];
bo1 = bo+1;
dct64(buf[0]+bo,buf[1]+bo+1,bandPtr);
}
 
{
register int j;
real *window = decwin + 16 - bo1;
 
for (j=4;j;j--,b0+=0x30,window+=0x70)
{
real sum;
sum = *window++ * *b0++;
sum -= *window++ * *b0++;
sum += *window++ * *b0++;
sum -= *window++ * *b0++;
sum += *window++ * *b0++;
sum -= *window++ * *b0++;
sum += *window++ * *b0++;
sum -= *window++ * *b0++;
sum += *window++ * *b0++;
sum -= *window++ * *b0++;
sum += *window++ * *b0++;
sum -= *window++ * *b0++;
sum += *window++ * *b0++;
sum -= *window++ * *b0++;
sum += *window++ * *b0++;
sum -= *window++ * *b0++;
 
WRITE_SAMPLE(samples,sum,clip); samples += step;
#if 0
WRITE_SAMPLE(samples,sum,clip); samples += step;
WRITE_SAMPLE(samples,sum,clip); samples += step;
WRITE_SAMPLE(samples,sum,clip); samples += step;
#endif
}
 
{
real sum;
sum = window[0x0] * b0[0x0];
sum += window[0x2] * b0[0x2];
sum += window[0x4] * b0[0x4];
sum += window[0x6] * b0[0x6];
sum += window[0x8] * b0[0x8];
sum += window[0xA] * b0[0xA];
sum += window[0xC] * b0[0xC];
sum += window[0xE] * b0[0xE];
WRITE_SAMPLE(samples,sum,clip); samples += step;
#if 0
WRITE_SAMPLE(samples,sum,clip); samples += step;
WRITE_SAMPLE(samples,sum,clip); samples += step;
WRITE_SAMPLE(samples,sum,clip); samples += step;
#endif
b0-=0x40,window-=0x80;
}
window += bo1<<1;
 
for (j=3;j;j--,b0-=0x50,window-=0x70)
{
real sum;
sum = -*(--window) * *b0++;
sum -= *(--window) * *b0++;
sum -= *(--window) * *b0++;
sum -= *(--window) * *b0++;
sum -= *(--window) * *b0++;
sum -= *(--window) * *b0++;
sum -= *(--window) * *b0++;
sum -= *(--window) * *b0++;
sum -= *(--window) * *b0++;
sum -= *(--window) * *b0++;
sum -= *(--window) * *b0++;
sum -= *(--window) * *b0++;
sum -= *(--window) * *b0++;
sum -= *(--window) * *b0++;
sum -= *(--window) * *b0++;
sum -= *(--window) * *b0++;
 
WRITE_SAMPLE(samples,sum,clip); samples += step;
#if 0
WRITE_SAMPLE(samples,sum,clip); samples += step;
WRITE_SAMPLE(samples,sum,clip); samples += step;
WRITE_SAMPLE(samples,sum,clip); samples += step;
#endif
}
}
 
return clip;
}
 
 
/shark/trunk/ports/mpg123/tabinit.c
0,0 → 1,106
 
#include "mpg123.h"
 
real decwin[512+32];
static real cos64[16],cos32[8],cos16[4],cos8[2],cos4[1];
real *pnts[] = { cos64,cos32,cos16,cos8,cos4 };
 
static unsigned char conv16to8_buf[4096];
unsigned char *conv16to8 = conv16to8_buf + 2048;
 
static long intwinbase[] = {
0, -1, -1, -1, -1, -1, -1, -2, -2, -2,
-2, -3, -3, -4, -4, -5, -5, -6, -7, -7,
-8, -9, -10, -11, -13, -14, -16, -17, -19, -21,
-24, -26, -29, -31, -35, -38, -41, -45, -49, -53,
-58, -63, -68, -73, -79, -85, -91, -97, -104, -111,
-117, -125, -132, -139, -147, -154, -161, -169, -176, -183,
-190, -196, -202, -208, -213, -218, -222, -225, -227, -228,
-228, -227, -224, -221, -215, -208, -200, -189, -177, -163,
-146, -127, -106, -83, -57, -29, 2, 36, 72, 111,
153, 197, 244, 294, 347, 401, 459, 519, 581, 645,
711, 779, 848, 919, 991, 1064, 1137, 1210, 1283, 1356,
1428, 1498, 1567, 1634, 1698, 1759, 1817, 1870, 1919, 1962,
2001, 2032, 2057, 2075, 2085, 2087, 2080, 2063, 2037, 2000,
1952, 1893, 1822, 1739, 1644, 1535, 1414, 1280, 1131, 970,
794, 605, 402, 185, -45, -288, -545, -814, -1095, -1388,
-1692, -2006, -2330, -2663, -3004, -3351, -3705, -4063, -4425, -4788,
-5153, -5517, -5879, -6237, -6589, -6935, -7271, -7597, -7910, -8209,
-8491, -8755, -8998, -9219, -9416, -9585, -9727, -9838, -9916, -9959,
-9966, -9935, -9863, -9750, -9592, -9389, -9139, -8840, -8492, -8092,
-7640, -7134, -6574, -5959, -5288, -4561, -3776, -2935, -2037, -1082,
-70, 998, 2122, 3300, 4533, 5818, 7154, 8540, 9975, 11455,
12980, 14548, 16155, 17799, 19478, 21189, 22929, 24694, 26482, 28289,
30112, 31947, 33791, 35640, 37489, 39336, 41176, 43006, 44821, 46617,
48390, 50137, 51853, 53534, 55178, 56778, 58333, 59838, 61289, 62684,
64019, 65290, 66494, 67629, 68692, 69679, 70590, 71420, 72169, 72835,
73415, 73908, 74313, 74630, 74856, 74992, 75038 };
 
void make_decode_tables(long scaleval)
{
int i,j,k,kr,divv;
real *table,*costab;
 
for(i=0;i<5;i++)
{
kr=0x10>>i; divv=0x40>>i;
costab = pnts[i];
for(k=0;k<kr;k++)
costab[k] = 1.0 / (2.0 * cos(M_PI * ((double) k * 2.0 + 1.0) / (double) divv));
}
 
table = decwin;
scaleval = -scaleval;
for(i=0,j=0;i<256;i++,j++,table+=32)
{
if(table < decwin+512+16)
table[16] = table[0] = (double) intwinbase[j] / 65536.0 * (double) scaleval;
if(i % 32 == 31)
table -= 1023;
if(i % 64 == 63)
scaleval = - scaleval;
}
 
for( /* i=256 */ ;i<512;i++,j--,table+=32)
{
if(table < decwin+512+16)
table[16] = table[0] = (double) intwinbase[j] / 65536.0 * (double) scaleval;
if(i % 32 == 31)
table -= 1023;
if(i % 64 == 63)
scaleval = - scaleval;
}
}
 
void make_conv16to8_table(int mode)
{
int i;
unsigned char c;
if(mode == AUDIO_FORMAT_ULAW_8) {
double m=127.0 / log(256.0);
for(i=-2048;i<2048;i++) {
/* dunno whether this is a valid transformation rule ?!?!? */
if(i < 0)
c = 127 - (int) (log( 1.0 - 255.0 * (double) i*16.0 / 32767.0 ) * m);
else
c = 255 - (int) (log( 1.0 + 255.0 * (double) i*16.0 / 32767.0 ) * m);
conv16to8[i] = c;
}
}
else if(mode == AUDIO_FORMAT_SIGNED_8) {
for(i=-2048;i<2048;i++) {
conv16to8[i] = i>>4;
}
}
else if(mode == AUDIO_FORMAT_UNSIGNED_8) {
for(i=-2048;i<2048;i++) {
conv16to8[i] = (i>>4)+128;
}
}
else {
for(i=-2048;i<2048;i++) {
conv16to8[i] = 0;
}
}
}
 
/shark/trunk/ports/mpg123/audio.c
0,0 → 1,797
/*
* simple audio Lib ..
* copyrights (c) 1994,1995,1996 by Michael Hipp
* SGI audio support copyrights (c) 1995 by Thomas Woerner
* copy policy: GPL V2.0
*/
 
#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
 
#ifdef SOLARIS
#include <stropts.h>
#include <sys/conf.h>
#endif
 
#include "mpg123.h"
 
extern int outburst;
 
void audio_info_struct_init(struct audio_info_struct *ai)
{
#ifdef AUDIO_USES_FD
ai->fn = -1;
#endif
#ifdef SGI
#if 0
ALconfig config;
ALport port;
#endif
#endif
ai->rate = -1;
ai->gain = -1;
ai->output = -1;
ai->device = NULL;
ai->channels = -1;
ai->format = -1;
}
 
 
#ifdef OS2
#include <stdlib.h>
#include <os2.h>
#define INCL_OS2MM
#include <os2me.h>
#define BUFNUM 20
#define BUFSIZE 16384
#endif
 
#ifdef VOXWARE
#include <sys/ioctl.h>
#ifdef LINUX
#include <linux/soundcard.h>
#else
#include <machine/soundcard.h>
#endif
 
int audio_open(struct audio_info_struct *ai)
{
if(!ai)
return -1;
 
if(!ai->device)
ai->device = "/dev/dsp";
 
ai->fn = open(ai->device,O_WRONLY);
 
if(ai->fn < 0)
{
fprintf(stderr,"Can't open %s!\n",ai->device);
exit(1);
}
 
ioctl(ai->fn, SNDCTL_DSP_GETBLKSIZE, &outburst);
if(outburst > MAXOUTBURST)
outburst = MAXOUTBURST;
 
if(audio_reset_parameters(ai) < 0) {
close(ai->fn);
return -1;
}
 
if(ai->gain >= 0) {
int e,mask;
e = ioctl(ai->fn , SOUND_MIXER_READ_DEVMASK ,&mask);
if(e < 0) {
fprintf(stderr,"audio/gain: Can't get audio device features list.\n");
}
else if(mask & SOUND_MASK_PCM) {
int gain = (ai->gain<<8)|(ai->gain);
e = ioctl(ai->fn, SOUND_MIXER_WRITE_PCM , &gain);
}
else if(!(mask & SOUND_MASK_VOLUME)) {
fprintf(stderr,"audio/gain: setable Volume/PCM-Level not supported by your audio device: %#04x\n",mask);
}
else {
int gain = (ai->gain<<8)|(ai->gain);
e = ioctl(ai->fn, SOUND_MIXER_WRITE_VOLUME , &gain);
}
}
 
return ai->fn;
}
 
int audio_reset_parameters(struct audio_info_struct *ai)
{
int ret;
ret = ioctl(ai->fn,SNDCTL_DSP_RESET,NULL);
if(ret >= 0)
ret = audio_set_format(ai);
if(ret >= 0)
ret = audio_set_channels(ai);
if(ret >= 0)
ret = audio_set_rate(ai);
return ret;
}
 
int audio_rate_best_match(struct audio_info_struct *ai)
{
int ret,dsp_rate;
 
if(!ai || ai->fn < 0 || ai->rate < 0)
return -1;
dsp_rate = ai->rate;
ret = ioctl(ai->fn, SNDCTL_DSP_SPEED,&dsp_rate);
if(ret < 0)
return ret;
ai->rate = dsp_rate;
return 0;
}
 
int audio_set_rate(struct audio_info_struct *ai)
{
int dsp_rate;
 
if(ai->rate >= 0) {
dsp_rate = ai->rate;
return ioctl(ai->fn, SNDCTL_DSP_SPEED,&dsp_rate);
}
 
return 0;
}
 
int audio_set_channels(struct audio_info_struct *ai)
{
int chan = ai->channels - 1;
 
if(ai->channels < 0)
return 0;
 
return ioctl(ai->fn, SNDCTL_DSP_STEREO, &chan);
}
 
int audio_set_format(struct audio_info_struct *ai)
{
int sample_size,fmts;
 
if(ai->format == -1)
return 0;
 
switch(ai->format) {
case AUDIO_FORMAT_SIGNED_16:
default:
fmts = AFMT_S16_LE;
sample_size = 16;
break;
case AUDIO_FORMAT_UNSIGNED_8:
fmts = AFMT_U8;
sample_size = 8;
break;
case AUDIO_FORMAT_SIGNED_8:
fmts = AFMT_S8;
sample_size = 8;
break;
case AUDIO_FORMAT_ULAW_8:
fmts = AFMT_MU_LAW;
sample_size = 8;
break;
}
if(ioctl(ai->fn, SNDCTL_DSP_SAMPLESIZE,&sample_size) < 0)
return -1;
return ioctl(ai->fn, SNDCTL_DSP_SETFMT, &fmts);
}
 
int audio_get_formats(struct audio_info_struct *ai)
{
int ret = 0;
int fmts;
 
if(ioctl(ai->fn,SNDCTL_DSP_GETFMTS,&fmts) < 0)
return -1;
 
if(fmts & AFMT_MU_LAW)
ret |= AUDIO_FORMAT_ULAW_8;
if(fmts & AFMT_S16_LE)
ret |= AUDIO_FORMAT_SIGNED_16;
if(fmts & AFMT_U8)
ret |= AUDIO_FORMAT_UNSIGNED_8;
if(fmts & AFMT_S8)
ret |= AUDIO_FORMAT_SIGNED_8;
 
return ret;
}
 
int audio_play_samples(struct audio_info_struct *ai,unsigned char *buf,int len)
{
return write(ai->fn,buf,len);
}
 
int audio_close(struct audio_info_struct *ai)
{
close (ai->fn);
return 0;
}
 
#elif defined(SOLARIS) || defined(SUNOS)
 
#include <sys/filio.h>
#ifdef SUNOS
#include <sun/audioio.h>
#else
#include <sys/audioio.h>
#endif
 
int audio_open(struct audio_info_struct *ai)
{
audio_info_t ainfo;
 
ai->fn = open("/dev/audio",O_WRONLY);
if(ai->fn < 0)
return ai->fn;
 
#ifdef SUNOS
{
int type;
if(ioctl(ai->fn, AUDIO_GETDEV, &type) == -1)
return -1;
if(type == AUDIO_DEV_UNKNOWN || type == AUDIO_DEV_AMD)
return -1;
}
#else
#if 0
{
struct audio_device ad;
if(ioctl(ai->fn, AUDIO_GETDEV, &ad) == -1)
return -1;
fprintf(stderr,"%s\n",ad.name);
if(strstr(ad.name,"CS4231"))
fprintf(stderr,"Warning: Your machine can't play full 44.1Khz stereo.\n");
if(!strstr(ad.name,"dbri") && !strstr(ad.name,"CS4231"))
fprintf(stderr,"Warning: Unknown sound system %s. But we try it.\n",ad.name);
}
#endif
#endif
 
if(audio_reset_parameters(ai) < 0) {
return -1;
}
 
if(ioctl(ai->fn, AUDIO_GETINFO, &ainfo) == -1)
return -1;
 
switch(ai->output)
{
case AUDIO_OUT_INTERNAL_SPEAKER:
ainfo.play.port = AUDIO_SPEAKER;
break;
case AUDIO_OUT_HEADPHONES:
ainfo.play.port = AUDIO_HEADPHONE;
break;
case AUDIO_OUT_LINE_OUT:
ainfo.play.port = AUDIO_LINE_OUT;
break;
}
 
if(ai->gain != -1)
ainfo.play.gain = ai->gain;
 
if(ioctl(ai->fn, AUDIO_SETINFO, &ainfo) == -1)
return -1;
 
return ai->fn;
}
 
int audio_reset_parameters(struct audio_info_struct *ai)
{
int ret;
ret = audio_set_format(ai);
if(ret >= 0)
ret = audio_set_channels(ai);
if(ret >= 0)
ret = audio_set_rate(ai);
return ret;
}
 
int audio_rate_best_match(struct audio_info_struct *ai)
{
return 0;
}
 
int audio_set_rate(struct audio_info_struct *ai)
{
audio_info_t ainfo;
 
if(ai->rate != -1)
{
if(ioctl(ai->fn, AUDIO_GETINFO, &ainfo) == -1)
return -1;
ainfo.play.sample_rate = ai->rate;
if(ioctl(ai->fn, AUDIO_SETINFO, &ainfo) == -1)
return -1;
return 0;
}
return -1;
}
 
int audio_set_channels(struct audio_info_struct *ai)
{
audio_info_t ainfo;
 
if(ioctl(ai->fn, AUDIO_GETINFO, &ainfo) == -1)
return -1;
ainfo.play.channels = ai->channels;
if(ioctl(ai->fn, AUDIO_SETINFO, &ainfo) == -1)
return -1;
return 0;
}
 
int audio_set_format(struct audio_info_struct *ai)
{
audio_info_t ainfo;
 
if(ioctl(ai->fn, AUDIO_GETINFO, &ainfo) == -1)
return -1;
 
switch(ai->format) {
case -1:
case AUDIO_FORMAT_SIGNED_16:
default:
ainfo.play.encoding = AUDIO_ENCODING_LINEAR;
ainfo.play.precision = 16;
break;
case AUDIO_FORMAT_UNSIGNED_8:
#ifndef SUNOS
ainfo.play.encoding = AUDIO_ENCODING_LINEAR8;
ainfo.play.precision = 8;
break;
#endif
case AUDIO_FORMAT_SIGNED_8:
fprintf(stderr,"Linear signed 8 bit not supported!\n");
return -1;
case AUDIO_FORMAT_ULAW_8:
ainfo.play.encoding = AUDIO_ENCODING_ULAW;
ainfo.play.precision = 8;
break;
case AUDIO_FORMAT_ALAW_8:
ainfo.play.encoding = AUDIO_ENCODING_ALAW;
ainfo.play.precision = 8;
break;
}
 
if(ioctl(ai->fn, AUDIO_SETINFO, &ainfo) == -1)
return -1;
 
return 0;
}
 
int audio_get_formats(struct audio_info_struct *ai)
{
return AUDIO_FORMAT_SIGNED_16|AUDIO_FORMAT_ULAW_8;
}
 
int audio_play_samples(struct audio_info_struct *ai,unsigned char *buf,int len)
{
return write(ai->fn,buf,len);
}
 
int audio_close(struct audio_info_struct *ai)
{
close (ai->fn);
return 0;
}
 
#ifdef SOLARIS
void audio_queueflush (struct audio_info_struct *ai)
{
ioctl (ai->fn, I_FLUSH, FLUSHRW);
}
#endif
 
 
#elif defined(HPUX)
#include <sys/audio.h>
 
int audio_open(struct audio_info_struct *ai)
{
struct audio_describe ades;
struct audio_gain again;
int i,audio;
 
ai->fn = open("/dev/audio",O_RDWR);
 
if(ai->fn < 0)
return -1;
 
 
ioctl(ai->fn,AUDIO_DESCRIBE,&ades);
 
if(ai->gain != -1)
{
if(ai->gain > ades.max_transmit_gain)
{
fprintf(stderr,"your gainvalue was to high -> set to maximum.\n");
ai->gain = ades.max_transmit_gain;
}
if(ai->gain < ades.min_transmit_gain)
{
fprintf(stderr,"your gainvalue was to low -> set to minimum.\n");
ai->gain = ades.min_transmit_gain;
}
again.channel_mask = AUDIO_CHANNEL_0 | AUDIO_CHANNEL_1;
ioctl(ai->fn,AUDIO_GET_GAINS,&again);
again.cgain[0].transmit_gain = ai->gain;
again.cgain[1].transmit_gain = ai->gain;
again.channel_mask = AUDIO_CHANNEL_0 | AUDIO_CHANNEL_1;
ioctl(ai->fn,AUDIO_SET_GAINS,&again);
}
if(ai->output != -1)
{
if(ai->output == AUDIO_OUT_INTERNAL_SPEAKER)
ioctl(ai->fn,AUDIO_SET_OUTPUT,AUDIO_OUT_SPEAKER);
else if(ai->output == AUDIO_OUT_HEADPHONES)
ioctl(ai->fn,AUDIO_SET_OUTPUT,AUDIO_OUT_HEADPHONE);
else if(ai->output == AUDIO_OUT_LINE_OUT)
ioctl(ai->fn,AUDIO_SET_OUTPUT,AUDIO_OUT_LINE);
}
if(ai->rate == -1)
ai->rate = 44100;
 
for(i=0;i<ades.nrates;i++)
{
if(ai->rate == ades.sample_rate[i])
break;
}
if(i == ades.nrates)
{
fprintf(stderr,"Can't set sample-rate to %ld.\n",ai->rate);
i = 0;
}
 
if(audio_reset_parameters(ai) < 0)
return -1;
return ai->fn;
}
 
int audio_reset_parameters(struct audio_info_struct *ai)
{
int ret;
ret = audio_set_format(ai);
if(ret >= 0)
ret = audio_set_channels(ai);
if(ret >= 0)
ret = audio_set_rate(ai);
return ret;
}
 
int audio_rate_best_match(struct audio_info_struct *ai)
{
return 0;
}
 
int audio_set_rate(struct audio_info_struct *ai)
{
if(ai->rate >= 0)
return ioctl(ai->fn,AUDIO_SET_SAMPLE_RATE,ai->rate);
return 0;
}
 
int audio_set_channels(struct audio_info_struct *ai)
{
return ioctl(ai->fn,AUDIO_SET_CHANNELS,ai->channels);
}
 
int audio_set_format(struct audio_info_struct *ai)
{
int fmt;
 
switch(ai->format) {
case -1:
case AUDIO_FORMAT_SIGNED_16:
default:
fmt = AUDIO_FORMAT_LINEAR16BIT;
break;
case AUDIO_FORMAT_UNSIGNED_8:
fprintf(stderr,"unsigned 8 bit linear not supported\n");
return -1;
case AUDIO_FORMAT_SIGNED_8:
fprintf(stderr,"signed 8 bit linear not supported\n");
return -1;
case AUDIO_FORMAT_ALAW_8:
fmt = AUDIO_FORMAT_ALAW;
break;
case AUDIO_FORMAT_ULAW_8:
fmt = AUDIO_FORMAT_ULAW;
break;
}
return ioctl(ai->fn,AUDIO_SET_DATA_FORMAT,fmt);
}
 
int audio_get_formats(struct audio_info_struct *ai)
{
return AUDIO_FORMAT_SIGNED_16;
}
 
 
int audio_play_samples(struct audio_info_struct *ai,unsigned char *buf,int len)
{
return write(ai->fn,buf,len);
}
 
int audio_close(struct audio_info_struct *ai)
{
close (ai->fn);
return 0;
}
 
#elif defined(SGI)
 
int audio_open(struct audio_info_struct *ai)
{
ai->config = ALnewconfig();
 
if(ai->channels == 2)
ALsetchannels(ai->config, AL_STEREO);
else
ALsetchannels(ai->config, AL_MONO);
ALsetwidth(ai->config, AL_SAMPLE_16);
 
