Subversion Repositories shark

Compare Revisions

Ignore whitespace Rev 1048 → Rev 1049

/shark/trunk/drivers/usb/host/uhci-hcd.c
1,2670 → 1,2675
/*
* Universal Host Controller Interface driver for USB.
*
* Maintainer: Johannes Erdfelt <johannes@erdfelt.com>
*
* (C) Copyright 1999 Linus Torvalds
* (C) Copyright 1999-2002 Johannes Erdfelt, johannes@erdfelt.com
* (C) Copyright 1999 Randy Dunlap
* (C) Copyright 1999 Georg Acher, acher@in.tum.de
* (C) Copyright 1999 Deti Fliegl, deti@fliegl.de
* (C) Copyright 1999 Thomas Sailer, sailer@ife.ee.ethz.ch
* (C) Copyright 1999 Roman Weissgaerber, weissg@vienna.at
* (C) Copyright 2000 Yggdrasil Computing, Inc. (port of new PCI interface
* support from usb-ohci.c by Adam Richter, adam@yggdrasil.com).
* (C) Copyright 1999 Gregory P. Smith (from usb-ohci.c)
*
* Intel documents this fairly well, and as far as I know there
* are no royalties or anything like that, but even so there are
* people who decided that they want to do the same thing in a
* completely different way.
*
* WARNING! The USB documentation is downright evil. Most of it
* is just crap, written by a committee. You're better off ignoring
* most of it, the important stuff is:
* - the low-level protocol (fairly simple but lots of small details)
* - working around the horridness of the rest
*/
 
#include <linuxcomp.h>
 
#include <linux/config.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/ioport.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/smp_lock.h>
#include <linux/errno.h>
#include <linux/unistd.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/proc_fs.h>
#ifdef CONFIG_USB_DEBUG
#define DEBUG
#else
#undef DEBUG
#endif
#include <linux/usb.h>
 
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/system.h>
 
#include "../core/hcd.h"
#include "uhci-hcd.h"
 
#include <linux/pm.h>
 
/*
* Version Information
*/
#define DRIVER_VERSION "v2.1"
#define DRIVER_AUTHOR "Linus 'Frodo Rabbit' Torvalds, Johannes Erdfelt, Randy Dunlap, Georg Acher, Deti Fliegl, Thomas Sailer, Roman Weissgaerber"
#define DRIVER_DESC "USB Universal Host Controller Interface driver"
 
/*
* debug = 0, no debugging messages
* debug = 1, dump failed URB's except for stalls
* debug = 2, dump all failed URB's (including stalls)
* show all queues in /proc/driver/uhci/[pci_addr]
* debug = 3, show all TD's in URB's when dumping
*/
#ifdef DEBUG
static int debug = 3;
#else
static int debug = 0;
#endif
MODULE_PARM(debug, "i");
MODULE_PARM_DESC(debug, "Debug level");
static char *errbuf;
#define ERRBUF_LEN (PAGE_SIZE * 8)
 
#include "uhci-hub.c"
#include "uhci-debug.c"
 
static kmem_cache_t *uhci_up_cachep; /* urb_priv */
 
static int uhci_get_current_frame_number(struct uhci_hcd *uhci);
static int uhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb);
static void uhci_unlink_generic(struct uhci_hcd *uhci, struct urb *urb);
 
static void hc_state_transitions(struct uhci_hcd *uhci);
 
/* If a transfer is still active after this much time, turn off FSBR */
#define IDLE_TIMEOUT (HZ / 20) /* 50 ms */
#define FSBR_DELAY (HZ / 20) /* 50 ms */
 
/* When we timeout an idle transfer for FSBR, we'll switch it over to */
/* depth first traversal. We'll do it in groups of this number of TD's */
/* to make sure it doesn't hog all of the bandwidth */
#define DEPTH_INTERVAL 5
 
/*
* Technically, updating td->status here is a race, but it's not really a
* problem. The worst that can happen is that we set the IOC bit again
* generating a spurious interrupt. We could fix this by creating another
* QH and leaving the IOC bit always set, but then we would have to play
* games with the FSBR code to make sure we get the correct order in all
* the cases. I don't think it's worth the effort
*/
static inline void uhci_set_next_interrupt(struct uhci_hcd *uhci)
{
unsigned long flags;
 
spin_lock_irqsave(&uhci->frame_list_lock, flags);
uhci->term_td->status |= cpu_to_le32(TD_CTRL_IOC);
spin_unlock_irqrestore(&uhci->frame_list_lock, flags);
}
 
static inline void uhci_clear_next_interrupt(struct uhci_hcd *uhci)
{
unsigned long flags;
 
spin_lock_irqsave(&uhci->frame_list_lock, flags);
uhci->term_td->status &= ~cpu_to_le32(TD_CTRL_IOC);
spin_unlock_irqrestore(&uhci->frame_list_lock, flags);
}
 
static inline void uhci_add_complete(struct uhci_hcd *uhci, struct urb *urb)
{
struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
unsigned long flags;
 
spin_lock_irqsave(&uhci->complete_list_lock, flags);
list_add_tail(&urbp->complete_list, &uhci->complete_list);
spin_unlock_irqrestore(&uhci->complete_list_lock, flags);
}
 
static struct uhci_td *uhci_alloc_td(struct uhci_hcd *uhci, struct usb_device *dev)
{
dma_addr_t dma_handle;
struct uhci_td *td;
 
td = pci_pool_alloc(uhci->td_pool, GFP_ATOMIC, &dma_handle);
if (!td)
return NULL;
 
td->dma_handle = dma_handle;
 
td->link = UHCI_PTR_TERM;
td->buffer = 0;
 
td->frame = -1;
td->dev = dev;
 
INIT_LIST_HEAD(&td->list);
INIT_LIST_HEAD(&td->remove_list);
INIT_LIST_HEAD(&td->fl_list);
 
usb_get_dev(dev);
 
return td;
}
 
static inline void uhci_fill_td(struct uhci_td *td, __u32 status,
__u32 token, __u32 buffer)
{
td->status = cpu_to_le32(status);
td->token = cpu_to_le32(token);
td->buffer = cpu_to_le32(buffer);
}
 
/*
* We insert Isochronous URB's directly into the frame list at the beginning
*/
static void uhci_insert_td_frame_list(struct uhci_hcd *uhci, struct uhci_td *td, unsigned framenum)
{
unsigned long flags;
 
framenum %= UHCI_NUMFRAMES;
 
spin_lock_irqsave(&uhci->frame_list_lock, flags);
 
td->frame = framenum;
 
/* Is there a TD already mapped there? */
if (uhci->fl->frame_cpu[framenum]) {
struct uhci_td *ftd, *ltd;
 
ftd = uhci->fl->frame_cpu[framenum];
ltd = list_entry(ftd->fl_list.prev, struct uhci_td, fl_list);
 
list_add_tail(&td->fl_list, &ftd->fl_list);
 
td->link = ltd->link;
mb();
ltd->link = cpu_to_le32(td->dma_handle);
} else {
td->link = uhci->fl->frame[framenum];
mb();
uhci->fl->frame[framenum] = cpu_to_le32(td->dma_handle);
uhci->fl->frame_cpu[framenum] = td;
}
 
spin_unlock_irqrestore(&uhci->frame_list_lock, flags);
}
 
static void uhci_remove_td(struct uhci_hcd *uhci, struct uhci_td *td)
{
unsigned long flags;
 
/* If it's not inserted, don't remove it */
spin_lock_irqsave(&uhci->frame_list_lock, flags);
if (td->frame == -1 && list_empty(&td->fl_list))
goto out;
 
if (td->frame != -1 && uhci->fl->frame_cpu[td->frame] == td) {
if (list_empty(&td->fl_list)) {
uhci->fl->frame[td->frame] = td->link;
uhci->fl->frame_cpu[td->frame] = NULL;
} else {
struct uhci_td *ntd;
 
ntd = list_entry(td->fl_list.next, struct uhci_td, fl_list);
uhci->fl->frame[td->frame] = cpu_to_le32(ntd->dma_handle);
uhci->fl->frame_cpu[td->frame] = ntd;
}
} else {
struct uhci_td *ptd;
 
ptd = list_entry(td->fl_list.prev, struct uhci_td, fl_list);
ptd->link = td->link;
}
 
mb();
td->link = UHCI_PTR_TERM;
 
list_del_init(&td->fl_list);
td->frame = -1;
 
out:
spin_unlock_irqrestore(&uhci->frame_list_lock, flags);
}
 
/*
* Inserts a td into qh list at the top.
*/
static void uhci_insert_tds_in_qh(struct uhci_qh *qh, struct urb *urb, u32 breadth)
{
struct list_head *tmp, *head;
struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
struct uhci_td *td, *ptd;
 
if (list_empty(&urbp->td_list))
return;
 
head = &urbp->td_list;
tmp = head->next;
 
/* Ordering isn't important here yet since the QH hasn't been */
/* inserted into the schedule yet */
td = list_entry(tmp, struct uhci_td, list);
 
/* Add the first TD to the QH element pointer */
qh->element = cpu_to_le32(td->dma_handle) | breadth;
 
ptd = td;
 
/* Then link the rest of the TD's */
tmp = tmp->next;
while (tmp != head) {
td = list_entry(tmp, struct uhci_td, list);
 
tmp = tmp->next;
 
ptd->link = cpu_to_le32(td->dma_handle) | breadth;
 
ptd = td;
}
 
ptd->link = UHCI_PTR_TERM;
}
 
static void uhci_free_td(struct uhci_hcd *uhci, struct uhci_td *td)
{
if (!list_empty(&td->list))
dbg("td %p is still in list!", td);
if (!list_empty(&td->remove_list))
dbg("td %p still in remove_list!", td);
if (!list_empty(&td->fl_list))
dbg("td %p is still in fl_list!", td);
 
if (td->dev)
usb_put_dev(td->dev);
 
pci_pool_free(uhci->td_pool, td, td->dma_handle);
}
 
static struct uhci_qh *uhci_alloc_qh(struct uhci_hcd *uhci, struct usb_device *dev)
{
dma_addr_t dma_handle;
struct uhci_qh *qh;
 
qh = pci_pool_alloc(uhci->qh_pool, GFP_ATOMIC, &dma_handle);
if (!qh)
return NULL;
 
qh->dma_handle = dma_handle;
 
qh->element = UHCI_PTR_TERM;
qh->link = UHCI_PTR_TERM;
 
qh->dev = dev;
qh->urbp = NULL;
 
INIT_LIST_HEAD(&qh->list);
INIT_LIST_HEAD(&qh->remove_list);
 
usb_get_dev(dev);
 
return qh;
}
 
static void uhci_free_qh(struct uhci_hcd *uhci, struct uhci_qh *qh)
{
if (!list_empty(&qh->list))
dbg("qh %p list not empty!", qh);
if (!list_empty(&qh->remove_list))
dbg("qh %p still in remove_list!", qh);
 
if (qh->dev)
usb_put_dev(qh->dev);
 
pci_pool_free(uhci->qh_pool, qh, qh->dma_handle);
}
 
/*
* Append this urb's qh after the last qh in skelqh->list
* MUST be called with uhci->frame_list_lock acquired
*
* Note that urb_priv.queue_list doesn't have a separate queue head;
* it's a ring with every element "live".
*/
static void _uhci_insert_qh(struct uhci_hcd *uhci, struct uhci_qh *skelqh, struct urb *urb)
{
struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
struct list_head *tmp;
struct uhci_qh *lqh;
 
/* Grab the last QH */
lqh = list_entry(skelqh->list.prev, struct uhci_qh, list);
 
/*
* Patch this endpoint's URB's QHs to point to the next skelqh:
* skelqh --> ... lqh --> newqh --> next skelqh
* Do this first, so the HC always sees the right QH after this one.
*/
list_for_each (tmp, &urbp->queue_list) {
struct urb_priv *turbp =
list_entry(tmp, struct urb_priv, queue_list);
 
turbp->qh->link = lqh->link;
}
urbp->qh->link = lqh->link;
wmb(); /* Ordering is important */
 
/*
* Patch QHs for previous endpoint's queued URBs? HC goes
* here next, not to the next skelqh it now points to.
*
* lqh --> td ... --> qh ... --> td --> qh ... --> td
* | | |
* v v v
* +<----------------+-----------------+
* v
* newqh --> td ... --> td
* |
* v
* ...
*
* The HC could see (and use!) any of these as we write them.
*/
if (lqh->urbp) {
list_for_each (tmp, &lqh->urbp->queue_list) {
struct urb_priv *turbp =
list_entry(tmp, struct urb_priv, queue_list);
 
turbp->qh->link = cpu_to_le32(urbp->qh->dma_handle) | UHCI_PTR_QH;
}
}
lqh->link = cpu_to_le32(urbp->qh->dma_handle) | UHCI_PTR_QH;
 
list_add_tail(&urbp->qh->list, &skelqh->list);
}
 
static void uhci_insert_qh(struct uhci_hcd *uhci, struct uhci_qh *skelqh, struct urb *urb)
{
unsigned long flags;
 
spin_lock_irqsave(&uhci->frame_list_lock, flags);
_uhci_insert_qh(uhci, skelqh, urb);
spin_unlock_irqrestore(&uhci->frame_list_lock, flags);
}
 
/*
* Start removal of QH from schedule; it finishes next frame.
* TDs should be unlinked before this is called.
*/
static void uhci_remove_qh(struct uhci_hcd *uhci, struct uhci_qh *qh)
{
unsigned long flags;
struct uhci_qh *pqh;
 
if (!qh)
return;
 
qh->urbp = NULL;
 
/*
* Only go through the hoops if it's actually linked in
* Queued QHs are removed in uhci_delete_queued_urb,
* since (for queued URBs) the pqh is pointed to the next
* QH in the queue, not the next endpoint's QH.
*/
spin_lock_irqsave(&uhci->frame_list_lock, flags);
if (!list_empty(&qh->list)) {
pqh = list_entry(qh->list.prev, struct uhci_qh, list);
 
if (pqh->urbp) {
struct list_head *head, *tmp;
 
head = &pqh->urbp->queue_list;
tmp = head->next;
while (head != tmp) {
struct urb_priv *turbp =
list_entry(tmp, struct urb_priv, queue_list);
 
tmp = tmp->next;
 
turbp->qh->link = qh->link;
}
}
 
pqh->link = qh->link;
mb();
/* Leave qh->link in case the HC is on the QH now, it will */
/* continue the rest of the schedule */
qh->element = UHCI_PTR_TERM;
 
list_del_init(&qh->list);
}
spin_unlock_irqrestore(&uhci->frame_list_lock, flags);
 
spin_lock_irqsave(&uhci->qh_remove_list_lock, flags);
 
/* Check to see if the remove list is empty. Set the IOC bit */
/* to force an interrupt so we can remove the QH */
if (list_empty(&uhci->qh_remove_list))
uhci_set_next_interrupt(uhci);
 
list_add(&qh->remove_list, &uhci->qh_remove_list);
 
spin_unlock_irqrestore(&uhci->qh_remove_list_lock, flags);
}
 
static int uhci_fixup_toggle(struct urb *urb, unsigned int toggle)
{
struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
struct list_head *head, *tmp;
 
head = &urbp->td_list;
tmp = head->next;
while (head != tmp) {
struct uhci_td *td = list_entry(tmp, struct uhci_td, list);
 
tmp = tmp->next;
 
if (toggle)
td->token |= cpu_to_le32(TD_TOKEN_TOGGLE);
else
td->token &= ~cpu_to_le32(TD_TOKEN_TOGGLE);
 
 
toggle ^= 1;
}
 
return toggle;
}
 
/* This function will append one URB's QH to another URB's QH. This is for */
/* queuing interrupt, control or bulk transfers */
static void uhci_append_queued_urb(struct uhci_hcd *uhci, struct urb *eurb, struct urb *urb)
{
struct urb_priv *eurbp, *urbp, *furbp, *lurbp;
struct list_head *tmp;
struct uhci_td *lltd;
unsigned long flags;
 
eurbp = eurb->hcpriv;
urbp = urb->hcpriv;
 
spin_lock_irqsave(&uhci->frame_list_lock, flags);
 
/* Find the first URB in the queue */
if (eurbp->queued) {
struct list_head *head = &eurbp->queue_list;
 
tmp = head->next;
while (tmp != head) {
struct urb_priv *turbp =
list_entry(tmp, struct urb_priv, queue_list);
 
if (!turbp->queued)
break;
 
tmp = tmp->next;
}
} else
tmp = &eurbp->queue_list;
 
furbp = list_entry(tmp, struct urb_priv, queue_list);
lurbp = list_entry(furbp->queue_list.prev, struct urb_priv, queue_list);
 
lltd = list_entry(lurbp->td_list.prev, struct uhci_td, list);
 
usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), usb_pipeout(urb->pipe),
uhci_fixup_toggle(urb, uhci_toggle(td_token(lltd)) ^ 1));
 
/* All qh's in the queue need to link to the next queue */
urbp->qh->link = eurbp->qh->link;
 
mb(); /* Make sure we flush everything */
 
lltd->link = cpu_to_le32(urbp->qh->dma_handle) | UHCI_PTR_QH;
 
list_add_tail(&urbp->queue_list, &furbp->queue_list);
 
urbp->queued = 1;
 
spin_unlock_irqrestore(&uhci->frame_list_lock, flags);
}
 
static void uhci_delete_queued_urb(struct uhci_hcd *uhci, struct urb *urb)
{
struct urb_priv *urbp, *nurbp;
struct list_head *head, *tmp;
struct urb_priv *purbp;
struct uhci_td *pltd;
unsigned int toggle;
unsigned long flags;
 
urbp = urb->hcpriv;
 
spin_lock_irqsave(&uhci->frame_list_lock, flags);
 
if (list_empty(&urbp->queue_list))
goto out;
 
nurbp = list_entry(urbp->queue_list.next, struct urb_priv, queue_list);
 
/* Fix up the toggle for the next URB's */
if (!urbp->queued)
/* We just set the toggle in uhci_unlink_generic */
toggle = usb_gettoggle(urb->dev, usb_pipeendpoint(urb->pipe), usb_pipeout(urb->pipe));
else {
/* If we're in the middle of the queue, grab the toggle */
/* from the TD previous to us */
purbp = list_entry(urbp->queue_list.prev, struct urb_priv,
queue_list);
 
pltd = list_entry(purbp->td_list.prev, struct uhci_td, list);
 
toggle = uhci_toggle(td_token(pltd)) ^ 1;
}
 
head = &urbp->queue_list;
tmp = head->next;
while (head != tmp) {
struct urb_priv *turbp;
 
turbp = list_entry(tmp, struct urb_priv, queue_list);
 
tmp = tmp->next;
 
if (!turbp->queued)
break;
 
toggle = uhci_fixup_toggle(turbp->urb, toggle);
}
 
usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe),
usb_pipeout(urb->pipe), toggle);
 
if (!urbp->queued) {
struct uhci_qh *pqh;
 
nurbp->queued = 0;
 
