Subversion Repositories shark

Compare Revisions

Regard whitespace Rev 57 → Rev 58

/shark/trunk/ports/mesa/src/tnl_dd/t_dd_tritmp.h
0,0 → 1,740
/* $Id: t_dd_tritmp.h,v 1.1 2003-02-28 11:54:02 pj Exp $ */
 
/*
* Mesa 3-D graphics library
* Version: 3.5
*
* Copyright (C) 1999-2001 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* Authors:
* Keith Whitwell <keith@tungstengraphics.com>
*/
 
 
/* Template for building functions to plug into the driver interface
* of t_vb_render.c:
* ctx->Driver.QuadFunc
* ctx->Driver.TriangleFunc
* ctx->Driver.LineFunc
* ctx->Driver.PointsFunc
*
* DO_TWOSIDE: Plug back-color values from the VB into backfacing triangles,
* and restore vertices afterwards.
* DO_OFFSET: Calculate offset for triangles and adjust vertices. Restore
* vertices after rendering.
* DO_FLAT: For hardware without native flatshading, copy provoking colors
* into the other vertices. Restore after rendering.
* DO_UNFILLED: Decompose triangles to lines and points where appropriate.
*
* HAVE_RGBA: Vertices have rgba values (otherwise index values).
* HAVE_SPEC: Vertices have secondary rgba values.
*
* VERT_X(v): Alias for vertex x value.
* VERT_Y(v): Alias for vertex y value.
* VERT_Z(v): Alias for vertex z value.
* DEPTH_SCALE: Scale for offset.
*
* VERTEX: Hardware vertex type.
* GET_VERTEX(n): Retreive vertex with index n.
* AREA_IS_CCW(a): Return true if triangle with signed area a is ccw.
*
* VERT_SET_RGBA: Assign vertex rgba from VB color.
* VERT_COPY_RGBA: Copy vertex rgba another vertex.
* VERT_SAVE_RGBA: Save vertex rgba to a local variable.
* VERT_RESTORE_RGBA: Restore vertex rgba from a local variable.
* --> Similar for IND and SPEC.
*
* LOCAL_VARS(n): (At least) define local vars for save/restore rgba.
*
*/
 
#if HAVE_RGBA
#define VERT_SET_IND( v, c ) (void) c
#define VERT_COPY_IND( v0, v1 )
#define VERT_SAVE_IND( idx )
#define VERT_RESTORE_IND( idx )
#if HAVE_BACK_COLORS
#define VERT_SET_RGBA( v, c )
#endif
#else
#define VERT_SET_RGBA( v, c ) (void) c
#define VERT_COPY_RGBA( v0, v1 )
#define VERT_SAVE_RGBA( idx )
#define VERT_RESTORE_RGBA( idx )
#if HAVE_BACK_COLORS
#define VERT_SET_IND( v, c )
#endif
#endif
 
#if !HAVE_SPEC
#define VERT_SET_SPEC( v, c ) (void) c
#define VERT_COPY_SPEC( v0, v1 )
#define VERT_SAVE_SPEC( idx )
#define VERT_RESTORE_SPEC( idx )
#if HAVE_BACK_COLORS
#define VERT_COPY_SPEC1( v )
#endif
#else
#if HAVE_BACK_COLORS
#define VERT_SET_SPEC( v, c )
#endif
#endif
 
#if !HAVE_BACK_COLORS
#define VERT_COPY_SPEC1( v )
#define VERT_COPY_IND1( v )
#define VERT_COPY_RGBA1( v )
#endif
 
#ifndef INSANE_VERTICES
#define VERT_SET_Z(v,val) VERT_Z(v) = val
#define VERT_Z_ADD(v,val) VERT_Z(v) += val
#endif
 
#if DO_TRI
static void TAG(triangle)( GLcontext *ctx, GLuint e0, GLuint e1, GLuint e2 )
{
struct vertex_buffer *VB = &TNL_CONTEXT( ctx )->vb;
VERTEX *v[3];
GLfloat offset;
GLfloat z[3];
GLenum mode = GL_FILL;
GLuint facing;
LOCAL_VARS(3);
 
/* fprintf(stderr, "%s\n", __FUNCTION__); */
 
v[0] = (VERTEX *)GET_VERTEX(e0);
v[1] = (VERTEX *)GET_VERTEX(e1);
v[2] = (VERTEX *)GET_VERTEX(e2);
 
if (DO_TWOSIDE || DO_OFFSET || DO_UNFILLED)
{
GLfloat ex = VERT_X(v[0]) - VERT_X(v[2]);
GLfloat ey = VERT_Y(v[0]) - VERT_Y(v[2]);
GLfloat fx = VERT_X(v[1]) - VERT_X(v[2]);
GLfloat fy = VERT_Y(v[1]) - VERT_Y(v[2]);
GLfloat cc = ex*fy - ey*fx;
 
if (DO_TWOSIDE || DO_UNFILLED)
{
facing = AREA_IS_CCW( cc ) ^ ctx->Polygon._FrontBit;
 
if (DO_UNFILLED) {
if (facing) {
mode = ctx->Polygon.BackMode;
if (ctx->Polygon.CullFlag &&
ctx->Polygon.CullFaceMode != GL_FRONT) {
return;
}
} else {
mode = ctx->Polygon.FrontMode;
if (ctx->Polygon.CullFlag &&
ctx->Polygon.CullFaceMode != GL_BACK) {
return;
}
}
}
 
if (DO_TWOSIDE && facing == 1)
{
if (HAVE_RGBA) {
if (HAVE_BACK_COLORS) {
if (!DO_FLAT) {
VERT_SAVE_RGBA( 0 );
VERT_SAVE_RGBA( 1 );
VERT_COPY_RGBA1( v[0] );
VERT_COPY_RGBA1( v[1] );
}
VERT_SAVE_RGBA( 2 );
VERT_COPY_RGBA1( v[2] );
if (HAVE_SPEC) {
if (!DO_FLAT) {
VERT_SAVE_SPEC( 0 );
VERT_SAVE_SPEC( 1 );
VERT_COPY_SPEC1( v[0] );
VERT_COPY_SPEC1( v[1] );
}
VERT_SAVE_SPEC( 2 );
VERT_COPY_SPEC1( v[2] );
}
}
else {
GLchan (*vbcolor)[4] = VB->ColorPtr[1]->Ptr;
ASSERT(VB->ColorPtr[1]->Type == CHAN_TYPE);
ASSERT(VB->ColorPtr[1]->StrideB == 4*sizeof(GLchan));
(void) vbcolor;
 
if (!DO_FLAT) {
VERT_SAVE_RGBA( 0 );
VERT_SAVE_RGBA( 1 );
VERT_SET_RGBA( v[0], vbcolor[e0] );
VERT_SET_RGBA( v[1], vbcolor[e1] );
}
VERT_SAVE_RGBA( 2 );
VERT_SET_RGBA( v[2], vbcolor[e2] );
 
if (HAVE_SPEC && VB->SecondaryColorPtr[1]) {
GLchan (*vbspec)[4] = VB->SecondaryColorPtr[1]->Ptr;
 
if (!DO_FLAT) {
VERT_SAVE_SPEC( 0 );
VERT_SAVE_SPEC( 1 );
VERT_SET_SPEC( v[0], vbspec[e0] );
VERT_SET_SPEC( v[1], vbspec[e1] );
}
VERT_SAVE_SPEC( 2 );
VERT_SET_SPEC( v[2], vbspec[e2] );
}
}
}
else {
GLuint *vbindex = VB->IndexPtr[1]->data;
if (!DO_FLAT) {
VERT_SET_IND( v[0], vbindex[e0] );
VERT_SET_IND( v[1], vbindex[e1] );
}
VERT_SET_IND( v[2], vbindex[e2] );
}
}
}
 
 
if (DO_OFFSET)
{
offset = ctx->Polygon.OffsetUnits * DEPTH_SCALE;
z[0] = VERT_Z(v[0]);
z[1] = VERT_Z(v[1]);
z[2] = VERT_Z(v[2]);
if (cc * cc > 1e-16) {
GLfloat ic = 1.0 / cc;
GLfloat ez = z[0] - z[2];
GLfloat fz = z[1] - z[2];
GLfloat a = ey*fz - ez*fy;
GLfloat b = ez*fx - ex*fz;
GLfloat ac = a * ic;
GLfloat bc = b * ic;
if ( ac < 0.0f ) ac = -ac;
if ( bc < 0.0f ) bc = -bc;
offset += MAX2( ac, bc ) * ctx->Polygon.OffsetFactor;
}
offset *= ctx->MRD;
}
}
 
if (DO_FLAT) {
if (HAVE_RGBA) {
VERT_SAVE_RGBA( 0 );
VERT_SAVE_RGBA( 1 );
VERT_COPY_RGBA( v[0], v[2] );
VERT_COPY_RGBA( v[1], v[2] );
if (HAVE_SPEC && VB->SecondaryColorPtr[0]) {
VERT_SAVE_SPEC( 0 );
VERT_SAVE_SPEC( 1 );
VERT_COPY_SPEC( v[0], v[2] );
VERT_COPY_SPEC( v[1], v[2] );
}
}
else {
VERT_SAVE_IND( 0 );
VERT_SAVE_IND( 1 );
VERT_COPY_IND( v[0], v[2] );
VERT_COPY_IND( v[1], v[2] );
}
}
 
if (mode == GL_POINT) {
if (DO_OFFSET && ctx->Polygon.OffsetPoint) {
VERT_Z_ADD(v[0], offset);
VERT_Z_ADD(v[1], offset);
VERT_Z_ADD(v[2], offset);
}
UNFILLED_TRI( ctx, GL_POINT, e0, e1, e2 );
} else if (mode == GL_LINE) {
if (DO_OFFSET && ctx->Polygon.OffsetLine) {
VERT_Z_ADD(v[0], offset);
VERT_Z_ADD(v[1], offset);
VERT_Z_ADD(v[2], offset);
}
UNFILLED_TRI( ctx, GL_LINE, e0, e1, e2 );
} else {
if (DO_OFFSET && ctx->Polygon.OffsetFill) {
VERT_Z_ADD(v[0], offset);
VERT_Z_ADD(v[1], offset);
VERT_Z_ADD(v[2], offset);
}
if (DO_UNFILLED)
RASTERIZE( GL_TRIANGLES );
TRI( v[0], v[1], v[2] );
}
 
if (DO_OFFSET)
{
VERT_SET_Z(v[0], z[0]);
VERT_SET_Z(v[1], z[1]);
VERT_SET_Z(v[2], z[2]);
}
 
if (DO_TWOSIDE && facing == 1)
{
if (HAVE_RGBA) {
if (!DO_FLAT) {
VERT_RESTORE_RGBA( 0 );
VERT_RESTORE_RGBA( 1 );
}
VERT_RESTORE_RGBA( 2 );
if (HAVE_SPEC) {
if (!DO_FLAT) {
VERT_RESTORE_SPEC( 0 );
VERT_RESTORE_SPEC( 1 );
}
VERT_RESTORE_SPEC( 2 );
}
}
else {
GLuint *vbindex = VB->IndexPtr[0]->data;
if (!DO_FLAT) {
VERT_SET_IND( v[0], vbindex[e0] );
VERT_SET_IND( v[1], vbindex[e1] );
}
VERT_SET_IND( v[2], vbindex[e2] );
}
}
 
 
if (DO_FLAT) {
if (HAVE_RGBA) {
VERT_RESTORE_RGBA( 0 );
VERT_RESTORE_RGBA( 1 );
if (HAVE_SPEC && VB->SecondaryColorPtr[0]) {
VERT_RESTORE_SPEC( 0 );
VERT_RESTORE_SPEC( 1 );
}
}
else {
VERT_RESTORE_IND( 0 );
VERT_RESTORE_IND( 1 );
}
}
}
#endif
 
#if DO_QUAD
#if DO_FULL_QUAD
static void TAG(quad)( GLcontext *ctx,
GLuint e0, GLuint e1, GLuint e2, GLuint e3 )
{
struct vertex_buffer *VB = &TNL_CONTEXT( ctx )->vb;
VERTEX *v[4];
GLfloat offset;
GLfloat z[4];
GLenum mode = GL_FILL;
GLuint facing;
LOCAL_VARS(4);
 
v[0] = (VERTEX *)GET_VERTEX(e0);
v[1] = (VERTEX *)GET_VERTEX(e1);
v[2] = (VERTEX *)GET_VERTEX(e2);
v[3] = (VERTEX *)GET_VERTEX(e3);
 
if (DO_TWOSIDE || DO_OFFSET || DO_UNFILLED)
{
GLfloat ex = VERT_X(v[2]) - VERT_X(v[0]);
GLfloat ey = VERT_Y(v[2]) - VERT_Y(v[0]);
GLfloat fx = VERT_X(v[3]) - VERT_X(v[1]);
GLfloat fy = VERT_Y(v[3]) - VERT_Y(v[1]);
GLfloat cc = ex*fy - ey*fx;
 
if (DO_TWOSIDE || DO_UNFILLED)
{
facing = AREA_IS_CCW( cc ) ^ ctx->Polygon._FrontBit;
 
if (DO_UNFILLED) {
if (facing) {
mode = ctx->Polygon.BackMode;
if (ctx->Polygon.CullFlag &&
ctx->Polygon.CullFaceMode != GL_FRONT) {
return;
}
} else {
mode = ctx->Polygon.FrontMode;
if (ctx->Polygon.CullFlag &&
ctx->Polygon.CullFaceMode != GL_BACK) {
return;
}
}
}
 
if (DO_TWOSIDE && facing == 1)
{
if (HAVE_RGBA) {
GLchan (*vbcolor)[4] = VB->ColorPtr[1]->Ptr;
(void)vbcolor;
 
if (HAVE_BACK_COLORS) {
if (!DO_FLAT) {
VERT_SAVE_RGBA( 0 );
VERT_SAVE_RGBA( 1 );
VERT_SAVE_RGBA( 2 );
VERT_COPY_RGBA1( v[0] );
VERT_COPY_RGBA1( v[1] );
VERT_COPY_RGBA1( v[2] );
}
VERT_SAVE_RGBA( 3 );
VERT_COPY_RGBA1( v[3] );
if (HAVE_SPEC) {
if (!DO_FLAT) {
VERT_SAVE_SPEC( 0 );
VERT_SAVE_SPEC( 1 );
VERT_SAVE_SPEC( 2 );
VERT_COPY_SPEC1( v[0] );
VERT_COPY_SPEC1( v[1] );
VERT_COPY_SPEC1( v[2] );
}
VERT_SAVE_SPEC( 3 );
VERT_COPY_SPEC1( v[3] );
}
}
else {
if (!DO_FLAT) {
VERT_SAVE_RGBA( 0 );
VERT_SAVE_RGBA( 1 );
VERT_SAVE_RGBA( 2 );
VERT_SET_RGBA( v[0], vbcolor[e0] );
VERT_SET_RGBA( v[1], vbcolor[e1] );
VERT_SET_RGBA( v[2], vbcolor[e2] );
}
VERT_SAVE_RGBA( 3 );
VERT_SET_RGBA( v[3], vbcolor[e3] );
 
if (HAVE_SPEC && VB->SecondaryColorPtr[1]) {
GLchan (*vbspec)[4] = VB->SecondaryColorPtr[1]->Ptr;
ASSERT(VB->SecondaryColorPtr[1]->StrideB==4*sizeof(GLchan));
 
if (!DO_FLAT) {
VERT_SAVE_SPEC( 0 );
VERT_SAVE_SPEC( 1 );
VERT_SAVE_SPEC( 2 );
VERT_SET_SPEC( v[0], vbspec[e0] );
VERT_SET_SPEC( v[1], vbspec[e1] );
VERT_SET_SPEC( v[2], vbspec[e2] );
}
VERT_SAVE_SPEC( 3 );
VERT_SET_SPEC( v[3], vbspec[e3] );
}
}
}
else {
GLuint *vbindex = VB->IndexPtr[1]->data;
if (!DO_FLAT) {
VERT_SET_IND( v[0], vbindex[e0] );
VERT_SET_IND( v[1], vbindex[e1] );
VERT_SET_IND( v[2], vbindex[e2] );
}
VERT_SET_IND( v[3], vbindex[e3] );
}
}
}
 
 
if (DO_OFFSET)
{
offset = ctx->Polygon.OffsetUnits * DEPTH_SCALE;
z[0] = VERT_Z(v[0]);
z[1] = VERT_Z(v[1]);
z[2] = VERT_Z(v[2]);
z[3] = VERT_Z(v[3]);
if (cc * cc > 1e-16) {
GLfloat ez = z[2] - z[0];
GLfloat fz = z[3] - z[1];
GLfloat a = ey*fz - ez*fy;
GLfloat b = ez*fx - ex*fz;
GLfloat ic = 1.0 / cc;
GLfloat ac = a * ic;
GLfloat bc = b * ic;
if ( ac < 0.0f ) ac = -ac;
if ( bc < 0.0f ) bc = -bc;
offset += MAX2( ac, bc ) * ctx->Polygon.OffsetFactor;
}
offset *= ctx->MRD;
}
}
 
if (DO_FLAT) {
if (HAVE_RGBA) {
VERT_SAVE_RGBA( 0 );
VERT_SAVE_RGBA( 1 );
VERT_SAVE_RGBA( 2 );
VERT_COPY_RGBA( v[0], v[3] );
VERT_COPY_RGBA( v[1], v[3] );
VERT_COPY_RGBA( v[2], v[3] );
if (HAVE_SPEC && VB->SecondaryColorPtr[0]) {
VERT_SAVE_SPEC( 0 );
VERT_SAVE_SPEC( 1 );
VERT_SAVE_SPEC( 2 );
VERT_COPY_SPEC( v[0], v[3] );
VERT_COPY_SPEC( v[1], v[3] );
VERT_COPY_SPEC( v[2], v[3] );
}
}
else {
VERT_SAVE_IND( 0 );
VERT_SAVE_IND( 1 );
VERT_SAVE_IND( 2 );
VERT_COPY_IND( v[0], v[3] );
VERT_COPY_IND( v[1], v[3] );
VERT_COPY_IND( v[2], v[3] );
}
}
 
if (mode == GL_POINT) {
if (( DO_OFFSET) && ctx->Polygon.OffsetPoint) {
VERT_Z_ADD(v[0], offset);
VERT_Z_ADD(v[1], offset);
VERT_Z_ADD(v[2], offset);
VERT_Z_ADD(v[3], offset);
}
UNFILLED_QUAD( ctx, GL_POINT, e0, e1, e2, e3 );
} else if (mode == GL_LINE) {
if (DO_OFFSET && ctx->Polygon.OffsetLine) {
VERT_Z_ADD(v[0], offset);
VERT_Z_ADD(v[1], offset);
VERT_Z_ADD(v[2], offset);
VERT_Z_ADD(v[3], offset);
}
UNFILLED_QUAD( ctx, GL_LINE, e0, e1, e2, e3 );
} else {
if (DO_OFFSET && ctx->Polygon.OffsetFill) {
VERT_Z_ADD(v[0], offset);
VERT_Z_ADD(v[1], offset);
VERT_Z_ADD(v[2], offset);
VERT_Z_ADD(v[3], offset);
}
RASTERIZE( GL_TRIANGLES );
QUAD( (v[0]), (v[1]), (v[2]), (v[3]) );
}
 
if (DO_OFFSET)
{
VERT_SET_Z(v[0], z[0]);
VERT_SET_Z(v[1], z[1]);
VERT_SET_Z(v[2], z[2]);
VERT_SET_Z(v[3], z[3]);
}
 
if (DO_TWOSIDE && facing == 1)
{
if (HAVE_RGBA) {
if (!DO_FLAT) {
VERT_RESTORE_RGBA( 0 );
VERT_RESTORE_RGBA( 1 );
VERT_RESTORE_RGBA( 2 );
}
VERT_RESTORE_RGBA( 3 );
if (HAVE_SPEC) {
if (!DO_FLAT) {
VERT_RESTORE_SPEC( 0 );
VERT_RESTORE_SPEC( 1 );
VERT_RESTORE_SPEC( 2 );
}
VERT_RESTORE_SPEC( 3 );
}
}
else {
GLuint *vbindex = VB->IndexPtr[0]->data;
if (!DO_FLAT) {
VERT_SET_IND( v[0], vbindex[e0] );
VERT_SET_IND( v[1], vbindex[e1] );
VERT_SET_IND( v[2], vbindex[e2] );
}
VERT_SET_IND( v[3], vbindex[e3] );
}
}
 
 
if (DO_FLAT) {
if (HAVE_RGBA) {
VERT_RESTORE_RGBA( 0 );
VERT_RESTORE_RGBA( 1 );
VERT_RESTORE_RGBA( 2 );
if (HAVE_SPEC && VB->SecondaryColorPtr[0]) {
VERT_RESTORE_SPEC( 0 );
VERT_RESTORE_SPEC( 1 );
VERT_RESTORE_SPEC( 2 );
}
}
else {
VERT_RESTORE_IND( 0 );
VERT_RESTORE_IND( 1 );
VERT_RESTORE_IND( 2 );
}
}
}
#else
static void TAG(quad)( GLcontext *ctx, GLuint e0,
GLuint e1, GLuint e2, GLuint e3 )
{
if (DO_UNFILLED) {
struct vertex_buffer *VB = &TNL_CONTEXT(ctx)->vb;
GLubyte ef1 = VB->EdgeFlag[e1];
GLubyte ef3 = VB->EdgeFlag[e3];
VB->EdgeFlag[e1] = 0;
TAG(triangle)( ctx, e0, e1, e3 );
VB->EdgeFlag[e1] = ef1;
VB->EdgeFlag[e3] = 0;
TAG(triangle)( ctx, e1, e2, e3 );
VB->EdgeFlag[e3] = ef3;
} else {
TAG(triangle)( ctx, e0, e1, e3 );
TAG(triangle)( ctx, e1, e2, e3 );
}
}
#endif
#endif
 
#if DO_LINE
static void TAG(line)( GLcontext *ctx, GLuint e0, GLuint e1 )
{
TNLvertexbuffer *VB = &TNL_CONTEXT(ctx)->vb;
VERTEX *v[2];
LOCAL_VARS(2);
 
v[0] = (VERTEX *)GET_VERTEX(e0);
v[1] = (VERTEX *)GET_VERTEX(e1);
 
if (DO_FLAT) {
if (HAVE_RGBA) {
VERT_SAVE_RGBA( 0 );
VERT_COPY_RGBA( v[0], v[1] );
if (HAVE_SPEC && VB->SecondaryColorPtr[0]) {
VERT_SAVE_SPEC( 0 );
VERT_COPY_SPEC( v[0], v[1] );
}
}
else {
VERT_SAVE_IND( 0 );
VERT_COPY_IND( v[0], v[1] );
}
}
 
LINE( v[0], v[1] );
 
if (DO_FLAT) {
if (HAVE_RGBA) {
VERT_RESTORE_RGBA( 0 );
 
if (HAVE_SPEC && VB->SecondaryColorPtr[0]) {
VERT_RESTORE_SPEC( 0 );
}
}
else {
VERT_RESTORE_IND( 0 );
}
}
}
#endif
 
#if DO_POINTS
static void TAG(points)( GLcontext *ctx, GLuint first, GLuint last )
{
struct vertex_buffer *VB = &TNL_CONTEXT( ctx )->vb;
int i;
LOCAL_VARS(1);
 
if (VB->Elts == 0) {
for ( i = first ; i < last ; i++ ) {
if ( VB->ClipMask[i] == 0 ) {
VERTEX *v = (VERTEX *)GET_VERTEX(i);
POINT( v );
}
}
} else {
for ( i = first ; i < last ; i++ ) {
GLuint e = VB->Elts[i];
if ( VB->ClipMask[e] == 0 ) {
VERTEX *v = (VERTEX *)GET_VERTEX(e);
POINT( v );
}
}
}
}
#endif
 
static void TAG(init)( void )
{
#if DO_QUAD
TAB[IND].quad = TAG(quad);
#endif
#if DO_TRI
TAB[IND].triangle = TAG(triangle);
#endif
#if DO_LINE
TAB[IND].line = TAG(line);
#endif
#if DO_POINTS
TAB[IND].points = TAG(points);
#endif
}
 
#undef IND
#undef TAG
 
#if HAVE_RGBA
#undef VERT_SET_IND
#undef VERT_COPY_IND
#undef VERT_SAVE_IND
#undef VERT_RESTORE_IND
#if HAVE_BACK_COLORS
#undef VERT_SET_RGBA
#endif
#else
#undef VERT_SET_RGBA
#undef VERT_COPY_RGBA
#undef VERT_SAVE_RGBA
#undef VERT_RESTORE_RGBA
#if HAVE_BACK_COLORS
#undef VERT_SET_IND
#endif
#endif
 
#if !HAVE_SPEC
#undef VERT_SET_SPEC
#undef VERT_COPY_SPEC
#undef VERT_SAVE_SPEC
#undef VERT_RESTORE_SPEC
#if HAVE_BACK_COLORS
#undef VERT_COPY_SPEC1
#endif
#else
#if HAVE_BACK_COLORS
#undef VERT_SET_SPEC
#endif
#endif
 
#if !HAVE_BACK_COLORS
#undef VERT_COPY_SPEC1
#undef VERT_COPY_IND1
#undef VERT_COPY_RGBA1
#endif
 
#ifndef INSANE_VERTICES
#undef VERT_SET_Z
#undef VERT_Z_ADD
#endif
/shark/trunk/ports/mesa/src/tnl_dd/t_dd_rendertmp.h
0,0 → 1,438
/* $Id: t_dd_rendertmp.h,v 1.1 2003-02-28 11:54:01 pj Exp $ */
 
/*
* Mesa 3-D graphics library
* Version: 3.5
*
* Copyright (C) 1999-2001 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* Authors:
* Keith Whitwell <keith@tungstengraphics.com>
*/
 
 
#ifndef POSTFIX
#define POSTFIX
#endif
 
#ifndef INIT
#define INIT(x)
#endif
 
#ifndef NEED_EDGEFLAG_SETUP
#define NEED_EDGEFLAG_SETUP 0
#define EDGEFLAG_GET(a) 0
#define EDGEFLAG_SET(a,b) (void)b
#endif
 
#ifndef RESET_STIPPLE
#define RESET_STIPPLE
#endif
 
#ifndef RESET_OCCLUSION
#define RESET_OCCLUSION
#endif
 
#ifndef TEST_PRIM_END
#define TEST_PRIM_END(flags) (flags & PRIM_END)
#define TEST_PRIM_BEGIN(flags) (flags & PRIM_BEGIN)
#define TEST_PRIM_PARITY(flags) (flags & PRIM_PARITY)
#endif
 
#ifndef ELT
#define ELT(x) x
#endif
 
#ifndef RENDER_TAB_QUALIFIER
#define RENDER_TAB_QUALIFIER static
#endif
 
static void TAG(render_points)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
LOCAL_VARS;
(void) flags;
 
RESET_OCCLUSION;
INIT(GL_POINTS);
RENDER_POINTS( start, count );
POSTFIX;
}
 
static void TAG(render_lines)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
GLuint j;
LOCAL_VARS;
(void) flags;
 
RESET_OCCLUSION;
INIT(GL_LINES);
for (j=start+1; j<count; j+=2 ) {
RENDER_LINE( ELT(j-1), ELT(j) );
RESET_STIPPLE;
}
POSTFIX;
}
 
 
static void TAG(render_line_strip)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
GLuint j;
LOCAL_VARS;
(void) flags;
 
RESET_OCCLUSION;
INIT(GL_LINE_STRIP);
 
for (j=start+1; j<count; j++ )
RENDER_LINE( ELT(j-1), ELT(j) );
 
if (TEST_PRIM_END(flags))
RESET_STIPPLE;
 
POSTFIX;
}
 
 
static void TAG(render_line_loop)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
GLuint i;
LOCAL_VARS;
 
(void) flags;
 
RESET_OCCLUSION;
INIT(GL_LINE_LOOP);
 
if (start+1 < count) {
if (TEST_PRIM_BEGIN(flags)) {
RENDER_LINE( ELT(start), ELT(start+1) );
}
 
for ( i = start+2 ; i < count ; i++) {
RENDER_LINE( ELT(i-1), ELT(i) );
}
 
if ( TEST_PRIM_END(flags)) {
RENDER_LINE( ELT(count-1), ELT(start) );
RESET_STIPPLE;
}
}
 
POSTFIX;
}
 
 
static void TAG(render_triangles)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
GLuint j;
LOCAL_VARS;
(void) flags;
 