ALsetqueuesize(ai->config, 131069);
ai->port = ALopenport("mpg132", "w", ai->config);
if(ai->port == NULL){
fprintf(stderr, "Unable to open audio channel.");
exit(-1);
}
 
audio_reset_parameters(ai);
return 1;
}
 
int audio_reset_parameters(struct audio_info_struct *ai)
{
int ret;
ret = audio_set_format(ai);
if(ret >= 0)
ret = audio_set_channels(ai);
if(ret >= 0)
ret = audio_set_rate(ai);
 
/* todo: Set new parameters here */
 
return ret;
}
 
int audio_rate_best_match(struct audio_info_struct *ai)
{
return 0;
}
 
int audio_set_rate(struct audio_info_struct *ai)
{
long params[2] = {AL_OUTPUT_RATE, 44100};
 
params[1] = ai->rate;
ALsetparams(AL_DEFAULT_DEVICE, params, 2);
return 0;
}
 
int audio_set_channels(struct audio_info_struct *ai)
{
if(ai->channels == 2)
ALsetchannels(ai->config, AL_STEREO);
else
ALsetchannels(ai->config, AL_MONO);
return 0;
}
 
int audio_set_format(struct audio_info_struct *ai)
{
return 0;
}
 
int audio_get_formats(struct audio_info_struct *ai)
{
return AUDIO_FORMAT_SIGNED_16;
}
 
 
int audio_play_samples(struct audio_info_struct *ai,unsigned char *buf,int len)
{
if(ai->format == AUDIO_FORMAT_SIGNED_8)
ALwritesamps(ai->port, buf, len);
else
ALwritesamps(ai->port, buf, len>>1);
return len;
}
 
int audio_close(struct audio_info_struct *ai)
{
while(ALgetfilled(ai->port) > 0)
sginap(1);
ALcloseport(ai->port);
ALfreeconfig(ai->config);
return 0;
}
 
#elif defined(OS2)
 
typedef struct {
ULONG operation;
ULONG operand1;
ULONG operand2;
ULONG operand3;
} ple;
MCI_WAVE_SET_PARMS msp;
MCI_PLAY_PARMS mpp;
int id, pos=0;
ple pl[BUFNUM+2];
 
int audio_open(struct audio_info_struct *ai)
{
char *buf[BUFNUM];
int i;
ULONG rc;
MCI_OPEN_PARMS mop;
 
pl[0].operation = (ULONG)NOP_OPERATION;
pl[0].operand1 = 0;
pl[0].operand2 = 0;
pl[0].operand3 = 0;
for(i = 0; i < BUFNUM; i++) {
buf[i] = (char*)malloc(BUFSIZE);
memset(buf[i], 0, BUFSIZE);
pl[i+1].operation = (ULONG)DATA_OPERATION;
pl[i+1].operand1 = (ULONG)buf[i];
pl[i+1].operand2 = BUFSIZE/2;
pl[i+1].operand3 = 0;
}
pl[BUFNUM+1].operation = (ULONG)BRANCH_OPERATION;
pl[BUFNUM+1].operand1 = 0;
pl[BUFNUM+1].operand2 = 1;
pl[BUFNUM+1].operand3 = 0;
 
mop.pszDeviceType = (PSZ)MCI_DEVTYPE_WAVEFORM_AUDIO_NAME;
mop.pszElementName = (PSZ)&pl;
 
rc = mciSendCommand(0, MCI_OPEN, MCI_WAIT
| MCI_OPEN_PLAYLIST, (PVOID)&mop, 0);
if (rc) {
puts("open audio device failed!");
exit(1);
}
id = mop.usDeviceID;
 
msp.usBitsPerSample = 16;
rc = mciSendCommand(id, MCI_SET, MCI_WAIT | MCI_WAVE_SET_BITSPERSAMPLE, (PVOID)&msp, 0);
return 0;
}
 
int audio_reset_parameters(struct audio_info_struct *ai)
{
static int audio_initialized = FALSE, i;
 
if (audio_initialized) {
while (pl[pos].operand3 < pl[pos].operand2) _sleep2(125);
for(i = 1; i <= BUFNUM; i++) {
memset((char*)pl[i].operand1, 0, BUFSIZE);
pl[i].operand2 = BUFSIZE;
pl[i].operand3 = 0;
}
_sleep2(2000);
mciSendCommand(id, MCI_STOP, MCI_WAIT, (PVOID)&mpp, 0);
for(i = 1; i <= BUFNUM; i++) {
memset((char*)pl[i].operand1, 0, BUFSIZE);
pl[i].operand2 = BUFSIZE/2;
pl[i].operand3 = 0;
}
pos = 0;
}
msp.ulSamplesPerSec = ai->rate;
msp.usChannels = ai->channels;
mciSendCommand(id, MCI_SET, MCI_WAIT
| MCI_WAVE_SET_SAMPLESPERSEC
| MCI_WAVE_SET_CHANNELS, (PVOID)&msp, 0);
 
mciSendCommand(id, MCI_PLAY, 0, (PVOID)&mpp, 0);
 
if(!audio_initialized) audio_initialized = TRUE;
return 0;
}
 
int audio_rate_best_match(struct audio_info_struct *ai)
{
return 0;
}
 
int audio_set_rate(struct audio_info_struct *ai)
{
return 0;
}
 
int audio_play_samples(struct audio_info_struct *ai,unsigned char *buf,int len)
{
pos = pos + 1;
 
if (pos > BUFNUM) pos = 1;
 
while (pl[pos].operand3 < pl[pos].operand2) _sleep2(125);
 
memcpy((char*)pl[pos].operand1, buf, len);
pl[pos].operand2 = len;
pl[pos].operand3 = 0;
 
return len;
}
 
int audio_close(struct audio_info_struct *ai)
{
ULONG rc;
 
pl[pos].operation = (ULONG)EXIT_OPERATION;
pl[pos].operand2 = 0;
pl[pos].operand3 = 0;
 
pos = pos - 1;
if(pos == 0) pos = BUFNUM;
 
while (pl[pos].operand3 < pl[pos].operand2) _sleep2(250);
_sleep2(2000);
 
rc = mciSendCommand(id, MCI_CLOSE, MCI_WAIT, (PVOID)NULL, 0);
return 0;
}
 
#else
 
int audio_open(struct audio_info_struct *ai)
{
fprintf(stderr,"No audio device support compiled into this binary (use -s).\n");
return -1;
}
 
int audio_reset_parameters(struct audio_info_struct *ai)
{
return 0;
}
 
int audio_rate_best_match(struct audio_info_struct *ai)
{
return 0;
}
 
int audio_set_rate(struct audio_info_struct *ai)
{
return 0;
}
 
int audio_set_channels(struct audio_info_struct *ai)
{
return 0;
}
 
int audio_set_format(struct audio_info_struct *ai)
{
return 0;
}
 
int audio_get_formats(struct audio_info_struct *ai)
{
return AUDIO_FORMAT_SIGNED_16;
}
 
int audio_play_samples(struct audio_info_struct *ai,unsigned char *buf,int len)
{
return len;
}
 
int audio_close(struct audio_info_struct *ai)
{
return 0;
}
#endif
/shark/trunk/ports/mpg123/xfermem.c
0,0 → 1,242
/*
* xfermem.c
*
* Oliver Fromme <oliver.fromme@heim3.tu-clausthal.de>
* Sun Apr 6 02:26:26 MET DST 1997
*
* See xfermem.h for documentation/description.
*/
 
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/time.h>
#include <sys/uio.h>
#include <sys/mman.h>
#include <sys/socket.h>
#include <fcntl.h>
 
#include "xfermem.h"
#include "mpg123.h"
 
#ifndef USE_MMAP
#include <sys/ipc.h>
#include <sys/shm.h>
#endif
 
extern int errno;
 
#if defined (USE_MMAP) && defined(MAP_ANONYMOUS) && !defined(MAP_ANON)
#define MAP_ANON MAP_ANONYMOUS
#endif
 
void xfermem_init (txfermem **xf, int bufsize, int msize)
{
int regsize = bufsize + msize + sizeof(txfermem);
 
#ifdef USE_MMAP
# ifdef MAP_ANON
if ((*xf = (txfermem *) mmap(0, regsize, PROT_READ | PROT_WRITE,
MAP_ANON | MAP_SHARED, -1, 0)) == (txfermem *) -1) {
perror ("mmap()");
exit (1);
}
# else
int devzero;
if ((devzero = open("/dev/zero", O_RDWR, 0)) == -1) {
perror ("open(/dev/zero)");
exit (1);
}
if ((*xf = (txfermem *) mmap(0, regsize, PROT_READ | PROT_WRITE,
MAP_SHARED, devzero, 0)) == (txfermem *) -1) {
perror ("mmap()");
exit (1);
}
close (devzero);
# endif
#else
struct shmid_ds shmemds;
int shmemid;
if ((shmemid = shmget(IPC_PRIVATE, regsize, IPC_CREAT | 0600)) == -1) {
perror ("shmget()");
exit (1);
}
if ((*xf = (txfermem *) shmat(shmemid, 0, 0)) == (txfermem *) -1) {
perror ("shmat()");
shmctl (shmemid, IPC_RMID, &shmemds);
exit (1);
}
if (shmctl(shmemid, IPC_RMID, &shmemds) == -1) {
perror ("shmctl()");
xfermem_done (*xf);
exit (1);
}
#endif
if (socketpair(AF_UNIX, SOCK_STREAM, 0, (*xf)->fd) < 0) {
perror ("socketpair()");
xfermem_done (*xf);
exit (1);
}
(*xf)->freeindex = (*xf)->readindex = 0;
(*xf)->wakeme[0] = (*xf)->wakeme[1] = FALSE;
(*xf)->data = ((byte *) *xf) + sizeof(txfermem) + msize;
(*xf)->metadata = ((byte *) *xf) + sizeof(txfermem);
(*xf)->size = bufsize;
(*xf)->metasize = msize;
}
 
void xfermem_done (txfermem *xf)
{
#ifdef USE_MMAP
munmap ((caddr_t) xf, xf->size + xf->metasize + sizeof(txfermem));
#else
if (shmdt((void *) xf) == -1) {
perror ("shmdt()");
exit (1);
}
#endif
}
 
void xfermem_init_writer (txfermem *xf)
{
close (xf->fd[XF_READER]);
}
 
void xfermem_init_reader (txfermem *xf)
{
close (xf->fd[XF_WRITER]);
}
 
int xfermem_get_freespace (txfermem *xf)
{
int freeindex, readindex;
if ((freeindex = xf->freeindex) < 0
|| (readindex = xf->readindex) < 0)
return (0);
if (readindex > freeindex)
return ((readindex - freeindex) - 1);
else
return ((xf->size - (freeindex - readindex)) - 1);
}
 
int xfermem_get_usedspace (txfermem *xf)
{
int freeindex, readindex;
 
if ((freeindex = xf->freeindex) < 0
|| (readindex = xf->readindex) < 0)
return (0);
if (freeindex >= readindex)
return (freeindex - readindex);
else
return (xf->size - (readindex - freeindex));
}
 
int xfermem_write (txfermem *xf, byte *data, int count)
{
int nbytes;
 
if ((nbytes = xfermem_get_freespace(xf))> count)
nbytes = count;
if (nbytes) {
if (xf->freeindex + nbytes > xf->size) {
int first = xf->size - xf->freeindex;
memcpy (xf->data + xf->freeindex, data, first);
memcpy (xf->data, data + first, nbytes - first);
}
else
memcpy (xf->data + xf->freeindex, data, nbytes);
xf->freeindex = (xf->freeindex + nbytes) % xf->size;
}
return (nbytes);
}
 
int xfermem_read (txfermem *xf, byte *data, int count)
{
int nbytes;
 
if ((nbytes = xfermem_get_usedspace(xf))> count)
nbytes = count;
if (nbytes) {
if (xf->readindex + nbytes > xf->size) {
int first = xf->size - xf->readindex;
memcpy (data, xf->data + xf->readindex, first);
memcpy (data + first, xf->data, nbytes - first);
}
else
memcpy (data, xf->data + xf->readindex, nbytes);
xf->readindex = (xf->readindex + nbytes) % xf->size;
}
return (nbytes);
}
 
int xfermem_getcmd (int fd, int block)
{
fd_set selfds;
struct timeval selto = {0, 0};
byte cmd;
 
for (;;) {
FD_ZERO (&selfds);
FD_SET (fd, &selfds);
switch (select(FD_SETSIZE, &selfds, NULL, NULL, block ? NULL : &selto)) {
case 0:
if (!block)
return (0);
continue;
case -1:
if (errno == EINTR)
continue;
return (-2);
case 1:
if (FD_ISSET(fd, &selfds))
switch (read(fd, &cmd, 1)) {
case 0: /* EOF */
return (-1);
case -1:
if (errno == EINTR)
continue;
return (-3);
case 1:
return (cmd);
default: /* ?!? */
return (-4);
}
else /* ?!? */
return (-5);
default: /* ?!? */
return (-6);
}
}
}
 
int xfermem_putcmd (int fd, byte cmd)
{
for (;;)
switch (write(fd, &cmd, 1)) {
case 1:
return (1);
case -1:
if (errno != EINTR)
return (-1);
}
}
 
int xfermem_block (int readwrite, txfermem *xf)
{
int myfd = xf->fd[readwrite];
int result;
 
xf->wakeme[readwrite] = TRUE;
if (xf->wakeme[1 - readwrite])
xfermem_putcmd (myfd, XF_CMD_WAKEUP);
result = xfermem_getcmd(myfd, TRUE);
xf->wakeme[readwrite] = FALSE;
return ((result <= 0) ? -1 : result);
}
 
/* EOF */
/shark/trunk/ports/mpg123/get1bit.h
0,0 → 1,28
 
 
#ifdef I386_ASSEM
static inline int get1bit(void) {
extern int bitindex;
extern unsigned char *wordpointer;
int ret;
 
asm("\n\t"
"movl %1,%%ecx\n\t"
"movzbl (%%ecx),%%eax\n\t"
"movl %2,%%ecx\n\t"
"incl %%ecx\n\t"
"rolb %%cl,%%al\n\t"
"andb $1,%%al\n\t"
"movl %%ecx,%2\n\t"
"andl $7,%2\n\t"
"sarl $3,%%ecx\n\t"
"addl %%ecx,%1\n"
: "=a" (ret)
: "m" (wordpointer) , "m" (bitindex)
: "eax" , "ecx" , "memory" );
return ret;
}
#endif
 
 
 
/shark/trunk/ports/mpg123/audio.h
0,0 → 1,48
/*
* Audio 'LIB' defines
*/
 
enum { AUDIO_OUT_HEADPHONES,AUDIO_OUT_INTERNAL_SPEAKER,AUDIO_OUT_LINE_OUT };
enum { DECODE_TEST, DECODE_AUDIO, DECODE_STDOUT, DECODE_BUFFER };
 
#define AUDIO_FORMAT_SIGNED_16 0x1
#define AUDIO_FORMAT_UNSIGNED_8 0x2
#define AUDIO_FORMAT_SIGNED_8 0x4
#define AUDIO_FORMAT_ULAW_8 0x8
#define AUDIO_FORMAT_ALAW_8 0x10
 
#if defined(HPUX) || defined(SUNOS) || defined(SOLARIS) || defined(VOXWARE)
#define AUDIO_USES_FD
#endif
 
struct audio_info_struct
{
#ifdef AUDIO_USES_FD
int fn; /* filenumber */
#endif
#ifdef SGI
ALconfig config;
ALport port;
#endif
long rate;
int gain;
int output;
char *device;
int channels;
int format;
};
 
extern int audio_play_samples(struct audio_info_struct *,unsigned char *,int);
extern int audio_open(struct audio_info_struct *);
extern int audio_reset_parameters(struct audio_info_struct *);
extern int audio_rate_best_match(struct audio_info_struct *ai);
extern int audio_set_rate(struct audio_info_struct *);
extern int audio_set_format(struct audio_info_struct *);
extern int audio_get_formats(struct audio_info_struct *);
extern int audio_set_channels(struct audio_info_struct *);
extern int audio_write_sample(struct audio_info_struct *,short *,int);
extern int audio_close(struct audio_info_struct *);
extern void audio_info_struct_init(struct audio_info_struct *);
#ifdef SOLARIS
extern void audio_queueflush(struct audio_info_struct *ai);
#endif
/shark/trunk/ports/mpg123/xfermem.h
0,0 → 1,60
/*
* xfermem.h
*
* Oliver Fromme <oliver.fromme@heim3.tu-clausthal.de>
* Sat Mar 29 04:41:34 MET 1997
*
* This is a stand-alone module which implements a unidirectional,
* fast pipe using mmap(). Its primary use is to transfer large
* amounts of data from a parent process to its child process,
* with a buffer in between which decouples blocking conditions
* on both sides. Control information is transferred between the
* processes through a socketpair. See xftest.c for an example on
* how to use this module.
*/
 
#ifndef TRUE
#define FALSE 0
#define TRUE 1
#endif
 
typedef unsigned char byte;
 
typedef struct {
int freeindex; /* [W] next free index */
int readindex; /* [R] next index to read */
int fd[2];
int wakeme[2];
byte *data;
byte *metadata;
int size;
int metasize;
} txfermem;
/*
* [W] -- May be written to by the writing process only!
* [R] -- May be written to by the reading process only!
* All other entries are initialized once.
*/
 
void xfermem_init (txfermem **xf, int bufsize, int msize);
void xfermem_init_writer (txfermem *xf);
void xfermem_init_reader (txfermem *xf);
 
int xfermem_write (txfermem *xf, byte *data, int count);
int xfermem_read (txfermem *xf, byte *data, int count);
 
int xfermem_get_freespace (txfermem *xf);
int xfermem_get_usedspace (txfermem *xf);
#define XF_CMD_WAKEUP 0x02
#define XF_CMD_TERMINATE 0x03
#define XF_WRITER 0
#define XF_READER 1
int xfermem_getcmd (int fd, int block);
int xfermem_putcmd (int fd, byte cmd);
int xfermem_block (int fd, txfermem *xf);
 
void xfermem_done (txfermem *xf);
#define xfermem_done_writer xfermem_init_reader
#define xfermem_done_reader xfermem_init_writer
 
/* EOF */
/shark/trunk/ports/mpg123/mpg123.c
0,0 → 1,698
/*
* Mpeg Layer audio decoder (see version.h for version number)
* ------------------------
* copyright (c) 1995,1996,1997 by Michael Hipp, All rights reserved.
* See also 'README' !
*
*/
 
#include <stdlib.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/time.h>
#include <sys/resource.h>
 
/* #define SET_PRIO */
 
#include "mpg123.h"
#include "getlopt.h"
 
#include "version.h"
 
static void usage(char *dummy);
static void print_title(void);
 
static long rates[3][3] = {
{ 32000,44100,48000 } ,
{ 16000,22050,24000 } ,
{ 8000,11025,12000 }
};
 
int supported_rates = 0;
 
int outmode = DECODE_AUDIO;
 
char *listname = NULL;
long outscale = 32768;
int checkrange = FALSE;
int tryresync = TRUE;
int quiet = FALSE;
int verbose = 0;
int doublespeed= 0;
int halfspeed = 0;
int shuffle = 0;
int change_always = 1;
int force_8bit = 0;
int force_frequency = -1;
long numframes = -1;
long startFrame= 0;
int usebuffer = 0;
int frontend_type = 0;
int remote = 0;
int buffer_fd[2];
int buffer_pid;
 
static void catch_child(void)
{
while (waitpid(-1, NULL, WNOHANG) > 0);
}
 
static int intflag = FALSE;
static int remflag = FALSE;
 
static void catch_interrupt(void)
{
intflag = TRUE;
}
 
static char remote_buffer[1024];
static struct frame fr;
static struct audio_info_struct ai;
txfermem *buffermem;
#define FRAMEBUFUNIT (18 * 64 * 4)
 
void print_rheader(struct frame *fr);
 
static void catch_remote(void)
{
remflag = TRUE;
intflag = TRUE;
if(usebuffer)
kill(buffer_pid,SIGINT);
}
 
 
char *handle_remote(void)
{
switch(frontend_type) {
case FRONTEND_SAJBER:
#ifdef FRONTEND
control_sajber(&fr);
#endif
break;
case FRONTEND_TK3PLAY:
#ifdef FRONTEND
control_tk3play(&fr);
#endif
break;
default:
fgets(remote_buffer,1024,stdin);
remote_buffer[strlen(remote_buffer)-1]=0;
switch(remote_buffer[0]) {
case 'P':
return remote_buffer+1;
}
 
if(usebuffer)
kill(buffer_pid,SIGINT);
break;
}
 
return NULL;
}
 
void init_output(void)
{
static int init_done = FALSE;
 
if (init_done)
return;
init_done = TRUE;
#ifndef OS2
if (usebuffer) {
unsigned int bufferbytes;
sigset_t newsigset, oldsigset;
 
if (usebuffer < 32)
usebuffer = 32; /* minimum is 32 Kbytes! */
bufferbytes = (usebuffer * 1024);
bufferbytes -= bufferbytes % FRAMEBUFUNIT;
xfermem_init (&buffermem, bufferbytes, sizeof(ai.rate));
pcm_sample = (unsigned char *) buffermem->data;
pcm_point = 0;
sigemptyset (&newsigset);
sigaddset (&newsigset, SIGUSR1);
sigprocmask (SIG_BLOCK, &newsigset, &oldsigset);
catchsignal (SIGCHLD, catch_child);
switch ((buffer_pid = fork())) {
case -1: /* error */
perror("fork()");
exit(1);
case 0: /* child */
xfermem_init_reader (buffermem);
buffer_loop (&ai, &oldsigset);
xfermem_done_reader (buffermem);
xfermem_done (buffermem);
_exit(0);
default: /* parent */
xfermem_init_writer (buffermem);
outmode = DECODE_BUFFER;
}
}
else {
#endif
if (!(pcm_sample = (unsigned char *) malloc(audiobufsize * 2))) {
perror ("malloc()");
exit (1);
#ifndef OS2
}
#endif
}
 
if(outmode==DECODE_AUDIO) {
if(audio_open(&ai) < 0) {
perror("audio");
exit(1);
}
/* audio_set_rate (&ai); should already be done in audio_open() [OF] */
}
}
 
char *get_next_file (int argc, char *argv[])
{
static FILE *listfile = NULL;
static char line[1024];
 