/*
* Fixup the previous QH's queue to link to the new head
* of this queue.
*/
pqh = list_entry(urbp->qh->list.prev, struct uhci_qh, list);
 
if (pqh->urbp) {
struct list_head *head, *tmp;
 
head = &pqh->urbp->queue_list;
tmp = head->next;
while (head != tmp) {
struct urb_priv *turbp =
list_entry(tmp, struct urb_priv, queue_list);
 
tmp = tmp->next;
 
turbp->qh->link = cpu_to_le32(nurbp->qh->dma_handle) | UHCI_PTR_QH;
}
}
 
pqh->link = cpu_to_le32(nurbp->qh->dma_handle) | UHCI_PTR_QH;
 
list_add_tail(&nurbp->qh->list, &urbp->qh->list);
list_del_init(&urbp->qh->list);
} else {
/* We're somewhere in the middle (or end). A bit trickier */
/* than the head scenario */
purbp = list_entry(urbp->queue_list.prev, struct urb_priv,
queue_list);
 
pltd = list_entry(purbp->td_list.prev, struct uhci_td, list);
if (nurbp->queued)
pltd->link = cpu_to_le32(nurbp->qh->dma_handle) | UHCI_PTR_QH;
else
/* The next URB happens to be the beginning, so */
/* we're the last, end the chain */
pltd->link = UHCI_PTR_TERM;
}
 
list_del_init(&urbp->queue_list);
 
out:
spin_unlock_irqrestore(&uhci->frame_list_lock, flags);
}
 
extern void* malloc(int size);
 
static struct urb_priv *uhci_alloc_urb_priv(struct uhci_hcd *uhci, struct urb *urb)
{
struct urb_priv *urbp;
 
urbp = malloc(sizeof(struct urb_priv)); //**kmem_cache_alloc(uhci_up_cachep, SLAB_ATOMIC);
if (!urbp) {
err("uhci_alloc_urb_priv: couldn't allocate memory for urb_priv\n");
return NULL;
}
 
memset((void *)urbp, 0, sizeof(*urbp));
 
urbp->inserttime = jiffies26;
urbp->fsbrtime = jiffies26;
urbp->urb = urb;
urbp->dev = urb->dev;
INIT_LIST_HEAD(&urbp->td_list);
INIT_LIST_HEAD(&urbp->queue_list);
INIT_LIST_HEAD(&urbp->complete_list);
INIT_LIST_HEAD(&urbp->urb_list);
 
list_add_tail(&urbp->urb_list, &uhci->urb_list);
 
urb->hcpriv = urbp;
 
return urbp;
}
 
/*
* MUST be called with urb->lock acquired
*/
static void uhci_add_td_to_urb(struct urb *urb, struct uhci_td *td)
{
struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
 
td->urb = urb;
 
list_add_tail(&td->list, &urbp->td_list);
}
 
/*
* MUST be called with urb->lock acquired
*/
static void uhci_remove_td_from_urb(struct uhci_td *td)
{
if (list_empty(&td->list))
return;
 
list_del_init(&td->list);
 
td->urb = NULL;
}
 
/*
* MUST be called with urb->lock acquired
*/
static void uhci_destroy_urb_priv(struct uhci_hcd *uhci, struct urb *urb)
{
struct list_head *head, *tmp;
struct urb_priv *urbp;
unsigned long flags;
 
urbp = (struct urb_priv *)urb->hcpriv;
if (!urbp)
return;
 
if (!list_empty(&urbp->urb_list))
warn("uhci_destroy_urb_priv: urb %p still on uhci->urb_list or uhci->remove_list", urb);
 
if (!list_empty(&urbp->complete_list))
warn("uhci_destroy_urb_priv: urb %p still on uhci->complete_list", urb);
 
spin_lock_irqsave(&uhci->td_remove_list_lock, flags);
 
/* Check to see if the remove list is empty. Set the IOC bit */
/* to force an interrupt so we can remove the TD's*/
if (list_empty(&uhci->td_remove_list))
uhci_set_next_interrupt(uhci);
 
head = &urbp->td_list;
tmp = head->next;
while (tmp != head) {
struct uhci_td *td = list_entry(tmp, struct uhci_td, list);
 
tmp = tmp->next;
 
uhci_remove_td_from_urb(td);
uhci_remove_td(uhci, td);
list_add(&td->remove_list, &uhci->td_remove_list);
}
 
spin_unlock_irqrestore(&uhci->td_remove_list_lock, flags);
 
urb->hcpriv = NULL;
//**kmem_cache_free(uhci_up_cachep, urbp);
free(urbp);
}
 
static void uhci_inc_fsbr(struct uhci_hcd *uhci, struct urb *urb)
{
unsigned long flags;
struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
 
spin_lock_irqsave(&uhci->frame_list_lock, flags);
 
if ((!(urb->transfer_flags & URB_NO_FSBR)) && !urbp->fsbr) {
urbp->fsbr = 1;
if (!uhci->fsbr++ && !uhci->fsbrtimeout)
uhci->skel_term_qh->link = cpu_to_le32(uhci->skel_hs_control_qh->dma_handle) | UHCI_PTR_QH;
}
 
spin_unlock_irqrestore(&uhci->frame_list_lock, flags);
}
 
static void uhci_dec_fsbr(struct uhci_hcd *uhci, struct urb *urb)
{
unsigned long flags;
struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
 
spin_lock_irqsave(&uhci->frame_list_lock, flags);
 
if ((!(urb->transfer_flags & URB_NO_FSBR)) && urbp->fsbr) {
urbp->fsbr = 0;
if (!--uhci->fsbr)
uhci->fsbrtimeout = jiffies26 + FSBR_DELAY;
}
 
spin_unlock_irqrestore(&uhci->frame_list_lock, flags);
}
 
/*
* Map status to standard result codes
*
* <status> is (td->status & 0xFE0000) [a.k.a. uhci_status_bits(td->status)]
* <dir_out> is True for output TDs and False for input TDs.
*/
static int uhci_map_status(int status, int dir_out)
{
if (!status)
return 0;
if (status & TD_CTRL_BITSTUFF) /* Bitstuff error */
return -EPROTO;
if (status & TD_CTRL_CRCTIMEO) { /* CRC/Timeout */
if (dir_out)
return -ETIMEDOUT;
else
return -EILSEQ;
}
if (status & TD_CTRL_NAK) /* NAK */
return -ETIMEDOUT;
if (status & TD_CTRL_BABBLE) /* Babble */
return -EOVERFLOW;
if (status & TD_CTRL_DBUFERR) /* Buffer error */
return -ENOSR;
if (status & TD_CTRL_STALLED) /* Stalled */
return -EPIPE;
if (status & TD_CTRL_ACTIVE) /* Active */
return 0;
 
return -EINVAL;
}
 
/*
* Control transfers
*/
static int uhci_submit_control(struct uhci_hcd *uhci, struct urb *urb, struct urb *eurb)
{
struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
struct uhci_td *td;
struct uhci_qh *qh, *skelqh;
unsigned long destination, status;
int maxsze = usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe));
int len = urb->transfer_buffer_length;
dma_addr_t data = urb->transfer_dma;
 
/* The "pipe" thing contains the destination in bits 8--18 */
destination = (urb->pipe & PIPE_DEVEP_MASK) | USB_PID_SETUP;
 
/* 3 errors */
status = TD_CTRL_ACTIVE | uhci_maxerr(3);
if (urb->dev->speed == USB_SPEED_LOW)
status |= TD_CTRL_LS;
 
/*
* Build the TD for the control request
*/
td = uhci_alloc_td(uhci, urb->dev);
if (!td)
return -ENOMEM;
 
uhci_add_td_to_urb(urb, td);
uhci_fill_td(td, status, destination | uhci_explen(7),
urb->setup_dma);
 
/*
* If direction is "send", change the frame from SETUP (0x2D)
* to OUT (0xE1). Else change it from SETUP to IN (0x69).
*/
destination ^= (USB_PID_SETUP ^ usb_packetid(urb->pipe));
 
if (!(urb->transfer_flags & URB_SHORT_NOT_OK))
status |= TD_CTRL_SPD;
 
/*
* Build the DATA TD's
*/
while (len > 0) {
int pktsze = len;
 
if (pktsze > maxsze)
pktsze = maxsze;
 
td = uhci_alloc_td(uhci, urb->dev);
if (!td)
return -ENOMEM;
 
/* Alternate Data0/1 (start with Data1) */
destination ^= TD_TOKEN_TOGGLE;
uhci_add_td_to_urb(urb, td);
uhci_fill_td(td, status, destination | uhci_explen(pktsze - 1),
data);
 
data += pktsze;
len -= pktsze;
}
 
/*
* Build the final TD for control status
*/
td = uhci_alloc_td(uhci, urb->dev);
if (!td)
return -ENOMEM;
 
/*
* It's IN if the pipe is an output pipe or we're not expecting
* data back.
*/
destination &= ~TD_TOKEN_PID_MASK;
if (usb_pipeout(urb->pipe) || !urb->transfer_buffer_length)
destination |= USB_PID_IN;
else
destination |= USB_PID_OUT;
 
destination |= TD_TOKEN_TOGGLE; /* End in Data1 */
 
status &= ~TD_CTRL_SPD;
 
uhci_add_td_to_urb(urb, td);
uhci_fill_td(td, status | TD_CTRL_IOC,
destination | uhci_explen(UHCI_NULL_DATA_SIZE), 0);
 
qh = uhci_alloc_qh(uhci, urb->dev);
if (!qh)
return -ENOMEM;
 
urbp->qh = qh;
qh->urbp = urbp;
 
uhci_insert_tds_in_qh(qh, urb, UHCI_PTR_BREADTH);
 
/* Low speed transfers get a different queue, and won't hog the bus */
if (urb->dev->speed == USB_SPEED_LOW)
skelqh = uhci->skel_ls_control_qh;
else {
skelqh = uhci->skel_hs_control_qh;
uhci_inc_fsbr(uhci, urb);
}
 
if (eurb)
uhci_append_queued_urb(uhci, eurb, urb);
else
uhci_insert_qh(uhci, skelqh, urb);
 
return -EINPROGRESS;
}
 
/*
* If control was short, then end status packet wasn't sent, so this
* reorganize s so it's sent to finish the transfer. The original QH is
* removed from the skel and discarded; all TDs except the last (status)
* are deleted; the last (status) TD is put on a new QH which is reinserted
* into the skel. Since the last TD and urb_priv are reused, the TD->link
* and urb_priv maintain any queued QHs.
*/
static int usb_control_retrigger_status(struct uhci_hcd *uhci, struct urb *urb)
{
struct list_head *tmp, *head;
struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
 
urbp->short_control_packet = 1;
 
/* Create a new QH to avoid pointer overwriting problems */
uhci_remove_qh(uhci, urbp->qh);
 
/* Delete all of the TD's except for the status TD at the end */
head = &urbp->td_list;
tmp = head->next;
while (tmp != head && tmp->next != head) {
struct uhci_td *td = list_entry(tmp, struct uhci_td, list);
 
tmp = tmp->next;
 
uhci_remove_td_from_urb(td);
uhci_remove_td(uhci, td);
uhci_free_td(uhci, td);
}
 
urbp->qh = uhci_alloc_qh(uhci, urb->dev);
if (!urbp->qh) {
err("unable to allocate new QH for control retrigger");
return -ENOMEM;
}
 
urbp->qh->urbp = urbp;
 
/* One TD, who cares about Breadth first? */
uhci_insert_tds_in_qh(urbp->qh, urb, UHCI_PTR_DEPTH);
 
/* Low speed transfers get a different queue */
if (urb->dev->speed == USB_SPEED_LOW)
uhci_insert_qh(uhci, uhci->skel_ls_control_qh, urb);
else
uhci_insert_qh(uhci, uhci->skel_hs_control_qh, urb);
 
return -EINPROGRESS;
}
 
 
static int uhci_result_control(struct uhci_hcd *uhci, struct urb *urb)
{
struct list_head *tmp, *head;
struct urb_priv *urbp = urb->hcpriv;
struct uhci_td *td;
unsigned int status;
int ret = 0;
 
if (list_empty(&urbp->td_list))
return -EINVAL;
 
head = &urbp->td_list;
if (urbp->short_control_packet) {
tmp = head->prev;
goto status_phase;
}
tmp = head->next;
td = list_entry(tmp, struct uhci_td, list);
 
/* The first TD is the SETUP phase, check the status, but skip */
/* the count */
status = uhci_status_bits(td_status(td));
if (status & TD_CTRL_ACTIVE)
return -EINPROGRESS;
 
if (status)
goto td_error;
 
urb->actual_length = 0;
 
/* The rest of the TD's (but the last) are data */
tmp = tmp->next;
while (tmp != head && tmp->next != head) {
td = list_entry(tmp, struct uhci_td, list);
 
tmp = tmp->next;
 
status = uhci_status_bits(td_status(td));
if (status & TD_CTRL_ACTIVE)
return -EINPROGRESS;
 
urb->actual_length += uhci_actual_length(td_status(td));
 
if (status)
goto td_error;
 
/* Check to see if we received a short packet */
if (uhci_actual_length(td_status(td)) < uhci_expected_length(td_token(td))) {
if (urb->transfer_flags & URB_SHORT_NOT_OK) {
ret = -EREMOTEIO;
goto err;
}
 
if (uhci_packetid(td_token(td)) == USB_PID_IN)
return usb_control_retrigger_status(uhci, urb);
else
return 0;
}
}
 
status_phase:
td = list_entry(tmp, struct uhci_td, list);
 
/* Control status phase */
status = td_status(td);
 
#ifdef I_HAVE_BUGGY_APC_BACKUPS
/* APC BackUPS Pro kludge */
/* It tries to send all of the descriptor instead of the amount */
/* we requested */
if (status & TD_CTRL_IOC && /* IOC is masked out by uhci_status_bits */
status & TD_CTRL_ACTIVE &&
status & TD_CTRL_NAK)
return 0;
#endif
 
if (status & TD_CTRL_ACTIVE)
return -EINPROGRESS;
 
if (uhci_status_bits(status))
goto td_error;
 
return 0;
 
td_error:
ret = uhci_map_status(status, uhci_packetout(td_token(td)));
 
err:
if ((debug == 1 && ret != -EPIPE) || debug > 1) {
/* Some debugging code */
dbg("uhci_result_control() failed with status %x", status);
 
if (errbuf) {
/* Print the chain for debugging purposes */
uhci_show_qh(urbp->qh, errbuf, ERRBUF_LEN, 0);
 
lprintk(errbuf);
}
}
 
return ret;
}
 
/*
* Common submit for bulk and interrupt
*/
static int uhci_submit_common(struct uhci_hcd *uhci, struct urb *urb, struct urb *eurb, struct uhci_qh *skelqh)
{
struct uhci_td *td;
struct uhci_qh *qh;
unsigned long destination, status;
int maxsze = usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe));
int len = urb->transfer_buffer_length;
struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
dma_addr_t data = urb->transfer_dma;
 
if (len < 0)
return -EINVAL;
 
/* The "pipe" thing contains the destination in bits 8--18 */
destination = (urb->pipe & PIPE_DEVEP_MASK) | usb_packetid(urb->pipe);
 
status = uhci_maxerr(3) | TD_CTRL_ACTIVE;
if (urb->dev->speed == USB_SPEED_LOW)
status |= TD_CTRL_LS;
if (!(urb->transfer_flags & URB_SHORT_NOT_OK))
status |= TD_CTRL_SPD;
 
/*
* Build the DATA TD's
*/
do { /* Allow zero length packets */
int pktsze = len;
 
if (pktsze > maxsze)
pktsze = maxsze;
 
td = uhci_alloc_td(uhci, urb->dev);
if (!td)
return -ENOMEM;
 
uhci_add_td_to_urb(urb, td);
uhci_fill_td(td, status, destination | uhci_explen(pktsze - 1) |
(usb_gettoggle(urb->dev, usb_pipeendpoint(urb->pipe),
usb_pipeout(urb->pipe)) << TD_TOKEN_TOGGLE_SHIFT),
data);
 
data += pktsze;
len -= maxsze;
 
usb_dotoggle(urb->dev, usb_pipeendpoint(urb->pipe),
usb_pipeout(urb->pipe));
} while (len > 0);
 
/*
* URB_ZERO_PACKET means adding a 0-length packet, if direction
* is OUT and the transfer_length was an exact multiple of maxsze,
* hence (len = transfer_length - N * maxsze) == 0
* however, if transfer_length == 0, the zero packet was already
* prepared above.
*/
if (usb_pipeout(urb->pipe) && (urb->transfer_flags & URB_ZERO_PACKET) &&
!len && urb->transfer_buffer_length) {
td = uhci_alloc_td(uhci, urb->dev);
if (!td)
return -ENOMEM;
 
uhci_add_td_to_urb(urb, td);
uhci_fill_td(td, status, destination | uhci_explen(UHCI_NULL_DATA_SIZE) |
(usb_gettoggle(urb->dev, usb_pipeendpoint(urb->pipe),
usb_pipeout(urb->pipe)) << TD_TOKEN_TOGGLE_SHIFT),
data);
 
usb_dotoggle(urb->dev, usb_pipeendpoint(urb->pipe),
usb_pipeout(urb->pipe));
}
 
/* Set the flag on the last packet */
td->status |= cpu_to_le32(TD_CTRL_IOC);
 
qh = uhci_alloc_qh(uhci, urb->dev);
if (!qh)
return -ENOMEM;
 
urbp->qh = qh;
qh->urbp = urbp;
 
/* Always breadth first */
uhci_insert_tds_in_qh(qh, urb, UHCI_PTR_BREADTH);
 
if (eurb)
uhci_append_queued_urb(uhci, eurb, urb);
else
uhci_insert_qh(uhci, skelqh, urb);
 
return -EINPROGRESS;
}
 
/*
* Common result for bulk and interrupt
*/
static int uhci_result_common(struct uhci_hcd *uhci, struct urb *urb)
{
struct list_head *tmp, *head;
struct urb_priv *urbp = urb->hcpriv;
struct uhci_td *td;
unsigned int status = 0;
int ret = 0;
 
urb->actual_length = 0;
 
head = &urbp->td_list;
tmp = head->next;
while (tmp != head) {
td = list_entry(tmp, struct uhci_td, list);
 
tmp = tmp->next;
 
status = uhci_status_bits(td_status(td));
if (status & TD_CTRL_ACTIVE)
return -EINPROGRESS;
 
urb->actual_length += uhci_actual_length(td_status(td));
 
if (status)
goto td_error;
 
if (uhci_actual_length(td_status(td)) < uhci_expected_length(td_token(td))) {
if (urb->transfer_flags & URB_SHORT_NOT_OK) {
ret = -EREMOTEIO;
goto err;
} else
return 0;
}
}
 
return 0;
 
td_error:
ret = uhci_map_status(status, uhci_packetout(td_token(td)));
if (ret == -EPIPE)
/* endpoint has stalled - mark it halted */
usb_endpoint_halt(urb->dev, uhci_endpoint(td_token(td)),
uhci_packetout(td_token(td)));
 
err:
/*
* Enable this chunk of code if you want to see some more debugging.
* But be careful, it has the tendancy to starve out khubd and prevent
* disconnects from happening successfully if you have a slow debug
* log interface (like a serial console.
*/
#if 0
if ((debug == 1 && ret != -EPIPE) || debug > 1) {
/* Some debugging code */
dbg("uhci_result_common() failed with status %x", status);
 
if (errbuf) {
/* Print the chain for debugging purposes */
uhci_show_qh(urbp->qh, errbuf, ERRBUF_LEN, 0);
 
lprintk(errbuf);
}
}
#endif
return ret;
}
 
static inline int uhci_submit_bulk(struct uhci_hcd *uhci, struct urb *urb, struct urb *eurb)
{
int ret;
 
/* Can't have low speed bulk transfers */
if (urb->dev->speed == USB_SPEED_LOW)
return -EINVAL;
 
ret = uhci_submit_common(uhci, urb, eurb, uhci->skel_bulk_qh);
if (ret == -EINPROGRESS)
uhci_inc_fsbr(uhci, urb);
 
return ret;
}
 
static inline int uhci_submit_interrupt(struct uhci_hcd *uhci, struct urb *urb, struct urb *eurb)
{
/* USB 1.1 interrupt transfers only involve one packet per interval;
* that's the uhci_submit_common() "breadth first" policy. Drivers
* can submit urbs of any length, but longer ones might need many
* intervals to complete.
*/
return uhci_submit_common(uhci, urb, eurb, uhci->skelqh[__interval_to_skel(urb->interval)]);
}
 
/*
* Bulk and interrupt use common result
*/
#define uhci_result_bulk uhci_result_common
#define uhci_result_interrupt uhci_result_common
 
/*
* Isochronous transfers
*/
static int isochronous_find_limits(struct uhci_hcd *uhci, struct urb *urb, unsigned int *start, unsigned int *end)
{
struct urb *last_urb = NULL;
struct list_head *tmp, *head;
int ret = 0;
 
head = &uhci->urb_list;
tmp = head->next;
while (tmp != head) {
struct urb_priv *up = list_entry(tmp, struct urb_priv, urb_list);
struct urb *u = up->urb;
 
tmp = tmp->next;
 