INIT(GL_TRIANGLES);
if (NEED_EDGEFLAG_SETUP) {
for (j=start+2; j<count; j+=3) {
/* Leave the edgeflags as supplied by the user.
*/
RENDER_TRI( ELT(j-2), ELT(j-1), ELT(j) );
RESET_STIPPLE;
}
} else {
for (j=start+2; j<count; j+=3) {
RENDER_TRI( ELT(j-2), ELT(j-1), ELT(j) );
}
}
POSTFIX;
}
 
 
 
static void TAG(render_tri_strip)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
GLuint j;
GLuint parity = 0;
LOCAL_VARS;
 
if (TEST_PRIM_PARITY(flags))
parity = 1;
 
INIT(GL_TRIANGLE_STRIP);
if (NEED_EDGEFLAG_SETUP) {
for (j=start+2;j<count;j++,parity^=1) {
GLuint ej2 = ELT(j-2+parity);
GLuint ej1 = ELT(j-1-parity);
GLuint ej = ELT(j);
GLboolean ef2 = EDGEFLAG_GET( ej2 );
GLboolean ef1 = EDGEFLAG_GET( ej1 );
GLboolean ef = EDGEFLAG_GET( ej );
EDGEFLAG_SET( ej2, GL_TRUE );
EDGEFLAG_SET( ej1, GL_TRUE );
EDGEFLAG_SET( ej, GL_TRUE );
RENDER_TRI( ej2, ej1, ej );
EDGEFLAG_SET( ej2, ef2 );
EDGEFLAG_SET( ej1, ef1 );
EDGEFLAG_SET( ej, ef );
RESET_STIPPLE;
}
} else {
for (j=start+2; j<count ; j++, parity^=1) {
RENDER_TRI( ELT(j-2+parity), ELT(j-1-parity), ELT(j) );
}
}
POSTFIX;
}
 
 
static void TAG(render_tri_fan)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
GLuint j;
LOCAL_VARS;
(void) flags;
 
INIT(GL_TRIANGLE_FAN);
if (NEED_EDGEFLAG_SETUP) {
for (j=start+2;j<count;j++) {
/* For trifans, all edges are boundary.
*/
GLuint ejs = ELT(start);
GLuint ej1 = ELT(j-1);
GLuint ej = ELT(j);
GLboolean efs = EDGEFLAG_GET( ejs );
GLboolean ef1 = EDGEFLAG_GET( ej1 );
GLboolean ef = EDGEFLAG_GET( ej );
EDGEFLAG_SET( ejs, GL_TRUE );
EDGEFLAG_SET( ej1, GL_TRUE );
EDGEFLAG_SET( ej, GL_TRUE );
RENDER_TRI( ejs, ej1, ej);
EDGEFLAG_SET( ejs, efs );
EDGEFLAG_SET( ej1, ef1 );
EDGEFLAG_SET( ej, ef );
RESET_STIPPLE;
}
} else {
for (j=start+2;j<count;j++) {
RENDER_TRI( ELT(start), ELT(j-1), ELT(j) );
}
}
 
POSTFIX;
}
 
 
static void TAG(render_poly)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
GLuint j = start+2;
LOCAL_VARS;
(void) flags;
 
INIT(GL_POLYGON);
if (NEED_EDGEFLAG_SETUP) {
GLboolean efstart = EDGEFLAG_GET( ELT(start) );
GLboolean efcount = EDGEFLAG_GET( ELT(count-1) );
 
/* If the primitive does not begin here, the first edge
* is non-boundary.
*/
if (!TEST_PRIM_BEGIN(flags))
EDGEFLAG_SET( ELT(start), GL_FALSE );
 
/* If the primitive does not end here, the final edge is
* non-boundary.
*/
if (!TEST_PRIM_END(flags))
EDGEFLAG_SET( ELT(count-1), GL_FALSE );
 
/* Draw the first triangles (possibly zero)
*/
if (j<count-1) {
GLboolean ef = EDGEFLAG_GET( ELT(j) );
EDGEFLAG_SET( ELT(j), GL_FALSE );
RENDER_TRI( ELT(j-1), ELT(j), ELT(start) );
EDGEFLAG_SET( ELT(j), ef );
j++;
 
/* Don't render the first edge again:
*/
EDGEFLAG_SET( ELT(start), GL_FALSE );
 
for (;j<count-1;j++) {
GLboolean efj = EDGEFLAG_GET( ELT(j) );
EDGEFLAG_SET( ELT(j), GL_FALSE );
RENDER_TRI( ELT(j-1), ELT(j), ELT(start) );
EDGEFLAG_SET( ELT(j), efj );
}
}
 
/* Draw the last or only triangle
*/
if (j < count)
RENDER_TRI( ELT(j-1), ELT(j), ELT(start) );
 
/* Restore the first and last edgeflags:
*/
EDGEFLAG_SET( ELT(count-1), efcount );
EDGEFLAG_SET( ELT(start), efstart );
 
if (TEST_PRIM_END(flags)) {
RESET_STIPPLE;
}
}
else {
for (j=start+2;j<count;j++) {
RENDER_TRI( ELT(j-1), ELT(j), ELT(start) );
}
}
POSTFIX;
}
 
static void TAG(render_quads)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
GLuint j;
LOCAL_VARS;
(void) flags;
 
INIT(GL_QUADS);
if (NEED_EDGEFLAG_SETUP) {
for (j=start+3; j<count; j+=4) {
/* Use user-specified edgeflags for quads.
*/
RENDER_QUAD( ELT(j-3), ELT(j-2), ELT(j-1), ELT(j) );
RESET_STIPPLE;
}
} else {
for (j=start+3; j<count; j+=4) {
RENDER_QUAD( ELT(j-3), ELT(j-2), ELT(j-1), ELT(j) );
}
}
POSTFIX;
}
 
static void TAG(render_quad_strip)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
GLuint j;
LOCAL_VARS;
(void) flags;
 
INIT(GL_QUAD_STRIP);
if (NEED_EDGEFLAG_SETUP) {
for (j=start+3;j<count;j+=2) {
/* All edges are boundary. Set edgeflags to 1, draw the
* quad, and restore them to the original values.
*/
GLboolean ef3 = EDGEFLAG_GET( ELT(j-3) );
GLboolean ef2 = EDGEFLAG_GET( ELT(j-2) );
GLboolean ef1 = EDGEFLAG_GET( ELT(j-1) );
GLboolean ef = EDGEFLAG_GET( ELT(j) );
EDGEFLAG_SET( ELT(j-3), GL_TRUE );
EDGEFLAG_SET( ELT(j-2), GL_TRUE );
EDGEFLAG_SET( ELT(j-1), GL_TRUE );
EDGEFLAG_SET( ELT(j), GL_TRUE );
RENDER_QUAD( ELT(j-1), ELT(j-3), ELT(j-2), ELT(j) );
EDGEFLAG_SET( ELT(j-3), ef3 );
EDGEFLAG_SET( ELT(j-2), ef2 );
EDGEFLAG_SET( ELT(j-1), ef1 );
EDGEFLAG_SET( ELT(j), ef );
RESET_STIPPLE;
}
} else {
for (j=start+3;j<count;j+=2) {
RENDER_QUAD( ELT(j-1), ELT(j-3), ELT(j-2), ELT(j) );
}
}
POSTFIX;
}
 
static void TAG(render_noop)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
(void)(ctx && start && count && flags);
}
 
RENDER_TAB_QUALIFIER void (*TAG(render_tab)[GL_POLYGON+2])(GLcontext *,
GLuint,
GLuint,
GLuint) =
{
TAG(render_points),
TAG(render_lines),
TAG(render_line_loop),
TAG(render_line_strip),
TAG(render_triangles),
TAG(render_tri_strip),
TAG(render_tri_fan),
TAG(render_quads),
TAG(render_quad_strip),
TAG(render_poly),
TAG(render_noop),
};
 
 
 
#ifndef PRESERVE_VB_DEFS
#undef RENDER_TRI
#undef RENDER_QUAD
#undef RENDER_LINE
#undef RENDER_POINTS
#undef LOCAL_VARS
#undef INIT
#undef POSTFIX
#undef RESET_STIPPLE
#undef DBG
#undef ELT
#undef RENDER_TAB_QUALIFIER
#endif
 
#ifndef PRESERVE_TAG
#undef TAG
#endif
 
#undef PRESERVE_VB_DEFS
#undef PRESERVE_TAG
/shark/trunk/ports/mesa/src/tnl_dd/imm/t_dd_imm_tapi.h
0,0 → 1,76
/* $Id: t_dd_imm_tapi.h,v 1.1 2003-02-28 11:54:02 pj Exp $ */
 
/*
* Mesa 3-D graphics library
* Version: 3.5
*
* Copyright (C) 1999-2001 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* Authors:
* Gareth Hughes <gareth@valinux.com>
* Keith Whitwell <keith_whitwell@yahoo.com>
*/
 
/* Template for immediate mode texture coordinate functions.
*/
 
#ifndef DO_PROJ_TEX
#error "Need to define DO_PROJ_TEX"
#endif
 
 
/* =============================================================
* Notify on calls to texture4f, to allow switch to projected texture
* vertex format:
*/
 
static void TAG(TexCoord4f)( GLfloat s, GLfloat t, GLfloat r, GLfloat q )
{
GET_CURRENT;
DO_PROJ_TEX;
TEXCOORD4( s, t, r, q );
}
 
static void TAG(TexCoord4fv)( const GLfloat *v )
{
GET_CURRENT;
DO_PROJ_TEX;
TEXCOORD4( v[0], v[1], v[2], v[3] );
}
 
static void TAG(MultiTexCoord4fARB)( GLenum target, GLfloat s,
GLfloat t, GLfloat r, GLfloat q )
{
GET_CURRENT;
DO_PROJ_TEX;
MULTI_TEXCOORD4( unit, s, t, r, q );
}
 
static void TAG(MultiTexCoord4fvARB)( GLenum target, const GLfloat *v )
{
GET_CURRENT;
DO_PROJ_TEX;
MULTI_TEXCOORD4( unit, v[0], v[1], v[2], v[3] );
}
 
 
 
#undef DO_PROJ_TEX
#undef TAG
/shark/trunk/ports/mesa/src/tnl_dd/imm/t_dd_imm_vapi.h
0,0 → 1,160
/* $Id: t_dd_imm_vapi.h,v 1.1 2003-02-28 11:54:02 pj Exp $ */
 
/*
* Mesa 3-D graphics library
* Version: 3.5
*
* Copyright (C) 1999-2001 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* Authors:
* Gareth Hughes <gareth@valinux.com>
* Keith Whitwell <keithw@valinux.com>
*/
 
/* Template for immediate mode vertex functions.
*/
 
#define DBG 0
 
#define VERTEX( ox, oy, oz, ow )
do {
GET_CURRENT_VERTEX;
GLfloat w;
GLuint mask;
const GLfloat * const m = ctx->_ModelProjectMatrix.m;
 
if (DO_FULL_MATRIX) {
VERTEX_CLIP(0) = m[0] * ox + m[4] * oy + m[8] * oz + m[12] * ow;
VERTEX_CLIP(1) = m[1] * ox + m[5] * oy + m[9] * oz + m[13] * ow;
VERTEX_CLIP(2) = m[2] * ox + m[6] * oy + m[10] * oz + m[14] * ow;
VERTEX_CLIP(3) = m[3] * ox + m[7] * oy + m[11] * oz + m[15] * ow;
w = VERTEX_CLIP(3);
}
else if (DO_NOROT_MATRIX) {
VERTEX_CLIP(0) = m[0] * ox + m[12] * ow;
VERTEX_CLIP(1) = m[5] * oy + m[13] * ow;
VERTEX_CLIP(2) = m[10] * oz + m[14] * ow;
VERTEX_CLIP(3) = ow;
w = ow;
}
else {
ASSERT (DO_IDENTITY_MATRIX);
VERTEX_CLIP(0) = ox;
VERTEX_CLIP(1) = oy;
VERTEX_CLIP(2) = oz;
VERTEX_CLIP(3) = ow;
w = ow;
}
 
mask = 0;
if (DO_CLIP_TEST) {
if ( VERTEX_CLIP(0) > w ) mask |= CLIP_RIGHT_BIT;
if ( VERTEX_CLIP(0) < -w ) mask |= CLIP_LEFT_BIT;
if ( VERTEX_CLIP(1) > w ) mask |= CLIP_TOP_BIT;
if ( VERTEX_CLIP(1) < -w ) mask |= CLIP_BOTTOM_BIT;
if ( VERTEX_CLIP(2) > w ) mask |= CLIP_FAR_BIT;
if ( VERTEX_CLIP(2) < -w ) mask |= CLIP_NEAR_BIT;
VERTEX_MASK(v) = mask;
}
 
if (!mask) {
if (HAVE_VERTEX_WIN) {
if (!HAVE_HW_VIEWPORT) {
const GLfloat *s = GET_VIEWPORT_MATRIX();
if (HAVE_W && HAVE_HW_DIVIDE) {
VERTEX_WIN( 0 ) = s[0] * VERTEX_CLIP( 0 ) + s[12];
VERTEX_WIN( 1 ) = s[5] * VERTEX_CLIP( 1 ) + s[13];
VERTEX_WIN( 2 ) = s[10] * VERTEX_CLIP( 2 ) + s[14];
VERTEX_WIN( 3 ) = w;
}
else {
const GLfloat oow = 1.0/w; /* possibly opt away */
VERTEX_WIN( 0 ) = s[0] * VERTEX_CLIP( 0 ) * oow + s[12];
VERTEX_WIN( 1 ) = s[5] * VERTEX_CLIP( 1 ) * oow + s[13];
VERTEX_WIN( 2 ) = s[10] * VERTEX_CLIP( 2 ) * oow + s[14];
if (HAVE_W)
VERTEX_WIN( 3 ) = oow;
}
}
else if (HAVE_W && HAVE_HW_DIVIDE) {
if (!VERTEX_WIN_IS_VERTEX_CLIP) {
VERTEX_WIN( 0 ) = VERTEX_CLIP( 0 );
VERTEX_WIN( 1 ) = VERTEX_CLIP( 1 );
VERTEX_WIN( 2 ) = VERTEX_CLIP( 2 );
VERTEX_WIN( 3 ) = w;
}
}
else {
const GLfloat oow = 1.0/w; /* possibly opt away */
VERTEX_WIN( 0 ) = VERTEX_CLIP( 0 ) * oow;
VERTEX_WIN( 1 ) = VERTEX_CLIP( 1 ) * oow;
VERTEX_WIN( 2 ) = VERTEX_CLIP( 2 ) * oow;
if (HAVE_W)
VERTEX_WIN( 3 ) = oow;
}
}
} else if (!FALLBACK_OR_CLIPPING) {
SET_CLIPPING(); /* transition to clipping */
}
 
COPY_VERTEX_FROM_CURRENT;
BUILD_PRIM_FROM_VERTEX;
}
 
/* Let the compiler optimize away the constant operations:
*/
static void VTAG(Vertex2f)( GLfloat ox, GLfloat oy )
{
/* Cliptest on clip[2] could also be eliminated...
*/
VERTEX( ox, oy, 0, 1 );
}
 
static void VTAG(Vertex2fv)( const GLfloat *obj )
{
/* Cliptest on clip[2] could also be eliminated...
*/
VERTEX( obj[0], obj[1], 0, 1 );
}
 
static void VTAG(Vertex3f)( GLfloat ox, GLfloat oy, GLfloat oz )
{
VERTEX( ox, oy, oz, 1 );
}
 
static void VTAG(Vertex3fv)( const GLfloat *obj )
{
VERTEX( obj[0], obj[1], obj[2], 1 );
}
 
static void VTAG(Vertex4f)( GLfloat ox, GLfloat oy, GLfloat oz, GLfloat ow )
{
VERTEX( ox, oy, oz, ow );
}
 
static void VTAG(Vertex4fv)( const GLfloat *obj )
{
VERTEX( obj[0], obj[1], obj[2], obj[3] );
}
 
 
#undef DO_FULL_MATRIX
#undef VTAG
#undef VERTEX
/shark/trunk/ports/mesa/src/tnl_dd/imm/t_dd_imm_vb.c
0,0 → 1,205
/* $Id: t_dd_imm_vb.c,v 1.1 2003-02-28 11:54:02 pj Exp $ */
 
/*
* Mesa 3-D graphics library
* Version: 3.5
*
* Copyright (C) 1999-2001 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* Authors:
* Keith Whitwell <keith_whitwell@yahoo.com>
*/
 
/* Template to build clipping routines to support t_dd_imm_primtmp.h.
*
* The TAG(draw_line) and TAG(draw_triangle) routines are called in
* clipping and fallback scenarios, and when the native hardware
* primitive (eg polygons) is unavailable.
*/
 
 
#define CLIP_DOTPROD(K, A, B, C, D) \
(CLIP_X(K)*A + CLIP_Y(K)*B + \
CLIP_Z(K)*C + CLIP_W(K)*D)
 
#define POLY_CLIP( PLANE, A, B, C, D ) \
do { \
if (mask & PLANE) { \
TNL_VERTEX **indata = inlist[in]; \
TNL_VERTEX **outdata = inlist[in ^= 1]; \
TNL_VERTEX *J = indata[0]; \
GLfloat dpJ = CLIP_DOTPROD(J, A, B, C, D ); \
GLuint outcount = 0; \
GLuint i; \
\
indata[n] = indata[0]; /* prevent rotation of vertices */ \
for (i = 1; i <= n; i++) { \
TNL_VERTEX *I = indata[i]; \
GLfloat dpI = CLIP_DOTPROD(idx, A, B, C, D ); \
\
if (!NEGATIVE(dpPrev)) { \
outdata[outcount++] = J; \
} \
\
if (DIFFERENT_SIGNS(dpI, dpJ)) { \
TNL_VERTEX *O = verts++; \
outdata[outcount++] = O; \
if (NEGATIVE(dpI)) { \
/* Going out of bounds. Avoid division by zero as we \
* know dp != dpPrev from DIFFERENT_SIGNS, above. \
*/ \
GLfloat t = dpI / (dpI - dpJ); \
INTERP( ctx, t, O, I, J ); \
} else { \
/* Coming back in. \
*/ \
GLfloat t = dpJ / (dpJ - dpI); \
INTERP( ctx, t, O, J, I ); \
} \
} \
\
J = I; \
dpJ = dpI; \
} \
\
if (outcount < 3) \
return; \
\
nr = outcount; \
} \
} while (0)
 
 
#define LINE_CLIP(PLANE, A, B, C, D ) \
do { \
if (mask & PLANE) { \
GLfloat dpI = CLIP_DOTPROD( I, A, B, C, D ); \
GLfloat dpJ = CLIP_DOTPROD( J, A, B, C, D ); \
\
if (DIFFERENT_SIGNS(dpI, dpJ)) { \
TNL_VERTEX *O = verts++; \
if (NEGATIVE(dpJ)) { \
GLfloat t = dpI / (dpI - dpJ); \
INTERP( ctx, t, O, I, J ); \
J = O; \
} else { \
GLfloat t = dpJ / (dpJ - dpI); \
INTERP( ctx, t, O, J, I ); \
I = O; \
} \
} \
else if (NEGATIVE(dpI)) \
return; \
} \
} while (0)
 
 
 
/* Clip a line against the viewport and user clip planes.
*/
static void TAG(clip_draw_line)( GLcontext *ctx,
TNL_VERTEX *I,
TNL_VERTEX *J,
GLuint mask )
{
LOCAL_VARS;
GET_INTERP_FUNC;
TNL_VERTEX tmp[MAX_CLIPPED_VERTICES];
TNL_VERTEX *verts = tmp;
TNL_VERTEX *pv = J;
 
LINE_CLIP( CLIP_RIGHT_BIT, -1, 0, 0, 1 );
LINE_CLIP( CLIP_LEFT_BIT, 1, 0, 0, 1 );
LINE_CLIP( CLIP_TOP_BIT, 0, -1, 0, 1 );
LINE_CLIP( CLIP_BOTTOM_BIT, 0, 1, 0, 1 );
LINE_CLIP( CLIP_FAR_BIT, 0, 0, -1, 1 );
LINE_CLIP( CLIP_NEAR_BIT, 0, 0, 1, 1 );
 
if ((ctx->_TriangleCaps & DD_FLATSHADE) && J != pv)
COPY_PV( ctx, J, pv );
 
DRAW_LINE( I, J );
}
 
 
/* Clip a triangle against the viewport and user clip planes.
*/
static void TAG(clip_draw_triangle)( GLcontext *ctx,
TNL_VERTEX *v0,
TNL_VERTEX *v1,
TNL_VERTEX *v2,
GLuint mask )
{
LOCAL_VARS;
GET_INTERP_FUNC;
TNL_VERTEX tmp[MAX_CLIPPED_VERTICES];
TNL_VERTEX *verts = tmp;
TNL_VERTEX *(inlist[2][MAX_CLIPPED_VERTICES]);
TNL_VERTEX **out;
GLuint in = 0;
GLuint n = 3;
GLuint i;
 
ASSIGN_3V(inlist, v2, v0, v1 ); /* pv rotated to slot zero */
 
POLY_CLIP( CLIP_RIGHT_BIT, -1, 0, 0, 1 );
POLY_CLIP( CLIP_LEFT_BIT, 1, 0, 0, 1 );
POLY_CLIP( CLIP_TOP_BIT, 0, -1, 0, 1 );
POLY_CLIP( CLIP_BOTTOM_BIT, 0, 1, 0, 1 );
POLY_CLIP( CLIP_FAR_BIT, 0, 0, -1, 1 );
POLY_CLIP( CLIP_NEAR_BIT, 0, 0, 1, 1 );
 
if ((ctx->_TriangleCaps & DD_FLATSHADE) && v2 != inlist[0])
COPY_PV( ctx, inlist[0], v2 );
 
out = inlist[in];
DRAW_POLYGON( out, n );
}
 
 
static __inline void TAG(draw_triangle)( GLcontext *ctx,
TNL_VERTEX *v0,
TNL_VERTEX *v1,
TNL_VERTEX *v2 )
{
LOCAL_VARS;
GLubyte ormask = (v0->mask | v1->mask | v2->mask);
 
if ( !ormask ) {
DRAW_TRI( v0, v1, v2 );
} else if ( !(v0->mask & v1->mask & v2->mask) ) {
TAG(clip_draw_triangle)( ctx, v0, v1, v2, ormask );
}
}
 
static __inline void TAG(draw_line)( GLcontext *ctx,
TNL_VERTEX *v0,
TNL_VERTEX *v1 )
{
LOCAL_VARS;
GLubyte ormask = (v0->mask | v1->mask);
 
if ( !ormask ) {
DRAW_LINE( v0, v1 );
} else if ( !(v0->mask & v1->mask) ) {
TAG(clip_draw_line)( ctx, v0, v1, ormask );
}
}
 
/shark/trunk/ports/mesa/src/tnl_dd/imm/NOTES.imm
0,0 → 1,112
 
NOTE:
 
These files are incomplete. They do not yet form a working
implementation of hte concepts discused below.
 
 
OVERVIEW
 
The t_dd_imm_* files form a set of templates to produce driver -
specific software tnl modules for a small subset of transformation and
lighting states.
 
The approach is quite different to the large vertex buffers of the
src/tnl module, and is based around a cache of four recent vertices
and a 'current' vertex which is updated directly from the Color,
Normal, Texcoord, SecondaryColor and Fog entrypoints.
 
The current vertex is actually a composite of the ctx->Current values
and a partial hardware vertex maintained where the hardware values
differ from those in ctx->Current. For example, clamped color values
are kept in the hardware vertex, while texcoords remain in
ctx->Current.
 
A crude diagram:
 
+--------------+ +-------------------+
| ctx->Current | | Current-HW-vertex |
+--------------+ +-------------------+
\ /
\ /
\ /
\ /
--------- --------
| |
v v
+--------+ +--------+ +--------+ +--------+
| vert-0 | | vert-1 | | vert-2 | | vert-3 |
+--------+ +--------+ +--------+ +--------+
|
|
v
DMA
 
 
Here values from ctx->Current and current-HW-vertex are merged to
build vert-2, which is then dumped to hardware (DMA). A state machine
determines which vertex is built in turn, and how the vertices are
used to present primitives to hardware. These actions all occur
during a call to Vertex{234}f{v}.
 
Each vert-n includes clip coordinates and a clipmask in addition to
the hardware (window) coordinates. This information allows clipping
to take place directly on these vertices, if need be.
 
t_dd_imm_capi.h
Color{34}{fub}{v}() implementations. These update both
ctx->Current (unclamped float colors) and current-HW-vertex
with hardware-specific color values (typically unsigned
bytes).
 
When lighting is enabled, the functions from src/api_noop.c
should be used, which just update ctx->Current. (The
current-hw-vertex colors are produced from lighting, which is
keyed to Normal3f).
 
t_dd_imm_vb.c
 
Support functions for clipping and fallback. See
t_dd_imm_primtmp.h.
 
t_dd_imm_napi.c
t_dd_imm_napi.h
 
Versions of Normal3f{v} to perform lighting with one or more
infinite lights. Updates ctx->Current.Normal and the current
HW colors.
 
When lighting is disabled, use the functions from api_noop.c
instead.
 
 
t_dd_imm_primtmp.h
 
State machine to control emission of vertices and primitives
to hardware. Called indirectly from Vertex{234}f{v}. Capable
of supporting hardware strip and fan primitives, and of
decomposing to discreet primitives for clipping or fallback,
or where the native primitive is unavailable.
 
t_dd_imm_tapi.h
 
Implementations of TexCoord{v} and MultiTexCoord4f{v}ARB to
fire a callback when transitioning to projective texture.
Most drivers will need to change vertex format at this point,
some may need to enable a software rasterization fallback.
 
t_dd_imm_vapi.h
 
Implementations of Vertex{234}f{v}. These perform
transformation and cliptesting on their arguments, then jump
into the state machine implemented in primtmp.h.
 
t_dd_imm_vertex.h
 
Support functions for building and clip-interpolating hardware
vertices. Called from primtmp.h.
 