#ifdef SHUFFLESUPPORT
static int ord[2048];
int temp, randomized,pos;
static char initialized=0;
time_t t;
#endif
 
if (remote)
return handle_remote();
 
if (listname || listfile) {
if (!listfile) {
if (!*listname || !strcmp(listname, "-")) {
listfile = stdin;
listname = NULL;
}
else if (!strncmp(listname, "http://", 7))
listfile = http_open(listname);
else if (!(listfile = fopen(listname, "rb"))) {
perror (listname);
exit (1);
}
if (verbose)
fprintf (stderr, "Using playlist from %s ...\n",
listname ? listname : "standard input");
}
do {
if (fgets(line, 1023, listfile)) {
line[strcspn(line, "\t\n\r")] = '\0';
if (line[0]=='\0' || line[0]=='#')
continue;
return (line);
}
else {
if (*listname)
fclose (listfile);
listname = NULL;
listfile = NULL;
}
} while (listfile);
}
 
#ifdef SHUFFLESUPPORT
if(!initialized){
for(pos=0;pos<=argc; pos++) ord[pos]=pos;
initialized=1;
}
if(shuffle){
fprintf(stderr, "\nShuffle play - %u file(s) in loop.\n", argc-loptind);
srandom(time(&t));
for(pos=loptind;pos<argc;pos++){
randomized=(random()%(argc-pos))+pos;
temp=ord[pos];
ord[pos]=ord[randomized];
ord[randomized]=temp;
}
shuffle=0;
}
if (loptind < argc)
return (argv[ord[loptind++]]);
return (NULL);
#else
if (loptind < argc)
return (argv[loptind++]);
return (NULL);
#endif
}
 
void set_synth (char *arg)
{
if (*arg == '2') {
fr.down_sample = 1;
}
else {
fr.down_sample = 2;
}
}
 
#ifdef VARMODESUPPORT
void set_varmode (char *arg)
{
audiobufsize = ((audiobufsize >> 1) + 63) & 0xffffc0;
}
#endif
 
void set_output (char *arg)
{
switch (*arg) {
case 'h': ai.output = AUDIO_OUT_HEADPHONES; break;
case 's': ai.output = AUDIO_OUT_INTERNAL_SPEAKER; break;
case 'l': ai.output = AUDIO_OUT_LINE_OUT; break;
default:
fprintf (stderr, "%s: Unknown argument \"%s\" to option \"%s\".\n",
prgName, arg, loptarg);
exit (1);
}
}
 
void set_verbose (char *arg)
{
verbose++;
}
 
topt opts[] = {
{'k', "skip", GLO_ARG | GLO_NUM, 0, &startFrame, 0},
{'a', "audiodevice", GLO_ARG | GLO_CHAR, 0, &ai.device, 0},
{'2', "2to1", 0, set_synth, 0, 0},
{'4', "4to1", 0, set_synth, 0, 0},
{'t', "test", 0, 0, &outmode, DECODE_TEST},
{'s', "stdout", 0, 0, &outmode, DECODE_STDOUT},
{'c', "check", 0, 0, &checkrange, TRUE},
{'v', "verbose", 0, set_verbose, 0, 0},
{'q', "quiet", 0, 0, &quiet, TRUE},
{'y', "resync", 0, 0, &tryresync, FALSE},
{'0', "single0", 0, 0, &fr.single, 0},
{0, "left", 0, 0, &fr.single, 0},
{'1', "single1", 0, 0, &fr.single, 1},
{0, "right", 0, 0, &fr.single, 1},
{'m', "singlemix", 0, 0, &fr.single, 3},
{0, "mix", 0, 0, &fr.single, 3},
{'g', "gain", GLO_ARG | GLO_NUM, 0, &ai.gain, 0},
{'r', "rate", GLO_ARG | GLO_NUM, 0, &force_frequency, 0},
{0, "8bit", 0, 0, &force_8bit, 1},
{0, "headphones", 0, 0, &ai.output, AUDIO_OUT_HEADPHONES},
{0, "speaker", 0, 0, &ai.output, AUDIO_OUT_INTERNAL_SPEAKER},
{0, "lineout", 0, 0, &ai.output, AUDIO_OUT_LINE_OUT},
{'o', "output", GLO_ARG | GLO_CHAR, set_output, 0, 0},
{'f', "scale", GLO_ARG | GLO_NUM, 0, &outscale, 0},
{'n', "frames", GLO_ARG | GLO_NUM, 0, &numframes, 0},
#ifdef VARMODESUPPORT
{'v', "var", 0, set_varmode, &varmode, TRUE},
#endif
{'b', "buffer", GLO_ARG | GLO_NUM, 0, &usebuffer, 0},
{'R', "remote", 0, 0, &remote, TRUE},
{'d', "doublespeed", GLO_ARG | GLO_NUM, 0, &doublespeed,0},
{'h', "halfspeed", GLO_ARG | GLO_NUM, 0, &halfspeed, 0},
{'p', "proxy", GLO_ARG | GLO_CHAR, 0, &proxyurl, 0},
{'@', "list", GLO_ARG | GLO_CHAR, 0, &listname, 0},
#ifdef SHUFFLESUPPORT
/* 'z' comes from the the german word 'zufall' (eng: random) */
{'z', "shuffle", 0, 0, &shuffle, 1},
#endif
{'?', "help", 0, usage, 0, 0},
{0, 0, 0, 0, 0, 0}
};
 
/*
* Change the playback sample rate.
*/
static void reset_audio_samplerate(void)
{
if (usebuffer) {
/* wait until the buffer is empty,
* then tell the buffer process to
* change the sample rate. [OF]
*/
while (xfermem_get_usedspace(buffermem) > 0)
if (xfermem_block(XF_WRITER, buffermem) == XF_CMD_TERMINATE) {
intflag = TRUE;
break;
}
buffermem->freeindex = -1;
buffermem->readindex = 0; /* I know what I'm doing! ;-) */
buffermem->freeindex = 0;
if (intflag)
return;
memcpy (buffermem->metadata, &ai.rate, sizeof(ai.rate));
kill (buffer_pid, SIGUSR1);
}
else if (outmode == DECODE_AUDIO) {
/* audio_reset_parameters(&ai); */
/* close and re-open in order to flush
* the device's internal buffer before
* changing the sample rate. [OF]
*/
audio_close (&ai);
if (audio_open(&ai) < 0) {
perror("audio");
exit(1);
}
}
}
 
/*
* play a frame read read_frame();
* (re)initialize audio if necessary.
*/
void play_frame(int init,struct frame *fr)
{
int clip;
 
if((fr->header_change && change_always) || init) {
int reset_audio = 0;
 
if(remote)
print_rheader(fr);
 
if (!quiet && init)
if (verbose)
print_header(fr);
else
print_header_compact(fr);
 
if(force_frequency < 0) {
if(ai.rate != freqs[fr->sampling_frequency]>>(fr->down_sample)) {
ai.rate = freqs[fr->sampling_frequency]>>(fr->down_sample);
reset_audio = 1;
}
}
else if(ai.rate != force_frequency) {
ai.rate = force_frequency;
reset_audio = 1;
}
init_output();
if(reset_audio) {
reset_audio_samplerate();
if (intflag)
return;
}
}
 
if (fr->error_protection) {
getbits(16); /* crc */
}
 
clip = (fr->do_layer)(fr,outmode,&ai);
 
#ifndef OS2
if (usebuffer) {
if (!intflag) {
buffermem->freeindex =
(buffermem->freeindex + pcm_point) % buffermem->size;
if (buffermem->wakeme[XF_READER])
xfermem_putcmd(buffermem->fd[XF_WRITER], XF_CMD_WAKEUP);
}
pcm_sample = (unsigned char *) (buffermem->data + buffermem->freeindex);
pcm_point = 0;
while (xfermem_get_freespace(buffermem) < (FRAMEBUFUNIT << 1))
if (xfermem_block(XF_WRITER, buffermem) == XF_CMD_TERMINATE) {
intflag = TRUE;
break;
}
if (intflag)
return;
}
#endif
 
if(clip > 0 && checkrange)
fprintf(stderr,"%d samples clipped\n", clip);
}
 
 
int main(int argc, char *argv[])
{
int result;
unsigned long frameNum = 0;
char *fname;
struct timeval start_time, now;
unsigned long secdiff;
int init;
 
#ifdef OS2
_wildcard(&argc,&argv);
#endif
 
#ifdef SET_PRIO
int mypid = getpid();
setpriority(PRIO_PROCESS,mypid,-20);
#endif
 
if(!strcmp("sajberplay",argv[0]))
frontend_type = FRONTEND_SAJBER;
if(!strcmp("mpg123m",argv[0]))
frontend_type = FRONTEND_TK3PLAY;
 
fr.single = -1; /* both channels */
fr.synth = synth_1to1;
fr.down_sample = 0;
 
ai.format = AUDIO_FORMAT_SIGNED_16;
ai.gain = ai.rate = ai.output = -1;
ai.device = NULL;
ai.channels = 2;
 
(prgName = strrchr(argv[0], '/')) ? prgName++ : (prgName = argv[0]);
 
while ((result = getlopt(argc, argv, opts)))
switch (result) {
case GLO_UNKNOWN:
fprintf (stderr, "%s: Unknown option \"%s\".\n", prgName, loptarg);
exit (1);
case GLO_NOARG:
fprintf (stderr, "%s: Missing argument for option \"%s\".\n",
prgName, loptarg);
exit (1);
}
if (loptind >= argc && !listname && !frontend_type)
usage(NULL);
 
if (remote){
verbose = 0;
quiet = 1;
catchsignal(SIGUSR1, catch_remote);
fprintf(stderr,"@R MPG123\n");
}
 
if (!quiet)
print_title();
 
 
{
int fmts;
int i,j;
 
struct audio_info_struct ai;
 
audio_info_struct_init(&ai);
if (outmode == DECODE_AUDIO) {
audio_open(&ai);
fmts = audio_get_formats(&ai);
}
else
fmts = AUDIO_FORMAT_SIGNED_16;
 
supported_rates = 0;
for(i=0;i<3;i++) {
for(j=0;j<3;j++) {
ai.rate = rates[i][j];
if (outmode == DECODE_AUDIO)
audio_rate_best_match(&ai);
/* allow about 2% difference */
if( ((rates[i][j]*98) < (ai.rate*100)) &&
((rates[i][j]*102) > (ai.rate*100)) )
supported_rates |= 1<<(i*3+j);
}
}
if (outmode == DECODE_AUDIO)
audio_close(&ai);
 
if(!force_8bit && !(fmts & AUDIO_FORMAT_SIGNED_16))
force_8bit = 1;
 
if(force_8bit && !(fmts & AUDIO_FORMAT_ULAW_8)) {
fprintf(stderr,"No supported audio format found!\n");
exit(1);
}
}
 
if(force_8bit) {
#if 0
ai.format = AUDIO_FORMAT_UNSIGNED_8;
ai.format = AUDIO_FORMAT_SIGNED_8;
#endif
ai.format = AUDIO_FORMAT_ULAW_8;
make_conv16to8_table(ai.format);
switch(fr.down_sample) {
case 0:
fr.synth = synth_1to1_8bit;
fr.synth_mono = synth_1to1_8bit_mono;
fr.block_size = 64;
break;
case 1:
fr.synth = synth_2to1_8bit;
fr.synth_mono = synth_2to1_8bit_mono;
fr.block_size = 32;
break;
case 2:
fr.synth = synth_4to1_8bit;
fr.synth_mono = synth_4to1_8bit_mono;
fr.block_size = 16;
break;
}
}
else {
switch(fr.down_sample) {
case 0:
fr.synth = synth_1to1;
fr.synth_mono = synth_1to1_mono;
fr.block_size = 128;
break;
case 1:
fr.synth = synth_2to1;
fr.synth_mono = synth_2to1_mono;
fr.block_size = 64;
break;
case 2:
fr.synth = synth_4to1;
fr.synth_mono = synth_4to1_mono;
fr.block_size = 32;
break;
}
}
 
make_decode_tables(outscale);
init_layer2(); /* inits also shared tables with layer1 */
init_layer3(fr.down_sample);
catchsignal (SIGINT, catch_interrupt);
 
if(frontend_type) {
handle_remote();
exit(0);
}
 
while ((fname = get_next_file(argc, argv))) {
char *dirname, *filename;
 
if(!*fname || !strcmp(fname, "-"))
fname = NULL;
open_stream(fname,-1);
if (!quiet) {
if (split_dir_file(fname ? fname : "standard input",
&dirname, &filename))
fprintf(stderr, "\nDirectory: %s", dirname);
fprintf(stderr, "\nPlaying MPEG stream from %s ...\n", filename);
}
 
gettimeofday (&start_time, NULL);
read_frame_init();
 
init = 1;
for(frameNum=0;read_frame(&fr) && numframes && !intflag;frameNum++) {
if(frameNum < startFrame || (doublespeed && (frameNum % doublespeed))) {
if(fr.lay == 3)
set_pointer(512);
continue;
}
numframes--;
play_frame(init,&fr);
init = 0;
if(verbose) {
if (verbose > 1 || !(frameNum & 0xf))
fprintf(stderr, "\r{%4lu} ",frameNum);
#ifndef OS2
if (verbose > 1 && usebuffer)
fprintf (stderr, "%7d ", xfermem_get_usedspace(buffermem));
#endif
}
 
}
 
close_stream();
if (!quiet) {
/* This formula seems to work at least for
* MPEG 1.0/2.0 layer 3 streams.
*/
int sfd = freqs[fr.sampling_frequency] * (fr.lsf + 1);
int secs = (frameNum * (fr.lay==1 ? 384 : 1152) + sfd / 2) / sfd;
fprintf(stderr,"[%d:%02d] Decoding of %s finished.\n", secs / 60,
secs % 60, filename);
}
 
if(remote)
fprintf(stderr,"@R MPG123\n");
if (remflag) {
intflag = FALSE;
remflag = FALSE;
}
 
if (intflag) {
gettimeofday (&now, NULL);
secdiff = (now.tv_sec - start_time.tv_sec) * 1000;
if (now.tv_usec >= start_time.tv_usec)
secdiff += (now.tv_usec - start_time.tv_usec) / 1000;
else
secdiff -= (start_time.tv_usec - now.tv_usec) / 1000;
if (secdiff < 1000)
break;
intflag = FALSE;
}
}
#ifndef OS2
if (usebuffer) {
xfermem_done_writer (buffermem);
waitpid (buffer_pid, NULL, 0);
xfermem_done (buffermem);
}
else {
#endif
audio_flush(outmode, &ai);
free (pcm_sample);
#ifndef OS2
}
#endif
 
if(outmode==DECODE_AUDIO)
audio_close(&ai);
exit( 0 );
}
 
static void print_title(void)
{
fprintf(stderr,"High Performance MPEG 1.0/2.0 Audio Player for Layer 1, 2 and 3.\n");
fprintf(stderr,"Version %s (%s). Written and copyrights by Michael Hipp.\n", prgVersion, prgDate);
fprintf(stderr,"Uses code from various people. See 'README' for more!\n");
fprintf(stderr,"THIS SOFTWARE COMES WITH ABSOLUTELY NO WARRANTY! USE AT YOUR OWN RISK!\n");
}
 
static void usage(char *dummy) /* print syntax & exit */
{
print_title();
fprintf(stderr,"\nusage: %s [option(s)] [file(s) | URL(s) | -]\n", prgName);
fprintf(stderr,"supported options [defaults in brackets]:\n");
fprintf(stderr," -v increase verbosity level -q quiet (don't print title)\n");
fprintf(stderr," -t testmode (no output) -s write to stdout\n");
fprintf(stderr," -k n skip first n frames [0] -n n decode only n frames [all]\n");
fprintf(stderr," -c check range violations -y DISABLE resync on errors\n");
fprintf(stderr," -b n output buffer: n Kbytes [0] -f n change scalefactor [32768]\n");
fprintf(stderr," -r n override samplerate [auto] -g n set audio hardware output gain\n");
fprintf(stderr," -os output to built-in speaker -oh output to headphones\n");
fprintf(stderr," -ol output to line-out connector -a d set audio device\n");
fprintf(stderr," -2 downsample 1:2 (22 kHz) -4 downsample 1:4 (11 kHz)\n");
fprintf(stderr," -d n play every n'th frame only -h n play every frame n times\n");
fprintf(stderr," -0 decode channel 0 (left) only -1 decode channel 1 (right) only\n");
fprintf(stderr," -m mix both channels (mono) -p p use HTTP proxy p [$HTTP_PROXY]\n");
fprintf(stderr," -@ f read filenames/URLs from f -z shuffle play (with wildcards)\n");
fprintf(stderr,"See the manpage %s(1) for more information.\n", prgName);
exit(1);
}
 
 
/shark/trunk/ports/mpg123/buffer.c
0,0 → 1,98
/*
* buffer.c
*
* Oliver Fromme <oliver.fromme@heim3.tu-clausthal.de>
* Mon Apr 14 03:53:18 MET DST 1997
*/
 
#include "mpg123.h"
 
int outburst = MAXOUTBURST;
 
static int intflag = FALSE;
static int usr1flag = FALSE;
 
static void catch_interrupt (void)
{
intflag = TRUE;
}
 
static void catch_usr1 (void)
{
usr1flag = TRUE;
}
 
#ifndef OS2
 
void buffer_loop(struct audio_info_struct *ai, sigset_t *oldsigset)
{
int bytes;
int my_fd = buffermem->fd[XF_READER];
txfermem *xf = buffermem;
int done = FALSE;
 
catchsignal (SIGINT, catch_interrupt);
catchsignal (SIGUSR1, catch_usr1);
sigprocmask (SIG_SETMASK, oldsigset, NULL);
if (outmode == DECODE_AUDIO) {
if (audio_open(ai) < 0) {
perror("audio");
exit(1);
}
/* audio_set_rate (ai); already done by audio_open() */
}
 
for (;;) {
if (intflag) {
intflag = FALSE;
#ifdef SOLARIS
if (outmode == DECODE_AUDIO)
audio_queueflush (ai);
#endif
xf->readindex = xf->freeindex;
}
if (usr1flag) {
usr1flag = FALSE;
/* close and re-open in order to flush
* the device's internal buffer before
* changing the sample rate. [OF]
*/
if (outmode == DECODE_AUDIO) {
audio_close (ai);
memcpy (&ai->rate, xf->metadata, sizeof(ai->rate));
if (audio_open(ai) < 0) {
perror("audio");
exit(1);
}
}
}
if (!(bytes = xfermem_get_usedspace(xf))) {
if (done)
break;
if (xfermem_block(XF_READER, xf) != XF_CMD_WAKEUP)
done = TRUE;
continue;
}
if (bytes > xf->size - xf->readindex)
bytes = xf->size - xf->readindex;
if (bytes > outburst)
bytes = outburst;
 
if (outmode == DECODE_STDOUT)
bytes = write(1, xf->data + xf->readindex, bytes);
else if (outmode == DECODE_AUDIO)
bytes = audio_play_samples(ai,
(unsigned char *) (xf->data + xf->readindex), bytes);
 
xf->readindex = (xf->readindex + bytes) % xf->size;
if (xf->wakeme[XF_WRITER])
xfermem_putcmd(my_fd, XF_CMD_WAKEUP);
}
 
if (outmode == DECODE_AUDIO)
audio_close (ai);
}
 
#endif
 
/* EOF */
/shark/trunk/ports/mpg123/readme
0,0 → 1,134
**********************************************************************
* MPEG 1.0/2.0 _AUDIO_ PLAYER, V0.59k *
* *
* (full?) MPEG 1.0/2.0, Layer 1,2 and 3 support *
* Layer-3 realtime only with a 'fast' machine *
* Since April 97, 128kbit j-stereo should work on a 486DX4-100. *
* With 2:1 down-sampling or using the downmix-mode even a 486DX2-66 *
* should play such a stream in realtime! *
* *
* I still claim to have the fastest MPEG Audio Player for UNIX ;) *
**********************************************************************
 
Please read first the important information in the COPYING file.
 
written/modfied by:
Michael Hipp (email: Michael.Hipp@student.uni-tuebingen.de)
Oliver Fromme <oliver.fromme@heim3.tu-clausthal.de>
(several enhancements, man pages, Makefile, FreeBSD port, License, etc.)
 