/* look for pending URB's with identical pipe handle */
if ((urb->pipe == u->pipe) && (urb->dev == u->dev) &&
(u->status == -EINPROGRESS) && (u != urb)) {
if (!last_urb)
*start = u->start_frame;
last_urb = u;
}
}
 
if (last_urb) {
*end = (last_urb->start_frame + last_urb->number_of_packets *
last_urb->interval) & (UHCI_NUMFRAMES-1);
ret = 0;
} else
ret = -1; /* no previous urb found */
 
return ret;
}
 
static int isochronous_find_start(struct uhci_hcd *uhci, struct urb *urb)
{
int limits;
unsigned int start = 0, end = 0;
 
if (urb->number_of_packets > 900) /* 900? Why? */
return -EFBIG;
 
limits = isochronous_find_limits(uhci, urb, &start, &end);
 
if (urb->transfer_flags & URB_ISO_ASAP) {
if (limits) {
int curframe;
 
curframe = uhci_get_current_frame_number(uhci) % UHCI_NUMFRAMES;
urb->start_frame = (curframe + 10) % UHCI_NUMFRAMES;
} else
urb->start_frame = end;
} else {
urb->start_frame %= UHCI_NUMFRAMES;
/* FIXME: Sanity check */
}
 
return 0;
}
 
/*
* Isochronous transfers
*/
static int uhci_submit_isochronous(struct uhci_hcd *uhci, struct urb *urb)
{
struct uhci_td *td;
int i, ret, frame;
int status, destination;
 
status = TD_CTRL_ACTIVE | TD_CTRL_IOS;
destination = (urb->pipe & PIPE_DEVEP_MASK) | usb_packetid(urb->pipe);
 
ret = isochronous_find_start(uhci, urb);
if (ret)
return ret;
 
frame = urb->start_frame;
for (i = 0; i < urb->number_of_packets; i++, frame += urb->interval) {
if (!urb->iso_frame_desc[i].length)
continue;
 
td = uhci_alloc_td(uhci, urb->dev);
if (!td)
return -ENOMEM;
 
uhci_add_td_to_urb(urb, td);
uhci_fill_td(td, status, destination | uhci_explen(urb->iso_frame_desc[i].length - 1),
urb->transfer_dma + urb->iso_frame_desc[i].offset);
 
if (i + 1 >= urb->number_of_packets)
td->status |= cpu_to_le32(TD_CTRL_IOC);
 
uhci_insert_td_frame_list(uhci, td, frame);
}
 
return -EINPROGRESS;
}
 
static int uhci_result_isochronous(struct uhci_hcd *uhci, struct urb *urb)
{
struct list_head *tmp, *head;
struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
int status;
int i, ret = 0;
 
urb->actual_length = 0;
 
i = 0;
head = &urbp->td_list;
tmp = head->next;
while (tmp != head) {
struct uhci_td *td = list_entry(tmp, struct uhci_td, list);
int actlength;
 
tmp = tmp->next;
 
if (td_status(td) & TD_CTRL_ACTIVE)
return -EINPROGRESS;
 
actlength = uhci_actual_length(td_status(td));
urb->iso_frame_desc[i].actual_length = actlength;
urb->actual_length += actlength;
 
status = uhci_map_status(uhci_status_bits(td_status(td)), usb_pipeout(urb->pipe));
urb->iso_frame_desc[i].status = status;
if (status) {
urb->error_count++;
ret = status;
}
 
i++;
}
 
return ret;
}
 
/*
* MUST be called with uhci->urb_list_lock acquired
*/
static struct urb *uhci_find_urb_ep(struct uhci_hcd *uhci, struct urb *urb)
{
struct list_head *tmp, *head;
 
/* We don't match Isoc transfers since they are special */
if (usb_pipeisoc(urb->pipe))
return NULL;
 
head = &uhci->urb_list;
tmp = head->next;
while (tmp != head) {
struct urb_priv *up = list_entry(tmp, struct urb_priv, urb_list);
struct urb *u = up->urb;
 
tmp = tmp->next;
 
if (u->dev == urb->dev && u->status == -EINPROGRESS) {
/* For control, ignore the direction */
if (usb_pipecontrol(urb->pipe) &&
(u->pipe & ~USB_DIR_IN) == (urb->pipe & ~USB_DIR_IN))
return u;
else if (u->pipe == urb->pipe)
return u;
}
}
 
return NULL;
}
 
static int uhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, int mem_flags)
{
int ret = -EINVAL;
struct uhci_hcd *uhci = hcd_to_uhci(hcd);
unsigned long flags;
struct urb *eurb;
int bustime;
 
spin_lock_irqsave(&uhci->urb_list_lock, flags);
 
eurb = uhci_find_urb_ep(uhci, urb);
 
if (!uhci_alloc_urb_priv(uhci, urb)) {
spin_unlock_irqrestore(&uhci->urb_list_lock, flags);
return -ENOMEM;
}
 
switch (usb_pipetype(urb->pipe)) {
case PIPE_CONTROL:
ret = uhci_submit_control(uhci, urb, eurb);
break;
case PIPE_INTERRUPT:
if (!eurb) {
bustime = usb_check_bandwidth(urb->dev, urb);
if (bustime < 0)
ret = bustime;
else {
ret = uhci_submit_interrupt(uhci, urb, eurb);
if (ret == -EINPROGRESS)
usb_claim_bandwidth(urb->dev, urb, bustime, 0);
}
} else { /* inherit from parent */
urb->bandwidth = eurb->bandwidth;
ret = uhci_submit_interrupt(uhci, urb, eurb);
}
break;
case PIPE_BULK:
ret = uhci_submit_bulk(uhci, urb, eurb);
break;
case PIPE_ISOCHRONOUS:
bustime = usb_check_bandwidth(urb->dev, urb);
if (bustime < 0) {
ret = bustime;
break;
}
 
ret = uhci_submit_isochronous(uhci, urb);
if (ret == -EINPROGRESS)
usb_claim_bandwidth(urb->dev, urb, bustime, 1);
break;
}
 
if (ret != -EINPROGRESS) {
/* Submit failed, so delete it from the urb_list */
struct urb_priv *urbp = urb->hcpriv;
 
list_del_init(&urbp->urb_list);
spin_unlock_irqrestore(&uhci->urb_list_lock, flags);
uhci_destroy_urb_priv (uhci, urb);
 
return ret;
}
 
spin_unlock_irqrestore(&uhci->urb_list_lock, flags);
 
return 0;
}
 
/*
* Return the result of a transfer
*
* MUST be called with urb_list_lock acquired
*/
static void uhci_transfer_result(struct uhci_hcd *uhci, struct urb *urb)
{
int ret = -EINVAL;
unsigned long flags;
struct urb_priv *urbp;
 
spin_lock_irqsave(&urb->lock, flags);
 
urbp = (struct urb_priv *)urb->hcpriv;
 
if (urb->status != -EINPROGRESS) {
info("uhci_transfer_result: called for URB %p not in flight?", urb);
goto out;
}
 
switch (usb_pipetype(urb->pipe)) {
case PIPE_CONTROL:
ret = uhci_result_control(uhci, urb);
break;
case PIPE_INTERRUPT:
ret = uhci_result_interrupt(uhci, urb);
break;
case PIPE_BULK:
ret = uhci_result_bulk(uhci, urb);
break;
case PIPE_ISOCHRONOUS:
ret = uhci_result_isochronous(uhci, urb);
break;
}
 
urbp->status = ret;
 
if (ret == -EINPROGRESS)
goto out;
 
switch (usb_pipetype(urb->pipe)) {
case PIPE_CONTROL:
case PIPE_BULK:
case PIPE_ISOCHRONOUS:
/* Release bandwidth for Interrupt or Isoc. transfers */
/* Spinlock needed ? */
if (urb->bandwidth)
usb_release_bandwidth(urb->dev, urb, 1);
uhci_unlink_generic(uhci, urb);
break;
case PIPE_INTERRUPT:
/* Release bandwidth for Interrupt or Isoc. transfers */
/* Make sure we don't release if we have a queued URB */
spin_lock(&uhci->frame_list_lock);
/* Spinlock needed ? */
if (list_empty(&urbp->queue_list) && urb->bandwidth)
usb_release_bandwidth(urb->dev, urb, 0);
else
/* bandwidth was passed on to queued URB, */
/* so don't let usb_unlink_urb() release it */
urb->bandwidth = 0;
spin_unlock(&uhci->frame_list_lock);
uhci_unlink_generic(uhci, urb);
break;
default:
info("uhci_transfer_result: unknown pipe type %d for urb %p\n",
usb_pipetype(urb->pipe), urb);
}
 
/* Remove it from uhci->urb_list */
list_del_init(&urbp->urb_list);
 
uhci_add_complete(uhci, urb);
 
out:
spin_unlock_irqrestore(&urb->lock, flags);
}
 
/*
* MUST be called with urb->lock acquired
*/
static void uhci_unlink_generic(struct uhci_hcd *uhci, struct urb *urb)
{
struct list_head *head, *tmp;
struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
int prevactive = 1;
 
/* We can get called when urbp allocation fails, so check */
if (!urbp)
return;
 
uhci_dec_fsbr(uhci, urb); /* Safe since it checks */
 
/*
* Now we need to find out what the last successful toggle was
* so we can update the local data toggle for the next transfer
*
* There's 3 way's the last successful completed TD is found:
*
* 1) The TD is NOT active and the actual length < expected length
* 2) The TD is NOT active and it's the last TD in the chain
* 3) The TD is active and the previous TD is NOT active
*
* Control and Isochronous ignore the toggle, so this is safe
* for all types
*/
head = &urbp->td_list;
tmp = head->next;
while (tmp != head) {
struct uhci_td *td = list_entry(tmp, struct uhci_td, list);
 
tmp = tmp->next;
 
if (!(td_status(td) & TD_CTRL_ACTIVE) &&
(uhci_actual_length(td_status(td)) < uhci_expected_length(td_token(td)) ||
tmp == head))
usb_settoggle(urb->dev, uhci_endpoint(td_token(td)),
uhci_packetout(td_token(td)),
uhci_toggle(td_token(td)) ^ 1);
else if ((td_status(td) & TD_CTRL_ACTIVE) && !prevactive)
usb_settoggle(urb->dev, uhci_endpoint(td_token(td)),
uhci_packetout(td_token(td)),
uhci_toggle(td_token(td)));
 
prevactive = td_status(td) & TD_CTRL_ACTIVE;
}
 
uhci_delete_queued_urb(uhci, urb);
 
/* The interrupt loop will reclaim the QH's */
uhci_remove_qh(uhci, urbp->qh);
urbp->qh = NULL;
}
 
static int uhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb)
{
struct uhci_hcd *uhci = hcd_to_uhci(hcd);
unsigned long flags;
struct urb_priv *urbp = urb->hcpriv;
 
/* If this is an interrupt URB that is being killed in urb->complete, */
/* then just set its status and return */
if (!urbp) {
urb->status = -ECONNRESET;
return 0;
}
 
spin_lock_irqsave(&uhci->urb_list_lock, flags);
 
list_del_init(&urbp->urb_list);
 
uhci_unlink_generic(uhci, urb);
 
spin_lock(&uhci->urb_remove_list_lock);
 
/* If we're the first, set the next interrupt bit */
if (list_empty(&uhci->urb_remove_list))
uhci_set_next_interrupt(uhci);
list_add(&urbp->urb_list, &uhci->urb_remove_list);
 
spin_unlock(&uhci->urb_remove_list_lock);
spin_unlock_irqrestore(&uhci->urb_list_lock, flags);
return 0;
}
 
static int uhci_fsbr_timeout(struct uhci_hcd *uhci, struct urb *urb)
{
struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
struct list_head *head, *tmp;
int count = 0;
 
uhci_dec_fsbr(uhci, urb);
 
urbp->fsbr_timeout = 1;
 
/*
* Ideally we would want to fix qh->element as well, but it's
* read/write by the HC, so that can introduce a race. It's not
* really worth the hassle
*/
 
head = &urbp->td_list;
tmp = head->next;
while (tmp != head) {
struct uhci_td *td = list_entry(tmp, struct uhci_td, list);
 
tmp = tmp->next;
 
/*
* Make sure we don't do the last one (since it'll have the
* TERM bit set) as well as we skip every so many TD's to
* make sure it doesn't hog the bandwidth
*/
if (tmp != head && (count % DEPTH_INTERVAL) == (DEPTH_INTERVAL - 1))
td->link |= UHCI_PTR_DEPTH;
 
count++;
}
 
return 0;
}
 
/*
* uhci_get_current_frame_number()
*
* returns the current frame number for a USB bus/controller.
*/
static int uhci_get_current_frame_number(struct uhci_hcd *uhci)
{
return inw(uhci->io_addr + USBFRNUM);
}
 
static int init_stall_timer(struct usb_hcd *hcd);
 
static void stall_callback(unsigned long ptr)
{
struct usb_hcd *hcd = (struct usb_hcd *)ptr;
struct uhci_hcd *uhci = hcd_to_uhci(hcd);
struct list_head list, *tmp, *head;
unsigned long flags;
 
INIT_LIST_HEAD(&list);
 
spin_lock_irqsave(&uhci->urb_list_lock, flags);
head = &uhci->urb_list;
tmp = head->next;
while (tmp != head) {
struct urb_priv *up = list_entry(tmp, struct urb_priv, urb_list);
struct urb *u = up->urb;
 
tmp = tmp->next;
 
spin_lock(&u->lock);
 
/* Check if the FSBR timed out */
if (up->fsbr && !up->fsbr_timeout && time_after_eq(jiffies26, up->fsbrtime + IDLE_TIMEOUT))
uhci_fsbr_timeout(uhci, u);
 
/* Check if the URB timed out */
if (u->timeout && time_after_eq(jiffies26, up->inserttime + u->timeout))
list_move_tail(&up->urb_list, &list);
 
spin_unlock(&u->lock);
}
spin_unlock_irqrestore(&uhci->urb_list_lock, flags);
 
head = &list;
tmp = head->next;
while (tmp != head) {
struct urb_priv *up = list_entry(tmp, struct urb_priv, urb_list);
struct urb *u = up->urb;
 
tmp = tmp->next;
 
uhci_urb_dequeue(hcd, u);
}
 
/* Really disable FSBR */
if (!uhci->fsbr && uhci->fsbrtimeout && time_after_eq(jiffies26, uhci->fsbrtimeout)) {
uhci->fsbrtimeout = 0;
uhci->skel_term_qh->link = UHCI_PTR_TERM;
}
 
/* Poll for and perform state transitions */
hc_state_transitions(uhci);
 
init_stall_timer(hcd);
}
 
static int init_stall_timer(struct usb_hcd *hcd)
{
struct uhci_hcd *uhci = hcd_to_uhci(hcd);
 
init_timer(&uhci->stall_timer);
uhci->stall_timer.function = stall_callback;
uhci->stall_timer.data = (unsigned long)hcd;
uhci->stall_timer.expires = jiffies26 + (HZ / 10);
add_timer(&uhci->stall_timer);
 
return 0;
}
 
static void uhci_free_pending_qhs(struct uhci_hcd *uhci)
{
struct list_head *tmp, *head;
unsigned long flags;
 
spin_lock_irqsave(&uhci->qh_remove_list_lock, flags);
head = &uhci->qh_remove_list;
tmp = head->next;
while (tmp != head) {
struct uhci_qh *qh = list_entry(tmp, struct uhci_qh, remove_list);
 
tmp = tmp->next;
 
list_del_init(&qh->remove_list);
 
uhci_free_qh(uhci, qh);
}
spin_unlock_irqrestore(&uhci->qh_remove_list_lock, flags);
}
 
static void uhci_free_pending_tds(struct uhci_hcd *uhci)
{
struct list_head *tmp, *head;
unsigned long flags;
 
spin_lock_irqsave(&uhci->td_remove_list_lock, flags);
head = &uhci->td_remove_list;
tmp = head->next;
while (tmp != head) {
struct uhci_td *td = list_entry(tmp, struct uhci_td, remove_list);
 
tmp = tmp->next;
 
list_del_init(&td->remove_list);
 
uhci_free_td(uhci, td);
}
spin_unlock_irqrestore(&uhci->td_remove_list_lock, flags);
}
 
static void uhci_finish_urb(struct usb_hcd *hcd, struct urb *urb, struct pt_regs *regs)
{
struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
struct uhci_hcd *uhci = hcd_to_uhci(hcd);
int status;
unsigned long flags;
 
spin_lock_irqsave(&urb->lock, flags);
status = urbp->status;
uhci_destroy_urb_priv(uhci, urb);
 
if (urb->status != -ENOENT && urb->status != -ECONNRESET)
urb->status = status;
spin_unlock_irqrestore(&urb->lock, flags);
 
usb_hcd_giveback_urb(hcd, urb, regs);
}
 
static void uhci_finish_completion(struct usb_hcd *hcd, struct pt_regs *regs)
{
struct uhci_hcd *uhci = hcd_to_uhci(hcd);
struct list_head *tmp, *head;
unsigned long flags;
 
spin_lock_irqsave(&uhci->complete_list_lock, flags);
head = &uhci->complete_list;
tmp = head->next;
while (tmp != head) {
struct urb_priv *urbp = list_entry(tmp, struct urb_priv, complete_list);
struct urb *urb = urbp->urb;
 
list_del_init(&urbp->complete_list);
spin_unlock_irqrestore(&uhci->complete_list_lock, flags);
 
uhci_finish_urb(hcd, urb, regs);
 
spin_lock_irqsave(&uhci->complete_list_lock, flags);
head = &uhci->complete_list;
tmp = head->next;
}
spin_unlock_irqrestore(&uhci->complete_list_lock, flags);
}
 
static void uhci_remove_pending_qhs(struct uhci_hcd *uhci)
{
struct list_head *tmp, *head;
unsigned long flags;
 
spin_lock_irqsave(&uhci->urb_remove_list_lock, flags);
head = &uhci->urb_remove_list;
tmp = head->next;
while (tmp != head) {
struct urb_priv *urbp = list_entry(tmp, struct urb_priv, urb_list);
struct urb *urb = urbp->urb;
 
tmp = tmp->next;
 
list_del_init(&urbp->urb_list);
 
urbp->status = urb->status = -ECONNRESET;
 
uhci_add_complete(uhci, urb);
}
spin_unlock_irqrestore(&uhci->urb_remove_list_lock, flags);
}
 
static void uhci_irq(struct usb_hcd *hcd, struct pt_regs *regs)
{
struct uhci_hcd *uhci = hcd_to_uhci(hcd);
unsigned int io_addr = uhci->io_addr;
unsigned short status;
struct list_head *tmp, *head;
static int count =0;
 
/*
* Read the interrupt status, and write it back to clear the
* interrupt cause
*/
status = inw(io_addr + USBSTS);
if (!status) /* shared interrupt, not mine */
return;
outw(status, io_addr + USBSTS); /* Clear it */
 
// printk("%x uhci_irq\n", io_addr);
 
if (status & ~(USBSTS_USBINT | USBSTS_ERROR | USBSTS_RD)) {
if (status & USBSTS_HSE)
{
err("%x: host system error, PCI problems?", io_addr);
}
if (status & USBSTS_HCPE)
err("%x: host controller process error. something bad happened", io_addr);
if ((status & USBSTS_HCH) && uhci->state > 0) {
err("%x: host controller halted. very bad", io_addr);
/* FIXME: Reset the controller, fix the offending TD */
}
}
 
if (status & USBSTS_RD)
uhci->resume_detect = 1;
 
uhci_free_pending_qhs(uhci);
 
uhci_free_pending_tds(uhci);
 
uhci_remove_pending_qhs(uhci);
 
uhci_clear_next_interrupt(uhci);
 
/* Walk the list of pending URB's to see which ones completed */
spin_lock(&uhci->urb_list_lock);
head = &uhci->urb_list;
tmp = head->next;
while (tmp != head) {
struct urb_priv *urbp = list_entry(tmp, struct urb_priv, urb_list);
struct urb *urb = urbp->urb;
 
tmp = tmp->next;
 
/* Checks the status and does all of the magic necessary */
uhci_transfer_result(uhci, urb);
}
spin_unlock(&uhci->urb_list_lock);
 
uhci_finish_completion(hcd, regs);
}
 
static void reset_hc(struct uhci_hcd *uhci)
{
unsigned int io_addr = uhci->io_addr;
 
/* Global reset for 50ms */
uhci->state = UHCI_RESET;
outw(USBCMD_GRESET, io_addr + USBCMD);
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout((HZ*50+999) / 1000);
outw(0, io_addr + USBCMD);
 
/* Another 10ms delay */
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout((HZ*10+999) / 1000);
uhci->resume_detect = 0;
}
 
static void suspend_hc(struct uhci_hcd *uhci)
{
unsigned int io_addr = uhci->io_addr;
 
dbg("%x: suspend_hc", io_addr);
uhci->state = UHCI_SUSPENDED;
uhci->resume_detect = 0;
outw(USBCMD_EGSM, io_addr + USBCMD);
}
 
static void wakeup_hc(struct uhci_hcd *uhci)
{
unsigned int io_addr = uhci->io_addr;
 
switch (uhci->state) {
case UHCI_SUSPENDED: /* Start the resume */
dbg("%x: wakeup_hc", io_addr);
 
/* Global resume for >= 20ms */
outw(USBCMD_FGR | USBCMD_EGSM, io_addr + USBCMD);
uhci->state = UHCI_RESUMING_1;
uhci->state_end = jiffies26 + (20*HZ+999) / 1000;
break;
 
case UHCI_RESUMING_1: /* End global resume */
uhci->state = UHCI_RESUMING_2;
outw(0, io_addr + USBCMD);
/* Falls through */
 
case UHCI_RESUMING_2: /* Wait for EOP to be sent */
if (inw(io_addr + USBCMD) & USBCMD_FGR)
break;
 