 
Keith Whitwell, June 2001.
/shark/trunk/ports/mesa/src/tnl_dd/imm/t_dd_imm_napi.h
0,0 → 1,227
/* $Id: t_dd_imm_napi.h,v 1.1 2003-02-28 11:54:02 pj Exp $ */
 
/*
* Mesa 3-D graphics library
* Version: 3.5
*
* Copyright (C) 1999-2001 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* Authors:
* Gareth Hughes <gareth@valinux.com>
* Keith Whitwell <keith_whitwell@yahoo.com>
*/
 
/* Template for immediate mode normal functions. Optimize for infinite
* lights when doing software lighting.
*/
 
static void TAG(Normal3f_single)( GLfloat x, GLfloat y, GLfloat z )
{
GET_CURRENT_VERTEX;
const struct gl_light *light = ctx->Light.EnabledList.prev;
GLfloat n_dot_h, n_dot_VP, spec, sum[3];
GLfloat *normal = ctx->Current.Normal;
GLfloat scale = 1.0;
 
ASSIGN_3V( normal, x, y, z );
COPY_3V( sum, BASE_COLOR );
 
if ( IND & NORM_RESCALE ) {
scale = ctx->_ModelViewInvScale;
} else if ( IND & NORM_NORMALIZE ) {
scale = LEN_3FV( normal );
if ( scale != 0.0 ) scale = 1.0 / scale;
}
 
n_dot_VP = DOT3( normal, light->_VP_inf_norm ) * scale;
if ( n_dot_VP > 0.0F ) {
ACC_SCALE_SCALAR_3V( sum, n_dot_VP, light->_MatDiffuse[0] );
n_dot_h = DOT3( normal, light->_h_inf_norm ) * scale;
if ( n_dot_h > 0.0F ) {
GET_SHINE_TAB_ENTRY( ctx->_ShineTable[0], n_dot_h, spec );
ACC_SCALE_SCALAR_3V( sum, spec, light->_MatSpecular[0] );
}
}
 
#ifdef LIT_COLOR_IS_FLOAT
LIT_COLOR ( RCOMP ) = CLAMP(sum[0], 0.0f, 0.1f);
LIT_COLOR ( GCOMP ) = CLAMP(sum[1], 0.0f, 0.1f);
LIT_COLOR ( BCOMP ) = CLAMP(sum[2], 0.0f, 0.1f);
#else
UNCLAMPED_FLOAT_TO_UBYTE( LIT_COLOR( RCOMP ), sum[0] );
UNCLAMPED_FLOAT_TO_UBYTE( LIT_COLOR( GCOMP ), sum[1] );
UNCLAMPED_FLOAT_TO_UBYTE( LIT_COLOR( BCOMP ), sum[2] );
#endif
LIT_COLOR( ACOMP ) = LIT_ALPHA;
}
 
static void TAG(Normal3fv_single)( const GLfloat *normal )
{
GET_CURRENT_VERTEX;
const struct gl_light *light = ctx->Light.EnabledList.prev;
GLfloat n_dot_h, n_dot_VP, spec, sum[3];
GLfloat scale = 1.0;
 
COPY_3V( ctx->Current.Normal, normal );
COPY_3V( sum, BASE_COLOR );
 
if ( IND & NORM_RESCALE ) {
scale = ctx->_ModelViewInvScale;
} else if ( IND & NORM_NORMALIZE ) {
scale = LEN_3FV( normal );
if ( scale != 0.0 ) scale = 1.0 / scale;
}
 
n_dot_VP = DOT3( normal, light->_VP_inf_norm ) * scale;
if ( n_dot_VP > 0.0F ) {
ACC_SCALE_SCALAR_3V( sum, n_dot_VP, light->_MatDiffuse[0] );
n_dot_h = DOT3( normal, light->_h_inf_norm ) * scale;
if ( n_dot_h > 0.0F ) {
GET_SHINE_TAB_ENTRY( ctx->_ShineTable[0], n_dot_h, spec );
ACC_SCALE_SCALAR_3V( sum, spec, light->_MatSpecular[0] );
}
}
 
#ifdef LIT_COLOR_IS_FLOAT
LIT_COLOR ( RCOMP ) = CLAMP(sum[0], 0.0f, 0.1f);
LIT_COLOR ( GCOMP ) = CLAMP(sum[1], 0.0f, 0.1f);
LIT_COLOR ( BCOMP ) = CLAMP(sum[2], 0.0f, 0.1f);
#else
UNCLAMPED_FLOAT_TO_UBYTE( LIT_COLOR( RCOMP ), sum[0] );
UNCLAMPED_FLOAT_TO_UBYTE( LIT_COLOR( GCOMP ), sum[1] );
UNCLAMPED_FLOAT_TO_UBYTE( LIT_COLOR( BCOMP ), sum[2] );
#endif
LIT_COLOR( ACOMP ) = LIT_ALPHA;
}
 
 
static void TAG(Normal3f_multi)( GLfloat x, GLfloat y, GLfloat z )
{
GET_CURRENT_VERTEX;
struct gl_light *light;
GLfloat n_dot_h, n_dot_VP, spec, sum[3], tmp[3];
GLfloat *normal;
 
ASSIGN_3V( ctx->Current.Normal, x, y, z );
COPY_3V( sum, BASE_COLOR );
 
if ( IND & NORM_RESCALE ) {
normal = tmp;
ASSIGN_3V( normal, x, y, z );
SELF_SCALE_SCALAR_3V( normal, ctx->_ModelViewInvScale );
} else if ( IND & NORM_NORMALIZE ) {
normal = tmp;
ASSIGN_3V( normal, x, y, z );
NORMALIZE_3FV( normal );
} else {
normal = ctx->Current.Normal;
}
 
foreach ( light, &ctx->Light.EnabledList ) {
n_dot_VP = DOT3( normal, light->_VP_inf_norm );
if ( n_dot_VP > 0.0F ) {
ACC_SCALE_SCALAR_3V( sum, n_dot_VP, light->_MatDiffuse[0] );
n_dot_h = DOT3( normal, light->_h_inf_norm );
if ( n_dot_h > 0.0F ) {
GET_SHINE_TAB_ENTRY( ctx->_ShineTable[0], n_dot_h, spec );
ACC_SCALE_SCALAR_3V( sum, spec, light->_MatSpecular[0] );
}
}
}
 
#ifdef LIT_COLOR_IS_FLOAT
LIT_COLOR ( RCOMP ) = CLAMP(sum[0], 0.0f, 0.1f);
LIT_COLOR ( GCOMP ) = CLAMP(sum[1], 0.0f, 0.1f);
LIT_COLOR ( BCOMP ) = CLAMP(sum[2], 0.0f, 0.1f);
#else
UNCLAMPED_FLOAT_TO_UBYTE( LIT_COLOR( RCOMP ), sum[0] );
UNCLAMPED_FLOAT_TO_UBYTE( LIT_COLOR( GCOMP ), sum[1] );
UNCLAMPED_FLOAT_TO_UBYTE( LIT_COLOR( BCOMP ), sum[2] );
#endif
LIT_COLOR( ACOMP ) = LIT_ALPHA;
}
 
static void TAG(Normal3fv_multi)( const GLfloat *n )
{
GET_CURRENT_VERTEX;
struct gl_light *light;
GLfloat n_dot_h, n_dot_VP, spec, sum[3], tmp[3];
GLfloat *normal;
 
COPY_3V( ctx->Current.Normal, n );
COPY_3V( sum, BASE_COLOR );
 
if ( IND & NORM_RESCALE ) {
normal = tmp;
COPY_3V( normal, n );
SELF_SCALE_SCALAR_3V( normal, ctx->_ModelViewInvScale );
} else if ( IND & NORM_NORMALIZE ) {
normal = tmp;
COPY_3V( normal, n );
NORMALIZE_3FV( normal );
} else {
normal = ctx->Current.Normal;
}
 
foreach ( light, &ctx->Light.EnabledList ) {
n_dot_VP = DOT3( normal, light->_VP_inf_norm );
if ( n_dot_VP > 0.0F ) {
ACC_SCALE_SCALAR_3V( sum, n_dot_VP, light->_MatDiffuse[0] );
n_dot_h = DOT3( normal, light->_h_inf_norm );
if ( n_dot_h > 0.0F ) {
GET_SHINE_TAB_ENTRY( ctx->_ShineTable[0], n_dot_h, spec );
ACC_SCALE_SCALAR_3V( sum, spec, light->_MatSpecular[0] );
}
}
}
 
#ifdef LIT_COLOR_IS_FLOAT
LIT_COLOR ( RCOMP ) = CLAMP(sum[0], 0.0f, 0.1f);
LIT_COLOR ( GCOMP ) = CLAMP(sum[1], 0.0f, 0.1f);
LIT_COLOR ( BCOMP ) = CLAMP(sum[2], 0.0f, 0.1f);
#else
UNCLAMPED_FLOAT_TO_UBYTE( LIT_COLOR( RCOMP ), sum[0] );
UNCLAMPED_FLOAT_TO_UBYTE( LIT_COLOR( GCOMP ), sum[1] );
UNCLAMPED_FLOAT_TO_UBYTE( LIT_COLOR( BCOMP ), sum[2] );
#endif
LIT_COLOR( ACOMP ) = LIT_ALPHA;
}
 
 
 
static void TAG(init_norm)( void )
{
norm_tab[IND].normal3f_single = TAG(Normal3f_single);
norm_tab[IND].normal3fv_single = TAG(Normal3fv_single);
norm_tab[IND].normal3f_multi = TAG(Normal3f_multi);
norm_tab[IND].normal3fv_multi = TAG(Normal3fv_multi);
}
 
 
 
#ifndef PRESERVE_NORMAL_DEFS
#undef GET_CURRENT
#undef GET_CURRENT_VERTEX
#undef LIT_COLOR
#undef LIT_COLOR_IS_FLOAT
#endif
#undef PRESERVE_NORMAL_DEFS
#undef IND
#undef TAG
/shark/trunk/ports/mesa/src/tnl_dd/imm/t_dd_imm_vbtmp.h
0,0 → 1,269
/* $Id: t_dd_imm_vbtmp.h,v 1.1 2003-02-28 11:54:02 pj Exp $ */
 
/*
* Mesa 3-D graphics library
* Version: 3.5
*
* Copyright (C) 1999-2001 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* Authors:
* Keith Whitwell <keith_whitwell@yahoo.com>
*/
 
/* Template to build support for t_dd_imm_* tnl module using vertices
* as defined in t_dd_vertex.h.
*
* See t_dd_vbtmp.h for definitions of arguments to this file.
* Unfortunately it seems necessary to duplicate a lot of that code.
*/
 
#ifndef LOCALVARS
#define LOCALVARS
#endif
 
 
 
/* COPY_VERTEX_FROM_CURRENT in t_dd_imm_vapi.c
*/
static void TAG(emit_vfmt)( GLcontext *ctx, VERTEX *v )
{
LOCALVARS
;
 
/* This template assumes (like t_dd_vbtmp.h) that color is ubyte.
*/
if (DO_TEX0 || DO_TEX1 || !HAVE_TINY_VERTICES)
{
const GLubyte *col = GET_HARDWARE_COLOR();
if (HAVE_RGBA_COLOR) {
v->v.ui[4] = *(GLuint *)&col;
} else {
v->v.color.blue = col[2];
v->v.color.green = col[1];
v->v.color.red = col[0];
v->v.color.alpha = col[3];
}
}
else {
if (HAVE_RGBA_COLOR) {
v->v.ui[3] = *(GLuint *)col;
}
else {
v->tv.color.blue = col[2];
v->tv.color.green = col[1];
v->tv.color.red = col[0];
v->tv.color.alpha = col[3];
}
}
 
if (DO_TEX0) {
GLfloat *tc = ctx->Current.Texture[0];
v->v.u0 = tc[0];
v->v.v0 = tc[1];
if (DO_PTEX) {
if (HAVE_PTEX_VERTICES) {
v->pv.q0 = tc[3];
}
else {
float rhw = 1.0 / tc[3];
v->v.w *= tc[3];
v->v.u0 *= rhw;
v->v.v0 *= rhw;
}
}
}
if (DO_TEX1) {
GLfloat *tc = ctx->Current.Texture[1];
if (DO_PTEX) {
v->pv.u1 = tc[0];
v->pv.v1 = tc[1];
v->pv.q1 = tc[3];
}
else {
v->v.u1 = tc[0];
v->v.v1 = tc[1];
}
}
else if (DO_PTEX) {
*(GLuint *)&v->pv.q1 = 0; /* avoid culling on radeon */
}
if (DO_TEX2) {
GLfloat *tc = ctx->Current.Texture[2];
if (DO_PTEX) {
v->pv.u2 = tc[0];
v->pv.v2 = tc[1];
v->pv.q2 = tc[3];
}
else {
v->v.u2 = tc[0];
v->v.v2 = tc[1];
}
}
if (DO_TEX3) {
GLfloat *tc = ctx->Current.Texture[3];
if (DO_PTEX) {
v->pv.u3 = tc[0];
v->pv.v3 = tc[1];
v->pv.q3 = tc[3];
}
else {
v->v.u3 = tc[0];
v->v.v3 = tc[1];
}
}
}
 
 
 
 
static void TAG(interp)( GLcontext *ctx,
GLfloat t,
TNL_VERTEX *dst,
TNL_VERTEX *in,
TNL_VERTEX *out )
{
LOCALVARS
const GLfloat *s = GET_VIEWPORT_MAT();
GLfloat w;
 
(void)s;
 
if (HAVE_HW_DIVIDE) {
VIEWPORT_X( dst->v.v.x, dst->clip[0] );
VIEWPORT_Y( dst->v.v.y, dst->clip[1] );
VIEWPORT_Z( dst->v.v.z, dst->clip[2] );
w = dstclip[3];
}
else {
w = 1.0 / dst->clip[3];
VIEWPORT_X( dst->v.v.x, dst->clip[0] * w );
VIEWPORT_Y( dst->v.v.y, dst->clip[1] * w );
VIEWPORT_Z( dst->v.v.z, dst->clip[2] * w );
}
 
if (HAVE_HW_DIVIDE || DO_TEX0) {
 
dst->v.v.w = w;
 
INTERP_UB( t, dst->v.ub4[4][0], out->v.ub4[4][0], in->v.ub4[4][0] );
INTERP_UB( t, dst->v.ub4[4][1], out->v.ub4[4][1], in->v.ub4[4][1] );
INTERP_UB( t, dst->v.ub4[4][2], out->v.ub4[4][2], in->v.ub4[4][2] );
INTERP_UB( t, dst->v.ub4[4][3], out->v.ub4[4][3], in->v.ub4[4][3] );
 
if (DO_TEX0) {
if (DO_PTEX) {
if (HAVE_PTEX_VERTICES) {
INTERP_F( t, dst->v.pv.u0, out->v.pv.u0, in->v.pv.u0 );
INTERP_F( t, dst->v.pv.v0, out->v.pv.v0, in->v.pv.v0 );
INTERP_F( t, dst->v.pv.q0, out->v.pv.q0, in->v.pv.q0 );
} else {
GLfloat wout = out->clip[3]; /* projected clip */
GLfloat win = in->clip[3]; /* projected clip */
GLfloat qout = out->v.pv.w / wout;
GLfloat qin = in->v.pv.w / win;
GLfloat qdst, rqdst;
 
ASSERT( !HAVE_HW_DIVIDE ); /* assert win, wout projected clip */
 
INTERP_F( t, dst->v.v.u0, out->v.v.u0 * qout, in->v.v.u0 * qin );
INTERP_F( t, dst->v.v.v0, out->v.v.v0 * qout, in->v.v.v0 * qin );
INTERP_F( t, qdst, qout, qin );
 
rqdst = 1.0 / qdst;
dst->v.v.u0 *= rqdst;
dst->v.v.v0 *= rqdst;
dst->v.v.w *= rqdst;
}
}
else {
INTERP_F( t, dst->v.v.u0, out->v.v.u0, in->v.v.u0 );
INTERP_F( t, dst->v.v.v0, out->v.v.v0, in->v.v.v0 );
}
}
if (DO_TEX1) {
if (DO_PTEX) {
INTERP_F( t, dst->v.pv.u1, out->v.pv.u1, in->v.pv.u1 );
INTERP_F( t, dst->v.pv.v1, out->v.pv.v1, in->v.pv.v1 );
INTERP_F( t, dst->v.pv.q1, out->v.pv.q1, in->v.pv.q1 );
} else {
INTERP_F( t, dst->v.v.u1, out->v.v.u1, in->v.v.u1 );
INTERP_F( t, dst->v.v.v1, out->v.v.v1, in->v.v.v1 );
}
}
else if (DO_PTEX) {
dst->v.pv.q0 = 0.0; /* must be a valid float on radeon */
}
if (DO_TEX2) {
if (DO_PTEX) {
INTERP_F( t, dst->v.pv.u2, out->v.pv.u2, in->v.pv.u2 );
INTERP_F( t, dst->v.pv.v2, out->v.pv.v2, in->v.pv.v2 );
INTERP_F( t, dst->v.pv.q2, out->v.pv.q2, in->v.pv.q2 );
} else {
INTERP_F( t, dst->v.v.u2, out->v.v.u2, in->v.v.u2 );
INTERP_F( t, dst->v.v.v2, out->v.v.v2, in->v.v.v2 );
}
}
if (DO_TEX3) {
if (DO_PTEX) {
INTERP_F( t, dst->v.pv.u3, out->v.pv.u3, in->v.pv.u3 );
INTERP_F( t, dst->v.pv.v3, out->v.pv.v3, in->v.pv.v3 );
INTERP_F( t, dst->v.pv.q3, out->v.pv.q3, in->v.pv.q3 );
} else {
INTERP_F( t, dst->v.v.u3, out->v.v.u3, in->v.v.u3 );
INTERP_F( t, dst->v.v.v3, out->v.v.v3, in->v.v.v3 );
}
}
} else {
/* 4-dword vertex. Color is in v[3] and there is no oow coordinate.
*/
INTERP_UB( t, dst->v.ub4[3][0], out->v.ub4[3][0], in->v.ub4[3][0] );
INTERP_UB( t, dst->v.ub4[3][1], out->v.ub4[3][1], in->v.ub4[3][1] );
INTERP_UB( t, dst->v.ub4[3][2], out->v.ub4[3][2], in->v.ub4[3][2] );
INTERP_UB( t, dst->v.ub4[3][3], out->v.ub4[3][3], in->v.ub4[3][3] );
}
}
 
 
static __inline void TAG(copy_pv)( GLcontext *ctx,
TNL_VERTEX *dst,
TNL_VERTEX *src )
{
if (DO_TEX0 || DO_TEX1 || !HAVE_TINY_VERTICES) {
dst->v.v.ui[4] = src->v.v.ui[4];
}
else {
dst->v.v.ui[3] = src->v.v.ui[3];
}
}
 
 
 
static void TAG(init)( void )
{
setup_tab[IND].emit = TAG(emit_vfmt);
setup_tab[IND].interp = TAG(interp_vfmt);
}
 
 
#undef IND
#undef TAG
 
 
 
/shark/trunk/ports/mesa/src/tnl_dd/imm/t_dd_imm_primtmp.h
0,0 → 1,571
/* $Id: t_dd_imm_primtmp.h,v 1.1 2003-02-28 11:54:02 pj Exp $ */
 
/*
* Mesa 3-D graphics library
* Version: 3.5
*
* Copyright (C) 1999-2001 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* Authors:
* Keith Whitwell <keithw@valinux.com>
* Gareth Hughes <gareth@valinux.com>
*/
 
/* Template for immediate mode vertices.
*
* Probably instantiate once for each vertex format used:
* - TINY_VERTICES
* - TEX0_VERTICES
* - TEX1_VERTICES
* - PTEX_VERTICES
*
* Have to handle TEX->PTEX transition somehow.
*/
 
#define DBG 0
 
 
 
/* =============================================================
* GL_POINTS
*/
 
static void TAG(flush_point_0)( GLcontext *ctx, TNL_VERTEX *v0 )
{
if ( !v0->mask ) {
LOCAL_VARS;
DRAW_POINT( v0 );
}
}
 
 
/* =============================================================
* GL_LINES
*/
 
static void TAG(flush_line_1)( GLcontext *ctx, TNL_VERTEX *v0 );
 
static void TAG(flush_line_0)( GLcontext *ctx, TNL_VERTEX *v0 )
{
LOCAL_VARS;
FLUSH_VERTEX = TAG(flush_line_1);
ACTIVE_VERTEX = IMM_VERTICES( 1 );
}
 
static void TAG(flush_line_1)( GLcontext *ctx, TNL_VERTEX *v0 )
{
LOCAL_VARS;
TNL_VERTEX *v1 = v0 - 1;
ACTIVE_VERTEX = IMM_VERTICES( 0 );
FLUSH_VERTEX = TAG(flush_line_0);
if (FALLBACK_OR_CLIPPING)
CLIP_OR_DRAW_LINE( ctx, v1, v0 );
else
DRAW_LINE( ctx, v1, v0 );
}
 
 
/* =============================================================
* GL_LINE_LOOP
*/
 
static void TAG(flush_line_loop_2)( GLcontext *ctx, TNL_VERTEX *v0 );
static void TAG(flush_line_loop_1)( GLcontext *ctx, TNL_VERTEX *v0 );
 
static void TAG(flush_line_loop_0)( GLcontext *ctx, TNL_VERTEX *v0 )
{
LOCAL_VARS;
 
ACTIVE_VERTEX = v0 + 1;
FLUSH_VERTEX = TAG(flush_line_loop_1);
}
 
#define DRAW_LINELOOP_LINE( a, b ) \
if (!HAVE_LINE_STRIP || FALLBACK_OR_CLIPPING) { \
CLIP_OR_DRAW_LINE( ctx, a, b ); \
} else if (EXTEND_PRIM( 1 )) { \
EMIT_VERTEX( b ); \
} else { \
BEGIN_PRIM( GL_LINE_STRIP, 2 ); \
EMIT_VERTEX( a ); \
EMIT_VERTEX( b ); \
}
 
static void TAG(flush_line_loop_1)( GLcontext *ctx, TNL_VERTEX *v0 )
{
LOCAL_VARS;
TNL_VERTEX *v1 = v0 - 1;
ACTIVE_VERTEX = v1;
FLUSH_VERTEX = TAG(flush_line_loop_2);
DRAW_LINELOOP_LINE( v1, v0 );
}
 
static void TAG(flush_line_loop_2)( GLcontext *ctx, TNL_VERTEX *v0 )
{
LOCAL_VARS;
TNL_VERTEX *v1 = v0 + 1;
ACTIVE_VERTEX = v1;
FLUSH_VERTEX = TAG(flush_line_loop_1);
DRAW_LINELOOP_LINE( v1, v0 );
}
 
static void TAG(end_line_loop)( GLcontext *ctx )
{
LOCAL_VARS;
 
if ( FLUSH_VERTEX != TAG(flush_line_loop_0) ) {
TNL_VERTEX *v1 = ACTIVE_VERTEX;
TNL_VERTEX *v0 = IMM_VERTICES( 0 );
DRAW_LINELOOP_LINE( v1, v0 );
}
}
 
 
 
/* =============================================================
* GL_LINE_STRIP
*/
 
static void TAG(flush_line_strip_2)( GLcontext *ctx, TNL_VERTEX *v0 );
static void TAG(flush_line_strip_1)( GLcontext *ctx, TNL_VERTEX *v0 );
 
static void TAG(flush_line_strip_0)( GLcontext *ctx, TNL_VERTEX *v0 )
{
LOCAL_VARS;
 
ACTIVE_VERTEX = v0 + 1;
FLUSH_VERTEX = TAG(flush_line_strip_0b);
}
 
 
static void TAG(flush_line_strip_1)( GLcontext *ctx, TNL_VERTEX *v0 )
{
LOCAL_VARS;
TNL_VERTEX *v1 = v0 - 1;
 
ACTIVE_VERTEX = v1;
FLUSH_VERTEX = TAG(flush_line_strip_2);
 
if (!HAVE_LINE_STRIP || FALLBACK_OR_CLIPPING)
CLIP_OR_DRAW_LINE( ctx, v1, v0 );
else if (EXTEND_PRIM( 1 )) {
EMIT_VERTEX( v0 );
} else {
BEGIN_PRIM( GL_LINE_STRIP, 2 );
EMIT_VERTEX( v1 );
EMIT_VERTEX( v0 );
}
}
 
static void TAG(flush_line_strip_2)( GLcontext *ctx, TNL_VERTEX *v0 )
{
LOCAL_VARS;
TNL_VERTEX *v1 = v0 + 1;
 
ACTIVE_VERTEX = v1;
FLUSH_VERTEX = TAG(flush_line_strip_1);
 
if (!HAVE_LINE_STRIP || FALLBACK_OR_CLIPPING)
CLIP_OR_DRAW_LINE( ctx, v1, v0 );
else if (EXTEND_PRIM( 1 )) {
EMIT_VERTEX( v0 );
} else {
BEGIN_PRIM( GL_LINE_STRIP, 2 );
EMIT_VERTEX( v1 );
EMIT_VERTEX( v0 );
}
}
 
 
 
/* =============================================================
* GL_TRIANGLES
*/
 
static void TAG(flush_triangle_2)( GLcontext *ctx, TNL_VERTEX *v0 );
static void TAG(flush_triangle_1)( GLcontext *ctx, TNL_VERTEX *v0 );
 
static void TAG(flush_triangle_0)( GLcontext *ctx, TNL_VERTEX *v0 )
{
LOCAL_VARS;
 
if ( DBG ) fprintf( stderr, __FUNCTION__ "\n" );
 
ACTIVE_VERTEX = v0 + 1;
FLUSH_VERTEX = TAG(flush_triangle_1);
BEGIN_PRIM( GL_TRIANGLES, 0 );
}
 
static void TAG(flush_triangle_1)( GLcontext *ctx, TNL_VERTEX *v0 )
{
LOCAL_VARS;
 
if ( DBG ) fprintf( stderr, __FUNCTION__ "\n" );
 
ACTIVE_VERTEX = v0 + 1;
FLUSH_VERTEX = TAG(flush_triangle_2);
}
 
static void TAG(flush_triangle_2)( GLcontext *ctx, TNL_VERTEX *v0 )
{
LOCAL_VARS;
TNL_VERTEX *v2 = v0 - 2;
TNL_VERTEX *v1 = v0 - 1;
 
if ( DBG ) fprintf( stderr, __FUNCTION__ "\n" );
 
ACTIVE_VERTEX = v2;
FLUSH_VERTEX = TAG(flush_triangle_0);
 
/* nothing gained by trying to emit as hw primitives -- that
* happens normally in this case.
*/
if (FALLBACK_OR_CLIPPING)
CLIP_OR_DRAW_TRI( ctx, v2, v1, v0 );
else
DRAW_TRI( ctx, v2, v1, v0 );
}
 
 
 
 
/* =============================================================
* GL_TRIANGLE_STRIP
*/
 
static void TAG(flush_tri_strip_3)( GLcontext *ctx, TNL_VERTEX *v0 );
static void TAG(flush_tri_strip_2)( GLcontext *ctx, TNL_VERTEX *v0 );
static void TAG(flush_tri_strip_1)( GLcontext *ctx, TNL_VERTEX *v0 );
 
static void TAG(flush_tri_strip_0)( GLcontext *ctx, TNL_VERTEX *v0 )
{
LOCAL_VARS;
ACTIVE_VERTEX = IMM_VERTICES( 1 );
FLUSH_VERTEX = TAG(flush_tri_strip_1);
}
 
static void TAG(flush_tri_strip_1)( GLcontext *ctx, TNL_VERTEX *v0 )
{
LOCAL_VARS;
ACTIVE_VERTEX = IMM_VERTICES( 2 );
FLUSH_VERTEX = TAG(flush_tri_strip_2);
}
 
#define DO_TRISTRIP_TRI( vert0, vert1 ) \
if (!HAVE_TRI_STRIP || FALLBACK_OR_CLIPPING) { \
TNL_VERTEX *v2 = IMM_VERTICES( vert0 ); \
TNL_VERTEX *v1 = IMM_VERTICES( vert1 ); \
TAG(draw_tri)( ctx, v2, v1, v0 ); \
} else if (EXTEND_PRIM( 1 )) { \
EMIT_VERTEX( v0 ); \
} else { \
TNL_VERTEX *v2 = IMM_VERTICES( vert0 ); \
TNL_VERTEX *v1 = IMM_VERTICES( vert1 ); \
BEGIN_PRIM( GL_TRIANGLE_STRIP, 3 ); \
EMIT_VERTEX( v2 ); \
EMIT_VERTEX( v1 ); \
EMIT_VERTEX( v0 ); \
}
 
static void TAG(flush_tri_strip_2)( GLcontext *ctx, TNL_VERTEX *v0 )
{
LOCAL_VARS;
FLUSH_VERTEX = TAG(flush_tri_strip_3);
ACTIVE_VERTEX = IMM_VERTICES( 3 );
DO_TRISTRIP_TRI( 0, 1 );
}
 
static void TAG(flush_tri_strip_3)( GLcontext *ctx, TNL_VERTEX *v0 )
{
LOCAL_VARS;
FLUSH_VERTEX = TAG(flush_tri_strip_4);
ACTIVE_VERTEX = IMM_VERTICES( 0 );
DO_TRISTRIP_TRI( 1, 2 );
}
 
static void TAG(flush_tri_strip_4)( GLcontext *ctx, TNL_VERTEX *v0 )
{
LOCAL_VARS;
FLUSH_VERTEX = TAG(flush_tri_strip_5);
ACTIVE_VERTEX = IMM_VERTICES( 1 );
DO_TRISTRIP_TRI( 2, 3 );
}
 
static void TAG(flush_tri_strip_5)( GLcontext *ctx, TNL_VERTEX *v0 )
{
LOCAL_VARS;
FLUSH_VERTEX = TAG(flush_tri_strip_2);
ACTIVE_VERTEX = IMM_VERTICES( 2 );
DO_TRISTRIP_TRI( 0, 3 );
}
 
 
 
/* =============================================================
* GL_TRIANGLE_FAN
*/
 
static void TAG(flush_tri_fan_2)( GLcontext *ctx, TNL_VERTEX *v0 );
static void TAG(flush_tri_fan_1)( GLcontext *ctx, TNL_VERTEX *v0 );
 
static void TAG(flush_tri_fan_0)( GLcontext *ctx, TNL_VERTEX *v0 )
{
LOCAL_VARS;
 
ACTIVE_VERTEX = v0 + 1;
FLUSH_VERTEX = TAG(flush_tri_fan_1);
}
 
static void TAG(flush_tri_fan_1)( GLcontext *ctx, TNL_VERTEX *v0 )
{
LOCAL_VARS;
 