Uses code (or at least ideas) from:
MPEG Software Simulation Group (Base package)
Tobias Bading (subband synthesis)
Jeff Tsay and Mikko Tommila (DCT36)
Philipp Knirsch (DCT36/manual unroll)
Thomas Woerner (SGI Audio)
Damien Clermonte (HP-UX audio fixes)
Niclas Lindstrom (OS2 port)
and more ....
 
current original distribution site is:
http://www.sfs.nphil.uni-tuebingen.de/~hipp/mpg123.html
 
here's Oliver Fromme's mpg123 page:
http://www.heim3.tu-clausthal.de/~olli/mpg123/
(includes information about the mpg123 mailing list)
 
and you can get the latest release from here:
ftp.tu-clausthal.de:/pub/unix/audio/mpg123
http://ftp.tu-clausthal.de/pub/unix/audio/mpg123
 
------------------------------------------------------------------------
 
V0.59k plays a layer3,112Kbit/s,J-Stereo stream on my AMD 5x86/133Mhz
with about 66% CPU load. (on the console, NO X11)
If your machine isn't fast enough you may try the downsampling
feature (--2to1 and --4to1 options)
Playing in '--singlemix' (stero reduced to mono) also saves some
CPU cycles, though the whole code is optimized for 'full' stereo playing.
 
'Benchmarks': (+/- 2%)
----------------------
(AMD 486/133MHZ,ASUS SP3G,256KB cache,DIRTY-TAG installed,(BusLogic SCSI))
(Layer3, 112Kbit/s, Joint-Stereo stream (partially MS stereo, no I-stereo))
(Compiled with: -DI386_ASSEM -DREAL_IS_FLOAT -DLINUX -Wall -O2 -m486
-fomit-frame-pointer -funroll-all-loops -finline-functions -ffast-math)
 
full quality: (stero) 66% (-> should work on 486DX4-100)
(singlemix) 38% (-> should work on 486DX2-66)
2:1 downsampling: (stereo) 48%
(singlemix) 30% (-> should work on 486DX-50)
 
---------------------------------------------------------------------
Description:
 
This isn't a new player. It's a near fully rewritten version based on the
mpegaudio (FHG-version) package. The DCT algorithm in the
synthesis filter is a rewritten version of the DCT first seen in the maplay
package, which was written by Tobias Bading (bading@cs.tu-berlin.de). The
rewrite was neccassary, because the GPL may not allow this copyright mix.
The mpegaudio package was written by various people from the MPEG/audio
software simulation group. The maplay is under GPL .. You can find the
original source code and the mpegaudio package on: ftp.tnt.uni-hannover.de.
 
You will find code from the mpegaudio package in:
layer3.c
common.c
mpg123.h
I also often used the same variable names in the rewritten parts.
 
In the current layer3.c I'm using a DCT36 from Jeff Tsay's
(ctsay@pasteur.eecs.berkeley.edu) maplay 1.2+ package. His code is
under GPL .. I also tried the enhancement from Mikko Tommila. His
code is also in layer3.c (but it's disabled at the moment, because
it was slightly slower than the unrolled 9 point DCT (at least on
_my_ system)). Theoretically it should be faster. You may try it on
your system.
 
The output is always 'two channel interleaved'. If the input is a
a mono-stream or single-channel is enabled, the player duplicates
the channel. Currently, only (very simple) audiosupport for
Linux,HP7xx,SGI,SunOS/Solaris and FreeBSD systems.
I have tested the program with a lot of teststreams, but it's very
likely, that there are still a few bugs.
 
have fun,
Mike
 
----------------------------------------------------------------------------
 
Just for info:
I'm also working (but not at the moment) on a DSP port for this package.
A first testversion of the layer-2 part is finished and seems
to work in realtime with my 20MHZ ADSP-2115
 
----------------------------------------------------------------------------
 
Copyrights (c) 1995,1996,1997 of all changes/modifications and
of the new code by Michael Hipp. All rights reserved.
Copyrights (c) 1997 of several enhancements by Oliver Fromme.
See the packages 'maplay 1.2(+)' and 'mpegaudio' for their copy-policies.
Copyrights (c) 1997 of the OS2 specific parts by Niclas Lindstrom
 
known bugs:
layer 3 i-stereo not heavily tested
btw: I'm looking for i-stereo teststreams .. maybe you could send me a few
Layer 1 not heavily tested
no CRC checking ..
no 'free format streams'
no clean audio interface
MPEG 2.0, Layer1 and Layer2 not tested (and probably will not work)
MPEG 2.0, Layer3 not heavily tested .. may has bugs.
 
 
******************************************************************************
*
* This is software with ABSOLUTELY NO WARRANTY.
* Use it at your OWN RISK. It's possible to damage e.g. hardware or your hearing
* due to a bug or for other reasons.
*
* I do not warrant that the program is free of infringement of any third-party
* patents.
*
******************************************************************************
 
/shark/trunk/ports/mpg123/getlopt.c
0,0 → 1,121
/*
* getlopt.c
*
* Oliver Fromme <oliver.fromme@heim3.tu-clausthal.de>
* Tue Apr 8 07:15:13 MET DST 1997
*/
 
#include "getlopt.h"
 
int loptind = 1; /* index in argv[] */
int loptchr = 0; /* index in argv[loptind] */
char *loptarg; /* points to argument if present, else to option */
 
#if defined(ultrix) || defined(ULTRIX)
char *strdup (char *src)
{
char *dest;
 
if (!(dest = (char *) malloc(strlen(src)+1)))
return (NULL);
return (strcpy(dest, src));
}
#endif
 
topt *findopt (int islong, char *opt, topt *opts)
{
if (!opts)
return (0);
while (opts->lname) {
if (islong) {
if (!strcmp(opts->lname, opt))
return (opts);
}
else
if (opts->sname == *opt)
return (opts);
opts++;
}
return (0);
}
 
int performoption (int argc, char *argv[], topt *opt)
{
int result = GLO_CONTINUE;
 
if (!(opt->flags & 1)) /* doesn't take argument */
if (opt->var)
if (opt->flags & 2) /* var is *char */
*((char *) opt->var) = (char) opt->value;
else
*((int *) opt->var) = opt->value;
else
result = opt->value ? opt->value : opt->sname;
else { /* requires argument */
if (loptind >= argc)
return (GLO_NOARG);
loptarg = argv[loptind++]+loptchr;
loptchr = 0;
if (opt->var)
if (opt->flags & 2) /* var is *char */
*((char **) opt->var) = strdup(loptarg);
else
*((int *) opt->var) = atoi(loptarg);
else
result = opt->value ? opt->value : opt->sname;
}
if (opt->func)
opt->func(loptarg);
return (result);
}
 
int getsingleopt (int argc, char *argv[], topt *opts)
{
char *thisopt;
topt *opt;
static char shortopt[2] = {0, 0};
 
if (loptind >= argc)
return (GLO_END);
thisopt = argv[loptind];
if (!loptchr) { /* start new option string */
if (thisopt[0] != '-' || !thisopt[1]) /* no more options */
return (GLO_END);
if (thisopt[1] == '-') /* "--" */
if (thisopt[2]) { /* long option */
loptarg = thisopt+2;
loptind++;
if (!(opt = findopt(1, thisopt+2, opts)))
return (GLO_UNKNOWN);
else
return (performoption(argc, argv, opt));
}
else { /* "--" == end of options */
loptind++;
return (GLO_END);
}
else /* start short option(s) */
loptchr = 1;
}
shortopt[0] = thisopt[loptchr];
loptarg = shortopt;
opt = findopt(0, thisopt+(loptchr++), opts);
if (!thisopt[loptchr]) {
loptind++;
loptchr = 0;
}
if (!opt)
return (GLO_UNKNOWN);
else
return (performoption(argc, argv, opt));
}
 
int getlopt (int argc, char *argv[], topt *opts)
{
int result;
while ((result = getsingleopt(argc, argv, opts)) == GLO_CONTINUE);
return (result);
}
 
/* EOF */
/shark/trunk/ports/mpg123/tables.h
0,0 → 1,154
/*
* Layer 2 Alloc tables ..
* most other tables are calculated on program start (which is (of course)
* not ISO-conform) ..
* Layer-3 huffman table is in huffman.h
*/
 
struct al_table alloc_0[] = {
{4,0},{5,3},{3,-3},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},{9,-255},{10,-511},
{11,-1023},{12,-2047},{13,-4095},{14,-8191},{15,-16383},{16,-32767},
{4,0},{5,3},{3,-3},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},{9,-255},{10,-511},
{11,-1023},{12,-2047},{13,-4095},{14,-8191},{15,-16383},{16,-32767},
{4,0},{5,3},{3,-3},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},{9,-255},{10,-511},
{11,-1023},{12,-2047},{13,-4095},{14,-8191},{15,-16383},{16,-32767},
{4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
{9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{16,-32767},
{4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
{9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{16,-32767},
{4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
{9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{16,-32767},
{4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
{9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{16,-32767},
{4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
{9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{16,-32767},
{4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
{9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{16,-32767},
{4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
{9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{16,-32767},
{4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
{9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{16,-32767},
{3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
{3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
{3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
{3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
{3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
{3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
{3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
{3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
{3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
{3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
{3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
{3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
{2,0},{5,3},{7,5},{16,-32767},
{2,0},{5,3},{7,5},{16,-32767},
{2,0},{5,3},{7,5},{16,-32767},
{2,0},{5,3},{7,5},{16,-32767} };
 
struct al_table alloc_1[] = {
{4,0},{5,3},{3,-3},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},{9,-255},{10,-511},
{11,-1023},{12,-2047},{13,-4095},{14,-8191},{15,-16383},{16,-32767},
{4,0},{5,3},{3,-3},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},{9,-255},{10,-511},
{11,-1023},{12,-2047},{13,-4095},{14,-8191},{15,-16383},{16,-32767},
{4,0},{5,3},{3,-3},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},{9,-255},{10,-511},
{11,-1023},{12,-2047},{13,-4095},{14,-8191},{15,-16383},{16,-32767},
{4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
{9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{16,-32767},
{4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
{9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{16,-32767},
{4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
{9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{16,-32767},
{4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
{9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{16,-32767},
{4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
{9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{16,-32767},
{4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
{9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{16,-32767},
{4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
{9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{16,-32767},
{4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
{9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{16,-32767},
{3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
{3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
{3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
{3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
{3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
{3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
{3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
{3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
{3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
{3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
{3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
{3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
{2,0},{5,3},{7,5},{16,-32767},
{2,0},{5,3},{7,5},{16,-32767},
{2,0},{5,3},{7,5},{16,-32767},
{2,0},{5,3},{7,5},{16,-32767},
{2,0},{5,3},{7,5},{16,-32767},
{2,0},{5,3},{7,5},{16,-32767},
{2,0},{5,3},{7,5},{16,-32767} };
 
struct al_table alloc_2[] = {
{4,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},{9,-255},
{10,-511},{11,-1023},{12,-2047},{13,-4095},{14,-8191},{15,-16383},
{4,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},{9,-255},
{10,-511},{11,-1023},{12,-2047},{13,-4095},{14,-8191},{15,-16383},
{3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
{3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
{3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
{3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
{3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
{3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63} };
 
struct al_table alloc_3[] = {
{4,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},{9,-255},
{10,-511},{11,-1023},{12,-2047},{13,-4095},{14,-8191},{15,-16383},
{4,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},{9,-255},
{10,-511},{11,-1023},{12,-2047},{13,-4095},{14,-8191},{15,-16383},
{3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
{3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
{3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
{3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
{3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
{3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
{3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
{3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
{3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
{3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63} };
 
struct al_table alloc_4[] = {
{4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
{9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{14,-8191},
{4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
{9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{14,-8191},
{4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
{9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{14,-8191},
{4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
{9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{14,-8191},
{3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
{3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
{3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
{3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
{3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
{3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
{3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
{2,0},{5,3},{7,5},{10,9},
{2,0},{5,3},{7,5},{10,9},
{2,0},{5,3},{7,5},{10,9},
{2,0},{5,3},{7,5},{10,9},
{2,0},{5,3},{7,5},{10,9},
{2,0},{5,3},{7,5},{10,9},
{2,0},{5,3},{7,5},{10,9},
{2,0},{5,3},{7,5},{10,9},
{2,0},{5,3},{7,5},{10,9},
{2,0},{5,3},{7,5},{10,9},
{2,0},{5,3},{7,5},{10,9},
{2,0},{5,3},{7,5},{10,9},
{2,0},{5,3},{7,5},{10,9},
{2,0},{5,3},{7,5},{10,9},
{2,0},{5,3},{7,5},{10,9},
{2,0},{5,3},{7,5},{10,9},
{2,0},{5,3},{7,5},{10,9},
{2,0},{5,3},{7,5},{10,9},
{2,0},{5,3},{7,5},{10,9} };
 
/shark/trunk/ports/mpg123/httpget.c
0,0 → 1,209
/*
* httpget.c
*
* Oliver Fromme <oliver.fromme@heim3.tu-clausthal.de>
* Wed Apr 9 20:57:47 MET DST 1997
*/
 
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <netdb.h>
#include <sys/param.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <sys/errno.h>
extern int errno;
 
#include "mpg123.h"
 
#ifndef INADDR_NONE
#define INADDR_NONE 0xffffffff
#endif
 
void writestring (int fd, char *string)
{
int result, bytes = strlen(string);
 
while (bytes) {
if ((result = write(fd, string, bytes)) < 0 && errno != EINTR) {
perror ("write");
exit (1);
}
else if (result == 0) {
fprintf (stderr, "write: %s\n",
"socket closed unexpectedly");
exit (1);
}
string += result;
bytes -= result;
}
}
 
void readstring (char *string, int maxlen, FILE *f)
{
char *result;
 
do {
result = fgets(string, maxlen, f);
} while (!result && errno == EINTR);
if (!result) {
fprintf (stderr, "Error reading from socket or unexpected EOF.\n");
exit (1);
}
}
 
char *url2hostport (char *url, char **hname, unsigned long *hip, unsigned int *port)
{
char *cptr;
struct hostent *myhostent;
struct in_addr myaddr;
int isip = 1;
 
if (!(strncmp(url, "http://", 7)))
url += 7;
cptr = url;
while (*cptr && *cptr != ':' && *cptr != '/') {
if ((*cptr < '0' || *cptr > '9') && *cptr != '.')
isip = 0;
cptr++;
}
if (!(*hname = strndup(url, cptr - url))) {
*hname = NULL;
return (NULL);
}
if (!isip) {
if (!(myhostent = gethostbyname(*hname)))
return (NULL);
memcpy (&myaddr, myhostent->h_addr, sizeof(myaddr));
*hip = myaddr.s_addr;
}
else
if ((*hip = inet_addr(*hname)) == INADDR_NONE)
return (NULL);
if (!*cptr || *cptr == '/') {
*port = 80;
return (cptr);
}
*port = atoi(++cptr);
while (*cptr && *cptr != '/')
cptr++;
return (cptr);
}
 
char *proxyurl = NULL;
unsigned long proxyip = 0;
unsigned int proxyport;
 
#define ACCEPT_HEAD "Accept: audio/mpeg, audio/x-mpegurl, */*\r\n"
 
FILE *http_open (char *url)
{
char *purl, *host, *request, *sptr;
int linelength;
unsigned long myip;
unsigned int myport;
int sock;
int relocate, numrelocs = 0;
struct sockaddr_in server;
FILE *myfile;
 
if (!proxyip) {
if (!proxyurl)
if (!(proxyurl = getenv("MP3_HTTP_PROXY")))
if (!(proxyurl = getenv("http_proxy")))
proxyurl = getenv("HTTP_PROXY");
if (proxyurl && proxyurl[0] && strcmp(proxyurl, "none")) {
if (!(url2hostport(proxyurl, &host, &proxyip, &proxyport))) {
fprintf (stderr, "Unknown proxy host \"%s\".\n",
host ? host : "");
exit (1);
}
if (host)
free (host);
}
else
proxyip = INADDR_NONE;
}
if ((linelength = strlen(url)+200) < 1024)
linelength = 1024;
if (!(request = malloc(linelength)) || !(purl = malloc(1024))) {
fprintf (stderr, "malloc() failed, out of memory.\n");
exit (1);
}
strncpy (purl, url, 1023);
purl[1023] = '\0';
do {
strcpy (request, "GET ");
if (proxyip != INADDR_NONE) {
if (strncmp(url, "http://", 7))
strcat (request, "http://");
strcat (request, purl);
myport = proxyport;
myip = proxyip;
}
else {
if (!(sptr = url2hostport(purl, &host, &myip, &myport))) {
fprintf (stderr, "Unknown host \"%s\".\n",
host ? host : "");
exit (1);
}
if (host)
free (host);
strcat (request, sptr);
}
sprintf (request + strlen(request),
" HTTP/1.0\r\nUser-Agent: %s/%s\r\n",
prgName, prgVersion);
strcat (request, ACCEPT_HEAD);
strcat (request, "\r\n");
server.sin_family = AF_INET;
server.sin_port = htons(myport);
server.sin_addr.s_addr = myip;
if ((sock = socket(PF_INET, SOCK_STREAM, 6)) < 0) {
perror ("socket");
exit (1);
}
if (connect(sock, (struct sockaddr *)&server, sizeof(server))) {
perror ("connect");
exit (1);
}
writestring (sock, request);
if (!(myfile = fdopen(sock, "rb"))) {
perror ("fdopen");
exit (1);
};
relocate = FALSE;
purl[0] = '\0';
readstring (request, linelength-1, myfile);
if ((sptr = strchr(request, ' '))) {
switch (sptr[1]) {
case '3':
relocate = TRUE;
case '2':
break;
default:
fprintf (stderr, "HTTP request failed: %s",
sptr+1); /* '\n' is included */
exit (1);
}
}
do {
readstring (request, linelength-1, myfile);
if (!strncmp(request, "Location:", 9))
strncpy (purl, request+10, 1023);
} while (request[0] != '\r' && request[0] != '\n');
} while (relocate && purl[0] && numrelocs++ < 5);
if (relocate) {
fprintf (stderr, "Too many HTTP relocations.\n");
exit (1);
}
free (purl);
free (request);
return (myfile);
}
 
/* EOF */
/shark/trunk/ports/mpg123/getbits.s
0,0 → 1,68
.globl getbits
.type getbits,@function
getbits:
cmpl $0,4(%esp)
jne .L1
xorl %eax,%eax
ret
 
.L1:
movl wordpointer,%ecx
movzbl (%ecx),%eax
shll $16,%eax
movb 1(%ecx),%ah
movb 2(%ecx),%al
movl bitindex,%ecx
shll $8,%eax
shll %cl,%eax
movl 4(%esp),%ecx
addl %ecx,bitindex
negl %ecx
addl $32,%ecx
shrl %cl,%eax
movl bitindex,%ecx
sarl $3,%ecx
addl %ecx,wordpointer
andl $7,bitindex
ret
 
 
 
.globl getbits_fast
.type getbits_fast,@function
getbits_fast:
movl wordpointer,%ecx
movzbl 1(%ecx),%eax
movb (%ecx),%ah
movl bitindex,%ecx
shlw %cl,%ax
movl 4(%esp),%ecx
addl %ecx,bitindex
negl %ecx
addl $16,%ecx
shrl %cl,%eax
movl bitindex,%ecx
sarl $3,%ecx
addl %ecx,wordpointer
andl $7,bitindex
ret
 
 
 
.globl get1bit
.type get1bit,@function
get1bit:
movl wordpointer,%ecx
movzbl (%ecx),%eax
movl bitindex,%ecx
incl %ecx
rolb %cl,%al
andb $1,%al
movl %ecx,bitindex
andl $7,bitindex
sarl $3,%ecx
addl %ecx,wordpointer
ret
 
 
 
/shark/trunk/ports/mpg123/getlopt.h
0,0 → 1,65
/*
* getlopt.h
*
* Oliver Fromme <oliver.fromme@heim3.tu-clausthal.de>
* Tue Apr 8 07:13:39 MET DST 1997
*/
 
#include <stdlib.h>
#include <string.h>
 
extern int loptind; /* index in argv[] */
extern int loptchr; /* index in argv[loptind] */
extern char *loptarg; /* points to argument if present, else to option */
 
typedef struct {
char sname; /* short option name, can be 0 */
char *lname; /* long option name, can be 0 */
int flags; /* see below */
void (*func)(char *); /* called if != 0 (after setting of var) */
void *var; /* type is *int, *char or **char, see below */
int value;
} topt;
 
#define GLO_ARG 1
#define GLO_CHAR 2
#define GLO_NUM 0
 
/* flags:
* bit 0 = 0 - no argument
* if var != NULL
* *var := value or (char)value [see bit 1]
* else
* loptarg = &option
* return ((value != 0) ? value : sname)
* bit 0 = 1 - argument required
* if var != NULL
* *var := atoi(arg) or strdup(arg) [see bit 1]
* else
* loptarg = &arg
* return ((value != 0) ? value : sname)
*
* bit 1 = 0 - var is a pointer to an int
* bit 1 = 1 - var is a pointer to a char (or string),
* and value is interpreted as char
*
* Note: The options definition is terminated by a topt
* containing only zeroes.
*/
 
#define GLO_END 0
#define GLO_UNKNOWN -1
#define GLO_NOARG -2
#define GLO_CONTINUE -3
 
int getlopt (int argc, char *argv[], topt *opts);
 
/* return values:
* GLO_END (0) end of options
* GLO_UNKNOWN (-1) unknown option *loptarg
* GLO_NOARG (-2) missing argument
* GLO_CONTINUE (-3) (reserved for internal use)
* else - return value according to flags (see above)
*/
 
/* EOF */
/shark/trunk/ports/mpg123/todo
0,0 → 1,20
Layer-1 support not heavily tested ..
I-stereo in Level-3 seems to work now, but I have to optimize it.
general optimizations in Level-3 code.
add CRC check.
no 'free format stream' support.
in layer2.c:
step_two: fraction as pointer ..
process first channel 0 than channel 1
copy channel 0 to channel 1 for: i >= jsbound
 
- better frame reader .. especially for layer 3
- MPEG system stream decoder
 
- check again layer1 !!
 