/* Run for at least 1 second, and
* mark it configured with a 64-byte max packet */
uhci->state = UHCI_RUNNING_GRACE;
uhci->state_end = jiffies26 + HZ;
outw(USBCMD_RS | USBCMD_CF | USBCMD_MAXP,
io_addr + USBCMD);
break;
 
case UHCI_RUNNING_GRACE: /* Now allowed to suspend */
uhci->state = UHCI_RUNNING;
break;
 
default:
break;
}
}
 
static int ports_active(struct uhci_hcd *uhci)
{
unsigned int io_addr = uhci->io_addr;
int connection = 0;
int i;
 
for (i = 0; i < uhci->rh_numports; i++)
connection |= (inw(io_addr + USBPORTSC1 + i * 2) & USBPORTSC_CCS);
 
return connection;
}
 
static int suspend_allowed(struct uhci_hcd *uhci)
{
unsigned int io_addr = uhci->io_addr;
int i;
 
if (!uhci->hcd.pdev || uhci->hcd.pdev->vendor != PCI_VENDOR_ID_INTEL)
return 1;
 
/* Some of Intel's USB controllers have a bug that causes false
* resume indications if any port has an over current condition.
* To prevent problems, we will not allow a global suspend if
* any ports are OC.
*
* Some motherboards using Intel's chipsets (but not using all
* the USB ports) appear to hardwire the over current inputs active
* to disable the USB ports.
*/
 
/* check for over current condition on any port */
for (i = 0; i < uhci->rh_numports; i++) {
if (inw(io_addr + USBPORTSC1 + i * 2) & USBPORTSC_OC)
return 0;
}
 
return 1;
}
 
static void hc_state_transitions(struct uhci_hcd *uhci)
{
switch (uhci->state) {
case UHCI_RUNNING:
 
/* global suspend if nothing connected for 1 second */
if (!ports_active(uhci) && suspend_allowed(uhci)) {
uhci->state = UHCI_SUSPENDING_GRACE;
uhci->state_end = jiffies26 + HZ;
}
break;
 
case UHCI_SUSPENDING_GRACE:
if (ports_active(uhci))
uhci->state = UHCI_RUNNING;
else if (time_after_eq(jiffies26, uhci->state_end))
suspend_hc(uhci);
break;
 
case UHCI_SUSPENDED:
 
/* wakeup if requested by a device */
if (uhci->resume_detect)
wakeup_hc(uhci);
break;
 
case UHCI_RESUMING_1:
case UHCI_RESUMING_2:
case UHCI_RUNNING_GRACE:
if (time_after_eq(jiffies26, uhci->state_end))
wakeup_hc(uhci);
break;
 
default:
break;
}
}
 
static void start_hc(struct uhci_hcd *uhci)
{
unsigned int io_addr = uhci->io_addr;
int timeout = 1000;
/*
* Reset the HC - this will force us to get a
* new notification of any already connected
* ports due to the virtual disconnect that it
* implies.
*/
outw(USBCMD_HCRESET, io_addr + USBCMD);
while (inw(io_addr + USBCMD) & USBCMD_HCRESET) {
if (!--timeout) {
printk(KERN_ERR "uhci: USBCMD_HCRESET timed out!\n");
break;
}
}
 
/* Turn on all interrupts */
outw(USBINTR_TIMEOUT | USBINTR_RESUME | USBINTR_IOC | USBINTR_SP,
io_addr + USBINTR);
 
/* Start at frame 0 */
outw(0, io_addr + USBFRNUM);
outl(uhci->fl->dma_handle, io_addr + USBFLBASEADD);
 
/* Run and mark it configured with a 64-byte max packet */
uhci->state = UHCI_RUNNING_GRACE;
uhci->state_end = jiffies26 + HZ;
outw(USBCMD_RS | USBCMD_CF | USBCMD_MAXP, io_addr + USBCMD);
 
uhci->hcd.state = USB_STATE_RUNNING;
 
#ifdef DEB
{
__u32 *tdp;
int i;
int status = inw(io_addr + USBSTS);
printk(KERN_INFO "[%x] Frame = %d Status =%x fl=%x\n", io_addr, inw(io_addr + USBFRNUM), status, uhci->fl->dma_handle);
for (i=0; i<20; i++)
{
int status = inw(io_addr + USBSTS);
wait_ms26(500);
tdp=(__u32*)uhci->fl->frame[i];
printk(KERN_INFO "[%x] Frame[%d] -> @%x = %x status=%x fl=%x\n", io_addr, i, uhci->fl->frame[i], *tdp, status, uhci->fl->dma_handle );
}
}
#endif
 
}
 
/*
* De-allocate all resources..
*/
static void release_uhci(struct uhci_hcd *uhci)
{
int i;
 
for (i = 0; i < UHCI_NUM_SKELQH; i++)
if (uhci->skelqh[i]) {
uhci_free_qh(uhci, uhci->skelqh[i]);
uhci->skelqh[i] = NULL;
}
 
if (uhci->term_td) {
uhci_free_td(uhci, uhci->term_td);
uhci->term_td = NULL;
}
 
if (uhci->qh_pool) {
pci_pool_destroy(uhci->qh_pool);
uhci->qh_pool = NULL;
}
 
if (uhci->td_pool) {
pci_pool_destroy(uhci->td_pool);
uhci->td_pool = NULL;
}
 
if (uhci->fl) {
pci_free_consistent(uhci->hcd.pdev, sizeof(*uhci->fl), uhci->fl, uhci->fl->dma_handle);
uhci->fl = NULL;
}
 
#ifdef CONFIG_PROC_FS
if (uhci->proc_entry) {
remove_proc_entry(uhci->hcd.self.bus_name, uhci_proc_root);
uhci->proc_entry = NULL;
}
#endif
}
 
static int uhci_reset(struct usb_hcd *hcd)
{
struct uhci_hcd *uhci = hcd_to_uhci(hcd);
 
uhci->io_addr = (unsigned long) hcd->regs;
 
/* Maybe kick BIOS off this hardware. Then reset, so we won't get
* interrupts from any previous setup.
*/
reset_hc(uhci);
pci_write_config_word(hcd->pdev, USBLEGSUP, USBLEGSUP_DEFAULT);
return 0;
}
 
/*
* Allocate a frame list, and then setup the skeleton
*
* The hardware doesn't really know any difference
* in the queues, but the order does matter for the
* protocols higher up. The order is:
*
* - any isochronous events handled before any
* of the queues. We don't do that here, because
* we'll create the actual TD entries on demand.
* - The first queue is the interrupt queue.
* - The second queue is the control queue, split into low and high speed
* - The third queue is bulk queue.
* - The fourth queue is the bandwidth reclamation queue, which loops back
* to the high speed control queue.
*/
static int uhci_start(struct usb_hcd *hcd)
{
struct uhci_hcd *uhci = hcd_to_uhci(hcd);
int retval = -EBUSY;
int i, port;
unsigned io_size;
dma_addr_t dma_handle;
struct usb_device *udev;
#ifdef CONFIG_PROC_FS
struct proc_dir_entry *ent;
#endif
 
io_size = pci_resource_len(hcd->pdev, hcd->region);
 
#ifdef CONFIG_PROC_FS
ent = create_proc_entry(hcd->self.bus_name, S_IFREG|S_IRUGO|S_IWUSR, uhci_proc_root);
if (!ent) {
err("couldn't create uhci proc entry");
retval = -ENOMEM;
goto err_create_proc_entry;
}
 
ent->data = uhci;
ent->proc_fops = &uhci_proc_operations;
ent->size = 0;
uhci->proc_entry = ent;
#endif
 
uhci->fsbr = 0;
uhci->fsbrtimeout = 0;
 
spin_lock_init(&uhci->qh_remove_list_lock);
INIT_LIST_HEAD(&uhci->qh_remove_list);
 
spin_lock_init(&uhci->td_remove_list_lock);
INIT_LIST_HEAD(&uhci->td_remove_list);
 
spin_lock_init(&uhci->urb_remove_list_lock);
INIT_LIST_HEAD(&uhci->urb_remove_list);
 
spin_lock_init(&uhci->urb_list_lock);
INIT_LIST_HEAD(&uhci->urb_list);
 
spin_lock_init(&uhci->complete_list_lock);
INIT_LIST_HEAD(&uhci->complete_list);
 
spin_lock_init(&uhci->frame_list_lock);
 
uhci->fl = pci_alloc_consistent(hcd->pdev, sizeof(*uhci->fl), &dma_handle);
if (!uhci->fl) {
err("unable to allocate consistent memory for frame list");
goto err_alloc_fl;
}
 
memset((void *)uhci->fl, 0, sizeof(*uhci->fl));
uhci->fl->dma_handle = dma_handle;
 
uhci->td_pool = pci_pool_create("uhci_td", hcd->pdev,
sizeof(struct uhci_td), 16, 0);
if (!uhci->td_pool) {
err("unable to create td pci_pool");
goto err_create_td_pool;
}
 
uhci->qh_pool = pci_pool_create("uhci_qh", hcd->pdev,
sizeof(struct uhci_qh), 16, 0);
if (!uhci->qh_pool) {
err("unable to create qh pci_pool");
goto err_create_qh_pool;
}
 
/* Initialize the root hub */
 
/* UHCI specs says devices must have 2 ports, but goes on to say */
/* they may have more but give no way to determine how many they */
/* have. However, according to the UHCI spec, Bit 7 is always set */
/* to 1. So we try to use this to our advantage */
for (port = 0; port < (io_size - 0x10) / 2; port++) {
unsigned int portstatus;
 
portstatus = inw(uhci->io_addr + 0x10 + (port * 2));
if (!(portstatus & 0x0080))
break;
}
if (debug)
info("detected %d ports", port);
 
/* This is experimental so anything less than 2 or greater than 8 is */
/* something weird and we'll ignore it */
if (port < 2 || port > 8) {
info("port count misdetected? forcing to 2 ports");
port = 2;
}
 
uhci->rh_numports = port;
 
hcd->self.root_hub = udev = usb_alloc_dev(NULL, &hcd->self);
if (!udev) {
err("unable to allocate root hub");
goto err_alloc_root_hub;
}
 
uhci->term_td = uhci_alloc_td(uhci, udev);
if (!uhci->term_td) {
err("unable to allocate terminating TD");
goto err_alloc_term_td;
}
 
for (i = 0; i < UHCI_NUM_SKELQH; i++) {
uhci->skelqh[i] = uhci_alloc_qh(uhci, udev);
if (!uhci->skelqh[i]) {
err("unable to allocate QH %d", i);
goto err_alloc_skelqh;
}
}
 
/*
* 8 Interrupt queues; link int2 to int1, int4 to int2, etc
* then link int1 to control and control to bulk
*/
uhci->skel_int128_qh->link = cpu_to_le32(uhci->skel_int64_qh->dma_handle) | UHCI_PTR_QH;
uhci->skel_int64_qh->link = cpu_to_le32(uhci->skel_int32_qh->dma_handle) | UHCI_PTR_QH;
uhci->skel_int32_qh->link = cpu_to_le32(uhci->skel_int16_qh->dma_handle) | UHCI_PTR_QH;
uhci->skel_int16_qh->link = cpu_to_le32(uhci->skel_int8_qh->dma_handle) | UHCI_PTR_QH;
uhci->skel_int8_qh->link = cpu_to_le32(uhci->skel_int4_qh->dma_handle) | UHCI_PTR_QH;
uhci->skel_int4_qh->link = cpu_to_le32(uhci->skel_int2_qh->dma_handle) | UHCI_PTR_QH;
uhci->skel_int2_qh->link = cpu_to_le32(uhci->skel_int1_qh->dma_handle) | UHCI_PTR_QH;
uhci->skel_int1_qh->link = cpu_to_le32(uhci->skel_ls_control_qh->dma_handle) | UHCI_PTR_QH;
 
uhci->skel_ls_control_qh->link = cpu_to_le32(uhci->skel_hs_control_qh->dma_handle) | UHCI_PTR_QH;
uhci->skel_hs_control_qh->link = cpu_to_le32(uhci->skel_bulk_qh->dma_handle) | UHCI_PTR_QH;
uhci->skel_bulk_qh->link = cpu_to_le32(uhci->skel_term_qh->dma_handle) | UHCI_PTR_QH;
 
/* This dummy TD is to work around a bug in Intel PIIX controllers */
uhci_fill_td(uhci->term_td, 0, (UHCI_NULL_DATA_SIZE << 21) |
(0x7f << TD_TOKEN_DEVADDR_SHIFT) | USB_PID_IN, 0);
uhci->term_td->link = cpu_to_le32(uhci->term_td->dma_handle);
 
uhci->skel_term_qh->link = UHCI_PTR_TERM;
uhci->skel_term_qh->element = cpu_to_le32(uhci->term_td->dma_handle);
 
/*
* Fill the frame list: make all entries point to
* the proper interrupt queue.
*
* This is probably silly, but it's a simple way to
* scatter the interrupt queues in a way that gives
* us a reasonable dynamic range for irq latencies.
*/
for (i = 0; i < UHCI_NUMFRAMES; i++) {
int irq = 0;
 
if (i & 1) {
irq++;
if (i & 2) {
irq++;
if (i & 4) {
irq++;
if (i & 8) {
irq++;
if (i & 16) {
irq++;
if (i & 32) {
irq++;
if (i & 64)
irq++;
}
}
}
}
}
}
 
/* Only place we don't use the frame list routines */
uhci->fl->frame[i] = cpu_to_le32(uhci->skelqh[7 - irq]->dma_handle);
}
 
start_hc(uhci);
 
init_stall_timer(hcd);
 
udev->speed = USB_SPEED_FULL;
 
if (usb_register_root_hub(udev, &hcd->pdev->dev) != 0) {
err("unable to start root hub");
retval = -ENOMEM;
goto err_start_root_hub;
}
 
return 0;
 
/*
* error exits:
*/
err_start_root_hub:
reset_hc(uhci);
 
del_timer_sync(&uhci->stall_timer);
 
err_alloc_skelqh:
for (i = 0; i < UHCI_NUM_SKELQH; i++)
if (uhci->skelqh[i]) {
uhci_free_qh(uhci, uhci->skelqh[i]);
uhci->skelqh[i] = NULL;
}
 
uhci_free_td(uhci, uhci->term_td);
uhci->term_td = NULL;
 
err_alloc_term_td:
usb_put_dev(udev);
hcd->self.root_hub = NULL;
 
err_alloc_root_hub:
pci_pool_destroy(uhci->qh_pool);
uhci->qh_pool = NULL;
 
err_create_qh_pool:
pci_pool_destroy(uhci->td_pool);
uhci->td_pool = NULL;
 
err_create_td_pool:
pci_free_consistent(hcd->pdev, sizeof(*uhci->fl), uhci->fl, uhci->fl->dma_handle);
uhci->fl = NULL;
 
err_alloc_fl:
#ifdef CONFIG_PROC_FS
remove_proc_entry(hcd->self.bus_name, uhci_proc_root);
uhci->proc_entry = NULL;
 
err_create_proc_entry:
#endif
 
return retval;
}
 
static void uhci_stop(struct usb_hcd *hcd)
{
struct uhci_hcd *uhci = hcd_to_uhci(hcd);
 
del_timer_sync(&uhci->stall_timer);
 
/*
* At this point, we're guaranteed that no new connects can be made
* to this bus since there are no more parents
*/
uhci_free_pending_qhs(uhci);
uhci_free_pending_tds(uhci);
uhci_remove_pending_qhs(uhci);
 
reset_hc(uhci);
 
uhci_free_pending_qhs(uhci);
uhci_free_pending_tds(uhci);
 
release_uhci(uhci);
}
 
#ifdef CONFIG_PM
static int uhci_suspend(struct usb_hcd *hcd, u32 state)
{
struct uhci_hcd *uhci = hcd_to_uhci(hcd);
 
/* Don't try to suspend broken motherboards, reset instead */
if (suspend_allowed(uhci))
suspend_hc(uhci);
else
reset_hc(uhci);
return 0;
}
 
static int uhci_resume(struct usb_hcd *hcd)
{
struct uhci_hcd *uhci = hcd_to_uhci(hcd);
 
pci_set_master(uhci->hcd.pdev);
 
if (uhci->state == UHCI_SUSPENDED)
uhci->resume_detect = 1;
else {
reset_hc(uhci);
start_hc(uhci);
}
uhci->hcd.state = USB_STATE_RUNNING;
return 0;
}
#endif
 
static struct usb_hcd *uhci_hcd_alloc(void)
{
struct uhci_hcd *uhci;
 
uhci = (struct uhci_hcd *)kmalloc(sizeof(*uhci), GFP_KERNEL);
if (!uhci)
return NULL;
 
memset(uhci, 0, sizeof(*uhci));
uhci->hcd.product_desc = "UHCI Host Controller";
return &uhci->hcd;
}
 
static void uhci_hcd_free(struct usb_hcd *hcd)
{
kfree(hcd_to_uhci(hcd));
}
 
static int uhci_hcd_get_frame_number(struct usb_hcd *hcd)
{
return uhci_get_current_frame_number(hcd_to_uhci(hcd));
}
 
static const char hcd_name[] = "uhci_hcd";
 
static const struct hc_driver uhci_driver = {
.description = hcd_name,
 
/* Generic hardware linkage */
.irq = uhci_irq,
.flags = HCD_USB11,
 
/* Basic lifecycle operations */
.reset = uhci_reset,
.start = uhci_start,
#ifdef CONFIG_PM
.suspend = uhci_suspend,
.resume = uhci_resume,
#endif
.stop = uhci_stop,
 
.hcd_alloc = uhci_hcd_alloc,
.hcd_free = uhci_hcd_free,
 
.urb_enqueue = uhci_urb_enqueue,
.urb_dequeue = uhci_urb_dequeue,
 
.get_frame_number = uhci_hcd_get_frame_number,
 
.hub_status_data = uhci_hub_status_data,
.hub_control = uhci_hub_control,
};
 
static const struct pci_device_id uhci_pci_ids[] = { {
/* handle any USB UHCI controller */
PCI_DEVICE_CLASS(((PCI_CLASS_SERIAL_USB << 8) | 0x00), ~0),
.driver_data = (unsigned long) &uhci_driver,
}, { /* end: all zeroes */ }
};
 
MODULE_DEVICE_TABLE(pci, uhci_pci_ids);
 
static struct pci_driver uhci_pci_driver = {
.name = (char *)hcd_name,
.id_table = uhci_pci_ids,
 
.probe = usb_hcd_pci_probe,
.remove = usb_hcd_pci_remove,
 
#ifdef CONFIG_PM
.suspend = usb_hcd_pci_suspend,
.resume = usb_hcd_pci_resume,
#endif /* PM */
};
/*static*/ int __init uhci_hcd_init(void)
{
int retval = -ENOMEM;
 
info(DRIVER_DESC " " DRIVER_VERSION);
 
if (usb_disabled())
return -ENODEV;
 
if (debug) {
errbuf = kmalloc(ERRBUF_LEN, GFP_KERNEL);
if (!errbuf)
goto errbuf_failed;
}
 
#ifdef CONFIG_PROC_FS
uhci_proc_root = create_proc_entry("driver/uhci", S_IFDIR, 0);
if (!uhci_proc_root)
goto proc_failed;
#endif
 
//** uhci_up_cachep = kmem_cache_create("uhci_urb_priv",
//** sizeof(struct urb_priv), 0, 0, NULL, NULL);
//** if (!uhci_up_cachep)
//** goto up_failed;
 
retval = pci_module_init(&uhci_pci_driver);
if (retval)
goto init_failed;
 
return 0;
 
init_failed:
//** if (kmem_cache_destroy(uhci_up_cachep))
//** printk(KERN_INFO "uhci: not all urb_priv's were freed\n");
 
up_failed:
 
#ifdef CONFIG_PROC_FS
remove_proc_entry("driver/uhci", 0);
 
proc_failed:
#endif
if (errbuf)
kfree(errbuf);
 
errbuf_failed:
 
return retval;
}
 
/*static*/ void __exit uhci_hcd_cleanup(void)
{
pci_unregister_driver(&uhci_pci_driver);
//** if (kmem_cache_destroy(uhci_up_cachep))
//** printk(KERN_INFO "uhci: not all urb_priv's were freed\n");
 
#ifdef CONFIG_PROC_FS
remove_proc_entry("driver/uhci", 0);
#endif
 
if (errbuf)
kfree(errbuf);
}
 
module_init(uhci_hcd_init);
module_exit(uhci_hcd_cleanup);
 