ACTIVE_VERTEX = v0 + 1;
FLUSH_VERTEX = TAG(flush_tri_fan_2);
}
 
#define DO_TRIFAN_TRI( vert0, vert1 ) \
if (!HAVE_TRI_FAN || FALLBACK_OR_CLIPPING) { \
TNL_VERTEX *v2 = IMM_VERTICES( vert0 ); \
TNL_VERTEX *v1 = IMM_VERTICES( vert1 ); \
TAG(draw_tri)( ctx, v2, v1, v0 ); \
} else if (EXTEND_PRIM( 1 )) { \
EMIT_VERTEX( v0 ); \
} else { \
TNL_VERTEX *v2 = IMM_VERTICES( vert0 ); \
TNL_VERTEX *v1 = IMM_VERTICES( vert1 ); \
BEGIN_PRIM( GL_TRIANGLE_FAN, 3 ); \
EMIT_VERTEX( v2 ); \
EMIT_VERTEX( v1 ); \
EMIT_VERTEX( v0 ); \
}
 
static void TAG(flush_tri_fan_2)( GLcontext *ctx, TNL_VERTEX *v0 )
{
LOCAL_VARS;
ACTIVE_VERTEX = IMM_VERTICES( 1 );
FLUSH_VERTEX = TAG(flush_tri_fan_3 );
DO_TRIFAN_TRI( 0, 1 );
}
 
static void TAG(flush_tri_fan_3)( GLcontext *ctx, TNL_VERTEX *v0 )
{
LOCAL_VARS;
ACTIVE_VERTEX = IMM_VERTICES( 2 );
FLUSH_VERTEX = TAG(flush_tri_fan_2 );
DO_TRIFAN_TRI( 0, 2 );
}
 
 
 
/* =============================================================
* GL_QUADS
*/
 
static void TAG(flush_quad_3)( GLcontext *ctx, TNL_VERTEX *v0 );
static void TAG(flush_quad_2)( GLcontext *ctx, TNL_VERTEX *v0 );
static void TAG(flush_quad_1)( GLcontext *ctx, TNL_VERTEX *v0 );
 
static void TAG(flush_quad_0)( GLcontext *ctx, TNL_VERTEX *v0 )
{
LOCAL_VARS;
IMM_VERTEX( v0 ) = v0 + 1;
FLUSH_VERTEX = TAG(flush_quad_1);
}
 
static void TAG(flush_quad_1)( GLcontext *ctx, TNL_VERTEX *v0 )
{
LOCAL_VARS;
IMM_VERTEX( v0 ) = v0 + 1;
FLUSH_VERTEX = TAG(flush_quad_2);
}
 
static void TAG(flush_quad_2)( GLcontext *ctx, TNL_VERTEX *v0 )
{
LOCAL_VARS;
IMM_VERTEX( v0 ) = v0 + 1;
FLUSH_VERTEX = TAG(flush_quad_3);
}
 
static void TAG(flush_quad_3)( GLcontext *ctx, TNL_VERTEX *v0 )
{
LOCAL_VARS;
TNL_VERTEX *v3 = v0 - 3;
TNL_VERTEX *v2 = v0 - 2;
TNL_VERTEX *v1 = v0 - 1;
 
IMM_VERTEX( v0 ) = v3;
FLUSH_VERTEX = TAG(flush_quad_0);
 
if (!HAVE_HW_QUADS || FALLBACK_OR_CLIPPING) {
CLIP_OR_DRAW_TRI( ctx, v3, v2, v0 );
CLIP_OR_DRAW_TRI( ctx, v2, v1, v0 );
} else {
EXTEND_PRIM_NF( GL_QUADS, 4 );
EMIT_VERTEX( v3 );
EMIT_VERTEX( v2 );
EMIT_VERTEX( v1 );
EMIT_VERTEX( v0 );
}
}
 
 
 
/* =============================================================
* GL_QUAD_STRIP
*/
 
static void TAG(flush_quad_strip_3)( GLcontext *ctx, TNL_VERTEX *v0 );
static void TAG(flush_quad_strip_2)( GLcontext *ctx, TNL_VERTEX *v0 );
static void TAG(flush_quad_strip_1)( GLcontext *ctx, TNL_VERTEX *v0 );
 
static void TAG(flush_quad_strip_0)( GLcontext *ctx, TNL_VERTEX *v0 )
{
LOCAL_VARS;
 
IMM_VERTEX( v3 ) = v0;
IMM_VERTEX( v0 ) = v0 + 1;
FLUSH_VERTEX = TAG(flush_quad_strip_1);
}
 
static void TAG(flush_quad_strip_1)( GLcontext *ctx, TNL_VERTEX *v0 )
{
LOCAL_VARS;
 
IMM_VERTEX( v2 ) = v0;
IMM_VERTEX( v0 ) = v0 + 1;
FLUSH_VERTEX = TAG(flush_quad_strip_2);
}
 
static void TAG(flush_quad_strip_2)( GLcontext *ctx, TNL_VERTEX *v0 )
{
LOCAL_VARS;
 
IMM_VERTEX( v1 ) = v0;
IMM_VERTEX( v0 ) = v0 + 1;
FLUSH_VERTEX = TAG(flush_quad_strip_3);
}
 
static void TAG(flush_quad_strip_3)( GLcontext *ctx, TNL_VERTEX *v0 )
{
LOCAL_VARS;
TNL_VERTEX *v3 = IMM_VERTEX( v3 );
TNL_VERTEX *v2 = IMM_VERTEX( v2 );
TNL_VERTEX *v1 = IMM_VERTEX( v1 );
 
IMM_VERTEX( v0 ) = v3;
IMM_VERTEX( v2 ) = v0;
IMM_VERTEX( v3 ) = v1;
FLUSH_VERTEX = TAG(flush_quad_strip_2);
 
if (FALLBACK_OR_CLIPPING) {
CLIP_OR_DRAW_TRI( ctx, v3, v2, v0 );
CLIP_OR_DRAW_TRI( ctx, v2, v1, v0 );
} else {
DRAW_TRI( ctx, v3, v2, v0 );
DRAW_TRI( ctx, v2, v1, v0 );
}
}
 
 
 
/* =============================================================
* GL_POLYGON
*/
 
static void TAG(flush_poly_2)( GLcontext *ctx, TNL_VERTEX *v0 );
static void TAG(flush_poly_1)( GLcontext *ctx, TNL_VERTEX *v0 );
 
static void TAG(flush_poly_0)( GLcontext *ctx, TNL_VERTEX *v0 )
{
LOCAL_VARS;
ACTIVE_VERTEX = IMM_VERTICES( 1 );
FLUSH_VERTEX = TAG(flush_poly_1);
}
 
static void TAG(flush_poly_1)( GLcontext *ctx, TNL_VERTEX *v0 )
{
LOCAL_VARS;
ACTIVE_VERTEX = IMM_VERTICES( 2 );
FLUSH_VERTEX = TAG(flush_poly_2);
}
 
#define DO_POLY_TRI( vert0, vert1 ) \
if (!HAVE_POLYGONS || FALLBACK_OR_CLIPPING) { \
TNL_VERTEX *v2 = IMM_VERTICES( vert0 ); \
TNL_VERTEX *v1 = IMM_VERTICES( vert1 ); \
TAG(draw_tri)( ctx, v1, v0, v2 ); \
} else if (EXTEND_PRIM( 1 )) { \
EMIT_VERTEX( v0 ); \
} else { \
TNL_VERTEX *v2 = IMM_VERTICES( vert0 ); \
TNL_VERTEX *v1 = IMM_VERTICES( vert1 ); \
BEGIN_PRIM( GL_POLYGON, 3 ); \
EMIT_VERTEX( v2 ); \
EMIT_VERTEX( v1 ); \
EMIT_VERTEX( v0 ); \
}
 
static void TAG(flush_poly_2)( GLcontext *ctx, TNL_VERTEX *v0 )
{
LOCAL_VARS;
ACTIVE_VERTEX = IMM_VERTICES( 1 );
FLUSH_VERTEX = TAG(flush_poly_3);
DO_POLY_TRI( 0, 1 );
}
 
static void TAG(flush_poly_3)( GLcontext *ctx, TNL_VERTEX *v0 )
{
LOCAL_VARS;
ACTIVE_VERTEX = IMM_VERTICES( 2 );
FLUSH_VERTEX = TAG(flush_poly_2);
DO_POLY_TRI( 0, 2 );
}
 
 
void (*TAG(flush_tab)[GL_POLYGON+1])( GLcontext *, TNL_VERTEX * ) =
{
TAG(flush_point),
TAG(flush_line_0),
TAG(flush_line_loop_0),
TAG(flush_line_strip_0),
TAG(flush_triangle_0),
TAG(flush_tri_strip_0),
TAG(flush_tri_fan_0),
TAG(flush_quad_0),
TAG(flush_quad_strip_0),
TAG(flush_poly_0),
};
 
 
#ifndef PRESERVE_PRIM_DEFS
#undef LOCAL_VARS
#undef GET_INTERP_FUNC
#undef IMM_VERTEX
#undef IMM_VERTICES
#undef FLUSH_VERTEX
#endif
#undef PRESERVE_PRIM_DEFS
#undef EXTEND_PRIM
#undef EMIT_VERTEX
#undef EMIT_VERTEX_TRI
#undef EMIT_VERTEX_LINE
#undef EMIT_VERTEX_POINT
#undef TAG
/shark/trunk/ports/mesa/src/tnl_dd/imm/t_dd_imm_capi.h
0,0 → 1,420
/* $Id: t_dd_imm_capi.h,v 1.1 2003-02-28 11:54:02 pj Exp $ */
 
/*
* Mesa 3-D graphics library
* Version: 3.5
*
* Copyright (C) 1999-2001 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* Authors:
* Gareth Hughes <gareth@valinux.com>
*/
 
/* Template for immediate mode color functions.
*
* FIXME: Floating-point color versions of these...
*/
 
 
static void TAG(Color3f)( GLfloat r, GLfloat g, GLfloat b )
{
GET_CURRENT;
#ifdef COLOR_IS_FLOAT
CURRENT_COLOR( RCOMP ) = CLAMP(r, 0.0f, 1.0f);
CURRENT_COLOR( GCOMP ) = CLAMP(g, 0.0f, 1.0f);
CURRENT_COLOR( BCOMP ) = CLAMP(b, 0.0f, 1.0f);
CURRENT_COLOR( ACOMP ) = 1.0f;
#else
UNCLAMPED_FLOAT_TO_UBYTE( CURRENT_COLOR( RCOMP ), r );
UNCLAMPED_FLOAT_TO_UBYTE( CURRENT_COLOR( GCOMP ), g );
UNCLAMPED_FLOAT_TO_UBYTE( CURRENT_COLOR( BCOMP ), b );
CURRENT_COLOR( ACOMP ) = 255;
#endif
}
 
static void TAG(Color3fv)( const GLfloat *v )
{
GET_CURRENT;
#ifdef COLOR_IS_FLOAT
CURRENT_COLOR( RCOMP ) = CLAMP(v[0], 0.0f, 1.0f);
CURRENT_COLOR( GCOMP ) = CLAMP(v[1], 0.0f, 1.0f);
CURRENT_COLOR( BCOMP ) = CLAMP(v[2], 0.0f, 1.0f);
CURRENT_COLOR( ACOMP ) = 1.0f;
#else
UNCLAMPED_FLOAT_TO_UBYTE( CURRENT_COLOR( RCOMP ), v[0] );
UNCLAMPED_FLOAT_TO_UBYTE( CURRENT_COLOR( GCOMP ), v[1] );
UNCLAMPED_FLOAT_TO_UBYTE( CURRENT_COLOR( BCOMP ), v[2] );
CURRENT_COLOR( ACOMP ) = 255;
#endif
}
 
static void TAG(Color3ub)( GLubyte r, GLubyte g, GLubyte b )
{
GET_CURRENT;
#ifdef COLOR_IS_FLOAT
CURRENT_COLOR( RCOMP ) = UBYTE_TO_FLOAT( r );
CURRENT_COLOR( GCOMP ) = UBYTE_TO_FLOAT( g );
CURRENT_COLOR( BCOMP ) = UBYTE_TO_FLOAT( b );
CURRENT_COLOR( ACOMP ) = 1.0f;
#else
CURRENT_COLOR( RCOMP ) = r;
CURRENT_COLOR( GCOMP ) = g;
CURRENT_COLOR( BCOMP ) = b;
CURRENT_COLOR( ACOMP ) = 255;
#endif
}
 
static void TAG(Color3ubv)( const GLubyte *v )
{
GET_CURRENT;
#ifdef COLOR_IS_FLOAT
CURRENT_COLOR( RCOMP ) = UBYTE_TO_FLOAT( v[0] );
CURRENT_COLOR( GCOMP ) = UBYTE_TO_FLOAT( v[1] );
CURRENT_COLOR( BCOMP ) = UBYTE_TO_FLOAT( v[2] );
CURRENT_COLOR( ACOMP ) = 1.0f;
#else
CURRENT_COLOR( RCOMP ) = v[0];
CURRENT_COLOR( GCOMP ) = v[1];
CURRENT_COLOR( BCOMP ) = v[2];
CURRENT_COLOR( ACOMP ) = 255;
#endif
}
 
static void TAG(Color4f)( GLfloat r, GLfloat g, GLfloat b, GLfloat a )
{
GET_CURRENT;
#ifdef COLOR_IS_FLOAT
CURRENT_COLOR( RCOMP ) = CLAMP(r, 0.0f, 1.0f);
CURRENT_COLOR( GCOMP ) = CLAMP(g, 0.0f, 1.0f);
CURRENT_COLOR( BCOMP ) = CLAMP(b, 0.0f, 1.0f);
CURRENT_COLOR( ACOMP ) = CLAMP(a, 0.0f, 1.0f);
#else
UNCLAMPED_FLOAT_TO_UBYTE( CURRENT_COLOR( RCOMP ), r );
UNCLAMPED_FLOAT_TO_UBYTE( CURRENT_COLOR( GCOMP ), g );
UNCLAMPED_FLOAT_TO_UBYTE( CURRENT_COLOR( BCOMP ), b );
UNCLAMPED_FLOAT_TO_UBYTE( CURRENT_COLOR( ACOMP ), a );
#endif
}
 
static void TAG(Color4fv)( const GLfloat *v )
{
GET_CURRENT;
#ifdef COLOR_IS_FLOAT
CURRENT_COLOR( RCOMP ) = CLAMP(v[0], 0.0f, 1.0f);
CURRENT_COLOR( GCOMP ) = CLAMP(v[1], 0.0f, 1.0f);
CURRENT_COLOR( BCOMP ) = CLAMP(v[2], 0.0f, 1.0f);
CURRENT_COLOR( ACOMP ) = CLAMP(v[3], 0.0f, 1.0f);
#else
UNCLAMPED_FLOAT_TO_UBYTE( CURRENT_COLOR( RCOMP ), v[0] );
UNCLAMPED_FLOAT_TO_UBYTE( CURRENT_COLOR( GCOMP ), v[1] );
UNCLAMPED_FLOAT_TO_UBYTE( CURRENT_COLOR( BCOMP ), v[2] );
UNCLAMPED_FLOAT_TO_UBYTE( CURRENT_COLOR( ACOMP ), v[3] );
#endif
}
 
static void TAG(Color4ub)( GLubyte r, GLubyte g, GLubyte b, GLubyte a )
{
GET_CURRENT;
#ifdef COLOR_IS_FLOAT
CURRENT_COLOR( RCOMP ) = UBYTE_TO_FLOAT( r );
CURRENT_COLOR( GCOMP ) = UBYTE_TO_FLOAT( g );
CURRENT_COLOR( BCOMP ) = UBYTE_TO_FLOAT( b );
CURRENT_COLOR( ACOMP ) = UBYTE_TO_FLOAT( a );
#else
CURRENT_COLOR( RCOMP ) = r;
CURRENT_COLOR( GCOMP ) = g;
CURRENT_COLOR( BCOMP ) = b;
CURRENT_COLOR( ACOMP ) = a;
#endif
}
 
static void TAG(Color4ubv)( const GLubyte *v )
{
GET_CURRENT;
#ifdef COLOR_IS_FLOAT
CURRENT_COLOR( RCOMP ) = UBYTE_TO_FLOAT( v[0] );
CURRENT_COLOR( GCOMP ) = UBYTE_TO_FLOAT( v[1] );
CURRENT_COLOR( BCOMP ) = UBYTE_TO_FLOAT( v[2] );
CURRENT_COLOR( ACOMP ) = UBYTE_TO_FLOAT( v[3] );
#else
CURRENT_COLOR( RCOMP ) = v[0];
CURRENT_COLOR( GCOMP ) = v[1];
CURRENT_COLOR( BCOMP ) = v[2];
CURRENT_COLOR( ACOMP ) = v[3];
#endif
}
 
 
static void TAG(ColorMaterial3f)( GLfloat r, GLfloat g, GLfloat b )
{
GET_CURRENT_CONTEXT(ctx);
GLfloat *color = ctx->Current.Color;
 
color[0] = r;
color[1] = g;
color[2] = b;
color[3] = 1.0;
 
_mesa_update_color_material( ctx, color );
RECALC_BASE_COLOR( ctx );
}
 
static void TAG(ColorMaterial3fv)( const GLfloat *v )
{
GET_CURRENT_CONTEXT(ctx);
GLfloat *color = ctx->Current.Color;
 
color[0] = v[0];
color[1] = v[1];
color[2] = v[2];
color[3] = 1.0;
 
_mesa_update_color_material( ctx, color );
RECALC_BASE_COLOR( ctx );
}
 
static void TAG(ColorMaterial3ub)( GLubyte r, GLubyte g, GLubyte b )
{
GET_CURRENT_CONTEXT(ctx);
GLfloat *color = ctx->Current.Color;
 
color[0] = UBYTE_TO_FLOAT( r );
color[1] = UBYTE_TO_FLOAT( g );
color[2] = UBYTE_TO_FLOAT( b );
color[3] = 1.0;
 
_mesa_update_color_material( ctx, color );
RECALC_BASE_COLOR( ctx );
}
 
static void TAG(ColorMaterial3ubv)( const GLubyte *v )
{
GET_CURRENT_CONTEXT(ctx);
GLfloat *color = ctx->Current.Color;
 
color[0] = UBYTE_TO_FLOAT( v[0] );
color[1] = UBYTE_TO_FLOAT( v[1] );
color[2] = UBYTE_TO_FLOAT( v[2] );
color[3] = 1.0;
 
_mesa_update_color_material( ctx, color );
RECALC_BASE_COLOR( ctx );
}
 
static void TAG(ColorMaterial4f)( GLfloat r, GLfloat g, GLfloat b, GLfloat a )
{
GET_CURRENT_CONTEXT(ctx);
GLfloat *color = ctx->Current.Color;
 
color[0] = r;
color[1] = g;
color[2] = b;
color[3] = a;
 
_mesa_update_color_material( ctx, color );
RECALC_BASE_COLOR( ctx );
}
 
static void TAG(ColorMaterial4fv)( const GLfloat *v )
{
GET_CURRENT_CONTEXT(ctx);
GLfloat *color = ctx->Current.Color;
 
color[0] = v[0];
color[1] = v[1];
color[2] = v[2];
color[3] = v[3];
 
_mesa_update_color_material( ctx, color );
RECALC_BASE_COLOR( ctx );
}
 
static void TAG(ColorMaterial4ub)( GLubyte r, GLubyte g, GLubyte b, GLubyte a )
{
GET_CURRENT_CONTEXT(ctx);
GLfloat *color = ctx->Current.Color;
 
color[0] = UBYTE_TO_FLOAT( r );
color[1] = UBYTE_TO_FLOAT( g );
color[2] = UBYTE_TO_FLOAT( b );
color[3] = UBYTE_TO_FLOAT( a );
 
_mesa_update_color_material( ctx, color );
RECALC_BASE_COLOR( ctx );
}
 
static void TAG(ColorMaterial4ubv)( const GLubyte *v )
{
GET_CURRENT_CONTEXT(ctx);
GLfloat *color = ctx->Current.Color;
 
color[0] = UBYTE_TO_FLOAT( v[0] );
color[1] = UBYTE_TO_FLOAT( v[1] );
color[2] = UBYTE_TO_FLOAT( v[2] );
color[3] = UBYTE_TO_FLOAT( v[3] );
 
_mesa_update_color_material( ctx, color );
RECALC_BASE_COLOR( ctx );
}
 
 
 
 
 
/* =============================================================
* Color chooser functions:
*/
 
static void TAG(choose_Color3f)( GLfloat r, GLfloat g, GLfloat b )
{
GET_CURRENT_CONTEXT(ctx);
 
if ( ctx->Light.Enabled ) {
if ( ctx->Light.ColorMaterialEnabled ) {
ctx->Exec->Color3f = TAG(ColorMaterial3f);
} else {
ctx->Exec->Color3f = _mesa_noop_Color3f;
}
} else {
ctx->Exec->Color3f = TAG(Color3f);
}
glColor3f( r, g, b );
}
 
static void TAG(choose_Color3fv)( const GLfloat *v )
{
GET_CURRENT_CONTEXT(ctx);
 
if ( ctx->Light.Enabled ) {
if ( ctx->Light.ColorMaterialEnabled ) {
ctx->Exec->Color3fv = TAG(ColorMaterial3fv);
} else {
ctx->Exec->Color3fv = _mesa_noop_Color3fv;
}
} else {
ctx->Exec->Color3fv = TAG(Color3fv);
}
glColor3fv( v );
}
 
static void TAG(choose_Color3ub)( GLubyte r, GLubyte g, GLubyte b )
{
GET_CURRENT_CONTEXT(ctx);
 
if ( ctx->Light.Enabled ) {
if ( ctx->Light.ColorMaterialEnabled ) {
ctx->Exec->Color3ub = TAG(ColorMaterial3ub);
} else {
ctx->Exec->Color3ub = _mesa_noop_Color3ub;
}
} else {
ctx->Exec->Color3ub = TAG(Color3ub);
}
glColor3ub( r, g, b );
}
 
static void TAG(choose_Color3ubv)( const GLubyte *v )
{
GET_CURRENT_CONTEXT(ctx);
 
if ( ctx->Light.Enabled ) {
if ( ctx->Light.ColorMaterialEnabled ) {
ctx->Exec->Color3ubv = TAG(ColorMaterial3ubv);
} else {
ctx->Exec->Color3ubv = _mesa_noop_Color3ubv;
}
} else {
ctx->Exec->Color3ubv = TAG(Color3ubv);
}
glColor3ubv( v );
}
 
static void TAG(choose_Color4f)( GLfloat r, GLfloat g, GLfloat b, GLfloat a )
{
GET_CURRENT_CONTEXT(ctx);
 
if ( ctx->Light.Enabled ) {
if ( ctx->Light.ColorMaterialEnabled ) {
ctx->Exec->Color4f = TAG(ColorMaterial4f);
} else {
ctx->Exec->Color4f = _mesa_noop_Color4f;
}
} else {
ctx->Exec->Color4f = TAG(Color4f);
}
glColor4f( r, g, b, a );
}
 
static void TAG(choose_Color4fv)( const GLfloat *v )
{
GET_CURRENT_CONTEXT(ctx);
 
if ( ctx->Light.Enabled ) {
if ( ctx->Light.ColorMaterialEnabled ) {
ctx->Exec->Color4fv = TAG(ColorMaterial4fv);
} else {
ctx->Exec->Color4fv = _mesa_noop_Color4fv;
}
} else {
ctx->Exec->Color4fv = TAG(Color4fv);
}
glColor4fv( v );
}
 
static void TAG(choose_Color4ub)( GLubyte r, GLubyte g, GLubyte b, GLubyte a )
{
GET_CURRENT_CONTEXT(ctx);
 
if ( ctx->Light.Enabled ) {
if ( ctx->Light.ColorMaterialEnabled ) {
ctx->Exec->Color4ub = TAG(ColorMaterial4ub);
} else {
ctx->Exec->Color4ub = _mesa_noop_Color4ub;
}
} else {
ctx->Exec->Color4ub = TAG(Color4ub);
}
glColor4ub( r, g, b, a );
}
 
static void TAG(choose_Color4ubv)( const GLubyte *v )
{
GET_CURRENT_CONTEXT(ctx);
 
if ( ctx->Light.Enabled ) {
if ( ctx->Light.ColorMaterialEnabled ) {
ctx->Exec->Color4ubv = TAG(ColorMaterial4ubv);
} else {
ctx->Exec->Color4ubv = _mesa_noop_Color4ubv;
}
} else {
ctx->Exec->Color4ubv = TAG(Color4ubv);
}
glColor4ubv( v );
}
 
 
 
#undef GET_CURRENT
#undef CURRENT_COLOR
#undef CURRENT_SPECULAR
#undef COLOR_IS_FLOAT
#undef RECALC_BASE_COLOR
#undef TAG
/shark/trunk/ports/mesa/src/tnl_dd/t_dd_vb.c
0,0 → 1,392
 
/*
* Mesa 3-D graphics library
* Version: 3.5
*
* Copyright (C) 1999-2001 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* Authors:
* Keith Whitwell <keith@tungstengraphics.com>
*/
#include "math/m_translate.h"
 
#if (HAVE_HW_VIEWPORT)
#define UNVIEWPORT_VARS
#define UNVIEWPORT_X(x) x
#define UNVIEWPORT_Y(x) x
#define UNVIEWPORT_Z(x) x
#endif
 