- Write a special (optimized) 'single channel' decode.
 
- optimized dct64 for down sampling modes
 
- native audio support for AIX and DEC
/shark/trunk/ports/mpg123/makefile.ori
0,0 → 1,219
###
### mpg123 Makefile
###
 
# Where to install binary and manpage on "make install":
 
PREFIX=/usr/local
BINDIR=$(PREFIX)/bin
MANDIR=$(PREFIX)/man
SECTION=1
 
###################################################
###### ######
###### End of user-configurable settings ######
###### ######
###################################################
 
nothing-specified:
@echo ""
@echo "You must specify the system which you want to compile for:"
@echo ""
@echo "make linux Linux"
@echo "make freebsd FreeBSD"
@echo "make solaris Solaris 2.x (tested: 2.5 and 2.5.1) using SparcWorks cc"
@echo "make solaris-gcc Solaris 2.x using GNU cc (somewhat slower)"
@echo "make sunos SunOS 4.x (tested: 4.1.4)"
@echo "make hpux HP/UX 9/10, /7xx"
@echo "make sgi SGI running IRIX"
@echo "make dec DEC Unix (tested: 3.2 and 4.0), OSF/1"
@echo "make ultrix DEC Ultrix (tested: 4.4)"
@echo "make aix IBM AIX (tested: 4.2)"
@echo "make os2 IBM OS/2"
@echo "make generic try this one if your system isn't listed above"
@echo ""
@echo "Please read the file INSTALL for additional information."
@echo ""
 
linux-devel:
$(MAKE) OBJECTS='decode_i386.o dct64_i386.o' \
CC=gcc LDFLAGS= \
CFLAGS='-DREAL_IS_FLOAT -DLINUX -Wall -g -m486 \
-funroll-all-loops \
-finline-functions -ffast-math' \
mpg123
 
linux-profile:
$(MAKE) OBJECTS='decode_i386.o dct64_i386.o' \
CC=gcc LDFLAGS='-pg' \
CFLAGS='-DREAL_IS_FLOAT -DLINUX -Wall -pg -m486 \
-funroll-all-loops \
-finline-functions -ffast-math' \
mpg123
 
linux:
$(MAKE) CC=gcc LDFLAGS= \
OBJECTS='decode_i386.o dct64_i386.o getbits.o' \
CFLAGS='-DI386_ASSEM -DREAL_IS_FLOAT -DLINUX -Wall -O2 -m486 \
-fomit-frame-pointer -funroll-all-loops \
-finline-functions -ffast-math' \
mpg123
 
linux-sajber:
$(MAKE) CC=gcc LDFLAGS= \
OBJECTS='decode_i386.o dct64_i386.o getbits.o control.o' \
CFLAGS='-DFRONTEND -DI386_ASSEM -DREAL_IS_FLOAT -DLINUX -Wall -O2 -m486\
-fomit-frame-pointer -funroll-all-loops \
-finline-functions -ffast-math' \
sajberplay
 
 
#### the following defines are for experimental use ...
#
#CFLAGS='-pg -DI386_ASSEM -DREAL_IS_FLOAT -DLINUX -Wall -O2 -m486 -funroll-all-loops -finline-functions -ffast-math' mpg123
#CFLAGS='-DI386_ASSEM -O2 -DREAL_IS_FLOAT -DLINUX -Wall -g'
#CFLAGS='-DI386_ASSEM -DREAL_IS_FLOAT -DLINUX -Wall -O2 -m486 -fomit-frame-pointer -funroll-all-loops -finline-functions -ffast-math -malign-loops=2 -malign-jumps=2 -malign-functions=2'
 
freebsd:
$(MAKE) CC=cc LDFLAGS= \
OBJECTS='decode_i386.o dct64_i386.o getbits_.o' \
CFLAGS='-Wall -ansi -pedantic -O4 -m486 -fomit-frame-pointer \
-funroll-all-loops -ffast-math -DROT_I386 \
-DI386_ASSEM -DREAL_IS_FLOAT -DUSE_MMAP' \
mpg123
 
solaris:
$(MAKE) CC=cc LDFLAGS='-lsocket -lnsl' OBJECTS='decode.o dct64.o' \
CFLAGS='-fast -native -xO5 -DSOLARIS -DREAL_IS_FLOAT \
-DUSE_MMAP' \
mpg123
 
solaris-gcc:
$(MAKE) CC=gcc LDFLAGS='-lsocket -lnsl' OBJECTS='decode.o dct64.o' \
CFLAGS='-O2 -Wall -DSOLARIS -DREAL_IS_FLOAT -DUSE_MMAP \
-funroll-all-loops -finline-functions' \
mpg123
 
sunos:
$(MAKE) CC=gcc LDFLAGS= OBJECTS='decode.o dct64.o' \
CFLAGS='-O2 -DSUNOS -DREAL_IS_FLOAT -DUSE_MMAP \
-funroll-loops' \
mpg123
 
hpux:
$(MAKE) CC=cc LDFLAGS= OBJECTS='decode.o dct64.o' \
CFLAGS='-DREAL_IS_FLOAT -Aa +O3 -D_HPUX_SOURCE -DHPUX' \
mpg123
 
sgi:
$(MAKE) CC=cc LDFLAGS= OBJECTS='decode.o dct64.o' AUDIO_LIB=-laudio \
CFLAGS='-O2 -DSGI -DREAL_IS_FLOAT -DUSE_MMAP' \
mpg123
 
dec:
$(MAKE) CC=cc LDFLAGS= OBJECTS='decode.o dct64.o' \
CFLAGS='-std1 -warnprotos -O4 -DUSE_MMAP' \
mpg123
 
ultrix:
$(MAKE) CC=cc LDFLAGS= OBJECTS='decode.o dct64.o' \
CFLAGS='-std1 -O2 -DULTRIX' \
mpg123
 
aix:
$(MAKE) LDFLAGS= OBJECTS='decode.o dct64.o' \
CFLAGS='-O -DAIX -DUSE_MMAP' \
mpg123
os2:
$(MAKE) CC=gcc LDFLAGS= \
OBJECTS='decode_i386.o dct64_i386.o' \
CFLAGS='-DREAL_IS_FLOAT -DOS2 -Wall -O2 -m486 \
-fomit-frame-pointer -funroll-all-loops \
-finline-functions -ffast-math' \
LIBS='-los2me -lsocket' \
mpg123.exe
 
generic:
$(MAKE) LDFLAGS= OBJECTS='decode.o dct64.o' \
CFLAGS='-O' \
mpg123
 
 
sajberplay: mpg123.o common.o $(OBJECTS) decode_2to1.o decode_4to1.o \
tabinit.o audio.o layer1.o layer2.o layer3.o buffer.o \
getlopt.o httpget.o xfermem.o Makefile
$(CC) $(CFLAGS) $(LDFLAGS) mpg123.o tabinit.o common.o layer1.o \
layer2.o layer3.o audio.o buffer.o decode_2to1.o \
decode_4to1.o getlopt.o httpget.o xfermem.o $(OBJECTS) \
-o sajberplay -lm $(AUDIO_LIB)
 
mpg123: mpg123.o common.o $(OBJECTS) decode_2to1.o decode_4to1.o \
tabinit.o audio.o layer1.o layer2.o layer3.o buffer.o \
getlopt.o httpget.o xfermem.o Makefile
$(CC) $(CFLAGS) $(LDFLAGS) mpg123.o tabinit.o common.o layer1.o \
layer2.o layer3.o audio.o buffer.o decode_2to1.o \
decode_4to1.o getlopt.o httpget.o xfermem.o $(OBJECTS) \
-o mpg123 -lm $(AUDIO_LIB)
 
mpg123.exe: mpg123.o common.o $(OBJECTS) decode_2to1.o decode_4to1.o \
tabinit.o audio.o layer1.o layer2.o layer3.o buffer.o \
getlopt.o httpget.o Makefile
$(CC) $(CFLAGS) $(LDFLAGS) mpg123.o tabinit.o common.o layer1.o \
layer2.o layer3.o audio.o buffer.o decode_2to1.o \
decode_4to1.o getlopt.o httpget.o $(OBJECTS) \
-o mpg123.exe -lm $(LIBS)
 
tst:
gcc $(CFLAGS) -S decode.c
 
layer1.o: mpg123.h
layer2.o: mpg123.h
layer3.o: mpg123.h huffman.h get1bit.h
decode.o: mpg123.h
decode_int.o: mpg123.h
decode_2to1.o: mpg123.h
decode_4to1.o: mpg123.h
decode_i386.o: mpg123.h
common.o: mpg123.h tables.h
mpg123.o: mpg123.h getlopt.h xfermem.h version.h
mpg123.h: audio.h
audio.o: mpg123.h
buffer.o: mpg123.h xfermem.h
getbits.o: mpg123.h
getbits_.o: mpg123.h
tabinit.o: mpg123.h
getlopt.o: getlopt.h
httpget.o: mpg123.h
dct64.o: mpg123.h
dct64_i386.o: mpg123.h
xfermem.o: xfermem.h
 
clean:
rm -f *.o *core *~ mpg123 gmon.out sajberplay
 
prepared-for-install:
@if [ ! -x mpg123 ]; then \
echo '###' ; \
echo '### Before doing "make install", you have to compile the software.' ; \
echo '### Type "make" for more information.' ; \
echo '###' ; \
exit 1 ; \
fi
 
install: prepared-for-install
strip mpg123
if [ -x /usr/ccs/bin/mcs ]; then /usr/ccs/bin/mcs -d mpg123; fi
cp -f mpg123 $(BINDIR)
chmod 755 $(BINDIR)/mpg123
cp -f mpg123.1 $(MANDIR)/man$(SECTION)
chmod 644 $(MANDIR)/man$(SECTION)/mpg123.1
if [ -r $(MANDIR)/windex ]; then catman -w -M $(MANDIR) $(SECTION); fi
 
dist: clean
DISTNAME="`basename \`pwd\``" ; \
sed '/prgDate/s_".*"_"'`date +%Y/%m/%d`'"_' version.h > version.new; \
mv -f version.new version.h; \
cd .. ; \
rm -f "$$DISTNAME".tar.gz "$$DISTNAME".tar ; \
tar cvf "$$DISTNAME".tar "$$DISTNAME" ; \
gzip -9 "$$DISTNAME".tar
/shark/trunk/ports/mpg123/install
0,0 → 1,38
 
(1) Read the README file.
(also read the JUKEBOX file if you wanna compile a player
for the sajber jukebox)
 
(2) Type "make" to see a list of supported hardware platforms
and operating systems, then type the make command that
best fits your system.
 
(3) If compilation was successful, type "make install" to
install the binary and the manual page in /usr/local.
 
Have fun!
 
Some additional remarks:
 
- There is currently no direct audio hardware support for the
"dec", "aix" and "generic" targets. That means that you
have to use the "-s" commandline option to write the decoded
audio data to stdout.
 
- On Solaris, use Sun's SparcWorks compiler ("make solaris")
if at all possible. It generates faster code than gcc, so
use gcc only if there's no other way.
 
- The macro "htons" causes a compiler warning in httpget.c
(at least on FreeBSD 2.1.x). This can be safely ignored.
 
- For Solaris 2.4: append the options "-L/usr/ucblib -lucb"
at the end of the link command line. Do this ONLY for
Solaris 2.4, NOT for Solaris 2.5 or newer versions.
 
- The HP-UX port might be broken. I was able to compile it
on an HP-UX 9 account, but there were some problems with
libraries on HP-UX 10. I'm not an HP expert, but perhaps
someone else can fix it.
 
***
/shark/trunk/ports/mpg123/copying
0,0 → 1,30
Copyright (c) 1995-97 by Michael Hipp, all rights reserved.
Parts of the software are contributed by other people, please
refer to the README file for details.
 
DISTRIBUTION:
This software may be distributed freely, provided that it is
distributed in its entirety, without modifications, and with
the original copyright notice and license included. It may
not be sold for profit or as "hidden" part of another software,
but it may be included with collections of other free software,
such as CD-ROM images of FTP servers and similar, provided that
this software is not a significant part of that collection.
Precompiled binaries of this software may be distributed in the
same way, provided that this copyright notice and license is
included without modification.
 
USAGE:
This software may be used freely, provided that the original
author is always credited. If you intend to use this software
as a significant part of business (for-profit) activities, you
have to contact the author first. Also, any usage that is not
covered by this license requires the explicit permission of
the author.
 
DISCLAIMER:
This software is provided as-is. The author can not be held
liable for any damage that might arise from the use of this
software. Use it at your own risk.
 
 
/shark/trunk/ports/mpg123/mpg123.1
0,0 → 1,363
.\" @(#)mpg123.1 0.01 21-Apr-1997 OF; from mpg123 archive
.TH mpg123 1 "21 Apr 1997"
.SH NAME
mpg123 \- play audio MPEG 1.0/2.0 file (layers 1, 2 and 3)
.SH SYNOPSIS
.B mpg123
[
.B \-tscvqy01m24
]
[
.BI \-b " size"
]
[
.BI \-k " num"
]
[
.BI \-n " num"
]
[
.BI \-f " factor"
]
[
.BI \-r " rate"
]
[
.BI \-g " gain"
]
[
.BI \-a " dev"
]
[
.BR "\-o s" " | " "\-o h" " | " "\-o l"
]
[
.BI \-d " n"
]
[
.BI \-h " n"
]
[
.BI \-p " proxy"
]
[
.BI \-@ " file"
]
.IR file " ... | " URL " ... | "
.B \-
.SH DESCRIPTION
.B mpg123
reads one or more
.IR file\^ s
(or standard input if ``\-'' is specified) or
.IR URL\^ s
and plays them on the audio device (default) or
outputs them to stdout.
.IR file\^ / URL
is assumed to be an MPEG-1/2 audio bit stream.
.SH OPTIONS
.B mpg123
options may be either the traditional POSIX one letter options,
or the GNU style long options. POSIX style options start with a
single ``\-'', while GNU long options start with ``\-\^\-''.
.TP
.BR \-t ", " \-\^\-test
Test mode. The audio stream is decoded, but no output occurs.
.TP
.BR \-s ", " \-\^\-stdout
The decoded audio samples are written to standard output,
instead of playing them through the audio device. This
option must be used if your audio hardware is not supported
by
.BR mpg123 .
The output format is raw (headerless) linear PCM audio data,
16 bit, stereo, host byte order.
.TP
.BR \-c ", " \-\^\-check
Check for filter range violations, and report them for each frame
if any occur.
.TP
.BR \-v ", " \-\^\-verbose
Increase the verbosity level. For example, displays the frame
numbers during decoding.
.TP
.BR \-q ", " \-\^\-quiet
Quiet. Suppress diagnostic messages.
.TP
.BR \-y ", " \-\^\-resync
Try to resync and continue decoding if an error occurs in
the input file. Also try to recover from certain broken
headers. Useful if you have a broken MPEG file, on which
.B mpg123
normally gives up saying `Illegal header'. Be careful:
Broken locations in MPEG files might cause sharp, loud pops or
clicks, which might damage your speakers if played too loud.
.TP
.BR \-0 ", " \-\^\-single0 "; " \-1 ", " \-\^\-single1
Decode only channel 0 (left) or channel 1 (right),
respectively. These options are available for
stereo MPEG streams only.
.TP
.BR \-m ", " \-\^\-singlemix
Mix both channels. This option is available for
stereo MPEG layer-3 streams only. It takes less
CPU time than full stereo decoding.
.TP
.BR \-2 ", " \-\^\-2to1 "; " \-4 ", " \-\^\-4to1
Performs a downsampling of ratio 2:1 (22 kHz) or 4:1 (11 kHz)
on the output stream, respectively. Saves some CPU cycles, but
at least the 4:1 ratio sounds ugly.
.TP
\fB\-b \fIsize\fR, \fB\-\^\-buffer \fIsize
Use an audio output buffer of
.I size
Kbytes. This is useful to bypass short periods of heavy
system activity, which would normally cause the audio output
to be interrupted.
You should specify a buffer size of at least 1024
(i.e. 1 Mb, which equals about 6 seconds of audio data) or more;
less than about 300 does not make much sense. The default is 0,
which turns buffering off.
.TP
\fB\-k \fInum\fR, \fB\-\^\-skip \fInum
Skip first
.I num
frames. By default the decoding starts at the first frame.
.TP
\fB\-n \fInum\fR, \fB\-\^\-frames \fInum
Decode only
.I num
frames. By default the complete stream is decoded.
.TP
\fB\-f \fIfactor\fR, \fB\-\^\-scale \fIfactor
Change scale factor (default: 32768).
.TP
\fB\-r \fIrate\fR, \fB\-\^\-rate \fIrate
Set sample rate (default: automatic). You don't want to
change this.
.TP
\fB\-g \fIgain\fR, \fB\-\^\-gain \fIgain
Set audio hardware output gain (default: don't change).
.TP
\fB\-a \fIdev\fR, \fB\-\^\-audiodevice \fIdev
Specify the audio device to use. The default is
system-dependent (usually /dev/audio or /dev/dsp).
Use this option if you have multiple audio devices and
the default is not what you want.
.TP
.BR "\-o s" ", " \-\^\-speaker
Direct audio output to the speaker.
.TP
.BR "\-o h" ", " \-\^\-headphones
Direct audio output to the headphone connector.
.TP
.BR "\-o l" ", " \-\^\-lineout
Direct audio output to the line-out connector.
.TP
\fB\-d \fIn\fR, \fB\-\^\-doublespeed \fIn
Only play every
.IR n 'th
frame. This will cause the MPEG stream
to be played
.I n
times faster, which can be used for special
effects. Can also be combined with the
.B \-\^\-halfspeed
option to play 3 out of 4 frames etc. Don't expect great
sound quality when using this option.
.TP
\fB\-h \fIn\fR, \fB\-\^\-halfspeed \fIn
Play each frame
.I n
times. This will cause the MPEG stream
to be played at
.RI 1 / n 'th
speed (n times slower), which can be
used for special effects. Can also be combined with the
.B \-\^\-doublespeed
option to double every third frame or things like that.
Don't expect great sound quality when using this option.
.TP
\fB\-p \fIURL \fR| \fBnone\fR, \fB\-\^\-proxy \fIURL \fR| \fBnone
The specified
.I proxy
will be used for HTTP requests. It
should be specified as full URL (``http://host.domain:port/''),
but the ``http://'' prefix, the port number and the trailing
slash are optional (the default port is 80). Specifying
.B none
means not to use any proxy, and to retrieve files directly
from the respective servers. See also the
``HTTP SUPPORT'' section.
.TP
\fB\-@ \fIfile\fR, \fB\-\^\-list \fIfile
Read filenames and/or URLs of MPEG audio streams from the specified
.I file
in addition to the ones specified on the command line (if any).
Note that
.I file
can be either an ordinary file, a dash ``\-'' to indicate that
a list of filenames/URLs is to be read from the standard input,
or an URL pointing to a an appropriate list file. Note: only
one
.B \-@
option can be used (if more than one is specified, only the
last one will be recognized).
.SH OPERANDS
The following operands are supported:
.TP 8
.IR file (s)
The path name(s) of one or more input files. They must be
valid MPEG-1/2 audio layer-1, -2 or -3 bit streams.
If a dash ``\-'' is specified, MPEG data will
be read from the standard input. Furthermore, any name
starting with ``http://'' is recognized as
.I URL
(see next section).
.SH HTTP SUPPORT
In addition to reading MPEG audio streams from ordinary
files and from the standard input,
.B mpg123
supports retrieval of MPEG audio files via the HTTP protocol,
which is used in the World Wide Web (WWW). Such files are
specified using a so-called URL (universal resource
location), which starts with ``http://''. When a file with
that prefix is encountered,
.B mpg123
attempts to open an HTTP connection to the server in order to
retrieve that file to decode and play it.
.P
It is often useful to retrieve files through a WWW cache or
so-called proxy. To accomplish this,
.B mpg123
examines the environment for variables named
.BR MP3_HTTP_PROXY ", " http_proxy " and " HTTP_PROXY ,
in this order. The value of the first one that is set will
be used as proxy specification. To override this, you can
use the
.B \-p
command line option (see the ``OPTIONS'' section). Specifying
.B "\-p none"
will enforce contacting the server directly without using
any proxy, even if one of the above environment variables
is set.
.P
Note that, in order to play MPEG audio files from a WWW
server, it is necessary that the connection to that server
is fast enough. For example, a 128 kbit/s MPEG file
requires the network connection to be at least 128 kbit/s
(16 kbyte/s) plus protocol overhead. If you suffer from
short network outages, you should try the
.B \-b
option (buffer) to bypass such outages. If your network
connection is generally not fast enough to retrieve MPEG
audio files in realtime, you can first download the files
to your local harddisk (e.g. using
.BR lynx (1))
and then play them from there.
.SH INTERRUPT
You can abort
.B mpg123
at any time by pressing Ctrl-C. If you are playing multiple
files, this will stop the current file and begin playing the
next one. If you want to abort playing immediately instead
of skipping to the next file, press Ctrl-C twice in short
succession (within about one second).
.P
Note that the result of pressing Ctrl-C might not be audible
immediately, due to audio data buffering in the audio device.
This delay is system dependent, but it is usually not more
than one or two seconds.
.SH "SEE ALSO"
.BR lynx (1),
.BR sox (1),
.BR intro (1)
.SH NOTES
MPEG audio decoding requires a good deal of CPU performance,
especially layer-3. To decode it in realtime, you should
have at least a Pentium, Alpha, SuperSparc or equivalent
processor. You can also use the
.B -singlemix
option to decode mono only, which reduces the CPU load
somewhat for layer-3 streams. See also the
.BR \-2 " and " \-4
options.
.P
If everything else fails, use the
.B \-s
option to decode to standard output, direct it into a file
and then use an appropriate utility to play that file.
You might have to use a tool such as
.BR sox (1)
to convert the output to an audio format suitable for
your audio player.
.P
Also note that
.B mpg123
always generates 16 bit stereo data (if one of the
.BR \-single *
options is used, two identical stereo channels are
generated). If your hardware requires some other
format, for example 8 bit mono, you also have
to use a converter such as
.BR sox (1).
.P
If your system is generally fast enough to decode in
realtime, but there are sometimes periods of heavy
system load (such as cronjobs, users logging in remotely,
starting of ``big'' programs etc.) causing the
audio output to be interrupted, then you should use
the
.B \-b
option to use a buffer of at least 1000 Kbytes.
.SH BUGS
.TP
Known bugs and limitations:
.br
MPEG-2, Layer 1 and 2 not tested. May not work. (Layer 3 should work.)
.br
Free format streams are not supported.
.br
Layer-1 support is not heavily tested.
.br
No CRC error checking is performed.
.br
There is currently no support for audio hardware on
DEC Digital Unix, Ultrix and IBM AIX, therefore the
.B \-s
option has to be used on those platforms.
.SH AUTHORS
.TP
Main author:
.br
Michael Hipp <Michael.Hipp@student.uni-tuebingen.de>
.TP
Uses code (or at least ideas) from:
.br
MPEG Software Simulation Group (Base package)
.br
Philipp Knirsch <phil@mpik-tueb.mpg.de> (DCT36/manual unroll)
.br
Tobias Bading <bading@cs.tu-berlin.de> (subband synthesis)
.br
Jeff Tsay <ctsay@pasteur.eecs.berkeley.edu> (DCT36)
.br
Thomas Woerner (SGI Audio)
.br
Damien Clermonte <clermond@esiee.fr> (HP-UX audio fixes)
.br
Oliver Fromme <oliver.fromme@heim3.tu-clausthal.de>
.P
Internet references:
.br
http://www.sfs.nphil.uni-tuebingen.de/~hipp/mpg123.html
.br
http://www.heim3.tu-clausthal.de/~olli/mpg123/
.br
(includes information about the mpg123 mailing list)
.P
The latest version is also available from here:
.br
ftp.tu-clausthal.de:/pub/unix/audio/mpg123
.br
http://ftp.tu-clausthal.de/pub/unix/audio/mpg123
/shark/trunk/ports/mpg123/changes
0,0 → 1,247
0.59k: (OF)
------
- fixed "Accept" header in httpget.c
- fixed buffer overflow (causing core dumps) in httpget.c
- fixed display of song length
- fixed -b (buffer) problem on SGI / IRIX -- it definitely works now
- fixed problem when files with different sample rates where played,
it now works with -b (buffer), too
- fixed order of local variables in decode.c to work around a
compiler bug in ultrix
- fixed Makefile for ultrix
- reverted to old getbits.s (the new one could cause coredumps)
- more compact MPEG header display in non-verbose mode
- small fixes in buffer code and elsewhere
 