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL");
 
/*
* Universal Host Controller Interface driver for USB.
*
* Maintainer: Johannes Erdfelt <johannes@erdfelt.com>
*
* (C) Copyright 1999 Linus Torvalds
* (C) Copyright 1999-2002 Johannes Erdfelt, johannes@erdfelt.com
* (C) Copyright 1999 Randy Dunlap
* (C) Copyright 1999 Georg Acher, acher@in.tum.de
* (C) Copyright 1999 Deti Fliegl, deti@fliegl.de
* (C) Copyright 1999 Thomas Sailer, sailer@ife.ee.ethz.ch
* (C) Copyright 1999 Roman Weissgaerber, weissg@vienna.at
* (C) Copyright 2000 Yggdrasil Computing, Inc. (port of new PCI interface
* support from usb-ohci.c by Adam Richter, adam@yggdrasil.com).
* (C) Copyright 1999 Gregory P. Smith (from usb-ohci.c)
*
* Intel documents this fairly well, and as far as I know there
* are no royalties or anything like that, but even so there are
* people who decided that they want to do the same thing in a
* completely different way.
*
* WARNING! The USB documentation is downright evil. Most of it
* is just crap, written by a committee. You're better off ignoring
* most of it, the important stuff is:
* - the low-level protocol (fairly simple but lots of small details)
* - working around the horridness of the rest
*/
 
#include <linuxcomp.h>
 
#include <linux/config.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/ioport.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/smp_lock.h>
#include <linux/errno.h>
#include <linux/unistd.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/proc_fs.h>
#ifdef CONFIG_USB_DEBUG
#define DEBUG
#else
#undef DEBUG
#endif
#include <linux/usb.h>
 
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/system.h>
 
#include "../core/hcd.h"
#include "uhci-hcd.h"
 
#include <linux/pm.h>
 
/*
* Version Information
*/
#define DRIVER_VERSION "v2.1"
#define DRIVER_AUTHOR "Linus 'Frodo Rabbit' Torvalds, Johannes Erdfelt, Randy Dunlap, Georg Acher, Deti Fliegl, Thomas Sailer, Roman Weissgaerber"
#define DRIVER_DESC "USB Universal Host Controller Interface driver"
 
/*
* debug = 0, no debugging messages
* debug = 1, dump failed URB's except for stalls
* debug = 2, dump all failed URB's (including stalls)
* show all queues in /proc/driver/uhci/[pci_addr]
* debug = 3, show all TD's in URB's when dumping
*/
#ifdef DEBUG
static int debug = 3;
#else
static int debug = 0;
#endif
MODULE_PARM(debug, "i");
MODULE_PARM_DESC(debug, "Debug level");
static char *errbuf;
#define ERRBUF_LEN (PAGE_SIZE * 8)
 
#include "uhci-hub.c"
#include "uhci-debug.c"
 
static kmem_cache_t *uhci_up_cachep; /* urb_priv */
 
static int uhci_get_current_frame_number(struct uhci_hcd *uhci);
static int uhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb);
static void uhci_unlink_generic(struct uhci_hcd *uhci, struct urb *urb);
 
static void hc_state_transitions(struct uhci_hcd *uhci);
 
/* If a transfer is still active after this much time, turn off FSBR */
#define IDLE_TIMEOUT (HZ / 20) /* 50 ms */
#define FSBR_DELAY (HZ / 20) /* 50 ms */
 
/* When we timeout an idle transfer for FSBR, we'll switch it over to */
/* depth first traversal. We'll do it in groups of this number of TD's */
/* to make sure it doesn't hog all of the bandwidth */
#define DEPTH_INTERVAL 5
 
/*
* Technically, updating td->status here is a race, but it's not really a
* problem. The worst that can happen is that we set the IOC bit again
* generating a spurious interrupt. We could fix this by creating another
* QH and leaving the IOC bit always set, but then we would have to play
* games with the FSBR code to make sure we get the correct order in all
* the cases. I don't think it's worth the effort
*/
static inline void uhci_set_next_interrupt(struct uhci_hcd *uhci)
{
unsigned long flags;
 
spin_lock_irqsave(&uhci->frame_list_lock, flags);
uhci->term_td->status |= cpu_to_le32(TD_CTRL_IOC);
spin_unlock_irqrestore(&uhci->frame_list_lock, flags);
}
 
static inline void uhci_clear_next_interrupt(struct uhci_hcd *uhci)
{
unsigned long flags;
 
spin_lock_irqsave(&uhci->frame_list_lock, flags);
uhci->term_td->status &= ~cpu_to_le32(TD_CTRL_IOC);
spin_unlock_irqrestore(&uhci->frame_list_lock, flags);
}
 
static inline void uhci_add_complete(struct uhci_hcd *uhci, struct urb *urb)
{
struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
unsigned long flags;
 
spin_lock_irqsave(&uhci->complete_list_lock, flags);
list_add_tail(&urbp->complete_list, &uhci->complete_list);
spin_unlock_irqrestore(&uhci->complete_list_lock, flags);
}
 
static struct uhci_td *uhci_alloc_td(struct uhci_hcd *uhci, struct usb_device *dev)
{
dma_addr_t dma_handle;
struct uhci_td *td;
 
td = pci_pool_alloc_usb(uhci->td_pool, GFP_ATOMIC, &dma_handle);
if (!td)
return NULL;
 
td->dma_handle = dma_handle;
 
td->link = UHCI_PTR_TERM;
td->buffer = 0;
 
td->frame = -1;
td->dev = dev;
 
INIT_LIST_HEAD(&td->list);
INIT_LIST_HEAD(&td->remove_list);
INIT_LIST_HEAD(&td->fl_list);
 
usb_get_dev(dev);
 
return td;
}
 
static inline void uhci_fill_td(struct uhci_td *td, __u32 status,
__u32 token, __u32 buffer)
{
td->status = cpu_to_le32(status);
td->token = cpu_to_le32(token);
td->buffer = cpu_to_le32(buffer);
}
 
/*
* We insert Isochronous URB's directly into the frame list at the beginning
*/
static void uhci_insert_td_frame_list(struct uhci_hcd *uhci, struct uhci_td *td, unsigned framenum)
{
unsigned long flags;
 
framenum %= UHCI_NUMFRAMES;
 
spin_lock_irqsave(&uhci->frame_list_lock, flags);
 
td->frame = framenum;
 
/* Is there a TD already mapped there? */
if (uhci->fl->frame_cpu[framenum]) {
struct uhci_td *ftd, *ltd;
 
ftd = uhci->fl->frame_cpu[framenum];
ltd = list_entry(ftd->fl_list.prev, struct uhci_td, fl_list);
 
list_add_tail(&td->fl_list, &ftd->fl_list);
 
td->link = ltd->link;
mb();
ltd->link = cpu_to_le32(td->dma_handle);
} else {
td->link = uhci->fl->frame[framenum];
mb();
uhci->fl->frame[framenum] = cpu_to_le32(td->dma_handle);
uhci->fl->frame_cpu[framenum] = td;
}
 
spin_unlock_irqrestore(&uhci->frame_list_lock, flags);
}
 
static void uhci_remove_td(struct uhci_hcd *uhci, struct uhci_td *td)
{
unsigned long flags;
 
/* If it's not inserted, don't remove it */
spin_lock_irqsave(&uhci->frame_list_lock, flags);
if (td->frame == -1 && list_empty(&td->fl_list))
goto out;
 
if (td->frame != -1 && uhci->fl->frame_cpu[td->frame] == td) {
if (list_empty(&td->fl_list)) {
uhci->fl->frame[td->frame] = td->link;
uhci->fl->frame_cpu[td->frame] = NULL;
} else {
struct uhci_td *ntd;
 
ntd = list_entry(td->fl_list.next, struct uhci_td, fl_list);
uhci->fl->frame[td->frame] = cpu_to_le32(ntd->dma_handle);
uhci->fl->frame_cpu[td->frame] = ntd;
}
} else {
struct uhci_td *ptd;
 
ptd = list_entry(td->fl_list.prev, struct uhci_td, fl_list);
ptd->link = td->link;
}
 
mb();
td->link = UHCI_PTR_TERM;
 
list_del_init(&td->fl_list);
td->frame = -1;
 
out:
spin_unlock_irqrestore(&uhci->frame_list_lock, flags);
}
 
/*
* Inserts a td into qh list at the top.
*/
static void uhci_insert_tds_in_qh(struct uhci_qh *qh, struct urb *urb, u32 breadth)
{
struct list_head *tmp, *head;
struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
struct uhci_td *td, *ptd;
 
if (list_empty(&urbp->td_list))
return;
 
head = &urbp->td_list;
tmp = head->next;
 
/* Ordering isn't important here yet since the QH hasn't been */
/* inserted into the schedule yet */
td = list_entry(tmp, struct uhci_td, list);
 
/* Add the first TD to the QH element pointer */
qh->element = cpu_to_le32(td->dma_handle) | breadth;
 
ptd = td;
 
/* Then link the rest of the TD's */
tmp = tmp->next;
while (tmp != head) {
td = list_entry(tmp, struct uhci_td, list);
 
tmp = tmp->next;
 
ptd->link = cpu_to_le32(td->dma_handle) | breadth;
 
ptd = td;
}
 
ptd->link = UHCI_PTR_TERM;
}
 
static void uhci_free_td(struct uhci_hcd *uhci, struct uhci_td *td)
{
if (!list_empty(&td->list))
dbg("td %p is still in list!", td);
if (!list_empty(&td->remove_list))
dbg("td %p still in remove_list!", td);
if (!list_empty(&td->fl_list))
dbg("td %p is still in fl_list!", td);
 
if (td->dev)
usb_put_dev(td->dev);
 
pci_pool_free(uhci->td_pool, td, td->dma_handle);
}
 
static struct uhci_qh *uhci_alloc_qh(struct uhci_hcd *uhci, struct usb_device *dev)
{
dma_addr_t dma_handle;
struct uhci_qh *qh;
 
qh = pci_pool_alloc_usb(uhci->qh_pool, GFP_ATOMIC, &dma_handle);
if (!qh)
return NULL;
 
qh->dma_handle = dma_handle;
 
qh->element = UHCI_PTR_TERM;
qh->link = UHCI_PTR_TERM;
 
qh->dev = dev;
qh->urbp = NULL;
 
INIT_LIST_HEAD(&qh->list);
INIT_LIST_HEAD(&qh->remove_list);
 
usb_get_dev(dev);
 
return qh;
}
 
static void uhci_free_qh(struct uhci_hcd *uhci, struct uhci_qh *qh)
{
if (!list_empty(&qh->list))
dbg("qh %p list not empty!", qh);
if (!list_empty(&qh->remove_list))
dbg("qh %p still in remove_list!", qh);
 
if (qh->dev)
usb_put_dev(qh->dev);
 
pci_pool_free(uhci->qh_pool, qh, qh->dma_handle);
}
 
/*
* Append this urb's qh after the last qh in skelqh->list
* MUST be called with uhci->frame_list_lock acquired
*
* Note that urb_priv.queue_list doesn't have a separate queue head;
* it's a ring with every element "live".
*/
static void _uhci_insert_qh(struct uhci_hcd *uhci, struct uhci_qh *skelqh, struct urb *urb)
{
struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
struct list_head *tmp;
struct uhci_qh *lqh;
 
/* Grab the last QH */
lqh = list_entry(skelqh->list.prev, struct uhci_qh, list);
 
/*
* Patch this endpoint's URB's QHs to point to the next skelqh:
* skelqh --> ... lqh --> newqh --> next skelqh
* Do this first, so the HC always sees the right QH after this one.
*/
list_for_each (tmp, &urbp->queue_list) {
struct urb_priv *turbp =
list_entry(tmp, struct urb_priv, queue_list);
 
turbp->qh->link = lqh->link;
}
urbp->qh->link = lqh->link;
wmb(); /* Ordering is important */
 
/*
* Patch QHs for previous endpoint's queued URBs? HC goes
* here next, not to the next skelqh it now points to.
*
* lqh --> td ... --> qh ... --> td --> qh ... --> td
* | | |
* v v v
* +<----------------+-----------------+
* v
* newqh --> td ... --> td
* |
* v
* ...
*
* The HC could see (and use!) any of these as we write them.
*/
if (lqh->urbp) {
list_for_each (tmp, &lqh->urbp->queue_list) {
struct urb_priv *turbp =
list_entry(tmp, struct urb_priv, queue_list);
 
turbp->qh->link = cpu_to_le32(urbp->qh->dma_handle) | UHCI_PTR_QH;
}
}
lqh->link = cpu_to_le32(urbp->qh->dma_handle) | UHCI_PTR_QH;
 
list_add_tail(&urbp->qh->list, &skelqh->list);
}
 
static void uhci_insert_qh(struct uhci_hcd *uhci, struct uhci_qh *skelqh, struct urb *urb)
{
unsigned long flags;
 
spin_lock_irqsave(&uhci->frame_list_lock, flags);
_uhci_insert_qh(uhci, skelqh, urb);
spin_unlock_irqrestore(&uhci->frame_list_lock, flags);
}
 
/*
* Start removal of QH from schedule; it finishes next frame.
* TDs should be unlinked before this is called.
*/
static void uhci_remove_qh(struct uhci_hcd *uhci, struct uhci_qh *qh)
{
unsigned long flags;
struct uhci_qh *pqh;
 
if (!qh)
return;
 
qh->urbp = NULL;
 
/*
* Only go through the hoops if it's actually linked in
* Queued QHs are removed in uhci_delete_queued_urb,
* since (for queued URBs) the pqh is pointed to the next
* QH in the queue, not the next endpoint's QH.
*/
spin_lock_irqsave(&uhci->frame_list_lock, flags);
if (!list_empty(&qh->list)) {
pqh = list_entry(qh->list.prev, struct uhci_qh, list);
 
if (pqh->urbp) {
struct list_head *head, *tmp;
 
head = &pqh->urbp->queue_list;
tmp = head->next;
while (head != tmp) {
struct urb_priv *turbp =
list_entry(tmp, struct urb_priv, queue_list);
 
tmp = tmp->next;
 
turbp->qh->link = qh->link;
}
}
 
pqh->link = qh->link;
mb();
/* Leave qh->link in case the HC is on the QH now, it will */
/* continue the rest of the schedule */
qh->element = UHCI_PTR_TERM;
 
list_del_init(&qh->list);
}
spin_unlock_irqrestore(&uhci->frame_list_lock, flags);
 
spin_lock_irqsave(&uhci->qh_remove_list_lock, flags);
 
/* Check to see if the remove list is empty. Set the IOC bit */
/* to force an interrupt so we can remove the QH */
if (list_empty(&uhci->qh_remove_list))
uhci_set_next_interrupt(uhci);
 
list_add(&qh->remove_list, &uhci->qh_remove_list);
 
spin_unlock_irqrestore(&uhci->qh_remove_list_lock, flags);
}
 
static int uhci_fixup_toggle(struct urb *urb, unsigned int toggle)
{
struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
struct list_head *head, *tmp;
 
head = &urbp->td_list;
tmp = head->next;
while (head != tmp) {
struct uhci_td *td = list_entry(tmp, struct uhci_td, list);
 
tmp = tmp->next;
 
if (toggle)
td->token |= cpu_to_le32(TD_TOKEN_TOGGLE);
else
td->token &= ~cpu_to_le32(TD_TOKEN_TOGGLE);
 
 
toggle ^= 1;
}
 
return toggle;
}
 
/* This function will append one URB's QH to another URB's QH. This is for */
/* queuing interrupt, control or bulk transfers */
static void uhci_append_queued_urb(struct uhci_hcd *uhci, struct urb *eurb, struct urb *urb)
{
struct urb_priv *eurbp, *urbp, *furbp, *lurbp;
struct list_head *tmp;
struct uhci_td *lltd;
unsigned long flags;
 
eurbp = eurb->hcpriv;
urbp = urb->hcpriv;
 
spin_lock_irqsave(&uhci->frame_list_lock, flags);
 
/* Find the first URB in the queue */
if (eurbp->queued) {
struct list_head *head = &eurbp->queue_list;
 
tmp = head->next;
while (tmp != head) {
struct urb_priv *turbp =
list_entry(tmp, struct urb_priv, queue_list);
 
if (!turbp->queued)
break;
 
tmp = tmp->next;
}
} else
tmp = &eurbp->queue_list;
 
furbp = list_entry(tmp, struct urb_priv, queue_list);
lurbp = list_entry(furbp->queue_list.prev, struct urb_priv, queue_list);
 
lltd = list_entry(lurbp->td_list.prev, struct uhci_td, list);
 
usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), usb_pipeout(urb->pipe),
uhci_fixup_toggle(urb, uhci_toggle(td_token(lltd)) ^ 1));
 
/* All qh's in the queue need to link to the next queue */
urbp->qh->link = eurbp->qh->link;
 
mb(); /* Make sure we flush everything */
 
lltd->link = cpu_to_le32(urbp->qh->dma_handle) | UHCI_PTR_QH;
 
list_add_tail(&urbp->queue_list, &furbp->queue_list);
 
urbp->queued = 1;
 
spin_unlock_irqrestore(&uhci->frame_list_lock, flags);
}
 
static void uhci_delete_queued_urb(struct uhci_hcd *uhci, struct urb *urb)
{
struct urb_priv *urbp, *nurbp;
struct list_head *head, *tmp;
struct urb_priv *purbp;
struct uhci_td *pltd;
unsigned int toggle;
unsigned long flags;
 
urbp = urb->hcpriv;
 
spin_lock_irqsave(&uhci->frame_list_lock, flags);
 
if (list_empty(&urbp->queue_list))
goto out;
 
nurbp = list_entry(urbp->queue_list.next, struct urb_priv, queue_list);
 
/* Fix up the toggle for the next URB's */
if (!urbp->queued)
/* We just set the toggle in uhci_unlink_generic */
toggle = usb_gettoggle(urb->dev, usb_pipeendpoint(urb->pipe), usb_pipeout(urb->pipe));
else {
/* If we're in the middle of the queue, grab the toggle */
/* from the TD previous to us */
purbp = list_entry(urbp->queue_list.prev, struct urb_priv,
queue_list);
 
pltd = list_entry(purbp->td_list.prev, struct uhci_td, list);
 
toggle = uhci_toggle(td_token(pltd)) ^ 1;
}
 
head = &urbp->queue_list;
tmp = head->next;
while (head != tmp) {
struct urb_priv *turbp;
 
turbp = list_entry(tmp, struct urb_priv, queue_list);
 
tmp = tmp->next;
 
if (!turbp->queued)
break;
 
toggle = uhci_fixup_toggle(turbp->urb, toggle);
}
 
usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe),
usb_pipeout(urb->pipe), toggle);
 
if (!urbp->queued) {
struct uhci_qh *pqh;
 
nurbp->queued = 0;
 