#ifndef LOCALVARS
#define LOCALVARS
#endif
 
#ifndef CHECK_HW_DIVIDE
#define CHECK_HW_DIVIDE 1
#endif
 
/* These don't need to be duplicated, but there's currently nowhere
* really convenient to put them. Need to build some actual .o files in
* this directory?
*/
static void copy_pv_rgba4_spec5( GLcontext *ctx, GLuint edst, GLuint esrc )
{
LOCALVARS
GLubyte *verts = GET_VERTEX_STORE();
GLuint shift = GET_VERTEX_STRIDE_SHIFT();
GLuint *dst = (GLuint *)(verts + (edst << shift));
GLuint *src = (GLuint *)(verts + (esrc << shift));
dst[4] = src[4];
dst[5] = src[5];
}
 
static void copy_pv_rgba4( GLcontext *ctx, GLuint edst, GLuint esrc )
{
LOCALVARS
GLubyte *verts = GET_VERTEX_STORE();
GLuint shift = GET_VERTEX_STRIDE_SHIFT();
GLuint *dst = (GLuint *)(verts + (edst << shift));
GLuint *src = (GLuint *)(verts + (esrc << shift));
dst[4] = src[4];
}
 
static void copy_pv_rgba3( GLcontext *ctx, GLuint edst, GLuint esrc )
{
LOCALVARS
GLubyte *verts = GET_VERTEX_STORE();
GLuint shift = GET_VERTEX_STRIDE_SHIFT();
GLuint *dst = (GLuint *)(verts + (edst << shift));
GLuint *src = (GLuint *)(verts + (esrc << shift));
dst[3] = src[3];
}
 
 
void TAG(translate_vertex)(GLcontext *ctx,
const VERTEX *src,
SWvertex *dst)
{
LOCALVARS
GLuint format = GET_VERTEX_FORMAT();
GLfloat *s = ctx->Viewport._WindowMap.m;
UNVIEWPORT_VARS;
 
if (format == TINY_VERTEX_FORMAT) {
if (HAVE_HW_VIEWPORT) {
dst->win[0] = s[0] * src->v.x + s[12];
dst->win[1] = s[5] * src->v.y + s[13];
dst->win[2] = s[10] * src->v.z + s[14];
dst->win[3] = 1.0;
} else {
dst->win[0] = UNVIEWPORT_X( src->v.x );
dst->win[1] = UNVIEWPORT_Y( src->v.y );
dst->win[2] = UNVIEWPORT_Z( src->v.z );
dst->win[3] = 1.0;
}
 
dst->color[0] = src->tv.color.red;
dst->color[1] = src->tv.color.green;
dst->color[2] = src->tv.color.blue;
dst->color[3] = src->tv.color.alpha;
}
else {
if (HAVE_HW_VIEWPORT) {
if (HAVE_HW_DIVIDE && CHECK_HW_DIVIDE) {
GLfloat oow = 1.0 / src->v.w;
dst->win[0] = s[0] * src->v.x * oow + s[12];
dst->win[1] = s[5] * src->v.y * oow + s[13];
dst->win[2] = s[10] * src->v.z * oow + s[14];
dst->win[3] = oow;
} else {
dst->win[0] = s[0] * src->v.x + s[12];
dst->win[1] = s[5] * src->v.y + s[13];
dst->win[2] = s[10] * src->v.z + s[14];
dst->win[3] = src->v.w;
}
} else {
dst->win[0] = UNVIEWPORT_X( src->v.x );
dst->win[1] = UNVIEWPORT_Y( src->v.y );
dst->win[2] = UNVIEWPORT_Z( src->v.z );
dst->win[3] = src->v.w;
}
 
dst->color[0] = src->v.color.red;
dst->color[1] = src->v.color.green;
dst->color[2] = src->v.color.blue;
dst->color[3] = src->v.color.alpha;
 
dst->specular[0] = src->v.specular.red;
dst->specular[1] = src->v.specular.green;
dst->specular[2] = src->v.specular.blue;
 
dst->fog = src->v.specular.alpha/255.0;
 
if (HAVE_PTEX_VERTICES &&
((HAVE_TEX2_VERTICES && format == PROJ_TEX3_VERTEX_FORMAT) ||
(format == PROJ_TEX1_VERTEX_FORMAT))) {
 
dst->texcoord[0][0] = src->pv.u0;
dst->texcoord[0][1] = src->pv.v0;
dst->texcoord[0][3] = src->pv.q0;
 
dst->texcoord[1][0] = src->pv.u1;
dst->texcoord[1][1] = src->pv.v1;
dst->texcoord[1][3] = src->pv.q1;
 
if (HAVE_TEX2_VERTICES) {
dst->texcoord[2][0] = src->pv.u2;
dst->texcoord[2][1] = src->pv.v2;
dst->texcoord[2][3] = src->pv.q2;
}
 
if (HAVE_TEX3_VERTICES) {
dst->texcoord[3][0] = src->pv.u3;
dst->texcoord[3][1] = src->pv.v3;
dst->texcoord[3][3] = src->pv.q3;
}
}
else {
dst->texcoord[0][0] = src->v.u0;
dst->texcoord[0][1] = src->v.v0;
dst->texcoord[0][3] = 1.0;
 
dst->texcoord[1][0] = src->v.u1;
dst->texcoord[1][1] = src->v.v1;
dst->texcoord[1][3] = 1.0;
 
if (HAVE_TEX2_VERTICES) {
dst->texcoord[2][0] = src->v.u2;
dst->texcoord[2][1] = src->v.v2;
dst->texcoord[2][3] = 1.0;
}
 
if (HAVE_TEX3_VERTICES) {
dst->texcoord[3][0] = src->v.u3;
dst->texcoord[3][1] = src->v.v3;
dst->texcoord[3][3] = 1.0;
}
}
}
 
dst->pointSize = ctx->Point._Size;
}
 
 
 
void TAG(print_vertex)( GLcontext *ctx, const VERTEX *v )
{
LOCALVARS
GLuint format = GET_VERTEX_FORMAT();
 
fprintf(stderr, "(%x) ", format);
 
switch (format) {
#if HAVE_TINY_VERTICES
case TINY_VERTEX_FORMAT:
fprintf(stderr, "xyz %.4f,%.4f,%.4f rgba %x:%x:%x:%x\n",
v->v.x, v->v.y, v->v.z,
v->tv.color.red,
v->tv.color.green,
v->tv.color.blue,
v->tv.color.alpha);
break;
#endif
#if HAVE_NOTEX_VERTICES
case NOTEX_VERTEX_FORMAT:
fprintf(stderr, "xyzw %.4f,%.4f,%.4f,%.4f rgba %x:%x:%x:%x spec %x:%x:%x:%x\n",
v->v.x, v->v.y, v->v.z, v->v.w,
v->v.color.red,
v->v.color.green,
v->v.color.blue,
v->v.color.alpha,
v->v.specular.red,
v->v.specular.green,
v->v.specular.blue,
v->v.specular.alpha);
break;
#endif
#if HAVE_TEX0_VERTICES
case TEX0_VERTEX_FORMAT:
fprintf(stderr, "xyzw %.4f,%.4f,%.4f,%.4f rgba %x:%x:%x:%x st %.4f,%.4f\n",
v->v.x, v->v.y, v->v.z, v->v.w,
v->v.color.red,
v->v.color.green,
v->v.color.blue,
v->v.color.alpha,
v->v.u0,
v->v.v0);
break;
#endif
#if HAVE_TEX1_VERTICES
case TEX1_VERTEX_FORMAT:
fprintf(stderr, "xyzw %.4f,%.4f,%.4f,%.4f rgba %x:%x:%x:%x st %.4f,%.4f st %.4f,%.4f\n",
v->v.x, v->v.y, v->v.z, v->v.w,
v->v.color.red,
v->v.color.green,
v->v.color.blue,
v->v.color.alpha,
v->v.u0,
v->v.v0,
v->v.u1,
v->v.u2);
break;
#endif
#if HAVE_PTEX_VERTICES
case PROJ_TEX1_VERTEX_FORMAT:
fprintf(stderr, "xyzw %.4f,%.4f,%.4f,%.4f rgba %x:%x:%x:%x stq %.4f,%.4f,%.4f stq %.4f,%.4f,%.4f\n",
v->v.x, v->v.y, v->v.z, v->v.w,
v->v.color.red,
v->v.color.green,
v->v.color.blue,
v->v.color.alpha,
v->pv.u0,
v->pv.v0,
v->pv.q0,
v->pv.u1,
v->pv.v1,
v->pv.q1);
break;
#endif
default:
fprintf(stderr, "???\n");
break;
}
 
fprintf(stderr, "\n");
}
 
static void do_import( struct vertex_buffer *VB,
struct gl_client_array *to,
struct gl_client_array *from )
{
GLuint count = VB->Count;
 
if (!to->Ptr) {
to->Ptr = ALIGN_MALLOC( VB->Size * 4 * sizeof(GLubyte), 32 );
to->Type = GL_UNSIGNED_BYTE;
}
 
/* No need to transform the same value 3000 times.
*/
if (!from->StrideB) {
to->StrideB = 0;
count = 1;
}
else
to->StrideB = 4 * sizeof(GLubyte);
_math_trans_4ub( (GLubyte (*)[4]) to->Ptr,
from->Ptr,
from->StrideB,
from->Type,
from->Size,
0,
count);
}
 
#ifndef IMPORT_QUALIFIER
#define IMPORT_QUALIFIER static
#endif
 
IMPORT_QUALIFIER void TAG(import_float_colors)( GLcontext *ctx )
{
LOCALVARS
struct vertex_buffer *VB = &TNL_CONTEXT(ctx)->vb;
struct gl_client_array *to = GET_UBYTE_COLOR_STORE();
do_import( VB, to, VB->ColorPtr[0] );
VB->ColorPtr[0] = to;
}
 
IMPORT_QUALIFIER void TAG(import_float_spec_colors)( GLcontext *ctx )
{
LOCALVARS
struct vertex_buffer *VB = &TNL_CONTEXT(ctx)->vb;
struct gl_client_array *to = GET_UBYTE_SPEC_COLOR_STORE();
do_import( VB, to, VB->SecondaryColorPtr[0] );
VB->SecondaryColorPtr[0] = to;
}
 
/* Interpolate the elements of the VB not included in typical hardware
* vertices.
*
* NOTE: All these arrays are guarenteed by tnl to be writeable and
* have good stride.
*/
#ifndef INTERP_QUALIFIER
#define INTERP_QUALIFIER static
#endif
 
#define GET_COLOR(ptr, idx) (((GLchan (*)[4])((ptr)->Ptr))[idx])
 
 
INTERP_QUALIFIER void TAG(interp_extras)( GLcontext *ctx,
GLfloat t,
GLuint dst, GLuint out, GLuint in,
GLboolean force_boundary )
{
LOCALVARS
struct vertex_buffer *VB = &TNL_CONTEXT(ctx)->vb;
 
if (VB->ColorPtr[1]) {
INTERP_4CHAN( t,
GET_COLOR(VB->ColorPtr[1], dst),
GET_COLOR(VB->ColorPtr[1], out),
GET_COLOR(VB->ColorPtr[1], in) );
 
if (VB->SecondaryColorPtr[1]) {
INTERP_3CHAN( t,
GET_COLOR(VB->SecondaryColorPtr[1], dst),
GET_COLOR(VB->SecondaryColorPtr[1], out),
GET_COLOR(VB->SecondaryColorPtr[1], in) );
}
}
 
if (VB->EdgeFlag) {
VB->EdgeFlag[dst] = VB->EdgeFlag[out] || force_boundary;
}
 
INTERP_VERTEX(ctx, t, dst, out, in, force_boundary);
}
 
INTERP_QUALIFIER void TAG(copy_pv_extras)( GLcontext *ctx,
GLuint dst, GLuint src )
{
LOCALVARS
struct vertex_buffer *VB = &TNL_CONTEXT(ctx)->vb;
 
if (VB->ColorPtr[1]) {
COPY_CHAN4( GET_COLOR(VB->ColorPtr[1], dst),
GET_COLOR(VB->ColorPtr[1], src) );
 
if (VB->SecondaryColorPtr[1]) {
COPY_CHAN4( GET_COLOR(VB->SecondaryColorPtr[1], dst),
GET_COLOR(VB->SecondaryColorPtr[1], src) );
}
}
 
COPY_PV_VERTEX(ctx, dst, src);
}
 
 
#undef INTERP_QUALIFIER
#undef IMPORT_QUALIFIER
#undef GET_COLOR
 
#undef IND
#undef TAG
/shark/trunk/ports/mesa/src/tnl_dd/t_dd_unfilled.h
0,0 → 1,213
/* $Id: t_dd_unfilled.h,v 1.1 2003-02-28 11:54:02 pj Exp $ */
 
/*
* Mesa 3-D graphics library
* Version: 3.5
*
* Copyright (C) 1999-2001 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* Authors:
* Keith Whitwell <keith@tungstengraphics.com>
*/
 
#if HAVE_RGBA
#define VERT_SET_IND( v, c )
#define VERT_COPY_IND( v0, v1 )
#define VERT_SAVE_IND( idx )
#define VERT_RESTORE_IND( idx )
#endif
 
#if !HAVE_SPEC
#define VERT_SET_SPEC( v, c )
#define VERT_COPY_SPEC( v0, v1 )
#define VERT_SAVE_SPEC( idx )
#define VERT_RESTORE_SPEC( idx )
#endif
 
static void TAG(unfilled_tri)( GLcontext *ctx,
GLenum mode,
GLuint e0, GLuint e1, GLuint e2 )
{
struct vertex_buffer *VB = &TNL_CONTEXT(ctx)->vb;
GLubyte *ef = VB->EdgeFlag;
VERTEX *v[3];
LOCAL_VARS(3);
 
v[0] = (VERTEX *)GET_VERTEX(e0);
v[1] = (VERTEX *)GET_VERTEX(e1);
v[2] = (VERTEX *)GET_VERTEX(e2);
 
if ((ctx->_TriangleCaps & DD_FLATSHADE) && HAVE_HW_FLATSHADE) {
if (HAVE_RGBA) {
VERT_SAVE_RGBA(0);
VERT_SAVE_RGBA(1);
VERT_COPY_RGBA(v[0], v[2]);
VERT_COPY_RGBA(v[1], v[2]);
 
if (HAVE_SPEC) {
VERT_SAVE_SPEC(0);
VERT_SAVE_SPEC(1);
VERT_COPY_SPEC(v[0], v[2]);
VERT_COPY_SPEC(v[1], v[2]);
}
} else {
VERT_SAVE_IND(0);
VERT_SAVE_IND(1);
VERT_COPY_IND(v[0], v[2]);
VERT_COPY_IND(v[1], v[2]);
}
}
 
/* fprintf(stderr, "%s %s %d %d %d\n", __FUNCTION__, */
/* _mesa_lookup_enum_by_nr( mode ), */
/* ef[e0], ef[e1], ef[e2]); */
 
if (mode == GL_POINT) {
RASTERIZE(GL_POINTS);
if (ef[e0]) POINT( v[0] );
if (ef[e1]) POINT( v[1] );
if (ef[e2]) POINT( v[2] );
}
else {
RASTERIZE(GL_LINES);
if (RENDER_PRIMITIVE == GL_POLYGON) {
if (ef[e2]) LINE( v[2], v[0] );
if (ef[e0]) LINE( v[0], v[1] );
if (ef[e1]) LINE( v[1], v[2] );
}
else {
if (ef[e0]) LINE( v[0], v[1] );
if (ef[e1]) LINE( v[1], v[2] );
if (ef[e2]) LINE( v[2], v[0] );
}
}
 
if ((ctx->_TriangleCaps & DD_FLATSHADE) && HAVE_HW_FLATSHADE) {
if (HAVE_RGBA) {
VERT_RESTORE_RGBA(0);
VERT_RESTORE_RGBA(1);
 
if (HAVE_SPEC) {
VERT_RESTORE_SPEC(0);
VERT_RESTORE_SPEC(1);
}
} else {
VERT_RESTORE_IND(0);
VERT_RESTORE_IND(1);
}
}
}
 
 
static void TAG(unfilled_quad)( GLcontext *ctx,
GLenum mode,
GLuint e0, GLuint e1,
GLuint e2, GLuint e3 )
{
struct vertex_buffer *VB = &TNL_CONTEXT(ctx)->vb;
GLubyte *ef = VB->EdgeFlag;
VERTEX *v[4];
LOCAL_VARS(4);
 
v[0] = (VERTEX *)GET_VERTEX(e0);
v[1] = (VERTEX *)GET_VERTEX(e1);
v[2] = (VERTEX *)GET_VERTEX(e2);
v[3] = (VERTEX *)GET_VERTEX(e3);
 
/* Hardware flatshading breaks down here. If the hardware doesn't
* support flatshading, this will already have been done:
*/
if ((ctx->_TriangleCaps & DD_FLATSHADE) && HAVE_HW_FLATSHADE) {
if (HAVE_RGBA) {
VERT_SAVE_RGBA(0);
VERT_SAVE_RGBA(1);
VERT_SAVE_RGBA(2);
VERT_COPY_RGBA(v[0], v[3]);
VERT_COPY_RGBA(v[1], v[3]);
VERT_COPY_RGBA(v[2], v[3]);
 
if (HAVE_SPEC) {
VERT_SAVE_SPEC(0);
VERT_SAVE_SPEC(1);
VERT_SAVE_SPEC(2);
VERT_COPY_SPEC(v[0], v[3]);
VERT_COPY_SPEC(v[1], v[3]);
VERT_COPY_SPEC(v[2], v[3]);
}
} else {
VERT_SAVE_IND(0);
VERT_SAVE_IND(1);
VERT_SAVE_IND(2);
VERT_COPY_IND(v[0], v[3]);
VERT_COPY_IND(v[1], v[3]);
VERT_COPY_IND(v[2], v[3]);
}
}
 
if (mode == GL_POINT) {
RASTERIZE(GL_POINTS);
if (ef[e0]) POINT( v[0] );
if (ef[e1]) POINT( v[1] );
if (ef[e2]) POINT( v[2] );
if (ef[e3]) POINT( v[3] );
}
else {
RASTERIZE(GL_LINES);
if (ef[e0]) LINE( v[0], v[1] );
if (ef[e1]) LINE( v[1], v[2] );
if (ef[e2]) LINE( v[2], v[3] );
if (ef[e3]) LINE( v[3], v[0] );
}
 
if ((ctx->_TriangleCaps & DD_FLATSHADE) && HAVE_HW_FLATSHADE) {
if (HAVE_RGBA) {
VERT_RESTORE_RGBA(0);
VERT_RESTORE_RGBA(1);
VERT_RESTORE_RGBA(2);
 
if (HAVE_SPEC) {
VERT_RESTORE_SPEC(0);
VERT_RESTORE_SPEC(1);
VERT_RESTORE_SPEC(2);
}
} else {
VERT_RESTORE_IND(0);
VERT_RESTORE_IND(1);
VERT_RESTORE_IND(2);
}
}
}
 
 
#if HAVE_RGBA
#undef VERT_SET_IND
#undef VERT_COPY_IND
#undef VERT_SAVE_IND
#undef VERT_RESTORE_IND
#endif
 
#if !HAVE_SPEC
#undef VERT_SET_SPEC
#undef VERT_COPY_SPEC
#undef VERT_SAVE_SPEC
#undef VERT_RESTORE_SPEC
#endif
 
#undef TAG
/shark/trunk/ports/mesa/src/tnl_dd/t_dd_dmatmp.h
0,0 → 1,1106
/* $Id: t_dd_dmatmp.h,v 1.1 2003-02-28 11:54:01 pj Exp $ */
 
/*
* Mesa 3-D graphics library
* Version: 3.5
*
* Copyright (C) 1999-2001 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* Authors:
* Keith Whitwell <keith@tungstengraphics.com>
*/
 
 
/* Template for render stages which build and emit vertices directly
* to fixed-size dma buffers. Useful for rendering strips and other
* native primitives where clipping and per-vertex tweaks such as
* those in t_dd_tritmp.h are not required.
*
* Produces code for both inline triangles and indexed triangles.
* Where various primitive types are unaccelerated by hardware, the
* code attempts to fallback to other primitive types (quadstrips to
* tristrips, lineloops to linestrips), or to indexed vertices.
* Ultimately, a FALLBACK() macro is invoked if there is no way to
* render the primitive natively.
*/
 
#if !defined(HAVE_TRIANGLES)
#error "must have at least triangles to use render template"
#endif
 
#if !HAVE_ELTS
#define ELTS_VARS
#define ALLOC_ELTS( nr )
#define EMIT_ELT( offset, elt )
#define EMIT_TWO_ELTS( offset, elt0, elt1 )
#define INCR_ELTS( nr )
#define ELT_INIT(prim)
#define GET_CURRENT_VB_MAX_ELTS() 0
#define GET_SUBSEQUENT_VB_MAX_ELTS() 0
#define ALLOC_ELTS_NEW_PRIMITIVE(nr)
#define RELEASE_ELT_VERTS()
#define EMIT_INDEXED_VERTS( ctx, start, count )
#endif
 
#ifndef EMIT_TWO_ELTS
#define EMIT_TWO_ELTS( offset, elt0, elt1 ) \
do { \
EMIT_ELT( offset, elt0 ); \
EMIT_ELT( offset+1, elt1 ); \
} while (0)
#endif
 
#ifndef FINISH
#define FINISH
#endif
 
/**********************************************************************/
/* Render whole begin/end objects */
/**********************************************************************/
 
 
 
static GLboolean TAG(emit_elt_verts)( GLcontext *ctx,
GLuint start, GLuint count )
{
if (HAVE_ELTS) {
LOCAL_VARS;
GLuint nr = count - start;
 
if ( nr >= GET_SUBSEQUENT_VB_MAX_VERTS() ) /* assumes same packing for
* indexed and regualar verts
*/
return GL_FALSE;
 
NEW_PRIMITIVE(); /* finish last prim */
EMIT_INDEXED_VERTS( ctx, start, count );
return GL_TRUE;
} else {
return GL_FALSE;
}
}
 
#if (HAVE_ELTS)
static void TAG(emit_elts)( GLcontext *ctx, GLuint *elts, GLuint nr )
{
GLint i;
LOCAL_VARS;
ELTS_VARS;
 
ALLOC_ELTS( nr );
 
for ( i = 0 ; i < nr ; i+=2, elts += 2 ) {
EMIT_TWO_ELTS( 0, elts[0], elts[1] );
INCR_ELTS( 2 );
}
}
#endif
 
 
/***********************************************************************
* Render non-indexed primitives.
***********************************************************************/
 
 
 
static void TAG(render_points_verts)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
if (HAVE_POINTS) {
LOCAL_VARS;
int dmasz = GET_SUBSEQUENT_VB_MAX_VERTS();
int currentsz = GET_CURRENT_VB_MAX_VERTS();
GLuint j, nr;
 
INIT( GL_POINTS );
 
if (currentsz < 8)
currentsz = dmasz;
 
for (j = start; j < count; j += nr ) {
nr = MIN2( currentsz, count - j );
EMIT_VERTS( ctx, j, nr );
currentsz = dmasz;
}
 
FINISH;
 
} else {
VERT_FALLBACK( ctx, start, count, flags );
}
}
 
static void TAG(render_lines_verts)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
if (HAVE_LINES) {
LOCAL_VARS;
int dmasz = GET_SUBSEQUENT_VB_MAX_VERTS();
int currentsz = GET_CURRENT_VB_MAX_VERTS();
GLuint j, nr;
 
INIT( GL_LINES );
 
/* Emit whole number of lines in total and in each buffer:
*/
count -= (count-start) & 1;
currentsz -= currentsz & 1;
dmasz -= dmasz & 1;
 
if (currentsz < 8)
currentsz = dmasz;
 
for (j = start; j < count; j += nr ) {
nr = MIN2( currentsz, count - j );
EMIT_VERTS( ctx, j, nr );
currentsz = dmasz;
}
 
FINISH;
 
} else {
VERT_FALLBACK( ctx, start, count, flags );
}
}
 
 
static void TAG(render_line_strip_verts)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
if (HAVE_LINE_STRIPS) {
LOCAL_VARS;
int dmasz = GET_SUBSEQUENT_VB_MAX_VERTS();
int currentsz = GET_CURRENT_VB_MAX_VERTS();
GLuint j, nr;
 
NEW_PRIMITIVE(); /* always a new primitive */
INIT( GL_LINE_STRIP );
 
if (currentsz < 8)
currentsz = dmasz;
 
for (j = start; j + 1 < count; j += nr - 1 ) {
nr = MIN2( currentsz, count - j );
EMIT_VERTS( ctx, j, nr );
currentsz = dmasz;
}
FINISH;
 
} else {
VERT_FALLBACK( ctx, start, count, flags );
}
}
 
 
static void TAG(render_line_loop_verts)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
if (HAVE_LINE_STRIPS) {
LOCAL_VARS;
int dmasz = GET_SUBSEQUENT_VB_MAX_VERTS();
int currentsz = GET_CURRENT_VB_MAX_VERTS();
GLuint j, nr;
 
NEW_PRIMITIVE();
INIT( GL_LINE_STRIP );
 
if (flags & PRIM_BEGIN)
j = start;
else
j = start + 1;
 
/* Ensure last vertex won't wrap buffers:
*/
currentsz--;
dmasz--;
 
if (currentsz < 8) {
NEW_BUFFER();
currentsz = dmasz;
}
 
if (j + 1 < count) {
for ( ; j + 1 < count; j += nr - 1 ) {
nr = MIN2( currentsz, count - j );
EMIT_VERTS( ctx, j, nr );
currentsz = dmasz;
}
 
if (start < count - 1 && (flags & PRIM_END))
EMIT_VERTS( ctx, start, 1 );
}
else if (start + 1 < count && (flags & PRIM_END)) {
EMIT_VERTS( ctx, start+1, 1 );
EMIT_VERTS( ctx, start, 1 );
}
 
FINISH;
 
} else {
VERT_FALLBACK( ctx, start, count, flags );
}
}
 
 
static void TAG(render_triangles_verts)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
LOCAL_VARS;
int dmasz = (GET_SUBSEQUENT_VB_MAX_VERTS()/3) * 3;
int currentsz = (GET_CURRENT_VB_MAX_VERTS()/3) * 3;
GLuint j, nr;
 
INIT(GL_TRIANGLES);
 
/* Emit whole number of tris in total. dmasz is already a multiple
* of 3.
*/
count -= (count-start)%3;
 
if (currentsz < 8)
currentsz = dmasz;
 
for (j = start; j < count; j += nr) {
nr = MIN2( currentsz, count - j );
EMIT_VERTS( ctx, j, nr );
currentsz = dmasz;
}
FINISH;
}
 
 
 
static void TAG(render_tri_strip_verts)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
if (HAVE_TRI_STRIPS) {
LOCAL_VARS;
GLuint j, nr;
int dmasz = GET_SUBSEQUENT_VB_MAX_VERTS();
int currentsz;
 
INIT(GL_TRIANGLE_STRIP);
NEW_PRIMITIVE();
 
currentsz = GET_CURRENT_VB_MAX_VERTS();
 
if (currentsz < 8) {
NEW_BUFFER();
currentsz = dmasz;
}
 
if ((flags & PRIM_PARITY) && count - start > 2) {
if (HAVE_TRI_STRIP_1 && 0) {
} else {
EMIT_VERTS( ctx, start, 1 );
currentsz--;
}
}
 
/* From here on emit even numbers of tris when wrapping over buffers:
*/
dmasz -= (dmasz & 1);
currentsz -= (currentsz & 1);
 
for (j = start ; j + 2 < count; j += nr - 2 ) {
nr = MIN2( currentsz, count - j );
EMIT_VERTS( ctx, j, nr );
currentsz = dmasz;
}
 
FINISH;
 
} else {
VERT_FALLBACK( ctx, start, count, flags );
}
}
 
static void TAG(render_tri_fan_verts)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
if (HAVE_TRI_FANS) {
LOCAL_VARS;
GLuint j, nr;
int dmasz = GET_SUBSEQUENT_VB_MAX_VERTS();
int currentsz = GET_CURRENT_VB_MAX_VERTS();
 
NEW_PRIMITIVE();
INIT(GL_TRIANGLE_FAN);
 
if (currentsz < 8) {
NEW_BUFFER();
currentsz = dmasz;
}
 
for (j = start + 1 ; j + 1 < count; j += nr - 1 ) {
nr = MIN2( currentsz, count - j + 1 );
EMIT_VERTS( ctx, start, 1 );
EMIT_VERTS( ctx, j, nr - 1 );
currentsz = dmasz;
}
 
FINISH;
 
}
else {
/* Could write code to emit these as indexed vertices (for the
* g400, for instance).
*/
VERT_FALLBACK( ctx, start, count, flags );
}
}
 
 
static void TAG(render_poly_verts)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
if (HAVE_POLYGONS) {
LOCAL_VARS;
GLuint j, nr;
int dmasz = GET_SUBSEQUENT_VB_MAX_VERTS();
int currentsz = GET_CURRENT_VB_MAX_VERTS();
 
NEW_PRIMITIVE();
INIT(GL_POLYGON);
 
if (currentsz < 8) {
NEW_BUFFER();
currentsz = dmasz;
}
 
for (j = start + 1 ; j + 1 < count ; j += nr - 1 ) {
nr = MIN2( currentsz, count - j + 1 );
EMIT_VERTS( ctx, start, 1 );
EMIT_VERTS( ctx, j, nr - 1 );
currentsz = dmasz;
}
 
FINISH;
 
}
else if (HAVE_TRI_FANS && !(ctx->_TriangleCaps & DD_FLATSHADE)) {
TAG(render_tri_fan_verts)( ctx, start, count, flags );
} else {
VERT_FALLBACK( ctx, start, count, flags );
}
}
 
static void TAG(render_quad_strip_verts)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
GLuint j, nr;
 
if (HAVE_QUAD_STRIPS) {
LOCAL_VARS;
GLuint j, nr;
int dmasz = GET_SUBSEQUENT_VB_MAX_VERTS();
int currentsz;
 
INIT(GL_QUAD_STRIP);
NEW_PRIMITIVE();
 
currentsz = GET_CURRENT_VB_MAX_VERTS();
 
if (currentsz < 8) {
NEW_BUFFER();
currentsz = dmasz;
}
 
dmasz -= (dmasz & 2);
currentsz -= (currentsz & 2);
 
for (j = start ; j + 3 < count; j += nr - 2 ) {
nr = MIN2( currentsz, count - j );
EMIT_VERTS( ctx, j, nr );
currentsz = dmasz;
}
 
FINISH;
 
} else if (HAVE_TRI_STRIPS && (ctx->_TriangleCaps & DD_FLATSHADE)) {
if (TAG(emit_elt_verts)( ctx, start, count )) {
LOCAL_VARS;
int dmasz = GET_SUBSEQUENT_VB_MAX_ELTS();
int currentsz;
GLuint j, nr;
 
/* Simulate flat-shaded quadstrips using indexed vertices:
*/
NEW_PRIMITIVE();
ELT_INIT( GL_TRIANGLES );
 
currentsz = GET_CURRENT_VB_MAX_ELTS();
 
/* Emit whole number of quads in total, and in each buffer.
*/
dmasz -= dmasz & 1;
count -= (count-start) & 1;
currentsz -= currentsz & 1;
 
if (currentsz < 12)
currentsz = dmasz;
 
currentsz = currentsz/6*2;
dmasz = dmasz/6*2;
 
for (j = start; j + 3 < count; j += nr - 2 ) {
nr = MIN2( currentsz, count - j );
if (nr >= 4) {
GLint quads = (nr/2)-1;
GLint i;
ELTS_VARS;
 