 
0.59j: (MH)
------
- added sajber jukebox control interface (it's currently a big hack)
(see 'JUKEBOX' file for more)
- added simple rewind facility .. (only used by sajber interface at the moment)
 
 
0.59i: (MH)
-----------
- added front-end (remote) patch from "Brian J. Swetland" <swetland@uiuc.edu>
- added OS2 patches from Niclas Lindstrom <nil@wineasy.se>
- fixed 'rewind bug'
- added patches from Leo Broukhis <leo@zycad.com>
- added shuffle patch from Tillmann Steinbrecher <tst@darmstadt.netsurf.de>
- added i386-getbits from M.Stekelenburg <m.stekelenburg@student.utwente.nl>
- added fallback to 8bit if no 16bit samples support (currently linux only)
- added (slightly changed) outburst patch
from Antti Andreimann <anttix@cyberix.edu.ee>
- added 'http accept' patch from Hur TaeSung <saturn@arari.snu.ac.kr>
- fixed buffer mode bug
 
 
0.59h: (MH)
------
- added '--8bit' option to force 'ULAW 8 BIT' playing
- pcm buffer type changed to 'unsigned char *'
- plays 2:1 and 4:1 with the real frequency (ie 11025/22050 instead
of 44100)
- program (re)sets (changed) frequency for every frame
- buffer mode is broken
 
 
0.59g: (MH)
------
- added support for MPEG 2.5 (it's a HACK!) .. mpg123 understands and plays
2.5 but it does it wrong. (you will hear this!)
- Fixed wrong values in BandInfo struct for 32kHz mode
- Some performance improvements and minor changes and bug-fixes.
- Tried the new imdct from the maplay1.2+ (version 1.81) package. (but
it was slightly slower on my system, currently disabled)
 
 
0.59f: (OF)
------
- HP-UX audio fix (provided by Damien Clermonte)
- Buffering (-b option) hopefully fixed. Please test!
 
 
0.59e:
------
- added Audio MPEG 2.0 support (but near untested) (MH)
 
 
0.59d: (MH)
------
- minor modifications to dct64_i386.c
- removed duplicated dependency 'dct64.o' in Makefile
 
 
0.59c: (OF)
------
Another complete rework of the buffer system (-b option)
(normally uses mmap(), but it can also use SYSV-ShMem because
mmap() is broken on linux).
 
0.59: (MH)
-----
extracted dct64() from decode*.c files.
some changes to dct64() and decode*.c to allow auto-increment/decrement
removed bit-counter in getbit-functions. Layer3 part2 now counts it itself.
 
0.58: (OF)
-----
Bugfix: not closing the audio device caused a few samples to be lost.
Bugfix: audio_set_rate() was not called (!?!).
Additional command line options "--doublespeed" and "--halfspeed"
(couldn't find better names). See the manpage.
Complete redesign of command line options. See the manpage.
Changed the buffer algorithm (-b). I'm not sure whether it's better
or worse now.
Supports multiple files on the command line. Pressing Ctrl-C will
skip to the next MPEG file, pressing it twice within one second
will abort mpg123 completely. See the "INTERRUPT" section in the
manpage.
Support for http URLs. See also the -p option in the manpage.
Support for list files. See also the -@ option in the manpage.
 
0.57: (MH)
-----
Put the downsampling code together with the full
quality decode into one binary. (new options -2to1,-4to1)
Optimizations in the dct12.
Removed the 'int' version.
 
0.56: (OF)
-----
Additional command line option "-rs" to try to resync on
"broken" MPEG streams (now called "--resync" or "-y").
Additional command line option "-b" to use audio output buffering.
See the manpage for additional information.
Changed a few variable names and some other minor fixes, so the
source compiles more cleanly (without warnings) on most
platforms (for example, the FreeBSD port compiles without
warnings using "-Wall -ansi -pedantic").
Makefile changes: moved "solaris" to "solaris-gcc", new target
"solaris" (using Sun's SparcWorks cc, faster tha gcc!), new
targets "aix" and "generic".
 
0.55:
-----
removed some obsolete code from layer3.c (MH)
changed scalefac stoing in layer3 (MH)
decode_4to1.c added again. Renamed decode_lp.c to decode_2to1.c (MH)
(both not optimized .. still expterimental)
Minor cleanups and optimizations in layer3. (MH)
Removed some (probable) minor bugs. (MH)
Changed 2**(...) scaling (and omitted a few muls) (MH)
Changed Makefile (OF)
Changed dequantize to reorder with a mapping table
(you can disable this by undefining MAP in layer3.c) (MH)
removed the 'dummy' scale step for mixed mode (MH)
Changed copy policy (MH)
Modified dequant-reorder-mapping (MH)
 
0.54: (MH)
-----
Minor changes in the documents ..
huffman.c: x->len,y->len removed .. always '15' for the important cases
audio.c: some additions to the SOLARIS audio code
 
0.53b: (OF)
------
Makefile:
 
Renamed SPARC10 to SUNOS (which is more appropriate).
Tested with SunOS 4.1.4 on a SPARCstation SLC, 20 MHz
(322% CPU, so no realtime decoding).
Added SOLARIS. Tested with Solaris 2.5.1 on an Ultra 1,
167 MHz (14% CPU), a SPARCstation 5, 110 MHz (47% CPU),
and a SPARCstation 10, 33 MHz (68% CPU).
Added FreeBSD. Tested with 2.1.7 on a Pentium-90 (38% CPU)
and 2.2 on a Pentium-166 (20% CPU).
Added Digital Unix. Tested with DU 3.2 on a DEC 3000/500
(Alpha AXP 150 MHz, 33% CPU). Does not support DEC's
audio interface ("AudioFile"), decodes to stdout only.
Improved "clean" target to remove core files and editor
backup files.
Added "install" target.
Added "dist" target to create a .tar.gz file of the source
directory.
In the distributed Makefile, all system sections are
commented out. When you type "make" without uncommenting
one of the sections, an appropriate error message will
be displayed.
 
audio.c
 
Fixed problem when opening /dev/audio on Solaris:
I had to remove O_NDELAY, because writing to /dev/audio
didn't block until the requested number of samples
could be written, but instead it wrote only as much
samples as it was able too. Sounded funny. Removing
O_NDELAY fixed the problem. I don't think that it
hurts SunOS either, so I didn't make another #ifdef.
 
common.c
 
Fixed bug by adding function finish_output():
The decoder writes the audio samples into a buffer, and
each time the buffer is full, it is written to the
audio device (or to stdout). But when the decoding is
done, there are some samples left in the buffer which
aren't written yet -- they were just discarded.
This additional function fixes the problem by writing
the remaining samples from the buffer. It is called
immediately after the main frame loop in mpg123.c.
 
decode*.c
 
Fixed compiler warning on symbol "div":
Some compilers issue warnings because the symbol div is
already used for something else (see "man div"), so I
changed it to "divv".
 
layer*.c
 
Functions do_layer*:
Moved the declaration for audio_play_samples into
mpg123.h. Makes the code cleaner.
 
I moved the variables pcm_samples and pcm_point to
common.c, so they are shared between all modules. This
was necessary because the finish_output() function
(see common.c above) needs to access them.
 
Renamed loop variables "i" and "j" to "k" in order to
fix compiler warnings for duplicate/hidden symbols
(similar to "div" in decode*.c, see above).
 
Changed the preprocessor symbol AUDIOBUFSIZE into a
global variable "audiobufsize". This makes it possible
to change it by a command line option.
 
layer1.c
 
Fixed error in function I_step_one, second parameter:
unsigned int scale_index[2][] --> ...[2][SBLIMIT]
This caused an error with the DU compiler (which is ok,
because [2][] is incorrect according to ANSI). I don't
know whether [2][SBLIMIT] actually works correctly (I
have no layer-1 streams to test it), but at least it
compiles without error, and it appears to be correct
(looking at the rest of the source). Heaven knows why
gcc doesn't issue an error, and what it actually makes
from it.
 
mpg123.1
 
A simple manual page. Type "nroff -man mpg123.1 | more"
to view it, or install it in /usr/local/man/man1 (this is
done automatically by "make install").
 
mpg123.c
 
New boolean variable "quiet":
If this variable is set to TRUE (command line option
-q), no messages are printed.
 
***
 
/shark/trunk/ports/mpg123/common.c
0,0 → 1,673
#include <ctype.h>
#include <stdlib.h>
#include "mpg123.h"
#include "tables.h"
 
/* max = 1728 */
#define MAXFRAMESIZE 1792
 
#define SKIP_JUNK 1
 
int tabsel_123[2][3][16] = {
{ {0,32,64,96,128,160,192,224,256,288,320,352,384,416,448,},
{0,32,48,56, 64, 80, 96,112,128,160,192,224,256,320,384,},
{0,32,40,48, 56, 64, 80, 96,112,128,160,192,224,256,320,} },
 
{ {0,32,48,56,64,80,96,112,128,144,160,176,192,224,256,},
{0,8,16,24,32,40,48,56,64,80,96,112,128,144,160,},
{0,8,16,24,32,40,48,56,64,80,96,112,128,144,160,} }
};
 
long freqs[7] = { 44100, 48000, 32000, 22050, 24000, 16000 , 11025 };
 
#ifdef I386_ASSEM
int bitindex;
unsigned char *wordpointer;
#else
static int bitindex;
static unsigned char *wordpointer;
#endif
 
static int fsize=0,fsizeold=0,ssize;
static unsigned char bsspace[2][MAXFRAMESIZE+512]; /* MAXFRAMESIZE */
static unsigned char *bsbuf=bsspace[1],*bsbufold;
static int bsnum=0;
 
struct ibuf {
struct ibuf *next;
struct ibuf *prev;
unsigned char *buf;
unsigned char *pnt;
int len;
/* skip,time stamp */
};
 
struct ibuf ibufs[2];
struct ibuf *cibuf;
int ibufnum=0;
 
unsigned char *pcm_sample;
int pcm_point = 0;
int audiobufsize = AUDIOBUFSIZE;
 
#ifdef VARMODESUPPORT
/*
* This is a dirty hack! It might burn your PC and kill your cat!
* When in "varmode", specially formatted layer-3 mpeg files are
* expected as input -- it will NOT work with standard mpeg files.
* The reason for this:
* Varmode mpeg files enable my own GUI player to perform fast
* forward and backward functions, and to jump to an arbitrary
* timestamp position within the file. This would be possible
* with standard mpeg files, too, but it would be a lot harder to
* implement.
* A filter for converting standard mpeg to varmode mpeg is
* available on request, but it's really not useful on its own.
*
* Oliver Fromme <oliver.fromme@heim3.tu-clausthal.de>
* Mon Mar 24 00:04:24 MET 1997
*/
int varmode = FALSE;
int playlimit;
#endif
 
static FILE *filept;
static int filept_opened;
 
static void get_II_stuff(struct frame *fr)
{
static int translate[3][2][16] =
{ { { 0,2,2,2,2,2,2,0,0,0,1,1,1,1,1,0 } ,
{ 0,2,2,0,0,0,1,1,1,1,1,1,1,1,1,0 } } ,
{ { 0,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0 } ,
{ 0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0 } } ,
{ { 0,3,3,3,3,3,3,0,0,0,1,1,1,1,1,0 } ,
{ 0,3,3,0,0,0,1,1,1,1,1,1,1,1,1,0 } } };
 
int table,sblim;
static struct al_table *tables[5] =
{ alloc_0, alloc_1, alloc_2, alloc_3 , alloc_4 };
static int sblims[5] = { 27 , 30 , 8, 12 , 30 };
 
if(fr->lsf)
table = 4;
else
table = translate[fr->sampling_frequency][2-fr->stereo][fr->bitrate_index];
sblim = sblims[table];
 
fr->alloc = tables[table];
fr->II_sblimit = sblim;
}
 
void audio_flush(int outmode, struct audio_info_struct *ai)
{
if (pcm_point) {
switch (outmode) {
case DECODE_STDOUT:
write (1, pcm_sample, pcm_point);
break;
case DECODE_AUDIO:
audio_play_samples (ai, pcm_sample, pcm_point);
break;
case DECODE_BUFFER:
write (buffer_fd[1], pcm_sample, pcm_point);
break;
}
pcm_point = 0;
}
}
 
void (*catchsignal(int signum, void(*handler)()))()
{
struct sigaction new_sa;
struct sigaction old_sa;
 
new_sa.sa_handler = handler;
sigemptyset(&new_sa.sa_mask);
new_sa.sa_flags = 0;
if (sigaction(signum, &new_sa, &old_sa) == -1)
return ((void (*)()) -1);
return (old_sa.sa_handler);
}
 
static unsigned long oldhead = 0;
static unsigned long firsthead=0;
 
void read_frame_init (void)
{
oldhead = 0;
firsthead = 0;
}
 
#define HDRCMPMASK 0xfffffd00
#if 0
#define HDRCMPMASK 0xfffffdft
#endif
 
/*
* HACK,HACK,HACK
* step back <num> frames
*/
int back_frame(struct frame *fr,int num)
{
long bytes;
unsigned char buf[4];
unsigned long newhead;
 
if(!firsthead)
return 0;
 
bytes = (fsize+8)*(num+2);
 
if(fseek(filept,-bytes,SEEK_CUR) < 0)
return -1;
 
if(fread(buf,1,4,filept) != 4)
return -1;
 
newhead = (buf[0]<<24) + (buf[1]<<16) + (buf[2]<<8) + buf[3];
while( (newhead & HDRCMPMASK) != (firsthead & HDRCMPMASK) ) {
if(fread(buf,1,1,filept) != 1)
return -1;
newhead <<= 8;
newhead |= buf[0];
newhead &= 0xffffffff;
}
 
if( fseek(filept,-4,SEEK_CUR) < 0)
return -1;
read_frame(fr);
read_frame(fr);
 
if(fr->lay == 3) {
set_pointer(512);
}
 
return 0;
}
 
int read_frame(struct frame *fr)
{
static unsigned long newhead;
 
static unsigned char ssave[34];
unsigned char hbuf[8];
static int framesize;
static int halfphase = 0;
int l;
int try = 0;
 
if (halfspeed)
if (halfphase--) {
bitindex = 0;
wordpointer = (unsigned char *) bsbuf;
if (fr->lay == 3)
memcpy (bsbuf, ssave, ssize);
return 1;
}
else
halfphase = halfspeed - 1;
 
#ifdef VARMODESUPPORT
if (varmode) {
if(fread(hbuf,1,8,filept) != 8)
return 0;
}
else
#endif
read_again:
if(fread(hbuf,1,4,filept) != 4)
return 0;
 
newhead = ((unsigned long) hbuf[0] << 24) | ((unsigned long) hbuf[1] << 16) |
((unsigned long) hbuf[2] << 8) | (unsigned long) hbuf[3];
 
if(oldhead != newhead || !oldhead)
{
fr->header_change = 1;
#if 0
fprintf(stderr,"Major headerchange %08lx->%08lx.\n",oldhead,newhead);
#endif
 
init_resync:
if( (newhead & 0xffe00000) != 0xffe00000) {
#ifdef SKIP_JUNK
if(!firsthead) {
int i;
/* I even saw RIFF headers at the beginning of MPEG streams ;( */
if(newhead == ('R'<<24)+('I'<<16)+('F'<<8)+'F') {
char buf[40];
fprintf(stderr,"Skipped RIFF header\n");
fread(buf,1,68,filept);
goto read_again;
}
/* give up after 1024 bytes */
for(i=0;i<1024;i++) {
memmove (&hbuf[0], &hbuf[1], 3);
if(fread(hbuf+3,1,1,filept) != 1)
return 0;
newhead <<= 8;
newhead |= hbuf[3];
newhead &= 0xffffffff;
goto init_resync;
}
fprintf(stderr,"Giving up searching valid MPEG header\n");
return 0;
}
#endif
if (!quiet)
fprintf(stderr,"Illegal Audio-MPEG-Header 0x%08lx at offset 0x%lx.\n",
newhead,ftell(filept)-4);
if (tryresync) {
/* Read more bytes until we find something that looks
reasonably like a valid header. This is not a
perfect strategy, but it should get us back on the
track within a short time (and hopefully without
too much distortion in the audio output). */
do {
try++;
memmove (&hbuf[0], &hbuf[1], 7);
#ifdef VARMODESUPPORT
if (fread(&hbuf[varmode?7:3],1,1,filept) != 1)
#else
if (fread(&hbuf[3],1,1,filept) != 1)
#endif
return 0;
 