/*
* Fixup the previous QH's queue to link to the new head
* of this queue.
*/
pqh = list_entry(urbp->qh->list.prev, struct uhci_qh, list);
 
if (pqh->urbp) {
struct list_head *head, *tmp;
 
head = &pqh->urbp->queue_list;
tmp = head->next;
while (head != tmp) {
struct urb_priv *turbp =
list_entry(tmp, struct urb_priv, queue_list);
 
tmp = tmp->next;
 
turbp->qh->link = cpu_to_le32(nurbp->qh->dma_handle) | UHCI_PTR_QH;
}
}
 
pqh->link = cpu_to_le32(nurbp->qh->dma_handle) | UHCI_PTR_QH;
 
list_add_tail(&nurbp->qh->list, &urbp->qh->list);
list_del_init(&urbp->qh->list);
} else {
/* We're somewhere in the middle (or end). A bit trickier */
/* than the head scenario */
purbp = list_entry(urbp->queue_list.prev, struct urb_priv,
queue_list);
 
pltd = list_entry(purbp->td_list.prev, struct uhci_td, list);
if (nurbp->queued)
pltd->link = cpu_to_le32(nurbp->qh->dma_handle) | UHCI_PTR_QH;
else
/* The next URB happens to be the beginning, so */
/* we're the last, end the chain */
pltd->link = UHCI_PTR_TERM;
}
 
list_del_init(&urbp->queue_list);
 
out:
spin_unlock_irqrestore(&uhci->frame_list_lock, flags);
}
 
extern void* malloc(int size);
 
static struct urb_priv *uhci_alloc_urb_priv(struct uhci_hcd *uhci, struct urb *urb)
{
struct urb_priv *urbp;
 
urbp = malloc(sizeof(struct urb_priv)); //**kmem_cache_alloc(uhci_up_cachep, SLAB_ATOMIC);
if (!urbp) {
err("uhci_alloc_urb_priv: couldn't allocate memory for urb_priv\n");
return NULL;
}
 
memset((void *)urbp, 0, sizeof(*urbp));
 
urbp->inserttime = jiffies26;
urbp->fsbrtime = jiffies26;
urbp->urb = urb;
urbp->dev = urb->dev;
INIT_LIST_HEAD(&urbp->td_list);
INIT_LIST_HEAD(&urbp->queue_list);
INIT_LIST_HEAD(&urbp->complete_list);
INIT_LIST_HEAD(&urbp->urb_list);
 
list_add_tail(&urbp->urb_list, &uhci->urb_list);
 
urb->hcpriv = urbp;
 
return urbp;
}
 
/*
* MUST be called with urb->lock acquired
*/
static void uhci_add_td_to_urb(struct urb *urb, struct uhci_td *td)
{
struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
 
td->urb = urb;
 
list_add_tail(&td->list, &urbp->td_list);
}
 
/*
* MUST be called with urb->lock acquired
*/
static void uhci_remove_td_from_urb(struct uhci_td *td)
{
if (list_empty(&td->list))
return;
 
list_del_init(&td->list);
 
td->urb = NULL;
}
 
/*
* MUST be called with urb->lock acquired
*/
static void uhci_destroy_urb_priv(struct uhci_hcd *uhci, struct urb *urb)
{
struct list_head *head, *tmp;
struct urb_priv *urbp;
unsigned long flags;
 
urbp = (struct urb_priv *)urb->hcpriv;
if (!urbp)
return;
 
if (!list_empty(&urbp->urb_list))
warn("uhci_destroy_urb_priv: urb %p still on uhci->urb_list or uhci->remove_list", urb);
 
if (!list_empty(&urbp->complete_list))
warn("uhci_destroy_urb_priv: urb %p still on uhci->complete_list", urb);
 
spin_lock_irqsave(&uhci->td_remove_list_lock, flags);
 
/* Check to see if the remove list is empty. Set the IOC bit */
/* to force an interrupt so we can remove the TD's*/
if (list_empty(&uhci->td_remove_list))
uhci_set_next_interrupt(uhci);
 
head = &urbp->td_list;
tmp = head->next;
while (tmp != head) {
struct uhci_td *td = list_entry(tmp, struct uhci_td, list);
 
tmp = tmp->next;
 
uhci_remove_td_from_urb(td);
uhci_remove_td(uhci, td);
list_add(&td->remove_list, &uhci->td_remove_list);
}
 
spin_unlock_irqrestore(&uhci->td_remove_list_lock, flags);
 
urb->hcpriv = NULL;
//**kmem_cache_free(uhci_up_cachep, urbp);
free(urbp);
}
 
static void uhci_inc_fsbr(struct uhci_hcd *uhci, struct urb *urb)
{
unsigned long flags;
struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
 
spin_lock_irqsave(&uhci->frame_list_lock, flags);
 
if ((!(urb->transfer_flags & URB_NO_FSBR)) && !urbp->fsbr) {
urbp->fsbr = 1;
if (!uhci->fsbr++ && !uhci->fsbrtimeout)
uhci->skel_term_qh->link = cpu_to_le32(uhci->skel_hs_control_qh->dma_handle) | UHCI_PTR_QH;
}
 
spin_unlock_irqrestore(&uhci->frame_list_lock, flags);
}
 
static void uhci_dec_fsbr(struct uhci_hcd *uhci, struct urb *urb)
{
unsigned long flags;
struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
 
spin_lock_irqsave(&uhci->frame_list_lock, flags);
 
if ((!(urb->transfer_flags & URB_NO_FSBR)) && urbp->fsbr) {
urbp->fsbr = 0;
if (!--uhci->fsbr)
uhci->fsbrtimeout = jiffies26 + FSBR_DELAY;
}
 
spin_unlock_irqrestore(&uhci->frame_list_lock, flags);
}
 
/*
* Map status to standard result codes
*
* <status> is (td->status & 0xFE0000) [a.k.a. uhci_status_bits(td->status)]
* <dir_out> is True for output TDs and False for input TDs.
*/
static int uhci_map_status(int status, int dir_out)
{
if (!status)
return 0;
if (status & TD_CTRL_BITSTUFF) /* Bitstuff error */
return -EPROTO;
if (status & TD_CTRL_CRCTIMEO) { /* CRC/Timeout */
if (dir_out)
return -ETIMEDOUT;
else
return -EILSEQ;
}
if (status & TD_CTRL_NAK) /* NAK */
return -ETIMEDOUT;
if (status & TD_CTRL_BABBLE) /* Babble */
return -EOVERFLOW;
if (status & TD_CTRL_DBUFERR) /* Buffer error */
return -ENOSR;
if (status & TD_CTRL_STALLED) /* Stalled */
return -EPIPE;
if (status & TD_CTRL_ACTIVE) /* Active */
return 0;
 
return -EINVAL;
}
 
/*
* Control transfers
*/
static int uhci_submit_control(struct uhci_hcd *uhci, struct urb *urb, struct urb *eurb)
{
struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
struct uhci_td *td;
struct uhci_qh *qh, *skelqh;
unsigned long destination, status;
int maxsze = usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe));
int len = urb->transfer_buffer_length;
dma_addr_t data = urb->transfer_dma;
 
/* The "pipe" thing contains the destination in bits 8--18 */
destination = (urb->pipe & PIPE_DEVEP_MASK) | USB_PID_SETUP;
 
/* 3 errors */
status = TD_CTRL_ACTIVE | uhci_maxerr(3);
if (urb->dev->speed == USB_SPEED_LOW)
status |= TD_CTRL_LS;
 
/*
* Build the TD for the control request
*/
td = uhci_alloc_td(uhci, urb->dev);
if (!td)
return -ENOMEM;
 
uhci_add_td_to_urb(urb, td);
uhci_fill_td(td, status, destination | uhci_explen(7),
urb->setup_dma);
 
/*
* If direction is "send", change the frame from SETUP (0x2D)
* to OUT (0xE1). Else change it from SETUP to IN (0x69).
*/
destination ^= (USB_PID_SETUP ^ usb_packetid(urb->pipe));
 
if (!(urb->transfer_flags & URB_SHORT_NOT_OK))
status |= TD_CTRL_SPD;
 
/*
* Build the DATA TD's
*/
while (len > 0) {
int pktsze = len;
 
if (pktsze > maxsze)
pktsze = maxsze;
 
td = uhci_alloc_td(uhci, urb->dev);
if (!td)
return -ENOMEM;
 
/* Alternate Data0/1 (start with Data1) */
destination ^= TD_TOKEN_TOGGLE;
uhci_add_td_to_urb(urb, td);
uhci_fill_td(td, status, destination | uhci_explen(pktsze - 1),
data);
 
data += pktsze;
len -= pktsze;
}
 
/*
* Build the final TD for control status
*/
td = uhci_alloc_td(uhci, urb->dev);
if (!td)
return -ENOMEM;
 
/*
* It's IN if the pipe is an output pipe or we're not expecting
* data back.
*/
destination &= ~TD_TOKEN_PID_MASK;
if (usb_pipeout(urb->pipe) || !urb->transfer_buffer_length)
destination |= USB_PID_IN;
else
destination |= USB_PID_OUT;
 
destination |= TD_TOKEN_TOGGLE; /* End in Data1 */
 
status &= ~TD_CTRL_SPD;
 
uhci_add_td_to_urb(urb, td);
uhci_fill_td(td, status | TD_CTRL_IOC,
destination | uhci_explen(UHCI_NULL_DATA_SIZE), 0);
 
qh = uhci_alloc_qh(uhci, urb->dev);
if (!qh)
return -ENOMEM;
 
urbp->qh = qh;
qh->urbp = urbp;
 
uhci_insert_tds_in_qh(qh, urb, UHCI_PTR_BREADTH);
 
/* Low speed transfers get a different queue, and won't hog the bus */
if (urb->dev->speed == USB_SPEED_LOW)
skelqh = uhci->skel_ls_control_qh;
else {
skelqh = uhci->skel_hs_control_qh;
uhci_inc_fsbr(uhci, urb);
}
 
if (eurb)
uhci_append_queued_urb(uhci, eurb, urb);
else
uhci_insert_qh(uhci, skelqh, urb);
 
return -EINPROGRESS;
}
 
/*
* If control was short, then end status packet wasn't sent, so this
* reorganize s so it's sent to finish the transfer. The original QH is
* removed from the skel and discarded; all TDs except the last (status)
* are deleted; the last (status) TD is put on a new QH which is reinserted
* into the skel. Since the last TD and urb_priv are reused, the TD->link
* and urb_priv maintain any queued QHs.
*/
static int usb_control_retrigger_status(struct uhci_hcd *uhci, struct urb *urb)
{
struct list_head *tmp, *head;
struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
 
urbp->short_control_packet = 1;
 
/* Create a new QH to avoid pointer overwriting problems */
uhci_remove_qh(uhci, urbp->qh);
 
/* Delete all of the TD's except for the status TD at the end */
head = &urbp->td_list;
tmp = head->next;
while (tmp != head && tmp->next != head) {
struct uhci_td *td = list_entry(tmp, struct uhci_td, list);
 
tmp = tmp->next;
 
uhci_remove_td_from_urb(td);
uhci_remove_td(uhci, td);
uhci_free_td(uhci, td);
}
 
urbp->qh = uhci_alloc_qh(uhci, urb->dev);
if (!urbp->qh) {
err("unable to allocate new QH for control retrigger");
return -ENOMEM;
}
 
urbp->qh->urbp = urbp;
 
/* One TD, who cares about Breadth first? */
uhci_insert_tds_in_qh(urbp->qh, urb, UHCI_PTR_DEPTH);
 
/* Low speed transfers get a different queue */
if (urb->dev->speed == USB_SPEED_LOW)
uhci_insert_qh(uhci, uhci->skel_ls_control_qh, urb);
else
uhci_insert_qh(uhci, uhci->skel_hs_control_qh, urb);
 
return -EINPROGRESS;
}
 
 
static int uhci_result_control(struct uhci_hcd *uhci, struct urb *urb)
{
struct list_head *tmp, *head;
struct urb_priv *urbp = urb->hcpriv;
struct uhci_td *td;
unsigned int status;
int ret = 0;
 
if (list_empty(&urbp->td_list))
return -EINVAL;
 
head = &urbp->td_list;
if (urbp->short_control_packet) {
tmp = head->prev;
goto status_phase;
}
tmp = head->next;
td = list_entry(tmp, struct uhci_td, list);
 
/* The first TD is the SETUP phase, check the status, but skip */
/* the count */
status = uhci_status_bits(td_status(td));
if (status & TD_CTRL_ACTIVE)
return -EINPROGRESS;
 
if (status)
goto td_error;
 
urb->actual_length = 0;
 
/* The rest of the TD's (but the last) are data */
tmp = tmp->next;
while (tmp != head && tmp->next != head) {
td = list_entry(tmp, struct uhci_td, list);
 
tmp = tmp->next;
 
status = uhci_status_bits(td_status(td));
if (status & TD_CTRL_ACTIVE)
return -EINPROGRESS;
 
urb->actual_length += uhci_actual_length(td_status(td));
 
if (status)
goto td_error;
 
/* Check to see if we received a short packet */
if (uhci_actual_length(td_status(td)) < uhci_expected_length(td_token(td))) {
if (urb->transfer_flags & URB_SHORT_NOT_OK) {
ret = -EREMOTEIO;
goto err;
}
 
if (uhci_packetid(td_token(td)) == USB_PID_IN)
return usb_control_retrigger_status(uhci, urb);
else
return 0;
}
}
 
status_phase:
td = list_entry(tmp, struct uhci_td, list);
 
/* Control status phase */
status = td_status(td);
 
#ifdef I_HAVE_BUGGY_APC_BACKUPS
/* APC BackUPS Pro kludge */
/* It tries to send all of the descriptor instead of the amount */
/* we requested */
if (status & TD_CTRL_IOC && /* IOC is masked out by uhci_status_bits */
status & TD_CTRL_ACTIVE &&
status & TD_CTRL_NAK)
return 0;
#endif
 
if (status & TD_CTRL_ACTIVE)
return -EINPROGRESS;
 
if (uhci_status_bits(status))
goto td_error;
 
return 0;
 
td_error:
ret = uhci_map_status(status, uhci_packetout(td_token(td)));
 
err:
if ((debug == 1 && ret != -EPIPE) || debug > 1) {
/* Some debugging code */
dbg("uhci_result_control() failed with status %x", status);
 
if (errbuf) {
/* Print the chain for debugging purposes */
uhci_show_qh(urbp->qh, errbuf, ERRBUF_LEN, 0);
 
lprintk(errbuf);
}
}
 
return ret;
}
 
/*
* Common submit for bulk and interrupt
*/
static int uhci_submit_common(struct uhci_hcd *uhci, struct urb *urb, struct urb *eurb, struct uhci_qh *skelqh)
{
struct uhci_td *td;
struct uhci_qh *qh;
unsigned long destination, status;
int maxsze = usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe));
int len = urb->transfer_buffer_length;
struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
dma_addr_t data = urb->transfer_dma;
 
if (len < 0)
return -EINVAL;
 
/* The "pipe" thing contains the destination in bits 8--18 */
destination = (urb->pipe & PIPE_DEVEP_MASK) | usb_packetid(urb->pipe);
 
status = uhci_maxerr(3) | TD_CTRL_ACTIVE;
if (urb->dev->speed == USB_SPEED_LOW)
status |= TD_CTRL_LS;
if (!(urb->transfer_flags & URB_SHORT_NOT_OK))
status |= TD_CTRL_SPD;
 
/*
* Build the DATA TD's
*/
do { /* Allow zero length packets */
int pktsze = len;
 
if (pktsze > maxsze)
pktsze = maxsze;
 
td = uhci_alloc_td(uhci, urb->dev);
if (!td)
return -ENOMEM;
 
uhci_add_td_to_urb(urb, td);
uhci_fill_td(td, status, destination | uhci_explen(pktsze - 1) |
(usb_gettoggle(urb->dev, usb_pipeendpoint(urb->pipe),
usb_pipeout(urb->pipe)) << TD_TOKEN_TOGGLE_SHIFT),
data);
 
data += pktsze;
len -= maxsze;
 
usb_dotoggle(urb->dev, usb_pipeendpoint(urb->pipe),
usb_pipeout(urb->pipe));
} while (len > 0);
 
/*
* URB_ZERO_PACKET means adding a 0-length packet, if direction
* is OUT and the transfer_length was an exact multiple of maxsze,
* hence (len = transfer_length - N * maxsze) == 0
* however, if transfer_length == 0, the zero packet was already
* prepared above.
*/
if (usb_pipeout(urb->pipe) && (urb->transfer_flags & URB_ZERO_PACKET) &&
!len && urb->transfer_buffer_length) {
td = uhci_alloc_td(uhci, urb->dev);
if (!td)
return -ENOMEM;
 
uhci_add_td_to_urb(urb, td);
uhci_fill_td(td, status, destination | uhci_explen(UHCI_NULL_DATA_SIZE) |
(usb_gettoggle(urb->dev, usb_pipeendpoint(urb->pipe),
usb_pipeout(urb->pipe)) << TD_TOKEN_TOGGLE_SHIFT),
data);
 
usb_dotoggle(urb->dev, usb_pipeendpoint(urb->pipe),
usb_pipeout(urb->pipe));
}
 
/* Set the flag on the last packet */
td->status |= cpu_to_le32(TD_CTRL_IOC);
 
qh = uhci_alloc_qh(uhci, urb->dev);
if (!qh)
return -ENOMEM;
 
urbp->qh = qh;
qh->urbp = urbp;
 
/* Always breadth first */
uhci_insert_tds_in_qh(qh, urb, UHCI_PTR_BREADTH);
 
if (eurb)
uhci_append_queued_urb(uhci, eurb, urb);
else
uhci_insert_qh(uhci, skelqh, urb);
 
return -EINPROGRESS;
}
 
/*
* Common result for bulk and interrupt
*/
static int uhci_result_common(struct uhci_hcd *uhci, struct urb *urb)
{
struct list_head *tmp, *head;
struct urb_priv *urbp = urb->hcpriv;
struct uhci_td *td;
unsigned int status = 0;
int ret = 0;
 
urb->actual_length = 0;
 
head = &urbp->td_list;
tmp = head->next;
while (tmp != head) {
td = list_entry(tmp, struct uhci_td, list);
 
tmp = tmp->next;
 
status = uhci_status_bits(td_status(td));
if (status & TD_CTRL_ACTIVE)
return -EINPROGRESS;
 
urb->actual_length += uhci_actual_length(td_status(td));
 
if (status)
goto td_error;
 
if (uhci_actual_length(td_status(td)) < uhci_expected_length(td_token(td))) {
if (urb->transfer_flags & URB_SHORT_NOT_OK) {
ret = -EREMOTEIO;
goto err;
} else
return 0;
}
}
 
return 0;
 
td_error:
ret = uhci_map_status(status, uhci_packetout(td_token(td)));
if (ret == -EPIPE)
/* endpoint has stalled - mark it halted */
usb_endpoint_halt(urb->dev, uhci_endpoint(td_token(td)),
uhci_packetout(td_token(td)));
 
err:
/*
* Enable this chunk of code if you want to see some more debugging.
* But be careful, it has the tendancy to starve out khubd and prevent
* disconnects from happening successfully if you have a slow debug
* log interface (like a serial console.
*/
#if 0
if ((debug == 1 && ret != -EPIPE) || debug > 1) {
/* Some debugging code */
dbg("uhci_result_common() failed with status %x", status);
 
if (errbuf) {
/* Print the chain for debugging purposes */
uhci_show_qh(urbp->qh, errbuf, ERRBUF_LEN, 0);
 
lprintk(errbuf);
}
}
#endif
return ret;
}
 
static inline int uhci_submit_bulk(struct uhci_hcd *uhci, struct urb *urb, struct urb *eurb)
{
int ret;
 
/* Can't have low speed bulk transfers */
if (urb->dev->speed == USB_SPEED_LOW)
return -EINVAL;
 
ret = uhci_submit_common(uhci, urb, eurb, uhci->skel_bulk_qh);
if (ret == -EINPROGRESS)
uhci_inc_fsbr(uhci, urb);
 
return ret;
}
 
static inline int uhci_submit_interrupt(struct uhci_hcd *uhci, struct urb *urb, struct urb *eurb)
{
/* USB 1.1 interrupt transfers only involve one packet per interval;
* that's the uhci_submit_common() "breadth first" policy. Drivers
* can submit urbs of any length, but longer ones might need many
* intervals to complete.
*/
return uhci_submit_common(uhci, urb, eurb, uhci->skelqh[__interval_to_skel(urb->interval)]);
}
 
/*
* Bulk and interrupt use common result
*/
#define uhci_result_bulk uhci_result_common
#define uhci_result_interrupt uhci_result_common
 
/*
* Isochronous transfers
*/
static int isochronous_find_limits(struct uhci_hcd *uhci, struct urb *urb, unsigned int *start, unsigned int *end)
{
struct urb *last_urb = NULL;
struct list_head *tmp, *head;
int ret = 0;
 
head = &uhci->urb_list;
tmp = head->next;
while (tmp != head) {
struct urb_priv *up = list_entry(tmp, struct urb_priv, urb_list);
struct urb *u = up->urb;
 
tmp = tmp->next;
 