NEW_PRIMITIVE();
ALLOC_ELTS_NEW_PRIMITIVE( quads*6 );
 
for ( i = j-start ; i < j-start+quads*2 ; i+=2 ) {
EMIT_TWO_ELTS( 0, (i+0), (i+1) );
EMIT_TWO_ELTS( 2, (i+2), (i+1) );
EMIT_TWO_ELTS( 4, (i+3), (i+2) );
INCR_ELTS( 6 );
}
 
NEW_PRIMITIVE();
}
currentsz = dmasz;
}
 
RELEASE_ELT_VERTS();
}
else {
/* Vertices won't fit in a single buffer or elts not available,
* VERT_FALLBACK.
*/
VERT_FALLBACK( ctx, start, count, flags );
}
}
else if (HAVE_TRI_STRIPS) {
LOCAL_VARS;
int dmasz = GET_SUBSEQUENT_VB_MAX_VERTS();
int currentsz = GET_CURRENT_VB_MAX_VERTS();
 
/* Emit smooth-shaded quadstrips as tristrips:
*/
NEW_PRIMITIVE();
INIT( GL_TRIANGLE_STRIP );
 
/* Emit whole number of quads in total, and in each buffer.
*/
dmasz -= dmasz & 1;
currentsz -= currentsz & 1;
count -= (count-start) & 1;
 
if (currentsz < 8) {
NEW_BUFFER();
currentsz = dmasz;
}
 
for (j = start; j + 3 < count; j += nr - 2 ) {
nr = MIN2( currentsz, count - j );
EMIT_VERTS( ctx, j, nr );
currentsz = dmasz;
}
 
FINISH;
 
} else {
VERT_FALLBACK( ctx, start, count, flags );
}
}
 
 
static void TAG(render_quads_verts)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
if (HAVE_QUADS) {
LOCAL_VARS;
int dmasz = (GET_SUBSEQUENT_VB_MAX_VERTS()/4) * 4;
int currentsz = (GET_CURRENT_VB_MAX_VERTS()/4) * 4;
GLuint j, nr;
 
INIT(GL_QUADS);
 
/* Emit whole number of quads in total. dmasz is already a multiple
* of 4.
*/
count -= (count-start)%4;
 
if (currentsz < 8)
currentsz = dmasz;
 
for (j = start; j < count; j += nr) {
nr = MIN2( currentsz, count - j );
EMIT_VERTS( ctx, j, nr );
currentsz = dmasz;
}
FINISH;
} else if (TAG(emit_elt_verts)( ctx, start, count )) {
/* Hardware doesn't have a quad primitive type -- try to
* simulate it using indexed vertices and the triangle
* primitive:
*/
LOCAL_VARS;
int dmasz = GET_SUBSEQUENT_VB_MAX_ELTS();
int currentsz;
GLuint j, nr;
 
NEW_PRIMITIVE();
ELT_INIT( GL_TRIANGLES );
currentsz = GET_CURRENT_VB_MAX_ELTS();
 
/* Emit whole number of quads in total, and in each buffer.
*/
dmasz -= dmasz & 3;
count -= (count-start) & 3;
currentsz -= currentsz & 3;
 
/* Adjust for rendering as triangles:
*/
currentsz = currentsz/6*4;
dmasz = dmasz/6*4;
 
if (currentsz < 8)
currentsz = dmasz;
 
for (j = start; j < count; j += nr ) {
nr = MIN2( currentsz, count - j );
if (nr >= 4) {
GLint quads = nr/4;
GLint i;
ELTS_VARS;
 
NEW_PRIMITIVE();
ALLOC_ELTS_NEW_PRIMITIVE( quads*6 );
 
for ( i = j-start ; i < j-start+quads*4 ; i+=4 ) {
EMIT_TWO_ELTS( 0, (i+0), (i+1) );
EMIT_TWO_ELTS( 2, (i+3), (i+1) );
EMIT_TWO_ELTS( 4, (i+2), (i+3) );
INCR_ELTS( 6 );
}
 
NEW_PRIMITIVE();
}
currentsz = dmasz;
}
 
RELEASE_ELT_VERTS();
}
else {
/* Vertices won't fit in a single buffer, fallback.
*/
VERT_FALLBACK( ctx, start, count, flags );
}
}
 
static void TAG(render_noop)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
}
 
 
 
 
static render_func TAG(render_tab_verts)[GL_POLYGON+2] =
{
TAG(render_points_verts),
TAG(render_lines_verts),
TAG(render_line_loop_verts),
TAG(render_line_strip_verts),
TAG(render_triangles_verts),
TAG(render_tri_strip_verts),
TAG(render_tri_fan_verts),
TAG(render_quads_verts),
TAG(render_quad_strip_verts),
TAG(render_poly_verts),
TAG(render_noop),
};
 
 
/****************************************************************************
* Render elts using hardware indexed verts *
****************************************************************************/
 
#if (HAVE_ELTS)
static void TAG(render_points_elts)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
if (HAVE_POINTS) {
LOCAL_VARS;
int dmasz = GET_SUBSEQUENT_VB_MAX_ELTS();
int currentsz;
GLuint *elts = TNL_CONTEXT(ctx)->vb.Elts;
GLuint j, nr;
 
ELT_INIT( GL_POINTS );
 
currentsz = GET_CURRENT_VB_MAX_ELTS();
if (currentsz < 8)
currentsz = dmasz;
 
for (j = start; j < count; j += nr ) {
nr = MIN2( currentsz, count - j );
TAG(emit_elts)( ctx, elts+j, nr );
NEW_PRIMITIVE();
currentsz = dmasz;
}
} else {
ELT_FALLBACK( ctx, start, count, flags );
}
}
 
 
 
static void TAG(render_lines_elts)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
if (HAVE_LINES) {
LOCAL_VARS;
int dmasz = GET_SUBSEQUENT_VB_MAX_ELTS();
int currentsz;
GLuint *elts = TNL_CONTEXT(ctx)->vb.Elts;
GLuint j, nr;
 
ELT_INIT( GL_LINES );
 
/* Emit whole number of lines in total and in each buffer:
*/
count -= (count-start) & 1;
currentsz -= currentsz & 1;
dmasz -= dmasz & 1;
 
currentsz = GET_CURRENT_VB_MAX_ELTS();
if (currentsz < 8)
currentsz = dmasz;
 
for (j = start; j < count; j += nr ) {
nr = MIN2( currentsz, count - j );
TAG(emit_elts)( ctx, elts+j, nr );
NEW_PRIMITIVE();
currentsz = dmasz;
}
} else {
ELT_FALLBACK( ctx, start, count, flags );
}
}
 
 
static void TAG(render_line_strip_elts)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
if (HAVE_LINE_STRIPS) {
LOCAL_VARS;
int dmasz = GET_SUBSEQUENT_VB_MAX_ELTS();
int currentsz;
GLuint *elts = TNL_CONTEXT(ctx)->vb.Elts;
GLuint j, nr;
 
NEW_PRIMITIVE(); /* always a new primitive */
ELT_INIT( GL_LINE_STRIP );
 
currentsz = GET_CURRENT_VB_MAX_ELTS();
if (currentsz < 8)
currentsz = dmasz;
 
for (j = start; j + 1 < count; j += nr - 1 ) {
nr = MIN2( currentsz, count - j );
TAG(emit_elts)( ctx, elts+j, nr );
NEW_PRIMITIVE();
currentsz = dmasz;
}
} else {
/* TODO: Try to emit as indexed lines.
*/
ELT_FALLBACK( ctx, start, count, flags );
}
}
 
 
static void TAG(render_line_loop_elts)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
if (HAVE_LINE_STRIPS) {
LOCAL_VARS;
int dmasz = GET_SUBSEQUENT_VB_MAX_ELTS();
int currentsz;
GLuint *elts = TNL_CONTEXT(ctx)->vb.Elts;
GLuint j, nr;
 
NEW_PRIMITIVE();
ELT_INIT( GL_LINE_STRIP );
 
if (flags & PRIM_BEGIN)
j = start;
else
j = start + 1;
 
currentsz = GET_CURRENT_VB_MAX_ELTS();
if (currentsz < 8) {
NEW_BUFFER();
currentsz = dmasz;
}
 
/* Ensure last vertex doesn't wrap:
*/
currentsz--;
dmasz--;
 
for ( ; j + 1 < count; j += nr - 1 ) {
nr = MIN2( currentsz, count - j );
/* NEW_PRIMITIVE(); */
TAG(emit_elts)( ctx, elts+j, nr );
currentsz = dmasz;
}
 
if (flags & PRIM_END)
TAG(emit_elts)( ctx, elts+start, 1 );
 
NEW_PRIMITIVE();
} else {
/* TODO: Try to emit as indexed lines */
ELT_FALLBACK( ctx, start, count, flags );
}
}
 
 
/* For verts, we still eliminate the copy from main memory to dma
* buffers. For elts, this is probably no better (worse?) than the
* standard path.
*/
static void TAG(render_triangles_elts)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
LOCAL_VARS;
GLuint *elts = TNL_CONTEXT(ctx)->vb.Elts;
int dmasz = GET_SUBSEQUENT_VB_MAX_ELTS()/3*3;
int currentsz;
GLuint j, nr;
 
NEW_PRIMITIVE();
ELT_INIT( GL_TRIANGLES );
 
currentsz = GET_CURRENT_VB_MAX_ELTS();
 
/* Emit whole number of tris in total. dmasz is already a multiple
* of 3.
*/
count -= (count-start)%3;
currentsz -= currentsz%3;
if (currentsz < 8)
currentsz = dmasz;
 
for (j = start; j < count; j += nr) {
nr = MIN2( currentsz, count - j );
TAG(emit_elts)( ctx, elts+j, nr );
NEW_PRIMITIVE();
currentsz = dmasz;
}
}
 
 
 
static void TAG(render_tri_strip_elts)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
if (HAVE_TRI_STRIPS) {
LOCAL_VARS;
GLuint j, nr;
GLuint *elts = TNL_CONTEXT(ctx)->vb.Elts;
int dmasz = GET_SUBSEQUENT_VB_MAX_ELTS();
int currentsz;
 
NEW_PRIMITIVE();
ELT_INIT( GL_TRIANGLE_STRIP );
 
currentsz = GET_CURRENT_VB_MAX_ELTS();
if (currentsz < 8) {
NEW_BUFFER();
currentsz = dmasz;
}
 
if ((flags & PRIM_PARITY) && count - start > 2) {
TAG(emit_elts)( ctx, elts+start, 1 );
}
 
/* Keep the same winding over multiple buffers:
*/
dmasz -= (dmasz & 1);
currentsz -= (currentsz & 1);
 
for (j = start ; j + 2 < count; j += nr - 2 ) {
nr = MIN2( currentsz, count - j );
TAG(emit_elts)( ctx, elts+j, nr );
NEW_PRIMITIVE();
currentsz = dmasz;
}
} else {
/* TODO: try to emit as indexed triangles */
ELT_FALLBACK( ctx, start, count, flags );
}
}
 
static void TAG(render_tri_fan_elts)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
if (HAVE_TRI_FANS) {
LOCAL_VARS;
GLuint *elts = TNL_CONTEXT(ctx)->vb.Elts;
GLuint j, nr;
int dmasz = GET_SUBSEQUENT_VB_MAX_ELTS();
int currentsz;
 
NEW_PRIMITIVE();
ELT_INIT( GL_TRIANGLE_FAN );
 
currentsz = GET_CURRENT_VB_MAX_ELTS();
if (currentsz < 8) {
NEW_BUFFER();
currentsz = dmasz;
}
 
for (j = start + 1 ; j + 1 < count; j += nr - 1 ) {
nr = MIN2( currentsz, count - j + 1 );
TAG(emit_elts)( ctx, elts+start, 1 );
TAG(emit_elts)( ctx, elts+j, nr - 1 );
NEW_PRIMITIVE();
currentsz = dmasz;
}
} else {
/* TODO: try to emit as indexed triangles */
ELT_FALLBACK( ctx, start, count, flags );
}
}
 
 
static void TAG(render_poly_elts)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
if (HAVE_POLYGONS && 0) {
} else if (HAVE_TRI_FANS && !(ctx->_TriangleCaps & DD_FLATSHADE)) {
LOCAL_VARS;
GLuint *elts = TNL_CONTEXT(ctx)->vb.Elts;
GLuint j, nr;
int dmasz = GET_SUBSEQUENT_VB_MAX_ELTS();
int currentsz;
 
NEW_PRIMITIVE();
ELT_INIT( GL_TRIANGLE_FAN );
 
currentsz = GET_CURRENT_VB_MAX_ELTS();
if (currentsz < 8) {
NEW_BUFFER();
currentsz = dmasz;
}
 
for (j = start + 1 ; j + 1 < count ; j += nr - 1 ) {
nr = MIN2( currentsz, count - j + 1 );
TAG(emit_elts)( ctx, elts+start, 1 );
TAG(emit_elts)( ctx, elts+j, nr - 1 );
NEW_PRIMITIVE();
currentsz = dmasz;
}
} else {
ELT_FALLBACK( ctx, start, count, flags );
}
}
 
static void TAG(render_quad_strip_elts)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
if (HAVE_QUAD_STRIPS && 0) {
}
else if (HAVE_TRI_STRIPS) {
LOCAL_VARS;
GLuint *elts = TNL_CONTEXT(ctx)->vb.Elts;
int dmasz = GET_SUBSEQUENT_VB_MAX_ELTS();
int currentsz;
GLuint j, nr;
 
NEW_PRIMITIVE();
currentsz = GET_CURRENT_VB_MAX_ELTS();
 
/* Emit whole number of quads in total, and in each buffer.
*/
dmasz -= dmasz & 1;
count -= (count-start) & 1;
currentsz -= currentsz & 1;
 
if (currentsz < 12)
currentsz = dmasz;
 
if (ctx->_TriangleCaps & DD_FLATSHADE) {
ELT_INIT( GL_TRIANGLES );
 
currentsz = currentsz/6*2;
dmasz = dmasz/6*2;
 
for (j = start; j + 3 < count; j += nr - 2 ) {
nr = MIN2( currentsz, count - j );
 
if (nr >= 4)
{
GLint i;
GLint quads = (nr/2)-1;
ELTS_VARS;
 
 
NEW_PRIMITIVE();
ALLOC_ELTS_NEW_PRIMITIVE( quads*6 );
 
for ( i = j-start ; i < j-start+quads ; i++, elts += 2 ) {
EMIT_TWO_ELTS( 0, elts[0], elts[1] );
EMIT_TWO_ELTS( 2, elts[2], elts[1] );
EMIT_TWO_ELTS( 4, elts[3], elts[2] );
INCR_ELTS( 6 );
}
 
NEW_PRIMITIVE();
}
 
currentsz = dmasz;
}
}
else {
ELT_INIT( GL_TRIANGLE_STRIP );
 
for (j = start; j + 3 < count; j += nr - 2 ) {
nr = MIN2( currentsz, count - j );
TAG(emit_elts)( ctx, elts+j, nr );
NEW_PRIMITIVE();
currentsz = dmasz;
}
}
}
}
 
 
static void TAG(render_quads_elts)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
if (HAVE_QUADS && 0) {
} else {
LOCAL_VARS;
GLuint *elts = TNL_CONTEXT(ctx)->vb.Elts;
int dmasz = GET_SUBSEQUENT_VB_MAX_ELTS();
int currentsz;
GLuint j, nr;
 
ELT_INIT( GL_TRIANGLES );
currentsz = GET_CURRENT_VB_MAX_ELTS();
 
/* Emit whole number of quads in total, and in each buffer.
*/
dmasz -= dmasz & 3;
count -= (count-start) & 3;
currentsz -= currentsz & 3;
 
/* Adjust for rendering as triangles:
*/
currentsz = currentsz/6*4;
dmasz = dmasz/6*4;
 
if (currentsz < 8)
currentsz = dmasz;
 
for (j = start; j + 3 < count; j += nr - 2 ) {
nr = MIN2( currentsz, count - j );
 
if (nr >= 4)
{
GLint quads = nr/4;
GLint i;
ELTS_VARS;
NEW_PRIMITIVE();
ALLOC_ELTS_NEW_PRIMITIVE( quads * 6 );
 
for ( i = j-start ; i < j-start+quads ; i++, elts += 4 ) {
EMIT_TWO_ELTS( 0, elts[0], elts[1] );
EMIT_TWO_ELTS( 2, elts[3], elts[1] );
EMIT_TWO_ELTS( 4, elts[2], elts[3] );
INCR_ELTS( 6 );
}
}
 
NEW_PRIMITIVE();
currentsz = dmasz;
}
}
}
 
 
 
static render_func TAG(render_tab_elts)[GL_POLYGON+2] =
{
TAG(render_points_elts),
TAG(render_lines_elts),
TAG(render_line_loop_elts),
TAG(render_line_strip_elts),
TAG(render_triangles_elts),
TAG(render_tri_strip_elts),
TAG(render_tri_fan_elts),
TAG(render_quads_elts),
TAG(render_quad_strip_elts),
TAG(render_poly_elts),
TAG(render_noop),
};
#endif
/shark/trunk/ports/mesa/src/tnl_dd/t_dd_dmatmp2.h
0,0 → 1,1095
 
/*
* Mesa 3-D graphics library
* Version: 4.0.3
*
* Copyright (C) 1999-2002 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* Authors:
* Keith Whitwell <keith@tungstengraphics.com>
*/
 
 
/* Template for render stages which build and emit vertices directly
* to fixed-size dma buffers. Useful for rendering strips and other
* native primitives where clipping and per-vertex tweaks such as
* those in t_dd_tritmp.h are not required.
*
*/
 
#if !HAVE_TRIANGLES || !HAVE_POINTS || !HAVE_LINES
#error "must have points, lines & triangles to use render template"
#endif
 
#if !HAVE_TRI_STRIPS || !HAVE_TRI_FANS
#error "must have tri strip and fans to use render template"
#endif
 
#if !HAVE_LINE_STRIPS
#error "must have line strips to use render template"
#endif
 
#if !HAVE_POLYGONS
#error "must have polygons to use render template"
#endif
 
#if !HAVE_ELTS
#error "must have elts to use render template"
#endif
 
 
#ifndef EMIT_TWO_ELTS
#define EMIT_TWO_ELTS( offset, elt0, elt1 ) \
do { \
EMIT_ELT( offset, elt0 ); \
EMIT_ELT( offset+1, elt1 ); \
} while (0)
#endif
 
 
/**********************************************************************/
/* Render whole begin/end objects */
/**********************************************************************/
 
 
static void TAG(emit_elts)( GLcontext *ctx, GLuint *elts, GLuint nr )
{
GLint i;
LOCAL_VARS;
ELTS_VARS;
 
ALLOC_ELTS( nr );
 
for ( i = 0 ; i < nr ; i+=2, elts += 2 ) {
EMIT_TWO_ELTS( 0, elts[0], elts[1] );
INCR_ELTS( 2 );
}
}
 
static void TAG(emit_consecutive_elts)( GLcontext *ctx, GLuint start, GLuint nr )
{
GLint i;
LOCAL_VARS;
ELTS_VARS;
 
ALLOC_ELTS( nr );
 
for ( i = 0 ; i+1 < nr ; i+=2, start += 2 ) {
EMIT_TWO_ELTS( 0, start, start+1 );
INCR_ELTS( 2 );
}
if (i < nr) {
EMIT_ELT( 0, start );
INCR_ELTS( 1 );
}
}
 
/***********************************************************************
* Render non-indexed primitives.
***********************************************************************/
 
 
 
static void TAG(render_points_verts)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
if (start < count) {
LOCAL_VARS;
if (0) fprintf(stderr, "%s\n", __FUNCTION__);
EMIT_PRIM( ctx, GL_POINTS, HW_POINTS, start, count );
}
}
 
static void TAG(render_lines_verts)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
LOCAL_VARS;
if (0) fprintf(stderr, "%s\n", __FUNCTION__);
count -= (count-start) & 1;
 
if (start+1 >= count)
return;
 
if ((flags & PRIM_BEGIN) && ctx->Line.StippleFlag) {
RESET_STIPPLE();
AUTO_STIPPLE( GL_TRUE );
}
EMIT_PRIM( ctx, GL_LINES, HW_LINES, start, count );
 
if ((flags & PRIM_END) && ctx->Line.StippleFlag)
AUTO_STIPPLE( GL_FALSE );
}
 
 
static void TAG(render_line_strip_verts)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
LOCAL_VARS;
if (0) fprintf(stderr, "%s\n", __FUNCTION__);
 
if (start+1 >= count)
return;
 
if ((flags & PRIM_BEGIN) && ctx->Line.StippleFlag)
RESET_STIPPLE();
 
 
if (PREFER_DISCRETE_ELT_PRIM( count-start, HW_LINES ))
{
int dmasz = GET_SUBSEQUENT_VB_MAX_ELTS();
int currentsz;
GLuint j, nr;
 
ELT_INIT( GL_LINES, HW_LINES );
 
/* Emit whole number of lines in each full buffer.
*/
dmasz = dmasz/2;
currentsz = GET_CURRENT_VB_MAX_ELTS();
currentsz = currentsz/2;
 
if (currentsz < 4) {
NEW_BUFFER();
currentsz = dmasz;
}
 
for (j = start; j + 1 < count; j += nr - 1 ) {
GLint i;
ELTS_VARS;
nr = MIN2( currentsz, count - j );
ALLOC_ELTS( (nr-1)*2 );
for ( i = j ; i+1 < j+nr ; i+=1 ) {
EMIT_TWO_ELTS( 0, (i+0), (i+1) );
INCR_ELTS( 2 );
}
 
if (nr == currentsz) {
NEW_BUFFER();
currentsz = dmasz;
}
}
}
else
EMIT_PRIM( ctx, GL_LINE_STRIP, HW_LINE_STRIP, start, count );
}
 
 
static void TAG(render_line_loop_verts)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
LOCAL_VARS;
GLuint j, nr;
if (0) fprintf(stderr, "%s\n", __FUNCTION__);
 
if (flags & PRIM_BEGIN) {
j = start;
if (ctx->Line.StippleFlag)
RESET_STIPPLE( );
}
else
j = start + 1;
 
if (flags & PRIM_END) {
 
if (start+1 >= count)
return;
 
if (PREFER_DISCRETE_ELT_PRIM( count-start, HW_LINES )) {
int dmasz = GET_SUBSEQUENT_VB_MAX_ELTS();
int currentsz;
 
ELT_INIT( GL_LINES, HW_LINES );
 
/* Emit whole number of lines in each full buffer.
*/
dmasz = dmasz/2;
currentsz = GET_CURRENT_VB_MAX_ELTS();
currentsz = currentsz/2;
 
if (currentsz < 4) {
NEW_BUFFER();
currentsz = dmasz;
}
 
/* Ensure last vertex doesn't wrap:
*/
currentsz--;
dmasz--;
 
for (; j + 1 < count; ) {
GLint i;
ELTS_VARS;
nr = MIN2( currentsz, count - j );
ALLOC_ELTS( (nr-1)*2 );
for ( i = j ; i+1 < j+nr ; i+=1 ) {
EMIT_TWO_ELTS( 0, (i+0), (i+1) );
INCR_ELTS( 2 );
}
 
j += nr - 1;
if (j + 1 < count) {
NEW_BUFFER();
currentsz = dmasz;
}
else {
ALLOC_ELTS( 2 );
EMIT_TWO_ELTS( 0, (j), (start) );
INCR_ELTS( 2 );
}
}
}
else
{
int dmasz = GET_SUBSEQUENT_VB_MAX_ELTS();
int currentsz;
 
ELT_INIT( GL_LINE_STRIP, HW_LINE_STRIP );
 
currentsz = GET_CURRENT_VB_MAX_ELTS();
 
if (currentsz < 8) {
NEW_BUFFER();
currentsz = dmasz;
}
 
/* Ensure last vertex doesn't wrap:
*/
currentsz--;
dmasz--;
 
for ( ; j + 1 < count; ) {
nr = MIN2( currentsz, count - j );
if (j + nr < count) {
TAG(emit_consecutive_elts)( ctx, j, nr );
currentsz = dmasz;
j += nr - 1;
NEW_BUFFER();
}
else if (nr) {
ELTS_VARS;
int i;
 
ALLOC_ELTS( nr + 1 );
for ( i = 0 ; i+1 < nr ; i+=2, j += 2 ) {
EMIT_TWO_ELTS( 0, j, j+1 );
INCR_ELTS( 2 );
}
if (i < nr) {
EMIT_ELT( 0, j ); j++;
INCR_ELTS( 1 );
}
EMIT_ELT( 0, start );
INCR_ELTS( 1 );
NEW_BUFFER();
}
else {
fprintf(stderr, "warining nr==0\n");
}
}
}
} else {
TAG(render_line_strip_verts)( ctx, j, count, flags );
}
}
 
 
static void TAG(render_triangles_verts)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
LOCAL_VARS;
if (0) fprintf(stderr, "%s\n", __FUNCTION__);
 
count -= (count-start)%3;
 
if (start+2 >= count) {
return;
}
 
/* need a PREFER_DISCRETE_ELT_PRIM here too..
*/
EMIT_PRIM( ctx, GL_TRIANGLES, HW_TRIANGLES, start, count );
}
 
 
 
static void TAG(render_tri_strip_verts)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
LOCAL_VARS;
if (0) fprintf(stderr, "%s\n", __FUNCTION__);
 
if (start + 2 >= count)
return;
 
if (PREFER_DISCRETE_ELT_PRIM( count-start, HW_TRIANGLES ))
{
int dmasz = GET_SUBSEQUENT_VB_MAX_ELTS();
int currentsz;
int parity = 0;
GLuint j, nr;
 
ELT_INIT( GL_TRIANGLES, HW_TRIANGLES );
 
if (flags & PRIM_PARITY)
parity = 1;
 
/* Emit even number of tris in each full buffer.
*/
dmasz = dmasz/3;
dmasz -= dmasz & 1;
currentsz = GET_CURRENT_VB_MAX_ELTS();
currentsz = currentsz/3;
currentsz -= currentsz & 1;
 
if (currentsz < 4) {
NEW_BUFFER();
currentsz = dmasz;
}
 
for (j = start; j + 2 < count; j += nr - 2 ) {
GLint i;
ELTS_VARS;
nr = MIN2( currentsz, count - j );
ALLOC_ELTS( (nr-2)*3 );
for ( i = j ; i+2 < j+nr ; i++, parity^=1 ) {
EMIT_ELT( 0, (i+0+parity) );
EMIT_ELT( 1, (i+1-parity) );
EMIT_ELT( 2, (i+2) );
INCR_ELTS( 3 );
}
 
if (nr == currentsz) {
NEW_BUFFER();
currentsz = dmasz;
}
}
}
else if ((flags & PRIM_PARITY) == 0)
EMIT_PRIM( ctx, GL_TRIANGLE_STRIP, HW_TRIANGLE_STRIP_0, start, count );
else if (HAVE_TRI_STRIP_1)
EMIT_PRIM( ctx, GL_TRIANGLE_STRIP, HW_TRIANGLE_STRIP_1, start, count );
else {
/* Emit the first triangle with elts, then the rest as a regular strip.
* TODO: Make this unlikely in t_imm_api.c
*/
ELTS_VARS;
ELT_INIT( GL_TRIANGLES, HW_TRIANGLES );
ALLOC_ELTS( 3 );
EMIT_ELT( 0, (start+1) );
EMIT_ELT( 1, (start+0) );
EMIT_ELT( 2, (start+2) );
INCR_ELTS( 3 );
NEW_PRIMITIVE();
 
start++;
if (start + 2 >= count)
return;
 
EMIT_PRIM( ctx, GL_TRIANGLE_STRIP, HW_TRIANGLE_STRIP_0, start,
count );
}
}
 
static void TAG(render_tri_fan_verts)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
LOCAL_VARS;
if (0) fprintf(stderr, "%s\n", __FUNCTION__);
 
if (start+2 >= count)
return;
 
if (PREFER_DISCRETE_ELT_PRIM( count-start, HW_TRIANGLES ))
{
int dmasz = GET_SUBSEQUENT_VB_MAX_ELTS();
int currentsz;
GLuint j, nr;
 