/* This is faster than combining newhead from scratch */
newhead = ((newhead << 8) | hbuf[3]) & 0xffffffff;
 
if (!oldhead)
goto init_resync; /* "considered harmful", eh? */
 
} while ((newhead & HDRCMPMASK) != (oldhead & HDRCMPMASK)
&& (newhead & HDRCMPMASK) != (firsthead & HDRCMPMASK));
if (!quiet)
fprintf (stderr, "Skipped %d bytes in input.\n", try);
}
else
return (0);
}
if (!firsthead)
firsthead = newhead;
 
if( newhead & (1<<20) ) {
fr->lsf = (newhead & (1<<19)) ? 0x0 : 0x1;
fr->mpeg25 = 0;
}
else {
fr->lsf = 1;
fr->mpeg25 = 1;
}
if (!tryresync || !oldhead) {
/* If "tryresync" is true, assume that certain
parameters do not change within the stream! */
fr->lay = 4-((newhead>>17)&3);
fr->bitrate_index = ((newhead>>12)&0xf);
if( ((newhead>>10)&0x3) == 0x3) {
fprintf(stderr,"Stream error\n");
exit(1);
}
if(fr->mpeg25)
fr->sampling_frequency = 6;
else
fr->sampling_frequency = ((newhead>>10)&0x3) + (fr->lsf*3);
fr->error_protection = ((newhead>>16)&0x1)^0x1;
}
 
fr->padding = ((newhead>>9)&0x1);
fr->extension = ((newhead>>8)&0x1);
fr->mode = ((newhead>>6)&0x3);
fr->mode_ext = ((newhead>>4)&0x3);
fr->copyright = ((newhead>>3)&0x1);
fr->original = ((newhead>>2)&0x1);
fr->emphasis = newhead & 0x3;
 
fr->stereo = (fr->mode == MPG_MD_MONO) ? 1 : 2;
 
oldhead = newhead;
 
if(!fr->bitrate_index)
{
fprintf(stderr,"Free format not supported.\n");
return (0);
}
 
switch(fr->lay)
{
case 1:
fr->do_layer = do_layer1;
#ifdef VARMODESUPPORT
if (varmode) {
fprintf(stderr,"Sorry, layer-1 not supported in varmode.\n");
return (0);
}
#endif
fr->jsbound = (fr->mode == MPG_MD_JOINT_STEREO) ?
(fr->mode_ext<<2)+4 : 32;
framesize = (long) tabsel_123[fr->lsf][0][fr->bitrate_index] * 12000;
framesize /= freqs[fr->sampling_frequency];
framesize = ((framesize+fr->padding)<<2)-4;
break;
case 2:
fr->do_layer = do_layer2;
#ifdef VARMODESUPPORT
if (varmode) {
fprintf(stderr,"Sorry, layer-2 not supported in varmode.\n");
return (0);
}
#endif
get_II_stuff(fr);
fr->jsbound = (fr->mode == MPG_MD_JOINT_STEREO) ?
(fr->mode_ext<<2)+4 : fr->II_sblimit;
framesize = (long) tabsel_123[fr->lsf][1][fr->bitrate_index] * 144000;
framesize /= freqs[fr->sampling_frequency];
framesize += fr->padding - 4;
break;
case 3:
fr->do_layer = do_layer3;
if(fr->lsf)
ssize = (fr->stereo == 1) ? 9 : 17;
else
ssize = (fr->stereo == 1) ? 17 : 32;
if(fr->error_protection)
ssize += 2;
#ifdef VARMODESUPPORT
if (varmode)
playlimit = ((unsigned int) hbuf[6] << 8) | (unsigned int) hbuf[7];
framesize = ssize +
(((unsigned int) hbuf[4] << 8) | (unsigned int) hbuf[5]);
else {
#endif
framesize = (long) tabsel_123[fr->lsf][2][fr->bitrate_index] * 144000;
framesize /= freqs[fr->sampling_frequency]<<(fr->lsf);
framesize = framesize + fr->padding - 4;
#ifdef VARMODESUPPORT
}
#endif
break;
default:
fprintf(stderr,"Sorry, unknown layer type.\n");
return (0);
}
}
else
fr->header_change = 0;
 
fsizeold=fsize; /* for Layer3 */
bsbufold = bsbuf;
bsbuf = bsspace[bsnum]+512;
bsnum = (bsnum + 1) & 1;
 
fsize = framesize;
if( (l=fread(bsbuf,1,fsize,filept)) != fsize)
{
if(l <= 0)
return 0;
memset(bsbuf+l,0,fsize-l);
}
 
if (halfspeed && fr->lay == 3)
memcpy (ssave, bsbuf, ssize);
 
bitindex = 0;
wordpointer = (unsigned char *) bsbuf;
 
return 1;
}
 
#ifdef MPG123_REMOTE
void print_rheader(struct frame *fr)
{
static char *modes[4] = { "Stereo", "Joint-Stereo", "Dual-Channel", "Single-Channel" };
static char *layers[4] = { "Unknown" , "I", "II", "III" };
static char *mpeg_type[2] = { "1.0" , "2.0" };
 
/* version, layer, freq, mode, channels, bitrate, BPF */
fprintf(stderr,"@I %s %s %ld %s %d %d %d\n",
mpeg_type[fr->lsf],layers[fr->lay],freqs[fr->sampling_frequency],
modes[fr->mode],fr->stereo,
tabsel_123[fr->lsf][fr->lay-1][fr->bitrate_index],
fsize+4);
}
#endif
 
void print_header(struct frame *fr)
{
static char *modes[4] = { "Stereo", "Joint-Stereo", "Dual-Channel", "Single-Channel" };
static char *layers[4] = { "Unknown" , "I", "II", "III" };
fprintf(stderr,"MPEG %s, Layer: %s, Freq: %ld, mode: %s, modext: %d, BPF: %d\n",
fr->mpeg25 ? "2.5" : (fr->lsf ? "2.0" : "1.0"),
layers[fr->lay],freqs[fr->sampling_frequency],
modes[fr->mode],fr->mode_ext,fsize+4);
fprintf(stderr,"Channels: %d, copyright: %s, original: %s, CRC: %s, emphasis: %d.\n",
fr->stereo,fr->copyright?"Yes":"No",
fr->original?"Yes":"No",fr->error_protection?"Yes":"No",
fr->emphasis);
fprintf(stderr,"Bitrate: %d Kbits/s, Extension value: %d\n",
tabsel_123[fr->lsf][fr->lay-1][fr->bitrate_index],fr->extension);
}
 
void print_header_compact(struct frame *fr)
{
static char *modes[4] = { "stereo", "joint-stereo", "dual-channel", "mono" };
static char *layers[4] = { "Unknown" , "I", "II", "III" };
fprintf(stderr,"MPEG %s layer %s, %d kbit/s, %ld Hz %s\n",
fr->mpeg25 ? "2.5" : (fr->lsf ? "2.0" : "1.0"),
layers[fr->lay],
tabsel_123[fr->lsf][fr->lay-1][fr->bitrate_index],
freqs[fr->sampling_frequency], modes[fr->mode]);
}
 
/*
* Allocate space for a new string containing the first
* "num" characters of "src". The resulting string is
* always zero-terminated. Returns NULL if malloc fails.
*/
 
char *strndup (const char *src, int num)
{
char *dst;
 
if (!(dst = (char *) malloc(num+1)))
return (NULL);
dst[num] = '\0';
return (strncpy(dst, src, num));
}
 
/*
* Split "path" into directory and filename components.
*
* Return value is 0 if no directory was specified (i.e.
* "path" does not contain a '/'), OR if the directory
* is the same as on the previous call to this function.
*
* Return value is 1 if a directory was specified AND it
* is different from the previous one (if any).
*/
 
int split_dir_file (const char *path, char **dname, char **fname)
{
static char *lastdir = NULL;
char *slashpos;
 
if ((slashpos = strrchr(path, '/'))) {
*fname = slashpos + 1;
*dname = strndup(path, 1 + slashpos - path);
if (lastdir && !strcmp(lastdir, *dname)) {
/*** same as previous directory ***/
free (*dname);
*dname = lastdir;
return 0;
}
else {
/*** different directory ***/
if (lastdir)
free (lastdir);
lastdir = *dname;
return 1;
}
}
else {
/*** no directory specified ***/
if (lastdir) {
free (lastdir);
lastdir = NULL;
};
*dname = NULL;
*fname = (char *)path;
return 0;
}
}
 
/* open the device to read the bit stream from it */
 
void open_stream(char *bs_filenam,int fd)
{
filept_opened = 1;
if (!bs_filenam) {
if(fd < 0) {
filept = stdin;
filept_opened = 0;
}
else
filept = fdopen(fd,"r");
}
else if (!strncmp(bs_filenam, "http://", 7))
filept = http_open(bs_filenam);
else if (!(filept = fopen(bs_filenam, "rb"))) {
perror (bs_filenam);
exit(1);
}
}
 
/*close the device containing the bit stream after a read process*/
 
void close_stream(void)
{
if (filept_opened)
fclose(filept);
}
 
long tell_stream(void)
{
return ftell(filept);
}
 
#if !defined(I386_ASSEM) || defined(DEBUG_GETBITS)
#ifdef _gcc_
inline
#endif
unsigned int getbits(int number_of_bits)
{
unsigned long rval;
 
#ifdef DEBUG_GETBITS
fprintf(stderr,"g%d",number_of_bits);
#endif
 
if(!number_of_bits)
return 0;
 
{
rval = wordpointer[0];
rval <<= 8;
rval |= wordpointer[1];
rval <<= 8;
rval |= wordpointer[2];
#if 0
rval = ((unsigned int) wordpointer[0] << 16)+((unsigned int) wordpointer[1]<<8)+
(unsigned int) wordpointer[2];
#endif
rval <<= bitindex;
rval &= 0xffffff;
 
bitindex += number_of_bits;
 
rval >>= (24-number_of_bits);
 
wordpointer += (bitindex>>3);
bitindex &= 7;
}
 
#ifdef DEBUG_GETBITS
fprintf(stderr,":%x ",rval);
#endif
return rval;
}
 
#ifdef _gcc_
inline
#endif
unsigned int getbits_fast(int number_of_bits)
{
unsigned long rval;
 
#ifdef DEBUG_GETBITS
fprintf(stderr,"g%d",number_of_bits);
#endif
 
{
rval = wordpointer[0];
rval <<= 8;
rval |= wordpointer[1];
rval <<= bitindex;
rval &= 0xffff;
#if 0
rval = ((unsigned int) high << (8-bitindex) )+((unsigned int) (unsigned char) wordpointer[1]);
#endif
bitindex += number_of_bits;
 
rval >>= (16-number_of_bits);
 
wordpointer += (bitindex>>3);
bitindex &= 7;
}
 
 
#ifdef DEBUG_GETBITS
fprintf(stderr,":%x ",rval);
#endif
 
 
return rval;
}
 
#ifdef _gcc_
inline
#endif
unsigned int get1bit(void)
{
unsigned char rval;
 
#ifdef DEBUG_GETBITS
fprintf(stderr,"g%d",1);
#endif
 
rval = *wordpointer << bitindex;
 
bitindex++;
wordpointer += (bitindex>>3);
bitindex &= 7;
 
#ifdef DEBUG_GETBITS
fprintf(stderr,":%d ",rval>>7);
#endif
 
return rval>>7;
}
#endif
 
void set_pointer(long backstep)
{
wordpointer = bsbuf + ssize - backstep;
if (backstep)
memcpy(wordpointer,bsbufold+fsizeold-backstep,backstep);
bitindex = 0;
}
/shark/trunk/ports/mpg123/huffman.h
0,0 → 1,332
/*
* huffman tables ... recalcualted to work with my optimzed
* decoder scheme (MH)
*
* probably we could save a few bytes of memory, because the
* smaller tables are often the part of a bigger table
*/
 
struct newhuff
{
unsigned int linbits;
short *table;
};
 
static short tab0[] =
{
0
};
 
static short tab1[] =
{
-5, -3, -1, 17, 1, 16, 0
};
 
static short tab2[] =
{
-15, -11, -9, -5, -3, -1, 34, 2, 18, -1, 33, 32, 17, -1, 1,
16, 0
};
 
static short tab3[] =
{
-13, -11, -9, -5, -3, -1, 34, 2, 18, -1, 33, 32, 16, 17, -1,
1, 0
};
 
static short tab5[] =
{
-29, -25, -23, -15, -7, -5, -3, -1, 51, 35, 50, 49, -3, -1, 19,
3, -1, 48, 34, -3, -1, 18, 33, -1, 2, 32, 17, -1, 1, 16,
0
};
 
static short tab6[] =
{
-25, -19, -13, -9, -5, -3, -1, 51, 3, 35, -1, 50, 48, -1, 19,
49, -3, -1, 34, 2, 18, -3, -1, 33, 32, 1, -1, 17, -1, 16,
0
};
 
static short tab7[] =
{
-69, -65, -57, -39, -29, -17, -11, -7, -3, -1, 85, 69, -1, 84, 83,
-1, 53, 68, -3, -1, 37, 82, 21, -5, -1, 81, -1, 5, 52, -1,
80, -1, 67, 51, -5, -3, -1, 36, 66, 20, -1, 65, 64, -11, -7,
-3, -1, 4, 35, -1, 50, 3, -1, 19, 49, -3, -1, 48, 34, 18,
-5, -1, 33, -1, 2, 32, 17, -1, 1, 16, 0
};
 
static short tab8[] =
{
-65, -63, -59, -45, -31, -19, -13, -7, -5, -3, -1, 85, 84, 69, 83,
-3, -1, 53, 68, 37, -3, -1, 82, 5, 21, -5, -1, 81, -1, 52,
67, -3, -1, 80, 51, 36, -5, -3, -1, 66, 20, 65, -3, -1, 4,
64, -1, 35, 50, -9, -7, -3, -1, 19, 49, -1, 3, 48, 34, -1,
2, 32, -1, 18, 33, 17, -3, -1, 1, 16, 0
};
 
static short tab9[] =
{
-63, -53, -41, -29, -19, -11, -5, -3, -1, 85, 69, 53, -1, 83, -1,
84, 5, -3, -1, 68, 37, -1, 82, 21, -3, -1, 81, 52, -1, 67,
-1, 80, 4, -7, -3, -1, 36, 66, -1, 51, 64, -1, 20, 65, -5,
-3, -1, 35, 50, 19, -1, 49, -1, 3, 48, -5, -3, -1, 34, 2,
18, -1, 33, 32, -3, -1, 17, 1, -1, 16, 0
};
 
static short tab10[] =
{
-125,-121,-111, -83, -55, -35, -21, -13, -7, -3, -1, 119, 103, -1, 118,
87, -3, -1, 117, 102, 71, -3, -1, 116, 86, -1, 101, 55, -9, -3,
-1, 115, 70, -3, -1, 85, 84, 99, -1, 39, 114, -11, -5, -3, -1,
100, 7, 112, -1, 98, -1, 69, 53, -5, -1, 6, -1, 83, 68, 23,
-17, -5, -1, 113, -1, 54, 38, -5, -3, -1, 37, 82, 21, -1, 81,
-1, 52, 67, -3, -1, 22, 97, -1, 96, -1, 5, 80, -19, -11, -7,
-3, -1, 36, 66, -1, 51, 4, -1, 20, 65, -3, -1, 64, 35, -1,
50, 3, -3, -1, 19, 49, -1, 48, 34, -7, -3, -1, 18, 33, -1,
2, 32, 17, -1, 1, 16, 0
};
 
static short tab11[] =
{
-121,-113, -89, -59, -43, -27, -17, -7, -3, -1, 119, 103, -1, 118, 117,
-3, -1, 102, 71, -1, 116, -1, 87, 85, -5, -3, -1, 86, 101, 55,
-1, 115, 70, -9, -7, -3, -1, 69, 84, -1, 53, 83, 39, -1, 114,
-1, 100, 7, -5, -1, 113, -1, 23, 112, -3, -1, 54, 99, -1, 96,
-1, 68, 37, -13, -7, -5, -3, -1, 82, 5, 21, 98, -3, -1, 38,
6, 22, -5, -1, 97, -1, 81, 52, -5, -1, 80, -1, 67, 51, -1,
36, 66, -15, -11, -7, -3, -1, 20, 65, -1, 4, 64, -1, 35, 50,
-1, 19, 49, -5, -3, -1, 3, 48, 34, 33, -5, -1, 18, -1, 2,
32, 17, -3, -1, 1, 16, 0
};
 
static short tab12[] =
{
-115, -99, -73, -45, -27, -17, -9, -5, -3, -1, 119, 103, 118, -1, 87,
117, -3, -1, 102, 71, -1, 116, 101, -3, -1, 86, 55, -3, -1, 115,
85, 39, -7, -3, -1, 114, 70, -1, 100, 23, -5, -1, 113, -1, 7,
112, -1, 54, 99, -13, -9, -3, -1, 69, 84, -1, 68, -1, 6, 5,
-1, 38, 98, -5, -1, 97, -1, 22, 96, -3, -1, 53, 83, -1, 37,
82, -17, -7, -3, -1, 21, 81, -1, 52, 67, -5, -3, -1, 80, 4,
36, -1, 66, 20, -3, -1, 51, 65, -1, 35, 50, -11, -7, -5, -3,
-1, 64, 3, 48, 19, -1, 49, 34, -1, 18, 33, -7, -5, -3, -1,
2, 32, 0, 17, -1, 1, 16
};
 
static short tab13[] =
{
-509,-503,-475,-405,-333,-265,-205,-153,-115, -83, -53, -35, -21, -13, -9,
-7, -5, -3, -1, 254, 252, 253, 237, 255, -1, 239, 223, -3, -1, 238,
207, -1, 222, 191, -9, -3, -1, 251, 206, -1, 220, -1, 175, 233, -1,
236, 221, -9, -5, -3, -1, 250, 205, 190, -1, 235, 159, -3, -1, 249,
234, -1, 189, 219, -17, -9, -3, -1, 143, 248, -1, 204, -1, 174, 158,
-5, -1, 142, -1, 127, 126, 247, -5, -1, 218, -1, 173, 188, -3, -1,
203, 246, 111, -15, -7, -3, -1, 232, 95, -1, 157, 217, -3, -1, 245,
231, -1, 172, 187, -9, -3, -1, 79, 244, -3, -1, 202, 230, 243, -1,
63, -1, 141, 216, -21, -9, -3, -1, 47, 242, -3, -1, 110, 156, 15,
-5, -3, -1, 201, 94, 171, -3, -1, 125, 215, 78, -11, -5, -3, -1,
200, 214, 62, -1, 185, -1, 155, 170, -1, 31, 241, -23, -13, -5, -1,
240, -1, 186, 229, -3, -1, 228, 140, -1, 109, 227, -5, -1, 226, -1,
46, 14, -1, 30, 225, -15, -7, -3, -1, 224, 93, -1, 213, 124, -3,
-1, 199, 77, -1, 139, 184, -7, -3, -1, 212, 154, -1, 169, 108, -1,
198, 61, -37, -21, -9, -5, -3, -1, 211, 123, 45, -1, 210, 29, -5,
-1, 183, -1, 92, 197, -3, -1, 153, 122, 195, -7, -5, -3, -1, 167,
151, 75, 209, -3, -1, 13, 208, -1, 138, 168, -11, -7, -3, -1, 76,
196, -1, 107, 182, -1, 60, 44, -3, -1, 194, 91, -3, -1, 181, 137,
28, -43, -23, -11, -5, -1, 193, -1, 152, 12, -1, 192, -1, 180, 106,
-5, -3, -1, 166, 121, 59, -1, 179, -1, 136, 90, -11, -5, -1, 43,
-1, 165, 105, -1, 164, -1, 120, 135, -5, -1, 148, -1, 119, 118, 178,
-11, -3, -1, 27, 177, -3, -1, 11, 176, -1, 150, 74, -7, -3, -1,
58, 163, -1, 89, 149, -1, 42, 162, -47, -23, -9, -3, -1, 26, 161,
-3, -1, 10, 104, 160, -5, -3, -1, 134, 73, 147, -3, -1, 57, 88,
-1, 133, 103, -9, -3, -1, 41, 146, -3, -1, 87, 117, 56, -5, -1,
131, -1, 102, 71, -3, -1, 116, 86, -1, 101, 115, -11, -3, -1, 25,
145, -3, -1, 9, 144, -1, 72, 132, -7, -5, -1, 114, -1, 70, 100,
40, -1, 130, 24, -41, -27, -11, -5, -3, -1, 55, 39, 23, -1, 113,
-1, 85, 7, -7, -3, -1, 112, 54, -1, 99, 69, -3, -1, 84, 38,
-1, 98, 53, -5, -1, 129, -1, 8, 128, -3, -1, 22, 97, -1, 6,
96, -13, -9, -5, -3, -1, 83, 68, 37, -1, 82, 5, -1, 21, 81,
-7, -3, -1, 52, 67, -1, 80, 36, -3, -1, 66, 51, 20, -19, -11,
-5, -1, 65, -1, 4, 64, -3, -1, 35, 50, 19, -3, -1, 49, 3,
-1, 48, 34, -3, -1, 18, 33, -1, 2, 32, -3, -1, 17, 1, 16,
0
};
 
static short tab15[] =
{
-495,-445,-355,-263,-183,-115, -77, -43, -27, -13, -7, -3, -1, 255, 239,
-1, 254, 223, -1, 238, -1, 253, 207, -7, -3, -1, 252, 222, -1, 237,
191, -1, 251, -1, 206, 236, -7, -3, -1, 221, 175, -1, 250, 190, -3,
-1, 235, 205, -1, 220, 159, -15, -7, -3, -1, 249, 234, -1, 189, 219,
-3, -1, 143, 248, -1, 204, 158, -7, -3, -1, 233, 127, -1, 247, 173,
-3, -1, 218, 188, -1, 111, -1, 174, 15, -19, -11, -3, -1, 203, 246,
-3, -1, 142, 232, -1, 95, 157, -3, -1, 245, 126, -1, 231, 172, -9,
-3, -1, 202, 187, -3, -1, 217, 141, 79, -3, -1, 244, 63, -1, 243,
216, -33, -17, -9, -3, -1, 230, 47, -1, 242, -1, 110, 240, -3, -1,
31, 241, -1, 156, 201, -7, -3, -1, 94, 171, -1, 186, 229, -3, -1,
125, 215, -1, 78, 228, -15, -7, -3, -1, 140, 200, -1, 62, 109, -3,
-1, 214, 227, -1, 155, 185, -7, -3, -1, 46, 170, -1, 226, 30, -5,
-1, 225, -1, 14, 224, -1, 93, 213, -45, -25, -13, -7, -3, -1, 124,
199, -1, 77, 139, -1, 212, -1, 184, 154, -7, -3, -1, 169, 108, -1,
198, 61, -1, 211, 210, -9, -5, -3, -1, 45, 13, 29, -1, 123, 183,
-5, -1, 209, -1, 92, 208, -1, 197, 138, -17, -7, -3, -1, 168, 76,
-1, 196, 107, -5, -1, 182, -1, 153, 12, -1, 60, 195, -9, -3, -1,
122, 167, -1, 166, -1, 192, 11, -1, 194, -1, 44, 91, -55, -29, -15,
-7, -3, -1, 181, 28, -1, 137, 152, -3, -1, 193, 75, -1, 180, 106,
-5, -3, -1, 59, 121, 179, -3, -1, 151, 136, -1, 43, 90, -11, -5,
-1, 178, -1, 165, 27, -1, 177, -1, 176, 105, -7, -3, -1, 150, 74,
-1, 164, 120, -3, -1, 135, 58, 163, -17, -7, -3, -1, 89, 149, -1,
42, 162, -3, -1, 26, 161, -3, -1, 10, 160, 104, -7, -3, -1, 134,
73, -1, 148, 57, -5, -1, 147, -1, 119, 9, -1, 88, 133, -53, -29,
-13, -7, -3, -1, 41, 103, -1, 118, 146, -1, 145, -1, 25, 144, -7,
-3, -1, 72, 132, -1, 87, 117, -3, -1, 56, 131, -1, 102, 71, -7,
-3, -1, 40, 130, -1, 24, 129, -7, -3, -1, 116, 8, -1, 128, 86,
-3, -1, 101, 55, -1, 115, 70, -17, -7, -3, -1, 39, 114, -1, 100,
23, -3, -1, 85, 113, -3, -1, 7, 112, 54, -7, -3, -1, 99, 69,
-1, 84, 38, -3, -1, 98, 22, -3, -1, 6, 96, 53, -33, -19, -9,
-5, -1, 97, -1, 83, 68, -1, 37, 82, -3, -1, 21, 81, -3, -1,
5, 80, 52, -7, -3, -1, 67, 36, -1, 66, 51, -1, 65, -1, 20,
4, -9, -3, -1, 35, 50, -3, -1, 64, 3, 19, -3, -1, 49, 48,
34, -9, -7, -3, -1, 18, 33, -1, 2, 32, 17, -3, -1, 1, 16,
0
};
 