/* look for pending URB's with identical pipe handle */
if ((urb->pipe == u->pipe) && (urb->dev == u->dev) &&
(u->status == -EINPROGRESS) && (u != urb)) {
if (!last_urb)
*start = u->start_frame;
last_urb = u;
}
}
 
if (last_urb) {
*end = (last_urb->start_frame + last_urb->number_of_packets *
last_urb->interval) & (UHCI_NUMFRAMES-1);
ret = 0;
} else
ret = -1; /* no previous urb found */
 
return ret;
}
 
static int isochronous_find_start(struct uhci_hcd *uhci, struct urb *urb)
{
int limits;
unsigned int start = 0, end = 0;
 
if (urb->number_of_packets > 900) /* 900? Why? */
return -EFBIG;
 
limits = isochronous_find_limits(uhci, urb, &start, &end);
 
if (urb->transfer_flags & URB_ISO_ASAP) {
if (limits) {
int curframe;
 
curframe = uhci_get_current_frame_number(uhci) % UHCI_NUMFRAMES;
urb->start_frame = (curframe + 10) % UHCI_NUMFRAMES;
} else
urb->start_frame = end;
} else {
urb->start_frame %= UHCI_NUMFRAMES;
/* FIXME: Sanity check */
}
 
return 0;
}
 
/*
* Isochronous transfers
*/
static int uhci_submit_isochronous(struct uhci_hcd *uhci, struct urb *urb)
{
struct uhci_td *td;
int i, ret, frame;
int status, destination;
 
status = TD_CTRL_ACTIVE | TD_CTRL_IOS;
destination = (urb->pipe & PIPE_DEVEP_MASK) | usb_packetid(urb->pipe);
 
ret = isochronous_find_start(uhci, urb);
if (ret)
return ret;
 
frame = urb->start_frame;
for (i = 0; i < urb->number_of_packets; i++, frame += urb->interval) {
if (!urb->iso_frame_desc[i].length)
continue;
 
td = uhci_alloc_td(uhci, urb->dev);
if (!td)
return -ENOMEM;
 
uhci_add_td_to_urb(urb, td);
uhci_fill_td(td, status, destination | uhci_explen(urb->iso_frame_desc[i].length - 1),
urb->transfer_dma + urb->iso_frame_desc[i].offset);
 
if (i + 1 >= urb->number_of_packets)
td->status |= cpu_to_le32(TD_CTRL_IOC);
 
uhci_insert_td_frame_list(uhci, td, frame);
}
 
return -EINPROGRESS;
}
 
static int uhci_result_isochronous(struct uhci_hcd *uhci, struct urb *urb)
{
struct list_head *tmp, *head;
struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
int status;
int i, ret = 0;
 
urb->actual_length = 0;
 
i = 0;
head = &urbp->td_list;
tmp = head->next;
while (tmp != head) {
struct uhci_td *td = list_entry(tmp, struct uhci_td, list);
int actlength;
 
tmp = tmp->next;
 
if (td_status(td) & TD_CTRL_ACTIVE)
return -EINPROGRESS;
 
actlength = uhci_actual_length(td_status(td));
urb->iso_frame_desc[i].actual_length = actlength;
urb->actual_length += actlength;
 
status = uhci_map_status(uhci_status_bits(td_status(td)), usb_pipeout(urb->pipe));
urb->iso_frame_desc[i].status = status;
if (status) {
urb->error_count++;
ret = status;
}
 
i++;
}
 
return ret;
}
 
/*
* MUST be called with uhci->urb_list_lock acquired
*/
static struct urb *uhci_find_urb_ep(struct uhci_hcd *uhci, struct urb *urb)
{
struct list_head *tmp, *head;
 
/* We don't match Isoc transfers since they are special */
if (usb_pipeisoc(urb->pipe))
return NULL;
 
head = &uhci->urb_list;
tmp = head->next;
while (tmp != head) {
struct urb_priv *up = list_entry(tmp, struct urb_priv, urb_list);
struct urb *u = up->urb;
 
tmp = tmp->next;
 
if (u->dev == urb->dev && u->status == -EINPROGRESS) {
/* For control, ignore the direction */
if (usb_pipecontrol(urb->pipe) &&
(u->pipe & ~USB_DIR_IN) == (urb->pipe & ~USB_DIR_IN))
return u;
else if (u->pipe == urb->pipe)
return u;
}
}
 
return NULL;
}
 
static int uhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, int mem_flags)
{
int ret = -EINVAL;
struct uhci_hcd *uhci = hcd_to_uhci(hcd);
unsigned long flags;
struct urb *eurb;
int bustime;
 
spin_lock_irqsave(&uhci->urb_list_lock, flags);
 
eurb = uhci_find_urb_ep(uhci, urb);
 
if (!uhci_alloc_urb_priv(uhci, urb)) {
spin_unlock_irqrestore(&uhci->urb_list_lock, flags);
return -ENOMEM;
}
 
switch (usb_pipetype(urb->pipe)) {
case PIPE_CONTROL:
ret = uhci_submit_control(uhci, urb, eurb);
break;
case PIPE_INTERRUPT:
if (!eurb) {
bustime = usb_check_bandwidth(urb->dev, urb);
if (bustime < 0)
ret = bustime;
else {
ret = uhci_submit_interrupt(uhci, urb, eurb);
if (ret == -EINPROGRESS)
usb_claim_bandwidth(urb->dev, urb, bustime, 0);
}
} else { /* inherit from parent */
urb->bandwidth = eurb->bandwidth;
ret = uhci_submit_interrupt(uhci, urb, eurb);
}
break;
case PIPE_BULK:
ret = uhci_submit_bulk(uhci, urb, eurb);
break;
case PIPE_ISOCHRONOUS:
bustime = usb_check_bandwidth(urb->dev, urb);
if (bustime < 0) {
ret = bustime;
break;
}
 
ret = uhci_submit_isochronous(uhci, urb);
if (ret == -EINPROGRESS)
usb_claim_bandwidth(urb->dev, urb, bustime, 1);
break;
}
 
if (ret != -EINPROGRESS) {
/* Submit failed, so delete it from the urb_list */
struct urb_priv *urbp = urb->hcpriv;
 
list_del_init(&urbp->urb_list);
spin_unlock_irqrestore(&uhci->urb_list_lock, flags);
uhci_destroy_urb_priv (uhci, urb);
 
return ret;
}
 
spin_unlock_irqrestore(&uhci->urb_list_lock, flags);
 
return 0;
}
 
/*
* Return the result of a transfer
*
* MUST be called with urb_list_lock acquired
*/
static void uhci_transfer_result(struct uhci_hcd *uhci, struct urb *urb)
{
int ret = -EINVAL;
unsigned long flags;
struct urb_priv *urbp;
 
spin_lock_irqsave(&urb->lock, flags);
 
urbp = (struct urb_priv *)urb->hcpriv;
 
if (urb->status != -EINPROGRESS) {
info("uhci_transfer_result: called for URB %p not in flight?", urb);
goto out;
}
 
switch (usb_pipetype(urb->pipe)) {
case PIPE_CONTROL:
ret = uhci_result_control(uhci, urb);
break;
case PIPE_INTERRUPT:
ret = uhci_result_interrupt(uhci, urb);
break;
case PIPE_BULK:
ret = uhci_result_bulk(uhci, urb);
break;
case PIPE_ISOCHRONOUS:
ret = uhci_result_isochronous(uhci, urb);
break;
}
 
urbp->status = ret;
 
if (ret == -EINPROGRESS)
goto out;
 
switch (usb_pipetype(urb->pipe)) {
case PIPE_CONTROL:
case PIPE_BULK:
case PIPE_ISOCHRONOUS:
/* Release bandwidth for Interrupt or Isoc. transfers */
/* Spinlock needed ? */
if (urb->bandwidth)
usb_release_bandwidth(urb->dev, urb, 1);
uhci_unlink_generic(uhci, urb);
break;
case PIPE_INTERRUPT:
/* Release bandwidth for Interrupt or Isoc. transfers */
/* Make sure we don't release if we have a queued URB */
spin_lock(&uhci->frame_list_lock);
/* Spinlock needed ? */
if (list_empty(&urbp->queue_list) && urb->bandwidth)
usb_release_bandwidth(urb->dev, urb, 0);
else
/* bandwidth was passed on to queued URB, */
/* so don't let usb_unlink_urb() release it */
urb->bandwidth = 0;
spin_unlock(&uhci->frame_list_lock);
uhci_unlink_generic(uhci, urb);
break;
default:
info("uhci_transfer_result: unknown pipe type %d for urb %p\n",
usb_pipetype(urb->pipe), urb);
}
 
/* Remove it from uhci->urb_list */
list_del_init(&urbp->urb_list);
 
uhci_add_complete(uhci, urb);
 
out:
spin_unlock_irqrestore(&urb->lock, flags);
}
 
/*
* MUST be called with urb->lock acquired
*/
static void uhci_unlink_generic(struct uhci_hcd *uhci, struct urb *urb)
{
struct list_head *head, *tmp;
struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
int prevactive = 1;
 
/* We can get called when urbp allocation fails, so check */
if (!urbp)
return;
 
uhci_dec_fsbr(uhci, urb); /* Safe since it checks */
 
/*
* Now we need to find out what the last successful toggle was
* so we can update the local data toggle for the next transfer
*
* There's 3 way's the last successful completed TD is found:
*
* 1) The TD is NOT active and the actual length < expected length
* 2) The TD is NOT active and it's the last TD in the chain
* 3) The TD is active and the previous TD is NOT active
*
* Control and Isochronous ignore the toggle, so this is safe
* for all types
*/
head = &urbp->td_list;
tmp = head->next;
while (tmp != head) {
struct uhci_td *td = list_entry(tmp, struct uhci_td, list);
 
tmp = tmp->next;
 
if (!(td_status(td) & TD_CTRL_ACTIVE) &&
(uhci_actual_length(td_status(td)) < uhci_expected_length(td_token(td)) ||
tmp == head))
usb_settoggle(urb->dev, uhci_endpoint(td_token(td)),
uhci_packetout(td_token(td)),
uhci_toggle(td_token(td)) ^ 1);
else if ((td_status(td) & TD_CTRL_ACTIVE) && !prevactive)
usb_settoggle(urb->dev, uhci_endpoint(td_token(td)),
uhci_packetout(td_token(td)),
uhci_toggle(td_token(td)));
 
prevactive = td_status(td) & TD_CTRL_ACTIVE;
}
 
uhci_delete_queued_urb(uhci, urb);
 
/* The interrupt loop will reclaim the QH's */
uhci_remove_qh(uhci, urbp->qh);
urbp->qh = NULL;
}
 
static int uhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb)
{
struct uhci_hcd *uhci = hcd_to_uhci(hcd);
unsigned long flags;
struct urb_priv *urbp = urb->hcpriv;
 
/* If this is an interrupt URB that is being killed in urb->complete, */
/* then just set its status and return */
if (!urbp) {
urb->status = -ECONNRESET;
return 0;
}
 
spin_lock_irqsave(&uhci->urb_list_lock, flags);
 
list_del_init(&urbp->urb_list);
 
uhci_unlink_generic(uhci, urb);
 
spin_lock(&uhci->urb_remove_list_lock);
 
/* If we're the first, set the next interrupt bit */
if (list_empty(&uhci->urb_remove_list))
uhci_set_next_interrupt(uhci);
list_add(&urbp->urb_list, &uhci->urb_remove_list);
 
spin_unlock(&uhci->urb_remove_list_lock);
spin_unlock_irqrestore(&uhci->urb_list_lock, flags);
return 0;
}
 
static int uhci_fsbr_timeout(struct uhci_hcd *uhci, struct urb *urb)
{
struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
struct list_head *head, *tmp;
int count = 0;
 
uhci_dec_fsbr(uhci, urb);
 
urbp->fsbr_timeout = 1;
 
/*
* Ideally we would want to fix qh->element as well, but it's
* read/write by the HC, so that can introduce a race. It's not
* really worth the hassle
*/
 
head = &urbp->td_list;
tmp = head->next;
while (tmp != head) {
struct uhci_td *td = list_entry(tmp, struct uhci_td, list);
 
tmp = tmp->next;
 
/*
* Make sure we don't do the last one (since it'll have the
* TERM bit set) as well as we skip every so many TD's to
* make sure it doesn't hog the bandwidth
*/
if (tmp != head && (count % DEPTH_INTERVAL) == (DEPTH_INTERVAL - 1))
td->link |= UHCI_PTR_DEPTH;
 
count++;
}
 
return 0;
}
 
/*
* uhci_get_current_frame_number()
*
* returns the current frame number for a USB bus/controller.
*/
static int uhci_get_current_frame_number(struct uhci_hcd *uhci)
{
return inw(uhci->io_addr + USBFRNUM);
}
 
static int init_stall_timer(struct usb_hcd *hcd);
 
static void stall_callback(unsigned long ptr)
{
struct usb_hcd *hcd = (struct usb_hcd *)ptr;
struct uhci_hcd *uhci = hcd_to_uhci(hcd);
struct list_head list, *tmp, *head;
unsigned long flags;
 
INIT_LIST_HEAD(&list);
 
spin_lock_irqsave(&uhci->urb_list_lock, flags);
head = &uhci->urb_list;
tmp = head->next;
while (tmp != head) {
struct urb_priv *up = list_entry(tmp, struct urb_priv, urb_list);
struct urb *u = up->urb;
 
tmp = tmp->next;
 
spin_lock(&u->lock);
 
/* Check if the FSBR timed out */
if (up->fsbr && !up->fsbr_timeout && time_after_eq(jiffies26, up->fsbrtime + IDLE_TIMEOUT))
uhci_fsbr_timeout(uhci, u);
 
/* Check if the URB timed out */
if (u->timeout && time_after_eq(jiffies26, up->inserttime + u->timeout))
list_move_tail(&up->urb_list, &list);
 
spin_unlock(&u->lock);
}
spin_unlock_irqrestore(&uhci->urb_list_lock, flags);
 
head = &list;
tmp = head->next;
while (tmp != head) {
struct urb_priv *up = list_entry(tmp, struct urb_priv, urb_list);
struct urb *u = up->urb;
 
tmp = tmp->next;
 
uhci_urb_dequeue(hcd, u);
}
 
/* Really disable FSBR */
if (!uhci->fsbr && uhci->fsbrtimeout && time_after_eq(jiffies26, uhci->fsbrtimeout)) {
uhci->fsbrtimeout = 0;
uhci->skel_term_qh->link = UHCI_PTR_TERM;
}
 
/* Poll for and perform state transitions */
hc_state_transitions(uhci);
 
init_stall_timer(hcd);
}
 
static int init_stall_timer(struct usb_hcd *hcd)
{
struct uhci_hcd *uhci = hcd_to_uhci(hcd);
 
init_timer(&uhci->stall_timer);
uhci->stall_timer.function = stall_callback;
uhci->stall_timer.data = (unsigned long)hcd;
uhci->stall_timer.expires = jiffies26 + (HZ / 10);
add_timer(&uhci->stall_timer);
 
return 0;
}
 
static void uhci_free_pending_qhs(struct uhci_hcd *uhci)
{
struct list_head *tmp, *head;
unsigned long flags;
 
spin_lock_irqsave(&uhci->qh_remove_list_lock, flags);
head = &uhci->qh_remove_list;
tmp = head->next;
while (tmp != head) {
struct uhci_qh *qh = list_entry(tmp, struct uhci_qh, remove_list);
 
tmp = tmp->next;
 
list_del_init(&qh->remove_list);
 
uhci_free_qh(uhci, qh);
}
spin_unlock_irqrestore(&uhci->qh_remove_list_lock, flags);
}
 
static void uhci_free_pending_tds(struct uhci_hcd *uhci)
{
struct list_head *tmp, *head;
unsigned long flags;
 
spin_lock_irqsave(&uhci->td_remove_list_lock, flags);
head = &uhci->td_remove_list;
tmp = head->next;
while (tmp != head) {
struct uhci_td *td = list_entry(tmp, struct uhci_td, remove_list);
 
tmp = tmp->next;
 
list_del_init(&td->remove_list);
 
uhci_free_td(uhci, td);
}
spin_unlock_irqrestore(&uhci->td_remove_list_lock, flags);
}
 
static void uhci_finish_urb(struct usb_hcd *hcd, struct urb *urb, struct pt_regs *regs)
{
struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
struct uhci_hcd *uhci = hcd_to_uhci(hcd);
int status;
unsigned long flags;
 
spin_lock_irqsave(&urb->lock, flags);
status = urbp->status;
uhci_destroy_urb_priv(uhci, urb);
 
if (urb->status != -ENOENT && urb->status != -ECONNRESET)
urb->status = status;
spin_unlock_irqrestore(&urb->lock, flags);
 
usb_hcd_giveback_urb(hcd, urb, regs);
}
 
static void uhci_finish_completion(struct usb_hcd *hcd, struct pt_regs *regs)
{
struct uhci_hcd *uhci = hcd_to_uhci(hcd);
struct list_head *tmp, *head;
unsigned long flags;
 
spin_lock_irqsave(&uhci->complete_list_lock, flags);
head = &uhci->complete_list;
tmp = head->next;
while (tmp != head) {
struct urb_priv *urbp = list_entry(tmp, struct urb_priv, complete_list);
struct urb *urb = urbp->urb;
 
list_del_init(&urbp->complete_list);
spin_unlock_irqrestore(&uhci->complete_list_lock, flags);
 
uhci_finish_urb(hcd, urb, regs);
 
spin_lock_irqsave(&uhci->complete_list_lock, flags);
head = &uhci->complete_list;
tmp = head->next;
}
spin_unlock_irqrestore(&uhci->complete_list_lock, flags);
}
 
static void uhci_remove_pending_qhs(struct uhci_hcd *uhci)
{
struct list_head *tmp, *head;
unsigned long flags;
 
spin_lock_irqsave(&uhci->urb_remove_list_lock, flags);
head = &uhci->urb_remove_list;
tmp = head->next;
while (tmp != head) {
struct urb_priv *urbp = list_entry(tmp, struct urb_priv, urb_list);
struct urb *urb = urbp->urb;
 
tmp = tmp->next;
 
list_del_init(&urbp->urb_list);
 
urbp->status = urb->status = -ECONNRESET;
 
uhci_add_complete(uhci, urb);
}
spin_unlock_irqrestore(&uhci->urb_remove_list_lock, flags);
}
 
static void uhci_irq(struct usb_hcd *hcd, struct pt_regs *regs)
{
struct uhci_hcd *uhci = hcd_to_uhci(hcd);
unsigned int io_addr = uhci->io_addr;
unsigned short status;
struct list_head *tmp, *head;
static int count =0;
 
/*
* Read the interrupt status, and write it back to clear the
* interrupt cause
*/
status = inw(io_addr + USBSTS);
if (!status) /* shared interrupt, not mine */
return;
outw(status, io_addr + USBSTS); /* Clear it */
 
// printk("%x uhci_irq\n", io_addr);
 
if (status & ~(USBSTS_USBINT | USBSTS_ERROR | USBSTS_RD)) {
if (status & USBSTS_HSE)
{
err("%x: host system error, PCI problems?", io_addr);
}
if (status & USBSTS_HCPE)
err("%x: host controller process error. something bad happened", io_addr);
if ((status & USBSTS_HCH) && uhci->state > 0) {
err("%x: host controller halted. very bad", io_addr);
/* FIXME: Reset the controller, fix the offending TD */
}
}
 
if (status & USBSTS_RD)
uhci->resume_detect = 1;
 
uhci_free_pending_qhs(uhci);
 
uhci_free_pending_tds(uhci);
 
uhci_remove_pending_qhs(uhci);
 
uhci_clear_next_interrupt(uhci);
 
/* Walk the list of pending URB's to see which ones completed */
spin_lock(&uhci->urb_list_lock);
head = &uhci->urb_list;
tmp = head->next;
while (tmp != head) {
struct urb_priv *urbp = list_entry(tmp, struct urb_priv, urb_list);
struct urb *urb = urbp->urb;
 
tmp = tmp->next;
 
/* Checks the status and does all of the magic necessary */
uhci_transfer_result(uhci, urb);
}
spin_unlock(&uhci->urb_list_lock);
 
uhci_finish_completion(hcd, regs);
}
 
static void reset_hc(struct uhci_hcd *uhci)
{
unsigned int io_addr = uhci->io_addr;
 
/* Global reset for 50ms */
uhci->state = UHCI_RESET;
outw(USBCMD_GRESET, io_addr + USBCMD);
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout((HZ*50+999) / 1000);
outw(0, io_addr + USBCMD);
 
/* Another 10ms delay */
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout((HZ*10+999) / 1000);
uhci->resume_detect = 0;
}
 
static void suspend_hc(struct uhci_hcd *uhci)
{
unsigned int io_addr = uhci->io_addr;
 
dbg("%x: suspend_hc", io_addr);
uhci->state = UHCI_SUSPENDED;
uhci->resume_detect = 0;
outw(USBCMD_EGSM, io_addr + USBCMD);
}
 
static void wakeup_hc(struct uhci_hcd *uhci)
{
unsigned int io_addr = uhci->io_addr;
 
switch (uhci->state) {
case UHCI_SUSPENDED: /* Start the resume */
dbg("%x: wakeup_hc", io_addr);
 
/* Global resume for >= 20ms */
outw(USBCMD_FGR | USBCMD_EGSM, io_addr + USBCMD);
uhci->state = UHCI_RESUMING_1;
uhci->state_end = jiffies26 + (20*HZ+999) / 1000;
break;
 
case UHCI_RESUMING_1: /* End global resume */
uhci->state = UHCI_RESUMING_2;
outw(0, io_addr + USBCMD);
/* Falls through */
 
case UHCI_RESUMING_2: /* Wait for EOP to be sent */
if (inw(io_addr + USBCMD) & USBCMD_FGR)
break;
 