ELT_INIT( GL_TRIANGLES, HW_TRIANGLES );
 
dmasz = dmasz/3;
currentsz = GET_CURRENT_VB_MAX_ELTS();
currentsz = currentsz/3;
 
if (currentsz < 4) {
NEW_BUFFER();
currentsz = dmasz;
}
 
for (j = start + 1; j + 1 < count; j += nr - 1 ) {
GLint i;
ELTS_VARS;
nr = MIN2( currentsz, count - j );
ALLOC_ELTS( (nr-1)*3 );
for ( i = j ; i+1 < j+nr ; i++ ) {
EMIT_ELT( 0, (start) );
EMIT_ELT( 1, (i) );
EMIT_ELT( 2, (i+1) );
INCR_ELTS( 3 );
}
 
if (nr == currentsz) {
NEW_BUFFER();
currentsz = dmasz;
}
}
}
else {
EMIT_PRIM( ctx, GL_TRIANGLE_FAN, HW_TRIANGLE_FAN, start, count );
}
}
 
 
static void TAG(render_poly_verts)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
LOCAL_VARS;
if (0) fprintf(stderr, "%s\n", __FUNCTION__);
 
if (start+2 >= count)
return;
 
EMIT_PRIM( ctx, GL_POLYGON, HW_POLYGON, start, count );
}
 
static void TAG(render_quad_strip_verts)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
LOCAL_VARS;
if (0) fprintf(stderr, "%s\n", __FUNCTION__);
 
count -= (count-start) & 1;
 
if (start+3 >= count)
return;
 
if (HAVE_QUAD_STRIPS) {
EMIT_PRIM( ctx, GL_QUAD_STRIP, HW_QUAD_STRIP, start, count );
}
else if (ctx->_TriangleCaps & DD_FLATSHADE) {
LOCAL_VARS;
int dmasz = GET_SUBSEQUENT_VB_MAX_ELTS();
int currentsz;
GLuint j, nr;
 
ELT_INIT( GL_TRIANGLES, HW_TRIANGLES );
 
currentsz = GET_CURRENT_VB_MAX_ELTS();
 
/* Emit whole number of quads in total, and in each buffer.
*/
currentsz = (currentsz/6)*2;
dmasz = (dmasz/6)*2;
 
if (currentsz < 4) {
NEW_BUFFER();
currentsz = dmasz;
}
 
for (j = start; j + 3 < count; j += nr - 2 ) {
ELTS_VARS;
GLint quads, i;
 
nr = MIN2( currentsz, count - j );
quads = (nr/2)-1;
ALLOC_ELTS( quads*6 );
for ( i = j ; i < j+quads*2 ; i+=2 ) {
EMIT_TWO_ELTS( 0, (i+0), (i+1) );
EMIT_TWO_ELTS( 2, (i+2), (i+1) );
EMIT_TWO_ELTS( 4, (i+3), (i+2) );
INCR_ELTS( 6 );
}
 
if (nr == currentsz) {
NEW_BUFFER();
currentsz = dmasz;
}
}
}
else {
EMIT_PRIM( ctx, GL_TRIANGLE_STRIP, HW_TRIANGLE_STRIP_0, start, count );
}
}
 
 
static void TAG(render_quads_verts)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
LOCAL_VARS;
if (0) fprintf(stderr, "%s\n", __FUNCTION__);
count -= (count-start)%4;
 
if (start+3 >= count)
return;
 
if (HAVE_QUADS) {
EMIT_PRIM( ctx, HW_QUADS, GL_QUADS, start, count );
}
else {
/* Hardware doesn't have a quad primitive type -- simulate it
* using indexed vertices and the triangle primitive:
*/
LOCAL_VARS;
int dmasz = GET_SUBSEQUENT_VB_MAX_ELTS();
int currentsz;
GLuint j, nr;
 
ELT_INIT( GL_TRIANGLES, HW_TRIANGLES );
currentsz = GET_CURRENT_VB_MAX_ELTS();
 
/* Adjust for rendering as triangles:
*/
currentsz = (currentsz/6)*4;
dmasz = (dmasz/6)*4;
 
if (currentsz < 8) {
NEW_BUFFER();
currentsz = dmasz;
}
 
for (j = start; j < count; j += nr ) {
ELTS_VARS;
GLint quads, i;
nr = MIN2( currentsz, count - j );
quads = nr/4;
 
ALLOC_ELTS( quads*6 );
 
for ( i = j ; i < j+quads*4 ; i+=4 ) {
EMIT_TWO_ELTS( 0, (i+0), (i+1) );
EMIT_TWO_ELTS( 2, (i+3), (i+1) );
EMIT_TWO_ELTS( 4, (i+2), (i+3) );
INCR_ELTS( 6 );
}
 
if (nr == currentsz) {
NEW_BUFFER();
currentsz = dmasz;
}
}
}
}
 
static void TAG(render_noop)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
}
 
 
 
 
static render_func TAG(render_tab_verts)[GL_POLYGON+2] =
{
TAG(render_points_verts),
TAG(render_lines_verts),
TAG(render_line_loop_verts),
TAG(render_line_strip_verts),
TAG(render_triangles_verts),
TAG(render_tri_strip_verts),
TAG(render_tri_fan_verts),
TAG(render_quads_verts),
TAG(render_quad_strip_verts),
TAG(render_poly_verts),
TAG(render_noop),
};
 
 
/****************************************************************************
* Render elts using hardware indexed verts *
****************************************************************************/
 
static void TAG(render_points_elts)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
LOCAL_VARS;
int dmasz = GET_SUBSEQUENT_VB_MAX_ELTS();
int currentsz;
GLuint *elts = GET_ELTS();
GLuint j, nr;
 
ELT_INIT( GL_POINTS, HW_POINTS );
 
currentsz = GET_CURRENT_VB_MAX_ELTS();
if (currentsz < 8)
currentsz = dmasz;
 
for (j = start; j < count; j += nr ) {
nr = MIN2( currentsz, count - j );
TAG(emit_elts)( ctx, elts+j, nr );
NEW_PRIMITIVE();
currentsz = dmasz;
}
}
 
 
 
static void TAG(render_lines_elts)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
LOCAL_VARS;
int dmasz = GET_SUBSEQUENT_VB_MAX_ELTS();
int currentsz;
GLuint *elts = GET_ELTS();
GLuint j, nr;
 
if (start+1 >= count)
return;
 
if ((flags & PRIM_BEGIN) && ctx->Line.StippleFlag) {
RESET_STIPPLE();
AUTO_STIPPLE( GL_TRUE );
}
 
ELT_INIT( GL_LINES, HW_LINES );
 
/* Emit whole number of lines in total and in each buffer:
*/
count -= (count-start) & 1;
currentsz -= currentsz & 1;
dmasz -= dmasz & 1;
 
currentsz = GET_CURRENT_VB_MAX_ELTS();
if (currentsz < 8)
currentsz = dmasz;
 
for (j = start; j < count; j += nr ) {
nr = MIN2( currentsz, count - j );
TAG(emit_elts)( ctx, elts+j, nr );
NEW_PRIMITIVE();
currentsz = dmasz;
}
 
if ((flags & PRIM_END) && ctx->Line.StippleFlag)
AUTO_STIPPLE( GL_FALSE );
}
 
 
static void TAG(render_line_strip_elts)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
LOCAL_VARS;
int dmasz = GET_SUBSEQUENT_VB_MAX_ELTS();
int currentsz;
GLuint *elts = GET_ELTS();
GLuint j, nr;
 
if (start+1 >= count)
return;
 
ELT_INIT( GL_LINE_STRIP, HW_LINE_STRIP );
 
if ((flags & PRIM_BEGIN) && ctx->Line.StippleFlag)
RESET_STIPPLE();
 
currentsz = GET_CURRENT_VB_MAX_ELTS();
if (currentsz < 8)
currentsz = dmasz;
 
for (j = start; j + 1 < count; j += nr - 1 ) {
nr = MIN2( currentsz, count - j );
TAG(emit_elts)( ctx, elts+j, nr );
NEW_PRIMITIVE();
currentsz = dmasz;
}
}
 
 
static void TAG(render_line_loop_elts)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
LOCAL_VARS;
int dmasz = GET_SUBSEQUENT_VB_MAX_ELTS();
int currentsz;
GLuint *elts = GET_ELTS();
GLuint j, nr;
 
if (0) fprintf(stderr, "%s\n", __FUNCTION__);
 
if (flags & PRIM_BEGIN)
j = start;
else
j = start + 1;
 
if (flags & PRIM_END) {
if (start+1 >= count)
return;
}
else {
if (j+1 >= count)
return;
}
 
ELT_INIT( GL_LINE_STRIP, HW_LINE_STRIP );
 
if ((flags & PRIM_BEGIN) && ctx->Line.StippleFlag)
RESET_STIPPLE();
 
currentsz = GET_CURRENT_VB_MAX_ELTS();
if (currentsz < 8) {
NEW_BUFFER();
currentsz = dmasz;
}
 
/* Ensure last vertex doesn't wrap:
*/
currentsz--;
dmasz--;
 
for ( ; j + 1 < count; j += nr - 1 ) {
nr = MIN2( currentsz, count - j );
TAG(emit_elts)( ctx, elts+j, nr );
currentsz = dmasz;
}
 
if (flags & PRIM_END)
TAG(emit_elts)( ctx, elts+start, 1 );
 
NEW_PRIMITIVE();
}
 
 
static void TAG(render_triangles_elts)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
LOCAL_VARS;
GLuint *elts = GET_ELTS();
int dmasz = GET_SUBSEQUENT_VB_MAX_ELTS()/3*3;
int currentsz;
GLuint j, nr;
 
if (start+2 >= count)
return;
 
/* NEW_PRIMITIVE(); */
ELT_INIT( GL_TRIANGLES, HW_TRIANGLES );
 
currentsz = GET_CURRENT_VB_MAX_ELTS();
 
/* Emit whole number of tris in total. dmasz is already a multiple
* of 3.
*/
count -= (count-start)%3;
currentsz -= currentsz%3;
if (currentsz < 8)
currentsz = dmasz;
 
for (j = start; j < count; j += nr) {
nr = MIN2( currentsz, count - j );
TAG(emit_elts)( ctx, elts+j, nr );
NEW_PRIMITIVE();
currentsz = dmasz;
}
}
 
 
 
static void TAG(render_tri_strip_elts)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
LOCAL_VARS;
GLuint j, nr;
GLuint *elts = GET_ELTS();
int dmasz = GET_SUBSEQUENT_VB_MAX_ELTS();
int currentsz;
 
if (start+2 >= count)
return;
 
ELT_INIT( GL_TRIANGLE_STRIP, HW_TRIANGLE_STRIP_0 );
 
currentsz = GET_CURRENT_VB_MAX_ELTS();
if (currentsz < 8) {
NEW_BUFFER();
currentsz = dmasz;
}
 
if ((flags & PRIM_PARITY) && count - start > 2) {
TAG(emit_elts)( ctx, elts+start, 1 );
currentsz--;
}
 
/* Keep the same winding over multiple buffers:
*/
dmasz -= (dmasz & 1);
currentsz -= (currentsz & 1);
 
for (j = start ; j + 2 < count; j += nr - 2 ) {
nr = MIN2( currentsz, count - j );
TAG(emit_elts)( ctx, elts+j, nr );
NEW_PRIMITIVE();
currentsz = dmasz;
}
}
 
static void TAG(render_tri_fan_elts)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
LOCAL_VARS;
GLuint *elts = GET_ELTS();
GLuint j, nr;
int dmasz = GET_SUBSEQUENT_VB_MAX_ELTS();
int currentsz;
 
if (start+2 >= count)
return;
 
ELT_INIT( GL_TRIANGLE_FAN, HW_TRIANGLE_FAN );
 
currentsz = GET_CURRENT_VB_MAX_ELTS();
if (currentsz < 8) {
NEW_BUFFER();
currentsz = dmasz;
}
 
for (j = start + 1 ; j + 1 < count; j += nr - 1 ) {
nr = MIN2( currentsz, count - j + 1 );
TAG(emit_elts)( ctx, elts+start, 1 );
TAG(emit_elts)( ctx, elts+j, nr - 1 );
NEW_PRIMITIVE();
currentsz = dmasz;
}
}
 
 
static void TAG(render_poly_elts)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
LOCAL_VARS;
GLuint *elts = GET_ELTS();
GLuint j, nr;
int dmasz = GET_SUBSEQUENT_VB_MAX_ELTS();
int currentsz;
 
if (start+2 >= count)
return;
 
ELT_INIT( GL_POLYGON, HW_POLYGON );
 
currentsz = GET_CURRENT_VB_MAX_ELTS();
if (currentsz < 8) {
NEW_BUFFER();
currentsz = dmasz;
}
 
for (j = start + 1 ; j + 1 < count ; j += nr - 1 ) {
nr = MIN2( currentsz, count - j + 1 );
TAG(emit_elts)( ctx, elts+start, 1 );
TAG(emit_elts)( ctx, elts+j, nr - 1 );
NEW_PRIMITIVE();
currentsz = dmasz;
}
}
 
static void TAG(render_quad_strip_elts)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
if (start+3 >= count)
return;
 
if (HAVE_QUAD_STRIPS && 0) {
}
else {
LOCAL_VARS;
GLuint *elts = GET_ELTS();
int dmasz = GET_SUBSEQUENT_VB_MAX_ELTS();
int currentsz;
GLuint j, nr;
 
NEW_PRIMITIVE();
currentsz = GET_CURRENT_VB_MAX_ELTS();
 
/* Emit whole number of quads in total, and in each buffer.
*/
dmasz -= dmasz & 1;
count -= (count-start) & 1;
currentsz -= currentsz & 1;
 
if (currentsz < 12)
currentsz = dmasz;
 
if (ctx->_TriangleCaps & DD_FLATSHADE) {
ELT_INIT( GL_TRIANGLES, HW_TRIANGLES );
 
currentsz = currentsz/6*2;
dmasz = dmasz/6*2;
 
for (j = start; j + 3 < count; j += nr - 2 ) {
nr = MIN2( currentsz, count - j );
 
if (nr >= 4)
{
GLint i;
GLint quads = (nr/2)-1;
ELTS_VARS;
 
ALLOC_ELTS( quads*6 );
 
for ( i = j-start ; i < j-start+quads ; i++, elts += 2 ) {
EMIT_TWO_ELTS( 0, elts[0], elts[1] );
EMIT_TWO_ELTS( 2, elts[2], elts[1] );
EMIT_TWO_ELTS( 4, elts[3], elts[2] );
INCR_ELTS( 6 );
}
 
NEW_PRIMITIVE();
}
 
currentsz = dmasz;
}
}
else {
ELT_INIT( GL_TRIANGLE_STRIP, HW_TRIANGLE_STRIP_0 );
 
for (j = start; j + 3 < count; j += nr - 2 ) {
nr = MIN2( currentsz, count - j );
TAG(emit_elts)( ctx, elts+j, nr );
NEW_PRIMITIVE();
currentsz = dmasz;
}
}
}
}
 
 
static void TAG(render_quads_elts)( GLcontext *ctx,
GLuint start,
GLuint count,
GLuint flags )
{
if (start+3 >= count)
return;
 
if (HAVE_QUADS && 0) {
} else {
LOCAL_VARS;
GLuint *elts = GET_ELTS();
int dmasz = GET_SUBSEQUENT_VB_MAX_ELTS();
int currentsz;
GLuint j, nr;
 
ELT_INIT( GL_TRIANGLES, HW_TRIANGLES );
currentsz = GET_CURRENT_VB_MAX_ELTS();
 
/* Emit whole number of quads in total, and in each buffer.
*/
dmasz -= dmasz & 3;
count -= (count-start) & 3;
currentsz -= currentsz & 3;
 
/* Adjust for rendering as triangles:
*/
currentsz = currentsz/6*4;
dmasz = dmasz/6*4;
 
if (currentsz < 8)
currentsz = dmasz;
 
for (j = start; j + 3 < count; j += nr - 2 ) {
nr = MIN2( currentsz, count - j );
 
if (nr >= 4)
{
GLint quads = nr/4;
GLint i;
ELTS_VARS;
ALLOC_ELTS( quads * 6 );
 
for ( i = j-start ; i < j-start+quads ; i++, elts += 4 ) {
EMIT_TWO_ELTS( 0, elts[0], elts[1] );
EMIT_TWO_ELTS( 2, elts[3], elts[1] );
EMIT_TWO_ELTS( 4, elts[2], elts[3] );
INCR_ELTS( 6 );
}
}
 
NEW_PRIMITIVE();
currentsz = dmasz;
}
}
}
 
 
 
static render_func TAG(render_tab_elts)[GL_POLYGON+2] =
{
TAG(render_points_elts),
TAG(render_lines_elts),
TAG(render_line_loop_elts),
TAG(render_line_strip_elts),
TAG(render_triangles_elts),
TAG(render_tri_strip_elts),
TAG(render_tri_fan_elts),
TAG(render_quads_elts),
TAG(render_quad_strip_elts),
TAG(render_poly_elts),
TAG(render_noop),
};
/shark/trunk/ports/mesa/src/tnl_dd/t_dd_vbtmp.h
0,0 → 1,835
/* $Id: t_dd_vbtmp.h,v 1.1 2003-02-28 11:54:02 pj Exp $ */
 
/*
* Mesa 3-D graphics library
* Version: 4.1
*
* Copyright (C) 1999-2002 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* Authors:
* Keith Whitwell <keith@tungstengraphics.com>
*/
 
 
/* Unlike the other templates here, this assumes quite a bit about the
* underlying hardware. Specifically it assumes a d3d-like vertex
* format, with a layout more or less constrained to look like the
* following:
*
* union {
* struct {
* float x, y, z, w;
* struct { char r, g, b, a; } color;
* struct { char r, g, b, fog; } spec;
* float u0, v0;
* float u1, v1;
* float u2, v2;
* float u3, v3;
* } v;
* struct {
* float x, y, z, w;
* struct { char r, g, b, a; } color;
* struct { char r, g, b, fog; } spec;
* float u0, v0, q0;
* float u1, v1, q1;
* float u2, v2, q2;
* float u3, v3, q3;
* } pv;
* struct {
* float x, y, z;
* struct { char r, g, b, a; } color;
* } tv;
* float f[16];
* unsigned int ui[16];
* unsigned char ub4[4][16];
* }
*
* VERTEX: hw vertex type as above
* VERTEX_COLOR: hw color struct type in VERTEX
*
* DO_XYZW: Emit xyz and maybe w coordinates.
* DO_RGBA: Emit color.
* DO_SPEC: Emit specular color.
* DO_FOG: Emit fog coordinate in specular alpha.
* DO_TEX0: Emit tex0 u,v coordinates.
* DO_TEX1: Emit tex1 u,v coordinates.
* DO_TEX2: Emit tex2 u,v coordinates.
* DO_TEX3: Emit tex3 u,v coordinates.
* DO_PTEX: Emit tex0,1,2,3 q coordinates where possible.
*
* HAVE_RGBA_COLOR: Hardware takes color in rgba order (else bgra).
*
* HAVE_HW_VIEWPORT: Hardware performs viewport transform.
* HAVE_HW_DIVIDE: Hardware performs perspective divide.
*
* HAVE_TINY_VERTICES: Hardware understands v.tv format.
* HAVE_PTEX_VERTICES: Hardware understands v.pv format.
* HAVE_NOTEX_VERTICES: Hardware understands v.v format with texcount 0.
*
* Additionally, this template assumes it is emitting *transformed*
* vertices; the modifications to emit untransformed vertices (ie. to
* t&l hardware) are probably too great to cooexist with the code
* already in this file.
*
* NOTE: The PTEX vertex format always includes TEX0 and TEX1, even if
* only TEX0 is enabled, in order to maintain a vertex size which is
* an exact number of quadwords.
*/
 
#if (HAVE_HW_VIEWPORT)
#define VIEWPORT_X(dst,x) dst = x
#define VIEWPORT_Y(dst,y) dst = y
#define VIEWPORT_Z(dst,z) dst = z
#else
#define VIEWPORT_X(dst,x) dst = s[0] * x + s[12]
#define VIEWPORT_Y(dst,y) dst = s[5] * y + s[13]
#define VIEWPORT_Z(dst,z) dst = s[10] * z + s[14]
#endif
 
#if (HAVE_HW_DIVIDE && !HAVE_PTEX_VERTICES)
#error "can't cope with this combination"
#endif
 
#ifndef LOCALVARS
#define LOCALVARS
#endif
 
#ifndef CHECK_HW_DIVIDE
#define CHECK_HW_DIVIDE 1
#endif
 
#if (HAVE_HW_DIVIDE || DO_SPEC || DO_TEX0 || DO_FOG || !HAVE_TINY_VERTICES)
 
static void TAG(emit)( GLcontext *ctx,
GLuint start, GLuint end,
void *dest,
GLuint stride )
{
LOCALVARS
struct vertex_buffer *VB = &TNL_CONTEXT(ctx)->vb;
GLfloat (*tc0)[4], (*tc1)[4], (*fog)[4];
GLfloat (*tc2)[4], (*tc3)[4];
GLubyte (*col)[4], (*spec)[4];
GLuint tc0_stride, tc1_stride, col_stride, spec_stride, fog_stride;
GLuint tc2_stride, tc3_stride;
GLuint tc0_size, tc1_size;
GLuint tc2_size, tc3_size;
GLfloat (*coord)[4];
GLuint coord_stride;
VERTEX *v = (VERTEX *)dest;
const GLfloat *s = GET_VIEWPORT_MAT();
const GLubyte *mask = VB->ClipMask;
int i;
 
/* fprintf(stderr, "%s(big) importable %d %d..%d\n", */
/* __FUNCTION__, VB->importable_data, start, end); */
 
if (HAVE_HW_VIEWPORT && HAVE_HW_DIVIDE && CHECK_HW_DIVIDE) {
(void) s;
coord = VB->ClipPtr->data;
coord_stride = VB->ClipPtr->stride;
}
else {
coord = VB->NdcPtr->data;
coord_stride = VB->NdcPtr->stride;
}
 
if (DO_TEX3) {
const GLuint t3 = GET_TEXSOURCE(3);
tc3 = VB->TexCoordPtr[t3]->data;
tc3_stride = VB->TexCoordPtr[t3]->stride;
if (DO_PTEX)
tc3_size = VB->TexCoordPtr[t3]->size;
}
 
if (DO_TEX2) {
const GLuint t2 = GET_TEXSOURCE(2);
tc2 = VB->TexCoordPtr[t2]->data;
tc2_stride = VB->TexCoordPtr[t2]->stride;
if (DO_PTEX)
tc2_size = VB->TexCoordPtr[t2]->size;
}
 
if (DO_TEX1) {
const GLuint t1 = GET_TEXSOURCE(1);
tc1 = VB->TexCoordPtr[t1]->data;
tc1_stride = VB->TexCoordPtr[t1]->stride;
if (DO_PTEX)
tc1_size = VB->TexCoordPtr[t1]->size;
}
 
if (DO_TEX0) {
const GLuint t0 = GET_TEXSOURCE(0);
tc0_stride = VB->TexCoordPtr[t0]->stride;
tc0 = VB->TexCoordPtr[t0]->data;
if (DO_PTEX)
tc0_size = VB->TexCoordPtr[t0]->size;
}
 
if (DO_RGBA) {
if (VB->ColorPtr[0]->Type != GL_UNSIGNED_BYTE)
IMPORT_FLOAT_COLORS( ctx );
col = (GLubyte (*)[4])VB->ColorPtr[0]->Ptr;
col_stride = VB->ColorPtr[0]->StrideB;
}
 
if (DO_SPEC) {
if (VB->SecondaryColorPtr[0]) {
if (VB->SecondaryColorPtr[0]->Type != GL_UNSIGNED_BYTE)
IMPORT_FLOAT_SPEC_COLORS( ctx );
spec = (GLubyte (*)[4])VB->SecondaryColorPtr[0]->Ptr;
spec_stride = VB->SecondaryColorPtr[0]->StrideB;
} else {
GLubyte tmp[4];
spec = &tmp;
spec_stride = 0;
}
}
 
if (DO_FOG) {
if (VB->FogCoordPtr) {
fog = VB->FogCoordPtr->data;
fog_stride = VB->FogCoordPtr->stride;
}
else {
static GLfloat tmp[4] = {0, 0, 0, 0};
fog = &tmp;
fog_stride = 0;
}
}
 
if (VB->importable_data) {
/* May have nonstandard strides:
*/
if (start) {
coord = (GLfloat (*)[4])((GLubyte *)coord + start * coord_stride);
if (DO_TEX0)
tc0 = (GLfloat (*)[4])((GLubyte *)tc0 + start * tc0_stride);
if (DO_TEX1)
tc1 = (GLfloat (*)[4])((GLubyte *)tc1 + start * tc1_stride);
if (DO_TEX2)
tc2 = (GLfloat (*)[4])((GLubyte *)tc2 + start * tc2_stride);
if (DO_TEX3)
tc3 = (GLfloat (*)[4])((GLubyte *)tc3 + start * tc3_stride);
if (DO_RGBA)
STRIDE_4UB(col, start * col_stride);
if (DO_SPEC)
STRIDE_4UB(spec, start * spec_stride);
if (DO_FOG)
/*STRIDE_F(fog, start * fog_stride);*/
fog = (GLfloat (*)[4])((GLfloat *)fog + start * fog_stride);
}
 
for (i=start; i < end; i++, v = (VERTEX *)((GLubyte *)v + stride)) {
if (DO_XYZW) {
if (HAVE_HW_VIEWPORT || mask[i] == 0) {
VIEWPORT_X(v->v.x, coord[0][0]);
VIEWPORT_Y(v->v.y, coord[0][1]);
VIEWPORT_Z(v->v.z, coord[0][2]);
v->v.w = coord[0][3];
}
/* fprintf(stderr, "vert %d: %.2f %.2f %.2f %.2f\n", */
/* i, v->v.x, v->v.y, v->v.z, v->v.w); */
coord = (GLfloat (*)[4])((GLubyte *)coord + coord_stride);
}
if (DO_RGBA) {
if (HAVE_RGBA_COLOR) {
*(GLuint *)&v->v.color = LE32_TO_CPU(*(GLuint *)&col[0]);
STRIDE_4UB(col, col_stride);
} else {
v->v.color.blue = col[0][2];
v->v.color.green = col[0][1];
v->v.color.red = col[0][0];
v->v.color.alpha = col[0][3];
STRIDE_4UB(col, col_stride);
}
}
if (DO_SPEC) {
v->v.specular.red = spec[0][0];
v->v.specular.green = spec[0][1];
v->v.specular.blue = spec[0][2];
STRIDE_4UB(spec, spec_stride);
}
if (DO_FOG) {
v->v.specular.alpha = fog[0][0] * 255.0;
/*STRIDE_F(fog, fog_stride);*/
fog = (GLfloat (*)[4])((GLfloat *)fog + fog_stride);
}
if (DO_TEX0) {
v->v.u0 = tc0[0][0];
v->v.v0 = tc0[0][1];
if (DO_PTEX) {
if (HAVE_PTEX_VERTICES) {
if (tc0_size == 4)
v->pv.q0 = tc0[0][3];
else
v->pv.q0 = 1.0;
}
else if (tc0_size == 4) {
float rhw = 1.0 / tc0[0][3];
v->v.w *= tc0[0][3];
v->v.u0 *= rhw;
v->v.v0 *= rhw;
}
}
tc0 = (GLfloat (*)[4])((GLubyte *)tc0 + tc0_stride);
}
if (DO_TEX1) {
if (DO_PTEX) {
v->pv.u1 = tc1[0][0];
v->pv.v1 = tc1[0][1];
if (tc1_size == 4)
v->pv.q1 = tc1[0][3];
else
v->pv.q1 = 1.0;
}
else {
v->v.u1 = tc1[0][0];
v->v.v1 = tc1[0][1];
}
tc1 = (GLfloat (*)[4])((GLubyte *)tc1 + tc1_stride);
}
else if (DO_PTEX) {
*(GLuint *)&v->pv.q1 = 0; /* avoid culling on radeon */
}
if (DO_TEX2) {
if (DO_PTEX) {
v->pv.u2 = tc2[0][0];
v->pv.v2 = tc2[0][1];
if (tc2_size == 4)
v->pv.q2 = tc2[0][3];
else
v->pv.q2 = 1.0;
}
else {
v->v.u2 = tc2[0][0];
v->v.v2 = tc2[0][1];
}
tc2 = (GLfloat (*)[4])((GLubyte *)tc2 + tc2_stride);
}
if (DO_TEX3) {
if (DO_PTEX) {
v->pv.u3 = tc3[0][0];
v->pv.v3 = tc3[0][1];
if (tc3_size == 4)
v->pv.q3 = tc3[0][3];
else
v->pv.q3 = 1.0;
}
else {
v->v.u3 = tc3[0][0];
v->v.v3 = tc3[0][1];
}
tc3 = (GLfloat (*)[4])((GLubyte *)tc3 + tc3_stride);
}
}
}
else {
for (i=start; i < end; i++, v = (VERTEX *)((GLubyte *)v + stride)) {
if (DO_XYZW) {
if (HAVE_HW_VIEWPORT || mask[i] == 0) {
VIEWPORT_X(v->v.x, coord[i][0]);
VIEWPORT_Y(v->v.y, coord[i][1]);
VIEWPORT_Z(v->v.z, coord[i][2]);
v->v.w = coord[i][3];
}
}
if (DO_RGBA) {
if (HAVE_RGBA_COLOR) {
*(GLuint *)&v->v.color = LE32_TO_CPU(*(GLuint *)&col[i]);
}
else {
v->v.color.blue = col[i][2];
v->v.color.green = col[i][1];
v->v.color.red = col[i][0];
v->v.color.alpha = col[i][3];
}
}
if (DO_SPEC) {
v->v.specular.red = spec[i][0];
v->v.specular.green = spec[i][1];
v->v.specular.blue = spec[i][2];
}
if (DO_FOG) {
v->v.specular.alpha = fog[i][0] * 255.0;
}
if (DO_TEX0) {
v->v.u0 = tc0[i][0];
v->v.v0 = tc0[i][1];
if (DO_PTEX) {
if (HAVE_PTEX_VERTICES) {
if (tc0_size == 4)
v->pv.q0 = tc0[i][3];
else
v->pv.q0 = 1.0;
 
v->pv.q1 = 0; /* radeon */
}
else if (tc0_size == 4) {
float rhw = 1.0 / tc0[i][3];
v->v.w *= tc0[i][3];
v->v.u0 *= rhw;
v->v.v0 *= rhw;
}
}
}
if (DO_TEX1) {
if (DO_PTEX) {
v->pv.u1 = tc1[i][0];
v->pv.v1 = tc1[i][1];
if (tc1_size == 4)
v->pv.q1 = tc1[i][3];
else
v->pv.q1 = 1.0;
}
else {
v->v.u1 = tc1[i][0];
v->v.v1 = tc1[i][1];
}
}
}
}
}
#else
#if DO_XYZW
 
#if HAVE_HW_DIVIDE
#error "cannot use tiny vertices with hw perspective divide"
#endif
 
static void TAG(emit)( GLcontext *ctx, GLuint start, GLuint end,
void *dest, GLuint stride )
{
LOCALVARS
struct vertex_buffer *VB = &TNL_CONTEXT(ctx)->vb;
GLubyte (*col)[4];
GLuint col_stride;
GLfloat (*coord)[4] = VB->NdcPtr->data;
GLuint coord_stride = VB->NdcPtr->stride;
GLfloat *v = (GLfloat *)dest;
const GLubyte *mask = VB->ClipMask;
const GLfloat *s = GET_VIEWPORT_MAT();
int i;
 
(void) s;
 
ASSERT(stride == 4);
 
if (VB->ColorPtr[0]->Type != GL_UNSIGNED_BYTE)
IMPORT_FLOAT_COLORS( ctx );
 
col = (GLubyte (*)[4])VB->ColorPtr[0]->Ptr;
col_stride = VB->ColorPtr[0]->StrideB;
ASSERT(VB->ColorPtr[0]->Type == GL_UNSIGNED_BYTE);
 
/* fprintf(stderr, "%s(small) importable %x\n", */
/* __FUNCTION__, VB->importable_data); */
 
/* Pack what's left into a 4-dword vertex. Color is in a different
* place, and there is no 'w' coordinate.
*/
if (VB->importable_data) {
if (start) {
coord = (GLfloat (*)[4])((GLubyte *)coord + start * coord_stride);
STRIDE_4UB(col, start * col_stride);
}
 
for (i=start; i < end; i++, v+=4) {
if (HAVE_HW_VIEWPORT || mask[i] == 0) {
VIEWPORT_X(v[0], coord[0][0]);
VIEWPORT_Y(v[1], coord[0][1]);
VIEWPORT_Z(v[2], coord[0][2]);
}
coord = (GLfloat (*)[4])((GLubyte *)coord + coord_stride);
if (DO_RGBA) {
if (HAVE_RGBA_COLOR) {
*(GLuint *)&v[3] = LE32_TO_CPU(*(GLuint *)col);
}
else {
VERTEX_COLOR *c = (VERTEX_COLOR *)&v[3];
c->blue = col[0][2];
c->green = col[0][1];
c->red = col[0][0];
c->alpha = col[0][3];
}
STRIDE_4UB( col, col_stride );
}
/* fprintf(stderr, "vert %d: %.2f %.2f %.2f %x\n", */
/* i, v[0], v[1], v[2], *(int *)&v[3]); */
}
}
else {
for (i=start; i < end; i++, v+=4) {
if (HAVE_HW_VIEWPORT || mask[i] == 0) {
VIEWPORT_X(v[0], coord[i][0]);
VIEWPORT_Y(v[1], coord[i][1]);
VIEWPORT_Z(v[2], coord[i][2]);
}
if (DO_RGBA) {
if (HAVE_RGBA_COLOR) {
*(GLuint *)&v[3] = LE32_TO_CPU(*(GLuint *)&col[i]);
}
else {
VERTEX_COLOR *c = (VERTEX_COLOR *)&v[3];
c->blue = col[i][2];
c->green = col[i][1];
c->red = col[i][0];
c->alpha = col[i][3];
}
}
/* fprintf(stderr, "vert %d: %.2f %.2f %.2f %x\n", */
/* i, v[0], v[1], v[2], *(int *)&v[3]); */
 
}
}
}
#else
static void TAG(emit)( GLcontext *ctx, GLuint start, GLuint end,
void *dest, GLuint stride )
{
LOCALVARS
struct vertex_buffer *VB = &TNL_CONTEXT(ctx)->vb;
GLubyte (*col)[4];
GLuint col_stride;
GLfloat *v = (GLfloat *)dest;
int i;
 
if (VB->ColorPtr[0]->Type != GL_UNSIGNED_BYTE)
IMPORT_FLOAT_COLORS( ctx );
 
col = VB->ColorPtr[0]->Ptr;
col_stride = VB->ColorPtr[0]->StrideB;
 
if (start)
STRIDE_4UB(col, col_stride * start);
 
/* Need to figure out where color is:
*/
if (GET_VERTEX_FORMAT() == TINY_VERTEX_FORMAT)
v += 3;
else
v += 4;
 
for (i=start; i < end; i++, STRIDE_F(v, stride)) {
if (HAVE_RGBA_COLOR) {
*(GLuint *)v = LE32_TO_CPU(*(GLuint *)col[0]);
}
else {
VERTEX_COLOR *c = (VERTEX_COLOR *)v;
c->blue = col[0][2];
c->green = col[0][1];
c->red = col[0][0];
c->alpha = col[0][3];
}
STRIDE_4UB( col, col_stride );
}
}
#endif /* emit */
#endif /* emit */
 
#if (DO_XYZW) && (DO_RGBA)
 
 
#if (HAVE_PTEX_VERTICES)
static GLboolean TAG(check_tex_sizes)( GLcontext *ctx )
{
LOCALVARS
struct vertex_buffer *VB = &TNL_CONTEXT(ctx)->vb;
 
/* Force 'missing' texcoords to something valid.
*/
if (DO_TEX3 && VB->TexCoordPtr[2] == 0)
VB->TexCoordPtr[2] = VB->TexCoordPtr[3];
 
if (DO_TEX2 && VB->TexCoordPtr[1] == 0)
VB->TexCoordPtr[1] = VB->TexCoordPtr[2];
 
if (DO_TEX1 && VB->TexCoordPtr[0] == 0)
VB->TexCoordPtr[0] = VB->TexCoordPtr[1];
 
if (DO_PTEX)
return GL_TRUE;
if ((DO_TEX3 && VB->TexCoordPtr[GET_TEXSOURCE(3)]->size == 4) ||
(DO_TEX2 && VB->TexCoordPtr[GET_TEXSOURCE(2)]->size == 4) ||
(DO_TEX1 && VB->TexCoordPtr[GET_TEXSOURCE(1)]->size == 4) ||
(DO_TEX0 && VB->TexCoordPtr[GET_TEXSOURCE(0)]->size == 4))
return GL_FALSE;
 
return GL_TRUE;
}
#else
static GLboolean TAG(check_tex_sizes)( GLcontext *ctx )
{
LOCALVARS
struct vertex_buffer *VB = &TNL_CONTEXT(ctx)->vb;
 
/* Force 'missing' texcoords to something valid.
*/
if (DO_TEX3 && VB->TexCoordPtr[2] == 0)
VB->TexCoordPtr[2] = VB->TexCoordPtr[3];
 
if (DO_TEX2 && VB->TexCoordPtr[1] == 0)
VB->TexCoordPtr[1] = VB->TexCoordPtr[2];
 
if (DO_TEX1 && VB->TexCoordPtr[0] == 0)
VB->TexCoordPtr[0] = VB->TexCoordPtr[1];
 
if (DO_PTEX)
return GL_TRUE;
 
/* No hardware support for projective texture. Can fake it for
* TEX0 only.
*/
if ((DO_TEX3 && VB->TexCoordPtr[GET_TEXSOURCE(3)]->size == 4) ||
(DO_TEX2 && VB->TexCoordPtr[GET_TEXSOURCE(2)]->size == 4) ||
(DO_TEX1 && VB->TexCoordPtr[GET_TEXSOURCE(1)]->size == 4)) {
PTEX_FALLBACK();
return GL_FALSE;
}
 
if (DO_TEX0 && VB->TexCoordPtr[GET_TEXSOURCE(0)]->size == 4) {
if (DO_TEX1 || DO_TEX2 || DO_TEX3) {
PTEX_FALLBACK();
}
return GL_FALSE;
}
 
return GL_TRUE;
}
#endif /* ptex */
 
 
static void TAG(interp)( GLcontext *ctx,
GLfloat t,
GLuint edst, GLuint eout, GLuint ein,
GLboolean force_boundary )
{
LOCALVARS
struct vertex_buffer *VB = &TNL_CONTEXT(ctx)->vb;
GLubyte *ddverts = GET_VERTEX_STORE();
GLuint shift = GET_VERTEX_STRIDE_SHIFT();
const GLfloat *dstclip = VB->ClipPtr->data[edst];
GLfloat w;
const GLfloat *s = GET_VIEWPORT_MAT();
 
VERTEX *dst = (VERTEX *)(ddverts + (edst << shift));
VERTEX *in = (VERTEX *)(ddverts + (ein << shift));
VERTEX *out = (VERTEX *)(ddverts + (eout << shift));
 
(void)s;
 
if (HAVE_HW_DIVIDE && CHECK_HW_DIVIDE) {
VIEWPORT_X( dst->v.x, dstclip[0] );
VIEWPORT_Y( dst->v.y, dstclip[1] );
VIEWPORT_Z( dst->v.z, dstclip[2] );
w = dstclip[3];
}
else {
w = 1.0 / dstclip[3];
VIEWPORT_X( dst->v.x, dstclip[0] * w );
VIEWPORT_Y( dst->v.y, dstclip[1] * w );
VIEWPORT_Z( dst->v.z, dstclip[2] * w );
}
 
if ((HAVE_HW_DIVIDE && CHECK_HW_DIVIDE) ||
DO_FOG || DO_SPEC || DO_TEX0 || DO_TEX1 ||
DO_TEX2 || DO_TEX3 || !HAVE_TINY_VERTICES) {
 
dst->v.w = w;
 
INTERP_UB( t, dst->ub4[4][0], out->ub4[4][0], in->ub4[4][0] );
INTERP_UB( t, dst->ub4[4][1], out->ub4[4][1], in->ub4[4][1] );
INTERP_UB( t, dst->ub4[4][2], out->ub4[4][2], in->ub4[4][2] );
INTERP_UB( t, dst->ub4[4][3], out->ub4[4][3], in->ub4[4][3] );
 
if (DO_SPEC) {
INTERP_UB( t, dst->v.specular.red, out->v.specular.red, in->v.specular.red );
INTERP_UB( t, dst->v.specular.green, out->v.specular.green, in->v.specular.green );
INTERP_UB( t, dst->v.specular.blue, out->v.specular.blue, in->v.specular.blue );
}
if (DO_FOG) {
INTERP_UB( t, dst->v.specular.alpha, out->v.specular.alpha, in->v.specular.alpha );
}
if (DO_TEX0) {
if (DO_PTEX) {
if (HAVE_PTEX_VERTICES) {
INTERP_F( t, dst->pv.u0, out->pv.u0, in->pv.u0 );
INTERP_F( t, dst->pv.v0, out->pv.v0, in->pv.v0 );
INTERP_F( t, dst->pv.q0, out->pv.q0, in->pv.q0 );
} else {
GLfloat wout = VB->NdcPtr->data[eout][3];
GLfloat win = VB->NdcPtr->data[ein][3];
GLfloat qout = out->pv.w / wout;
GLfloat qin = in->pv.w / win;
GLfloat qdst, rqdst;
 
ASSERT( !HAVE_HW_DIVIDE );
 
INTERP_F( t, dst->v.u0, out->v.u0 * qout, in->v.u0 * qin );
INTERP_F( t, dst->v.v0, out->v.v0 * qout, in->v.v0 * qin );
INTERP_F( t, qdst, qout, qin );
 
rqdst = 1.0 / qdst;
dst->v.u0 *= rqdst;
dst->v.v0 *= rqdst;
dst->v.w *= rqdst;
}
}
else {
INTERP_F( t, dst->v.u0, out->v.u0, in->v.u0 );
INTERP_F( t, dst->v.v0, out->v.v0, in->v.v0 );
}
}
if (DO_TEX1) {
if (DO_PTEX) {
INTERP_F( t, dst->pv.u1, out->pv.u1, in->pv.u1 );
INTERP_F( t, dst->pv.v1, out->pv.v1, in->pv.v1 );
INTERP_F( t, dst->pv.q1, out->pv.q1, in->pv.q1 );
} else {
INTERP_F( t, dst->v.u1, out->v.u1, in->v.u1 );
INTERP_F( t, dst->v.v1, out->v.v1, in->v.v1 );
}
}
else if (DO_PTEX) {
dst->pv.q1 = 0.0; /* must be a valid float on radeon */
}
if (DO_TEX2) {
if (DO_PTEX) {
INTERP_F( t, dst->pv.u2, out->pv.u2, in->pv.u2 );
INTERP_F( t, dst->pv.v2, out->pv.v2, in->pv.v2 );
INTERP_F( t, dst->pv.q2, out->pv.q2, in->pv.q2 );
} else {
INTERP_F( t, dst->v.u2, out->v.u2, in->v.u2 );
INTERP_F( t, dst->v.v2, out->v.v2, in->v.v2 );
}
}
if (DO_TEX3) {
if (DO_PTEX) {
INTERP_F( t, dst->pv.u3, out->pv.u3, in->pv.u3 );
INTERP_F( t, dst->pv.v3, out->pv.v3, in->pv.v3 );
INTERP_F( t, dst->pv.q3, out->pv.q3, in->pv.q3 );
} else {
INTERP_F( t, dst->v.u3, out->v.u3, in->v.u3 );
INTERP_F( t, dst->v.v3, out->v.v3, in->v.v3 );
}
}
} else {
/* 4-dword vertex. Color is in v[3] and there is no oow coordinate.
*/
INTERP_UB( t, dst->ub4[3][0], out->ub4[3][0], in->ub4[3][0] );
INTERP_UB( t, dst->ub4[3][1], out->ub4[3][1], in->ub4[3][1] );
INTERP_UB( t, dst->ub4[3][2], out->ub4[3][2], in->ub4[3][2] );
INTERP_UB( t, dst->ub4[3][3], out->ub4[3][3], in->ub4[3][3] );
}
}
 
#endif /* rgba && xyzw */
 
 
static void TAG(init)( void )
{
setup_tab[IND].emit = TAG(emit);
 
#if (DO_XYZW && DO_RGBA)
setup_tab[IND].check_tex_sizes = TAG(check_tex_sizes);
setup_tab[IND].interp = TAG(interp);
#endif
 
if (DO_SPEC)
setup_tab[IND].copy_pv = copy_pv_rgba4_spec5;
else if (HAVE_HW_DIVIDE || DO_SPEC || DO_FOG || DO_TEX0 || DO_TEX1 ||
DO_TEX2 || DO_TEX3 || !HAVE_TINY_VERTICES)
setup_tab[IND].copy_pv = copy_pv_rgba4;
else
setup_tab[IND].copy_pv = copy_pv_rgba3;
 
if (DO_TEX3) {
if (DO_PTEX) {
ASSERT(HAVE_PTEX_VERTICES);
setup_tab[IND].vertex_format = PROJ_TEX3_VERTEX_FORMAT;
setup_tab[IND].vertex_size = 18;
setup_tab[IND].vertex_stride_shift = 7;
}
else {
setup_tab[IND].vertex_format = TEX3_VERTEX_FORMAT;
setup_tab[IND].vertex_size = 14;
setup_tab[IND].vertex_stride_shift = 6;
}
}
else if (DO_TEX2) {
if (DO_PTEX) {
ASSERT(HAVE_PTEX_VERTICES);
setup_tab[IND].vertex_format = PROJ_TEX3_VERTEX_FORMAT;
setup_tab[IND].vertex_size = 18;
setup_tab[IND].vertex_stride_shift = 7;
}
else {
setup_tab[IND].vertex_format = TEX2_VERTEX_FORMAT;
setup_tab[IND].vertex_size = 12;
setup_tab[IND].vertex_stride_shift = 6;
}
}
else if (DO_TEX1) {
if (DO_PTEX) {
ASSERT(HAVE_PTEX_VERTICES);
setup_tab[IND].vertex_format = PROJ_TEX1_VERTEX_FORMAT;
setup_tab[IND].vertex_size = 12;
setup_tab[IND].vertex_stride_shift = 6;
}
else {
setup_tab[IND].vertex_format = TEX1_VERTEX_FORMAT;
setup_tab[IND].vertex_size = 10;
setup_tab[IND].vertex_stride_shift = 6;
}
}
else if (DO_TEX0) {
if (DO_PTEX && HAVE_PTEX_VERTICES) {
setup_tab[IND].vertex_format = PROJ_TEX1_VERTEX_FORMAT;
setup_tab[IND].vertex_size = 12;
setup_tab[IND].vertex_stride_shift = 6;
} else {
setup_tab[IND].vertex_format = TEX0_VERTEX_FORMAT;
setup_tab[IND].vertex_size = 8;
setup_tab[IND].vertex_stride_shift = 5;
}
}
else if (!HAVE_HW_DIVIDE && !DO_SPEC && !DO_FOG && HAVE_TINY_VERTICES) {
setup_tab[IND].vertex_format = TINY_VERTEX_FORMAT;
setup_tab[IND].vertex_size = 4;
setup_tab[IND].vertex_stride_shift = 4;
} else if (HAVE_NOTEX_VERTICES) {
setup_tab[IND].vertex_format = NOTEX_VERTEX_FORMAT;
setup_tab[IND].vertex_size = 6;
setup_tab[IND].vertex_stride_shift = 5;
} else {
setup_tab[IND].vertex_format = TEX0_VERTEX_FORMAT;
setup_tab[IND].vertex_size = 8;
setup_tab[IND].vertex_stride_shift = 5;
}
 
assert(setup_tab[IND].vertex_size * 4 <=
1 << setup_tab[IND].vertex_stride_shift);
}
 
 
#undef IND
#undef TAG
/shark/trunk/ports/mesa/src/tnl_dd/t_dd.c
0,0 → 1,59
/* $Id: t_dd.c,v 1.1 2003-02-28 11:54:01 pj Exp $ */
 
/*
* Mesa 3-D graphics library
* Version: 3.5
*
* Copyright (C) 1999-2001 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* Authors:
* Keith Whitwell <keith@tungstengraphics.com>
*/
 
static void copy_pv_rgba4_spec5( GLcontext *ctx, GLuint edst, GLuint esrc )
{
i810ContextPtr imesa = I810_CONTEXT( ctx );
GLubyte *i810verts = (GLubyte *)imesa->verts;
GLuint shift = imesa->vertex_stride_shift;
i810Vertex *dst = (i810Vertex *)(i810verts + (edst << shift));
i810Vertex *src = (i810Vertex *)(i810verts + (esrc << shift));
dst->ui[4] = src->ui[4];
dst->ui[5] = src->ui[5];
}
 
static void copy_pv_rgba4( GLcontext *ctx, GLuint edst, GLuint esrc )
{
i810ContextPtr imesa = I810_CONTEXT( ctx );
GLubyte *i810verts = (GLubyte *)imesa->verts;
GLuint shift = imesa->vertex_stride_shift;
i810Vertex *dst = (i810Vertex *)(i810verts + (edst << shift));
i810Vertex *src = (i810Vertex *)(i810verts + (esrc << shift));
dst->ui[4] = src->ui[4];
}
 
static void copy_pv_rgba3( GLcontext *ctx, GLuint edst, GLuint esrc )
{
i810ContextPtr imesa = I810_CONTEXT( ctx );
GLubyte *i810verts = (GLubyte *)imesa->verts;
GLuint shift = imesa->vertex_stride_shift;
i810Vertex *dst = (i810Vertex *)(i810verts + (edst << shift));
i810Vertex *src = (i810Vertex *)(i810verts + (esrc << shift));
dst->ui[3] = src->ui[3];
}
/shark/trunk/ports/mesa/src/tnl_dd/t_dd_vertex.h
0,0 → 1,79
/* $Id: t_dd_vertex.h,v 1.1 2003-02-28 11:54:02 pj Exp $ */
 
/*
* Mesa 3-D graphics library
* Version: 4.0.3
*
* Copyright (C) 1999-2002 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* Authors:
* Keith Whitwell <keith@tungstengraphics.com>
*/
 
typedef struct {
GLfloat x, y, z, w;
} TAG(_coord_t);
 
#ifdef COLOR_IS_RGBA
typedef struct {
#if defined(BYTE_ORDER) && defined(BIG_ENDIAN) && BYTE_ORDER == BIG_ENDIAN
GLubyte alpha, blue, green, red;
#else
GLubyte red, green, blue, alpha;
#endif
} TAG(_color_t);
#else
typedef struct {
#if defined(BYTE_ORDER) && defined(BIG_ENDIAN) && BYTE_ORDER == BIG_ENDIAN
GLubyte alpha, red, green, blue;
#else
GLubyte blue, green, red, alpha;
#endif
} TAG(_color_t);
#endif
 
typedef union {
struct {
GLfloat x, y, z, w;
TAG(_color_t) color;
TAG(_color_t) specular;
GLfloat u0, v0;
GLfloat u1, v1;
GLfloat u2, v2;
GLfloat u3, v3;
} v;
struct {
GLfloat x, y, z, w;
TAG(_color_t) color;
TAG(_color_t) specular;
GLfloat u0, v0, q0;
GLfloat u1, v1, q1;
GLfloat u2, v2, q2;
GLfloat u3, v3, q3;
} pv;
struct {
GLfloat x, y, z;
TAG(_color_t) color;
} tv;
GLfloat f[24];
GLuint ui[24];
GLubyte ub4[24][4];
} TAG(Vertex), *TAG(VertexPtr);
 
/shark/trunk/ports/mesa/src/tnl_dd/t_dd_triemit.h
0,0 → 1,157
#ifndef DO_DEBUG_VERTS
#define DO_DEBUG_VERTS 0
#endif
 
#ifndef PRINT_VERTEX
#define PRINT_VERTEX(x)
#endif
 
#if defined(USE_X86_ASM)
#define COPY_DWORDS( j, vb, vertsize, v ) \
do { \
int __tmp; \
__asm__ __volatile__( "rep ; movsl" \
: "=%c" (j), "=D" (vb), "=S" (__tmp) \
: "0" (vertsize), \
"D" ((long)vb), \
"S" ((long)v) ); \
} while (0)
#else
#define COPY_DWORDS( j, vb, vertsize, v ) \
do { \
for ( j = 0 ; j < vertsize ; j++ ) \
vb[j] = ((GLuint *)v)[j]; \
vb += vertsize; \
} while (0)
#endif
 
 
 
#if HAVE_QUADS
static __inline void TAG(quad)( CTX_ARG,
VERTEX *v0,
VERTEX *v1,
VERTEX *v2,
VERTEX *v3 )
{
GLuint vertsize = GET_VERTEX_DWORDS();
GLuint *vb = (GLuint *)ALLOC_VERTS( 4, vertsize);
GLuint j;
 
if (DO_DEBUG_VERTS) {
fprintf(stderr, "%s\n", __FUNCTION__);
PRINT_VERTEX(v0);
PRINT_VERTEX(v1);
PRINT_VERTEX(v2);
PRINT_VERTEX(v3);
}
COPY_DWORDS( j, vb, vertsize, v0 );
COPY_DWORDS( j, vb, vertsize, v1 );
COPY_DWORDS( j, vb, vertsize, v2 );
COPY_DWORDS( j, vb, vertsize, v3 );
}
#else
static __inline void TAG(quad)( CTX_ARG,
VERTEX *v0,
VERTEX *v1,
VERTEX *v2,
VERTEX *v3 )
{
GLuint vertsize = GET_VERTEX_DWORDS();
GLuint *vb = (GLuint *)ALLOC_VERTS( 6, vertsize);
GLuint j;
 
if (DO_DEBUG_VERTS) {
fprintf(stderr, "%s\n", __FUNCTION__);
PRINT_VERTEX(v0);
PRINT_VERTEX(v1);
PRINT_VERTEX(v2);
PRINT_VERTEX(v3);
}
COPY_DWORDS( j, vb, vertsize, v0 );
COPY_DWORDS( j, vb, vertsize, v1 );
COPY_DWORDS( j, vb, vertsize, v3 );
COPY_DWORDS( j, vb, vertsize, v1 );
COPY_DWORDS( j, vb, vertsize, v2 );
COPY_DWORDS( j, vb, vertsize, v3 );
}
#endif
 
 
static __inline void TAG(triangle)( CTX_ARG,
VERTEX *v0,
VERTEX *v1,
VERTEX *v2 )
{
GLuint vertsize = GET_VERTEX_DWORDS();
GLuint *vb = (GLuint *)ALLOC_VERTS( 3, vertsize);
GLuint j;
 
if (DO_DEBUG_VERTS) {
fprintf(stderr, "%s\n", __FUNCTION__);
PRINT_VERTEX(v0);
PRINT_VERTEX(v1);
PRINT_VERTEX(v2);
}
 
COPY_DWORDS( j, vb, vertsize, v0 );
COPY_DWORDS( j, vb, vertsize, v1 );
COPY_DWORDS( j, vb, vertsize, v2 );
}
 
 
#if HAVE_LINES
static __inline void TAG(line)( CTX_ARG,
VERTEX *v0,
VERTEX *v1 )
{
GLuint vertsize = GET_VERTEX_DWORDS();
GLuint *vb = (GLuint *)ALLOC_VERTS( 2, vertsize);
GLuint j;
 
COPY_DWORDS( j, vb, vertsize, v0 );
COPY_DWORDS( j, vb, vertsize, v1 );
}
#endif
 
#if HAVE_POINTS
static __inline void TAG(point)( CTX_ARG,
VERTEX *v0 )
{
GLuint vertsize = GET_VERTEX_DWORDS();
GLuint *vb = (GLuint *)ALLOC_VERTS( 1, vertsize);
int j;
 
COPY_DWORDS( j, vb, vertsize, v0 );
}
#endif
 
 
static void TAG(fast_clipped_poly)( GLcontext *ctx, const GLuint *elts,
GLuint n )
{
LOCAL_VARS
GLuint vertsize = GET_VERTEX_DWORDS();
GLuint *vb = (GLuint *)ALLOC_VERTS( (n-2) * 3, vertsize );
const GLuint *start = (const GLuint *)VERT(elts[0]);
int i,j;
 
if (DO_DEBUG_VERTS) {
fprintf(stderr, "%s\n", __FUNCTION__);
PRINT_VERTEX(VERT(elts[0]));
PRINT_VERTEX(VERT(elts[1]));
}
 
for (i = 2 ; i < n ; i++) {
if (DO_DEBUG_VERTS) {
PRINT_VERTEX(VERT(elts[i]));
}
 
COPY_DWORDS( j, vb, vertsize, VERT(elts[i-1]) );
COPY_DWORDS( j, vb, vertsize, VERT(elts[i]) );
COPY_DWORDS( j, vb, vertsize, start );
}
}