static short tab16[] =
{
-509,-503,-461,-323,-103, -37, -27, -15, -7, -3, -1, 239, 254, -1, 223,
253, -3, -1, 207, 252, -1, 191, 251, -5, -1, 175, -1, 250, 159, -3,
-1, 249, 248, 143, -7, -3, -1, 127, 247, -1, 111, 246, 255, -9, -5,
-3, -1, 95, 245, 79, -1, 244, 243, -53, -1, 240, -1, 63, -29, -19,
-13, -7, -5, -1, 206, -1, 236, 221, 222, -1, 233, -1, 234, 217, -1,
238, -1, 237, 235, -3, -1, 190, 205, -3, -1, 220, 219, 174, -11, -5,
-1, 204, -1, 173, 218, -3, -1, 126, 172, 202, -5, -3, -1, 201, 125,
94, 189, 242, -93, -5, -3, -1, 47, 15, 31, -1, 241, -49, -25, -13,
-5, -1, 158, -1, 188, 203, -3, -1, 142, 232, -1, 157, 231, -7, -3,
-1, 187, 141, -1, 216, 110, -1, 230, 156, -13, -7, -3, -1, 171, 186,
-1, 229, 215, -1, 78, -1, 228, 140, -3, -1, 200, 62, -1, 109, -1,
214, 155, -19, -11, -5, -3, -1, 185, 170, 225, -1, 212, -1, 184, 169,
-5, -1, 123, -1, 183, 208, 227, -7, -3, -1, 14, 224, -1, 93, 213,
-3, -1, 124, 199, -1, 77, 139, -75, -45, -27, -13, -7, -3, -1, 154,
108, -1, 198, 61, -3, -1, 92, 197, 13, -7, -3, -1, 138, 168, -1,
153, 76, -3, -1, 182, 122, 60, -11, -5, -3, -1, 91, 137, 28, -1,
192, -1, 152, 121, -1, 226, -1, 46, 30, -15, -7, -3, -1, 211, 45,
-1, 210, 209, -5, -1, 59, -1, 151, 136, 29, -7, -3, -1, 196, 107,
-1, 195, 167, -1, 44, -1, 194, 181, -23, -13, -7, -3, -1, 193, 12,
-1, 75, 180, -3, -1, 106, 166, 179, -5, -3, -1, 90, 165, 43, -1,
178, 27, -13, -5, -1, 177, -1, 11, 176, -3, -1, 105, 150, -1, 74,
164, -5, -3, -1, 120, 135, 163, -3, -1, 58, 89, 42, -97, -57, -33,
-19, -11, -5, -3, -1, 149, 104, 161, -3, -1, 134, 119, 148, -5, -3,
-1, 73, 87, 103, 162, -5, -1, 26, -1, 10, 160, -3, -1, 57, 147,
-1, 88, 133, -9, -3, -1, 41, 146, -3, -1, 118, 9, 25, -5, -1,
145, -1, 144, 72, -3, -1, 132, 117, -1, 56, 131, -21, -11, -5, -3,
-1, 102, 40, 130, -3, -1, 71, 116, 24, -3, -1, 129, 128, -3, -1,
8, 86, 55, -9, -5, -1, 115, -1, 101, 70, -1, 39, 114, -5, -3,
-1, 100, 85, 7, 23, -23, -13, -5, -1, 113, -1, 112, 54, -3, -1,
99, 69, -1, 84, 38, -3, -1, 98, 22, -1, 97, -1, 6, 96, -9,
-5, -1, 83, -1, 53, 68, -1, 37, 82, -1, 81, -1, 21, 5, -33,
-23, -13, -7, -3, -1, 52, 67, -1, 80, 36, -3, -1, 66, 51, 20,
-5, -1, 65, -1, 4, 64, -1, 35, 50, -3, -1, 19, 49, -3, -1,
3, 48, 34, -3, -1, 18, 33, -1, 2, 32, -3, -1, 17, 1, 16,
0
};
 
static short tab24[] =
{
-451,-117, -43, -25, -15, -7, -3, -1, 239, 254, -1, 223, 253, -3, -1,
207, 252, -1, 191, 251, -5, -1, 250, -1, 175, 159, -1, 249, 248, -9,
-5, -3, -1, 143, 127, 247, -1, 111, 246, -3, -1, 95, 245, -1, 79,
244, -71, -7, -3, -1, 63, 243, -1, 47, 242, -5, -1, 241, -1, 31,
240, -25, -9, -1, 15, -3, -1, 238, 222, -1, 237, 206, -7, -3, -1,
236, 221, -1, 190, 235, -3, -1, 205, 220, -1, 174, 234, -15, -7, -3,
-1, 189, 219, -1, 204, 158, -3, -1, 233, 173, -1, 218, 188, -7, -3,
-1, 203, 142, -1, 232, 157, -3, -1, 217, 126, -1, 231, 172, 255,-235,
-143, -77, -45, -25, -15, -7, -3, -1, 202, 187, -1, 141, 216, -5, -3,
-1, 14, 224, 13, 230, -5, -3, -1, 110, 156, 201, -1, 94, 186, -9,
-5, -1, 229, -1, 171, 125, -1, 215, 228, -3, -1, 140, 200, -3, -1,
78, 46, 62, -15, -7, -3, -1, 109, 214, -1, 227, 155, -3, -1, 185,
170, -1, 226, 30, -7, -3, -1, 225, 93, -1, 213, 124, -3, -1, 199,
77, -1, 139, 184, -31, -15, -7, -3, -1, 212, 154, -1, 169, 108, -3,
-1, 198, 61, -1, 211, 45, -7, -3, -1, 210, 29, -1, 123, 183, -3,
-1, 209, 92, -1, 197, 138, -17, -7, -3, -1, 168, 153, -1, 76, 196,
-3, -1, 107, 182, -3, -1, 208, 12, 60, -7, -3, -1, 195, 122, -1,
167, 44, -3, -1, 194, 91, -1, 181, 28, -57, -35, -19, -7, -3, -1,
137, 152, -1, 193, 75, -5, -3, -1, 192, 11, 59, -3, -1, 176, 10,
26, -5, -1, 180, -1, 106, 166, -3, -1, 121, 151, -3, -1, 160, 9,
144, -9, -3, -1, 179, 136, -3, -1, 43, 90, 178, -7, -3, -1, 165,
27, -1, 177, 105, -1, 150, 164, -17, -9, -5, -3, -1, 74, 120, 135,
-1, 58, 163, -3, -1, 89, 149, -1, 42, 162, -7, -3, -1, 161, 104,
-1, 134, 119, -3, -1, 73, 148, -1, 57, 147, -63, -31, -15, -7, -3,
-1, 88, 133, -1, 41, 103, -3, -1, 118, 146, -1, 25, 145, -7, -3,
-1, 72, 132, -1, 87, 117, -3, -1, 56, 131, -1, 102, 40, -17, -7,
-3, -1, 130, 24, -1, 71, 116, -5, -1, 129, -1, 8, 128, -1, 86,
101, -7, -5, -1, 23, -1, 7, 112, 115, -3, -1, 55, 39, 114, -15,
-7, -3, -1, 70, 100, -1, 85, 113, -3, -1, 54, 99, -1, 69, 84,
-7, -3, -1, 38, 98, -1, 22, 97, -5, -3, -1, 6, 96, 53, -1,
83, 68, -51, -37, -23, -15, -9, -3, -1, 37, 82, -1, 21, -1, 5,
80, -1, 81, -1, 52, 67, -3, -1, 36, 66, -1, 51, 20, -9, -5,
-1, 65, -1, 4, 64, -1, 35, 50, -1, 19, 49, -7, -5, -3, -1,
3, 48, 34, 18, -1, 33, -1, 2, 32, -3, -1, 17, 1, -1, 16,
0
};
 
static short tab_c0[] =
{
-29, -21, -13, -7, -3, -1, 11, 15, -1, 13, 14, -3, -1, 7, 5,
9, -3, -1, 6, 3, -1, 10, 12, -3, -1, 2, 1, -1, 4, 8,
0
};
 
static short tab_c1[] =
{
-15, -7, -3, -1, 15, 14, -1, 13, 12, -3, -1, 11, 10, -1, 9,
8, -7, -3, -1, 7, 6, -1, 5, 4, -3, -1, 3, 2, -1, 1,
0
};
 
 
 
static struct newhuff ht[] =
{
{ /* 0 */ 0 , tab0 } ,
{ /* 2 */ 0 , tab1 } ,
{ /* 3 */ 0 , tab2 } ,
{ /* 3 */ 0 , tab3 } ,
{ /* 0 */ 0 , tab0 } ,
{ /* 4 */ 0 , tab5 } ,
{ /* 4 */ 0 , tab6 } ,
{ /* 6 */ 0 , tab7 } ,
{ /* 6 */ 0 , tab8 } ,
{ /* 6 */ 0 , tab9 } ,
{ /* 8 */ 0 , tab10 } ,
{ /* 8 */ 0 , tab11 } ,
{ /* 8 */ 0 , tab12 } ,
{ /* 16 */ 0 , tab13 } ,
{ /* 0 */ 0 , tab0 } ,
{ /* 16 */ 0 , tab15 } ,
 
{ /* 16 */ 1 , tab16 } ,
{ /* 16 */ 2 , tab16 } ,
{ /* 16 */ 3 , tab16 } ,
{ /* 16 */ 4 , tab16 } ,
{ /* 16 */ 6 , tab16 } ,
{ /* 16 */ 8 , tab16 } ,
{ /* 16 */ 10, tab16 } ,
{ /* 16 */ 13, tab16 } ,
{ /* 16 */ 4 , tab24 } ,
{ /* 16 */ 5 , tab24 } ,
{ /* 16 */ 6 , tab24 } ,
{ /* 16 */ 7 , tab24 } ,
{ /* 16 */ 8 , tab24 } ,
{ /* 16 */ 9 , tab24 } ,
{ /* 16 */ 11, tab24 } ,
{ /* 16 */ 13, tab24 }
};
 
static struct newhuff htc[] =
{
{ /* 1 , 1 , */ 0 , tab_c0 } ,
{ /* 1 , 1 , */ 0 , tab_c1 }
};
 
 
/shark/trunk/ports/mpg123/version.h
0,0 → 1,3
char *prgVersion = "0.59k";
char *prgDate = "1997/07/13";
char *prgName;
/shark/trunk/ports/mpg123/decode_i.c
0,0 → 1,169
/*
* Mpeg Layer-1,2,3 audio decoder
* ------------------------------
* copyright (c) 1995,1996,1997 by Michael Hipp, All rights reserved.
* See also 'README'
*
* slighlty optimized for machines without autoincrement/decrement.
* The performance is highly compiler dependend. Maybe
* the decode.c version for 'normal' processor may be faster
* even for Intel processors.
*/
 
#include <stdlib.h>
#include <math.h>
#include <string.h>
 
#include "mpg123.h"
 
#define WRITE_SAMPLE(samples,sum,clip) \
if( (sum) > 32767.0) { *(samples) = 0x7fff; (clip)++; } \
else if( (sum) < -32768.0) { *(samples) = -0x8000; (clip)++; } \
else { *(samples) = sum; }
 
int synth_1to1_8bit(real *bandPtr,int channel,unsigned char *samples)
{
short samples_tmp[64];
short *tmp1 = samples_tmp + channel;
int i,ret;
 
samples += channel;
ret = synth_1to1(bandPtr,channel,(unsigned char *)samples_tmp);
 
for(i=0;i<32;i++) {
*samples = conv16to8[*tmp1>>4];
samples += 2;
tmp1 += 2;
}
 
return ret;
}
 
int synth_1to1_8bit_mono(real *bandPtr,unsigned char *samples)
{
short samples_tmp[64];
short *tmp1 = samples_tmp;
int i,ret;
 
ret = synth_1to1(bandPtr,0,(unsigned char *)samples_tmp);
 
for(i=0;i<32;i++) {
*samples++ = conv16to8[*tmp1>>4];
*samples++ = conv16to8[*tmp1>>4];
tmp1 += 2;
}
 
return ret;
}
 
int synth_1to1_mono(real *bandPtr,unsigned char *samples)
{
int i,ret = synth_1to1(bandPtr,0,samples);
for(i=0;i<32;i++) {
((short *)samples)[1] = ((short *)samples)[0];
samples+=4;
}
return ret;
}
 
int synth_1to1(real *bandPtr,int channel,unsigned char *out)
{
static real buffs[2][2][0x110];
static const int step = 2;
static int bo = 1;
short *samples = (short *) out;
 
real *b0,(*buf)[0x110];
int clip = 0;
int bo1;
 
if(!channel) {
bo--;
bo &= 0xf;
buf = buffs[0];
}
else {
samples++;
buf = buffs[1];
}
 
if(bo & 0x1) {
b0 = buf[0];
bo1 = bo;
dct64(buf[1]+((bo+1)&0xf),buf[0]+bo,bandPtr);
}
else {
b0 = buf[1];
bo1 = bo+1;
dct64(buf[0]+bo,buf[1]+bo+1,bandPtr);
}
{
register int j;
real *window = decwin + 16 - bo1;
 
for (j=16;j;j--,b0+=0x10,window+=0x20,samples+=step)
{
real sum;
sum = window[0x0] * b0[0x0];
sum -= window[0x1] * b0[0x1];
sum += window[0x2] * b0[0x2];
sum -= window[0x3] * b0[0x3];
sum += window[0x4] * b0[0x4];
sum -= window[0x5] * b0[0x5];
sum += window[0x6] * b0[0x6];
sum -= window[0x7] * b0[0x7];
sum += window[0x8] * b0[0x8];
sum -= window[0x9] * b0[0x9];
sum += window[0xA] * b0[0xA];
sum -= window[0xB] * b0[0xB];
sum += window[0xC] * b0[0xC];
sum -= window[0xD] * b0[0xD];
sum += window[0xE] * b0[0xE];
sum -= window[0xF] * b0[0xF];
 
WRITE_SAMPLE(samples,sum,clip);
}
 
{
real sum;
sum = window[0x0] * b0[0x0];
sum += window[0x2] * b0[0x2];
sum += window[0x4] * b0[0x4];
sum += window[0x6] * b0[0x6];
sum += window[0x8] * b0[0x8];
sum += window[0xA] * b0[0xA];
sum += window[0xC] * b0[0xC];
sum += window[0xE] * b0[0xE];
WRITE_SAMPLE(samples,sum,clip);
b0-=0x10,window-=0x20,samples+=step;
}
window += bo1<<1;
 
for (j=15;j;j--,b0-=0x10,window-=0x20,samples+=step)
{
real sum;
sum = -window[-0x1] * b0[0x0];
sum -= window[-0x2] * b0[0x1];
sum -= window[-0x3] * b0[0x2];
sum -= window[-0x4] * b0[0x3];
sum -= window[-0x5] * b0[0x4];
sum -= window[-0x6] * b0[0x5];
sum -= window[-0x7] * b0[0x6];
sum -= window[-0x8] * b0[0x7];
sum -= window[-0x9] * b0[0x8];
sum -= window[-0xA] * b0[0x9];
sum -= window[-0xB] * b0[0xA];
sum -= window[-0xC] * b0[0xB];
sum -= window[-0xD] * b0[0xC];
sum -= window[-0xE] * b0[0xD];
sum -= window[-0xF] * b0[0xE];
sum -= window[-0x0] * b0[0xF];
 
WRITE_SAMPLE(samples,sum,clip);
}
}
return clip;
}
 
 
/shark/trunk/ports/mpg123/layer1.c
0,0 → 1,153
/*
* Mpeg Layer-1 audio decoder
* --------------------------
* copyright (c) 1995 by Michael Hipp, All rights reserved. See also 'README'
* near unoptimzed ...
*
* may have a few bugs after last optimization ...
*
*/
 
#include "mpg123.h"
 
void I_step_one(unsigned int balloc[], unsigned int scale_index[2][SBLIMIT],struct frame *fr)
{
unsigned int *ba=balloc;
unsigned int *sca = (unsigned int *) scale_index;
 
if(fr->stereo) {
int i;
int jsbound = fr->jsbound;
for (i=0;i<jsbound;i++) {
*ba++ = getbits(4);
*ba++ = getbits(4);
}
for (i=jsbound;i<SBLIMIT;i++)
*ba++ = getbits(4);
 
ba = balloc;
 
for (i=0;i<jsbound;i++) {
if ((*ba++))
*sca++ = getbits(6);
if ((*ba++))
*sca++ = getbits(6);
}
for (i=jsbound;i<SBLIMIT;i++)
if ((*ba++)) {
*sca++ = getbits(6);
*sca++ = getbits(6);
}
}
else {
int i;
for (i=0;i<SBLIMIT;i++)
*ba++ = getbits(4);
ba = balloc;
for (i=0;i<SBLIMIT;i++)
if ((*ba++))
*sca++ = getbits(6);
}
}
 
void I_step_two(real fraction[2][SBLIMIT],unsigned int balloc[2*SBLIMIT],
unsigned int scale_index[2][SBLIMIT],struct frame *fr)
{
int i,n;
int smpb[2*SBLIMIT]; /* values: 0-65535 */
int *sample;
register unsigned int *ba;
register unsigned int *sca = (unsigned int *) scale_index;
 
if(fr->stereo) {
int jsbound = fr->jsbound;
register real *f0 = fraction[0];
register real *f1 = fraction[1];
ba = balloc;
for (sample=smpb,i=0;i<jsbound;i++) {
if ((n = *ba++))
*sample++ = getbits(n+1);
if ((n = *ba++))
*sample++ = getbits(n+1);
}
for (i=jsbound;i<SBLIMIT;i++)
if ((n = *ba++))
*sample++ = getbits(n+1);
 
ba = balloc;
for (sample=smpb,i=0;i<jsbound;i++) {
if((n=*ba++))
*f0++ = (real) ( ((-1)<<n) + (*sample++) + 1) * muls[n+1][*sca++];
else
*f0++ = 0.0;
if((n=*ba++))
*f1++ = (real) ( ((-1)<<n) + (*sample++) + 1) * muls[n+1][*sca++];
else
*f1++ = 0.0;
}
for (sample=smpb,i=jsbound;i<SBLIMIT;i++) {
if ((n=*ba++)) {
real samp = ( ((-1)<<n) + (*sample++) + 1);
*f0++ = samp * muls[n+1][*sca++];
*f1++ = samp * muls[n+1][*sca++];
}
else
*f0++ = *f1++ = 0.0;
}
for(i=SBLIMIT>>fr->down_sample;i<32;i++)
fraction[0][i] = fraction[1][i] = 0.0;
}
else {
register real *f0 = fraction[0];
ba = balloc;
for (sample=smpb,i=0;i<SBLIMIT;i++)
if ((n = *ba++))
*sample++ = getbits(n+1);
ba = balloc;
for (sample=smpb,i=0;i<SBLIMIT;i++) {
if((n=*ba++))
*f0++ = (real) ( ((-1)<<n) + (*sample++) + 1) * muls[n+1][*sca++];
else
*f0++ = 0.0;
}
for(i=SBLIMIT>>fr->down_sample;i<32;i++)
fraction[0][i] = 0.0;
}
}
 
int do_layer1(struct frame *fr,int outmode,struct audio_info_struct *ai)
{
int clip=0;
int i,stereo = fr->stereo;
unsigned int balloc[2*SBLIMIT];
unsigned int scale_index[2][SBLIMIT];
real fraction[2][SBLIMIT];
int single = fr->single;
 
if(stereo == 1 || single == 3)
single = 0;
 
I_step_one(balloc,scale_index,fr);
 
for (i=0;i<SCALE_BLOCK;i++)
{
I_step_two(fraction,balloc,scale_index,fr);
 
if(single >= 0)
{
clip += (fr->synth_mono)( (real *) fraction[single],pcm_sample+pcm_point);
}
else {
clip += (fr->synth)( (real *) fraction[0],0,pcm_sample+pcm_point);
clip += (fr->synth)( (real *) fraction[1],1,pcm_sample+pcm_point);
}
pcm_point += fr->block_size;
 
if(pcm_point == audiobufsize)
audio_flush(outmode,ai);
}
 
return clip;
}