/* Run for at least 1 second, and
* mark it configured with a 64-byte max packet */
uhci->state = UHCI_RUNNING_GRACE;
uhci->state_end = jiffies26 + HZ;
outw(USBCMD_RS | USBCMD_CF | USBCMD_MAXP,
io_addr + USBCMD);
break;
 
case UHCI_RUNNING_GRACE: /* Now allowed to suspend */
uhci->state = UHCI_RUNNING;
break;
 
default:
break;
}
}
 
static int ports_active(struct uhci_hcd *uhci)
{
unsigned int io_addr = uhci->io_addr;
int connection = 0;
int i;
 
for (i = 0; i < uhci->rh_numports; i++)
connection |= (inw(io_addr + USBPORTSC1 + i * 2) & USBPORTSC_CCS);
 
return connection;
}
 
static int suspend_allowed(struct uhci_hcd *uhci)
{
unsigned int io_addr = uhci->io_addr;
int i;
 
if (!uhci->hcd.pdev || uhci->hcd.pdev->vendor != PCI_VENDOR_ID_INTEL)
return 1;
 
/* Some of Intel's USB controllers have a bug that causes false
* resume indications if any port has an over current condition.
* To prevent problems, we will not allow a global suspend if
* any ports are OC.
*
* Some motherboards using Intel's chipsets (but not using all
* the USB ports) appear to hardwire the over current inputs active
* to disable the USB ports.
*/
 
/* check for over current condition on any port */
for (i = 0; i < uhci->rh_numports; i++) {
if (inw(io_addr + USBPORTSC1 + i * 2) & USBPORTSC_OC)
return 0;
}
 
return 1;
}
 
static void hc_state_transitions(struct uhci_hcd *uhci)
{
switch (uhci->state) {
case UHCI_RUNNING:
 
/* global suspend if nothing connected for 1 second */
if (!ports_active(uhci) && suspend_allowed(uhci)) {
uhci->state = UHCI_SUSPENDING_GRACE;
uhci->state_end = jiffies26 + HZ;
}
break;
 
case UHCI_SUSPENDING_GRACE:
if (ports_active(uhci))
uhci->state = UHCI_RUNNING;
else if (time_after_eq(jiffies26, uhci->state_end))
suspend_hc(uhci);
break;
 
case UHCI_SUSPENDED:
 
/* wakeup if requested by a device */
if (uhci->resume_detect)
wakeup_hc(uhci);
break;
 
case UHCI_RESUMING_1:
case UHCI_RESUMING_2:
case UHCI_RUNNING_GRACE:
if (time_after_eq(jiffies26, uhci->state_end))
wakeup_hc(uhci);
break;
 
default:
break;
}
}
 
static void start_hc(struct uhci_hcd *uhci)
{
unsigned int io_addr = uhci->io_addr;
int timeout = 1000;
/*
* Reset the HC - this will force us to get a
* new notification of any already connected
* ports due to the virtual disconnect that it
* implies.
*/
outw(USBCMD_HCRESET, io_addr + USBCMD);
while (inw(io_addr + USBCMD) & USBCMD_HCRESET) {
if (!--timeout) {
printk(KERN_ERR "uhci: USBCMD_HCRESET timed out!\n");
break;
}
}
 
/* Turn on all interrupts */
outw(USBINTR_TIMEOUT | USBINTR_RESUME | USBINTR_IOC | USBINTR_SP,
io_addr + USBINTR);
 
/* Start at frame 0 */
outw(0, io_addr + USBFRNUM);
outl(uhci->fl->dma_handle, io_addr + USBFLBASEADD);
 
/* Run and mark it configured with a 64-byte max packet */
uhci->state = UHCI_RUNNING_GRACE;
uhci->state_end = jiffies26 + HZ;
outw(USBCMD_RS | USBCMD_CF | USBCMD_MAXP, io_addr + USBCMD);
 
uhci->hcd.state = USB_STATE_RUNNING;
 
#ifdef DEB
{
__u32 *tdp;
int i;
int status = inw(io_addr + USBSTS);
printk(KERN_INFO "[%x] Frame = %d Status =%x fl=%x\n", io_addr, inw(io_addr + USBFRNUM), status, uhci->fl->dma_handle);
for (i=0; i<20; i++)
{
int status = inw(io_addr + USBSTS);
wait_ms26(500);
tdp=(__u32*)uhci->fl->frame[i];
printk(KERN_INFO "[%x] Frame[%d] -> @%x = %x status=%x fl=%x\n", io_addr, i, uhci->fl->frame[i], *tdp, status, uhci->fl->dma_handle );
}
}
#endif
 
}
 
/*
* De-allocate all resources..
*/
static void release_uhci(struct uhci_hcd *uhci)
{
int i;
 
for (i = 0; i < UHCI_NUM_SKELQH; i++)
if (uhci->skelqh[i]) {
uhci_free_qh(uhci, uhci->skelqh[i]);
uhci->skelqh[i] = NULL;
}
 
if (uhci->term_td) {
uhci_free_td(uhci, uhci->term_td);
uhci->term_td = NULL;
}
 
if (uhci->qh_pool) {
pci_pool_destroy(uhci->qh_pool);
uhci->qh_pool = NULL;
}
 
if (uhci->td_pool) {
pci_pool_destroy(uhci->td_pool);
uhci->td_pool = NULL;
}
 
if (uhci->fl) {
pci_free_consistent(uhci->hcd.pdev, sizeof(*uhci->fl), uhci->fl, uhci->fl->dma_handle);
uhci->fl = NULL;
}
 
#ifdef CONFIG_PROC_FS
if (uhci->proc_entry) {
remove_proc_entry(uhci->hcd.self.bus_name, uhci_proc_root);
uhci->proc_entry = NULL;
}
#endif
}
 
static int uhci_reset(struct usb_hcd *hcd)
{
struct uhci_hcd *uhci = hcd_to_uhci(hcd);
 
uhci->io_addr = (unsigned long) hcd->regs;
 
/* Turn off all interrupts 2.6.1 */
outw(0, uhci->io_addr + USBINTR);
 
 
 
/* Maybe kick BIOS off this hardware. Then reset, so we won't get
* interrupts from any previous setup.
*/
reset_hc(uhci);
pci_write_config_word(hcd->pdev, USBLEGSUP, USBLEGSUP_DEFAULT);
return 0;
}
 
/*
* Allocate a frame list, and then setup the skeleton
*
* The hardware doesn't really know any difference
* in the queues, but the order does matter for the
* protocols higher up. The order is:
*
* - any isochronous events handled before any
* of the queues. We don't do that here, because
* we'll create the actual TD entries on demand.
* - The first queue is the interrupt queue.
* - The second queue is the control queue, split into low and high speed
* - The third queue is bulk queue.
* - The fourth queue is the bandwidth reclamation queue, which loops back
* to the high speed control queue.
*/
static int uhci_start(struct usb_hcd *hcd)
{
struct uhci_hcd *uhci = hcd_to_uhci(hcd);
int retval = -EBUSY;
int i, port;
unsigned io_size;
dma_addr_t dma_handle;
struct usb_device *udev;
#ifdef CONFIG_PROC_FS
struct proc_dir_entry *ent;
#endif
 
io_size = pci_resource_len(hcd->pdev, hcd->region);
 
#ifdef CONFIG_PROC_FS
ent = create_proc_entry(hcd->self.bus_name, S_IFREG|S_IRUGO|S_IWUSR, uhci_proc_root);
if (!ent) {
err("couldn't create uhci proc entry");
retval = -ENOMEM;
goto err_create_proc_entry;
}
 
ent->data = uhci;
ent->proc_fops = &uhci_proc_operations;
ent->size = 0;
uhci->proc_entry = ent;
#endif
 
uhci->fsbr = 0;
uhci->fsbrtimeout = 0;
 
spin_lock_init(&uhci->qh_remove_list_lock);
INIT_LIST_HEAD(&uhci->qh_remove_list);
 
spin_lock_init(&uhci->td_remove_list_lock);
INIT_LIST_HEAD(&uhci->td_remove_list);
 
spin_lock_init(&uhci->urb_remove_list_lock);
INIT_LIST_HEAD(&uhci->urb_remove_list);
 
spin_lock_init(&uhci->urb_list_lock);
INIT_LIST_HEAD(&uhci->urb_list);
 
spin_lock_init(&uhci->complete_list_lock);
INIT_LIST_HEAD(&uhci->complete_list);
 
spin_lock_init(&uhci->frame_list_lock);
 
uhci->fl = pci_alloc_consistent_usb(hcd->pdev, sizeof(*uhci->fl), &dma_handle);
if (!uhci->fl) {
err("unable to allocate consistent memory for frame list");
goto err_alloc_fl;
}
 
memset((void *)uhci->fl, 0, sizeof(*uhci->fl));
uhci->fl->dma_handle = dma_handle;
 
uhci->td_pool = pci_pool_create("uhci_td", hcd->pdev,
sizeof(struct uhci_td), 16, 0);
if (!uhci->td_pool) {
err("unable to create td pci_pool");
goto err_create_td_pool;
}
 
uhci->qh_pool = pci_pool_create("uhci_qh", hcd->pdev,
sizeof(struct uhci_qh), 16, 0);
if (!uhci->qh_pool) {
err("unable to create qh pci_pool");
goto err_create_qh_pool;
}
 
/* Initialize the root hub */
 
/* UHCI specs says devices must have 2 ports, but goes on to say */
/* they may have more but give no way to determine how many they */
/* have. However, according to the UHCI spec, Bit 7 is always set */
/* to 1. So we try to use this to our advantage */
for (port = 0; port < (io_size - 0x10) / 2; port++) {
unsigned int portstatus;
 
portstatus = inw(uhci->io_addr + 0x10 + (port * 2));
if (!(portstatus & 0x0080))
break;
}
if (debug)
info("detected %d ports", port);
 
/* This is experimental so anything less than 2 or greater than 8 is */
/* something weird and we'll ignore it */
if (port < 2 || port > 8) {
info("port count misdetected? forcing to 2 ports");
port = 2;
}
 
uhci->rh_numports = port;
 
hcd->self.root_hub = udev = usb_alloc_dev(NULL, &hcd->self);
if (!udev) {
err("unable to allocate root hub");
goto err_alloc_root_hub;
}
 
uhci->term_td = uhci_alloc_td(uhci, udev);
if (!uhci->term_td) {
err("unable to allocate terminating TD");
goto err_alloc_term_td;
}
 
for (i = 0; i < UHCI_NUM_SKELQH; i++) {
uhci->skelqh[i] = uhci_alloc_qh(uhci, udev);
if (!uhci->skelqh[i]) {
err("unable to allocate QH %d", i);
goto err_alloc_skelqh;
}
}
 
/*
* 8 Interrupt queues; link int2 to int1, int4 to int2, etc
* then link int1 to control and control to bulk
*/
uhci->skel_int128_qh->link = cpu_to_le32(uhci->skel_int64_qh->dma_handle) | UHCI_PTR_QH;
uhci->skel_int64_qh->link = cpu_to_le32(uhci->skel_int32_qh->dma_handle) | UHCI_PTR_QH;
uhci->skel_int32_qh->link = cpu_to_le32(uhci->skel_int16_qh->dma_handle) | UHCI_PTR_QH;
uhci->skel_int16_qh->link = cpu_to_le32(uhci->skel_int8_qh->dma_handle) | UHCI_PTR_QH;
uhci->skel_int8_qh->link = cpu_to_le32(uhci->skel_int4_qh->dma_handle) | UHCI_PTR_QH;
uhci->skel_int4_qh->link = cpu_to_le32(uhci->skel_int2_qh->dma_handle) | UHCI_PTR_QH;
uhci->skel_int2_qh->link = cpu_to_le32(uhci->skel_int1_qh->dma_handle) | UHCI_PTR_QH;
uhci->skel_int1_qh->link = cpu_to_le32(uhci->skel_ls_control_qh->dma_handle) | UHCI_PTR_QH;
 
uhci->skel_ls_control_qh->link = cpu_to_le32(uhci->skel_hs_control_qh->dma_handle) | UHCI_PTR_QH;
uhci->skel_hs_control_qh->link = cpu_to_le32(uhci->skel_bulk_qh->dma_handle) | UHCI_PTR_QH;
uhci->skel_bulk_qh->link = cpu_to_le32(uhci->skel_term_qh->dma_handle) | UHCI_PTR_QH;
 
/* This dummy TD is to work around a bug in Intel PIIX controllers */
uhci_fill_td(uhci->term_td, 0, (UHCI_NULL_DATA_SIZE << 21) |
(0x7f << TD_TOKEN_DEVADDR_SHIFT) | USB_PID_IN, 0);
uhci->term_td->link = cpu_to_le32(uhci->term_td->dma_handle);
 
uhci->skel_term_qh->link = UHCI_PTR_TERM;
uhci->skel_term_qh->element = cpu_to_le32(uhci->term_td->dma_handle);
 
/*
* Fill the frame list: make all entries point to
* the proper interrupt queue.
*
* This is probably silly, but it's a simple way to
* scatter the interrupt queues in a way that gives
* us a reasonable dynamic range for irq latencies.
*/
for (i = 0; i < UHCI_NUMFRAMES; i++) {
int irq = 0;
 
if (i & 1) {
irq++;
if (i & 2) {
irq++;
if (i & 4) {
irq++;
if (i & 8) {
irq++;
if (i & 16) {
irq++;
if (i & 32) {
irq++;
if (i & 64)
irq++;
}
}
}
}
}
}
 
/* Only place we don't use the frame list routines */
uhci->fl->frame[i] = cpu_to_le32(uhci->skelqh[7 - irq]->dma_handle);
}
 
start_hc(uhci);
 
init_stall_timer(hcd);
 
udev->speed = USB_SPEED_FULL;
 
if (usb_register_root_hub(udev, &hcd->pdev->dev) != 0) {
err("unable to start root hub");
retval = -ENOMEM;
goto err_start_root_hub;
}
 
return 0;
 
/*
* error exits:
*/
err_start_root_hub:
reset_hc(uhci);
 
del_timer_sync(&uhci->stall_timer);
 
err_alloc_skelqh:
for (i = 0; i < UHCI_NUM_SKELQH; i++)
if (uhci->skelqh[i]) {
uhci_free_qh(uhci, uhci->skelqh[i]);
uhci->skelqh[i] = NULL;
}
 
uhci_free_td(uhci, uhci->term_td);
uhci->term_td = NULL;
 
err_alloc_term_td:
usb_put_dev(udev);
hcd->self.root_hub = NULL;
 
err_alloc_root_hub:
pci_pool_destroy(uhci->qh_pool);
uhci->qh_pool = NULL;
 
err_create_qh_pool:
pci_pool_destroy(uhci->td_pool);
uhci->td_pool = NULL;
 
err_create_td_pool:
pci_free_consistent(hcd->pdev, sizeof(*uhci->fl), uhci->fl, uhci->fl->dma_handle);
uhci->fl = NULL;
 
err_alloc_fl:
#ifdef CONFIG_PROC_FS
remove_proc_entry(hcd->self.bus_name, uhci_proc_root);
uhci->proc_entry = NULL;
 
err_create_proc_entry:
#endif
 
return retval;
}
 
static void uhci_stop(struct usb_hcd *hcd)
{
struct uhci_hcd *uhci = hcd_to_uhci(hcd);
 
del_timer_sync(&uhci->stall_timer);
 
/*
* At this point, we're guaranteed that no new connects can be made
* to this bus since there are no more parents
*/
uhci_free_pending_qhs(uhci);
uhci_free_pending_tds(uhci);
uhci_remove_pending_qhs(uhci);
 
reset_hc(uhci);
 
uhci_free_pending_qhs(uhci);
uhci_free_pending_tds(uhci);
 
release_uhci(uhci);
}
 
#ifdef CONFIG_PM
static int uhci_suspend(struct usb_hcd *hcd, u32 state)
{
struct uhci_hcd *uhci = hcd_to_uhci(hcd);
 
/* Don't try to suspend broken motherboards, reset instead */
if (suspend_allowed(uhci))
suspend_hc(uhci);
else
reset_hc(uhci);
return 0;
}
 
static int uhci_resume(struct usb_hcd *hcd)
{
struct uhci_hcd *uhci = hcd_to_uhci(hcd);
 
pci_set_master(uhci->hcd.pdev);
 
if (uhci->state == UHCI_SUSPENDED)
uhci->resume_detect = 1;
else {
reset_hc(uhci);
start_hc(uhci);
}
uhci->hcd.state = USB_STATE_RUNNING;
return 0;
}
#endif
 
static struct usb_hcd *uhci_hcd_alloc(void)
{
struct uhci_hcd *uhci;
 
uhci = (struct uhci_hcd *)kmalloc(sizeof(*uhci), GFP_KERNEL);
if (!uhci)
return NULL;
 
memset(uhci, 0, sizeof(*uhci));
uhci->hcd.product_desc = "UHCI Host Controller";
return &uhci->hcd;
}
 
static void uhci_hcd_free(struct usb_hcd *hcd)
{
kfree(hcd_to_uhci(hcd));
}
 
static int uhci_hcd_get_frame_number(struct usb_hcd *hcd)
{
return uhci_get_current_frame_number(hcd_to_uhci(hcd));
}
 
static const char hcd_name[] = "uhci_hcd";
 
static const struct hc_driver uhci_driver = {
.description = hcd_name,
 
/* Generic hardware linkage */
.irq = uhci_irq,
.flags = HCD_USB11,
 
/* Basic lifecycle operations */
.reset = uhci_reset,
.start = uhci_start,
#ifdef CONFIG_PM
.suspend = uhci_suspend,
.resume = uhci_resume,
#endif
.stop = uhci_stop,
 
.hcd_alloc = uhci_hcd_alloc,
.hcd_free = uhci_hcd_free,
 
.urb_enqueue = uhci_urb_enqueue,
.urb_dequeue = uhci_urb_dequeue,
 
.get_frame_number = uhci_hcd_get_frame_number,
 
.hub_status_data = uhci_hub_status_data,
.hub_control = uhci_hub_control,
};
 
static const struct pci_device_id uhci_pci_ids[] = { {
/* handle any USB UHCI controller */
PCI_DEVICE_CLASS(((PCI_CLASS_SERIAL_USB << 8) | 0x00), ~0),
.driver_data = (unsigned long) &uhci_driver,
}, { /* end: all zeroes */ }
};
 
MODULE_DEVICE_TABLE(pci, uhci_pci_ids);
 
static struct pci_driver uhci_pci_driver = {
.name = (char *)hcd_name,
.id_table = uhci_pci_ids,
 
.probe = usb_hcd_pci_probe,
.remove = usb_hcd_pci_remove,
 
#ifdef CONFIG_PM
.suspend = usb_hcd_pci_suspend,
.resume = usb_hcd_pci_resume,
#endif /* PM */
};
/*static*/ int __init uhci_hcd_init(void)
{
int retval = -ENOMEM;
 
info(DRIVER_DESC " " DRIVER_VERSION);
 
if (usb_disabled())
return -ENODEV;
 
if (debug) {
errbuf = kmalloc(ERRBUF_LEN, GFP_KERNEL);
if (!errbuf)
goto errbuf_failed;
}
 
#ifdef CONFIG_PROC_FS
uhci_proc_root = create_proc_entry("driver/uhci", S_IFDIR, 0);
if (!uhci_proc_root)
goto proc_failed;
#endif
 
//** uhci_up_cachep = kmem_cache_create("uhci_urb_priv",
//** sizeof(struct urb_priv), 0, 0, NULL, NULL);
//** if (!uhci_up_cachep)
//** goto up_failed;
 
retval = pci_module_init(&uhci_pci_driver);
if (retval)
goto init_failed;
 
return 0;
 
init_failed:
//** if (kmem_cache_destroy(uhci_up_cachep))
//** printk(KERN_INFO "uhci: not all urb_priv's were freed\n");
 
up_failed:
 
#ifdef CONFIG_PROC_FS
remove_proc_entry("driver/uhci", 0);
 
proc_failed:
#endif
if (errbuf)
kfree(errbuf);
 
errbuf_failed:
 
return retval;
}
 
/*static*/ void __exit uhci_hcd_cleanup(void)
{
pci_unregister_driver(&uhci_pci_driver);
//** if (kmem_cache_destroy(uhci_up_cachep))
//** printk(KERN_INFO "uhci: not all urb_priv's were freed\n");
 
#ifdef CONFIG_PROC_FS
remove_proc_entry("driver/uhci", 0);
#endif
 
if (errbuf)
kfree(errbuf);
}
 
module_init(uhci_hcd_init);
module_exit(uhci_hcd_cleanup);
 
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL");