Subversion Repositories shark

Compare Revisions

Ignore whitespace Rev 656 → Rev 657

/shark/trunk/kernel/modules/rm.c
20,24 → 20,17
 
/**
------------
CVS : $Id: rm.c,v 1.8 2004-03-10 14:51:44 giacomo Exp $
CVS : $Id: rm.c,v 1.9 2004-05-17 15:03:52 anton Exp $
 
File: $File$
Revision: $Revision: 1.8 $
Last update: $Date: 2004-03-10 14:51:44 $
Revision: $Revision: 1.9 $
Last update: $Date: 2004-05-17 15:03:52 $
------------
 
This file contains the scheduling module RM (Rate Monotonic)
This file contains the scheduling module RM (rate/deadline monotonic)
 
Read rm.h for further details.
 
This file is equal to EDF.c except for:
 
. EDF changed to RM :-)
. q_timespec_insert changed to q_insert
. proc_table[p].priority is also modified when we modify lev->period[p]
 
 
**/
 
/*
67,91 → 60,174
#include <kernel/descr.h>
#include <kernel/var.h>
#include <kernel/func.h>
 
#include <tracer.h>
 
/*+ Status used in the level +*/
#define RM_READY MODULE_STATUS_BASE /*+ - Ready status +*/
#define RM_WCET_VIOLATED MODULE_STATUS_BASE+2 /*+ when wcet is finished +*/
#define RM_WAIT MODULE_STATUS_BASE+3 /*+ to wait the deadline +*/
#define RM_IDLE MODULE_STATUS_BASE+4 /*+ to wait the deadline +*/
#define RM_ZOMBIE MODULE_STATUS_BASE+5 /*+ to wait the free time +*/
//#define RM_DEBUG
#define rm_printf kern_printf
 
/*+ flags +*/
#define RM_FLAG_SPORADIC 1
#define RM_FLAG_NORAISEEXC 2
#ifdef RM_DEBUG
/* some debug print functions */
char *pnow() {
static char buf[40];
struct timespec t;
sys_gettime(&t);
sprintf(buf, "%ld.%06ld", t.tv_sec, t.tv_nsec/1000);
return buf;
}
char *ptime1(struct timespec *t) {
static char buf[40];
sprintf(buf, "%ld.%06ld", t->tv_sec, t->tv_nsec/1000);
return buf;
}
char *ptime2(struct timespec *t) {
static char buf[40];
sprintf(buf, "%ld.%06ld", t->tv_sec, t->tv_nsec/1000);
return buf;
}
#endif
 
/*+ the level redefinition for the Rate Monotonic +*/
typedef struct {
level_des l; /*+ the standard level descriptor +*/
/* statuses used in the level */
#define RM_READY MODULE_STATUS_BASE /* ready */
#define RM_IDLE MODULE_STATUS_BASE+1 /* idle, waiting for offset/eop */
#define RM_WAIT MODULE_STATUS_BASE+2 /* to sleep, waiting for eop */
#define RM_ZOMBIE MODULE_STATUS_BASE+3 /* zombie, waiting for eop */
 
TIME period[MAX_PROC]; /*+ The task periods; the deadlines are
stored in the priority field +*/
int deadline_timer[MAX_PROC];
/*+ The task deadline timers +*/
/* task flags */
#define RM_FLAG_SPORADIC 1 /* the task is sporadic */
#define RM_FLAG_SPOR_LATE 2 /* sporadic task with period overrun */
 
int flag[MAX_PROC];
/*+ used to manage the JOB_TASK_MODEL and the
periodicity +*/
 
IQUEUE ready; /*+ the ready queue +*/
/* the level redefinition for the Earliest Deadline First level */
typedef struct {
level_des l; /* standard level descriptor */
IQUEUE ready; /* the ready queue */
int flags; /* level flags */
bandwidth_t U; /* used bandwidth */
 
int flags; /*+ the init flags... +*/
int taskflags[MAX_PROC]; /* task flags */
TIME period[MAX_PROC]; /* task period */
TIME rdeadline[MAX_PROC]; /* task relative deadlines */
TIME offset[MAX_PROC]; /* task release offsets */
struct timespec release[MAX_PROC]; /* release time of the task */
int dl_timer[MAX_PROC]; /* deadline overrun timer */
int eop_timer[MAX_PROC]; /* end of period timer */
int dl_miss[MAX_PROC]; /* deadline miss counter */
int wcet_miss[MAX_PROC]; /* WCET miss counter */
int nact[MAX_PROC]; /* number of pending periodic jobs */
int nskip[MAX_PROC]; /* number of skipped sporadic jobs */
} RM_level_des;
 
bandwidth_t U; /*+ the used bandwidth +*/
 
} RM_level_des;
static void RM_timer_endperiod(void *par);
 
 
/* This function is called when a task misses its deadline */
 
static void RM_timer_deadline(void *par)
{
PID p = (PID) par;
RM_level_des *lev;
struct timespec *temp;
lev = (RM_level_des *)level_table[proc_table[p].task_level];
TRACER_LOGEVENT(FTrace_EVT_task_deadline_miss,(unsigned short int)proc_table[p].context,0);
 
if (lev->flags & RM_ENABLE_DL_EXCEPTION) {
kern_raise(XDEADLINE_MISS,p);
} else {
lev->dl_miss[p]++;
}
}
 
 
/* Release (or queue) task, post deadline and endperiod timers.
The release time is stored in lev->release[p]. */
 
static void RM_intern_release(PID p, RM_level_des *lev)
{
struct timespec temp;
 
/* post deadline timer */
if (lev->flags & RM_ENABLE_DL_CHECK) {
temp = lev->release[p];
ADDUSEC2TIMESPEC(lev->rdeadline[p], &temp);
lev->dl_timer[p] = kern_event_post(&temp,RM_timer_deadline,(void *)p);
}
 
/* release or queue next job */
if (proc_table[p].status == RM_IDLE) {
/* assign deadline, insert task in the ready queue */
proc_table[p].status = RM_READY;
*iq_query_priority(p,&lev->ready) = lev->rdeadline[p];
iq_priority_insert(p,&lev->ready);
#ifdef RM_DEBUG
rm_printf("At %s: releasing %s\n", pnow(), proc_table[p].name);
#endif
/* reschedule */
event_need_reschedule();
} else {
/* queue */
lev->nact[p]++;
}
 
/* increase release time */
ADDUSEC2TIMESPEC(lev->period[p],&lev->release[p]);
/* post end of period timer */
kern_event_post(&lev->release[p],RM_timer_endperiod,(void *)p);
 
TRACER_LOGEVENT(FTrace_EVT_task_timer,(unsigned short int)proc_table[p].context,(unsigned int)proc_table[p].task_level);
}
 
 
/* First release */
 
static void RM_timer_offset(void *par)
{
PID p = (PID) par;
RM_level_des *lev;
lev = (RM_level_des *)level_table[proc_table[p].task_level];
 
switch (proc_table[p].status) {
case RM_ZOMBIE:
/* we finally put the task in the ready queue */
proc_table[p].status = FREE;
iq_insertfirst(p,&freedesc);
/* and free the allocated bandwidth */
lev->U -= (MAX_BANDWIDTH/lev->period[p]) * proc_table[p].wcet;
break;
RM_intern_release(p, lev);
}
 
case RM_IDLE:
/* tracer stuff */
TRACER_LOGEVENT(FTrace_EVT_task_timer,(unsigned short int)proc_table[p].context,(unsigned int)proc_table[p].task_level);
/* similar to RM_task_activate */
temp = iq_query_timespec(p, &lev->ready);
ADDUSEC2TIMESPEC(lev->period[p], temp);
proc_table[p].status = RM_READY;
iq_priority_insert(p,&lev->ready);
lev->deadline_timer[p] = kern_event_post(temp,
RM_timer_deadline,
(void *)p);
//printk("(d%d idle priority set to %d)",p,proc_table[p].priority );
event_need_reschedule();
break;
 
case RM_WAIT:
/* Without this, the task cannot be reactivated!!! */
proc_table[p].status = SLEEP;
break;
/* This function is called at the end of the period */
 
default:
/* else, a deadline miss occurred!!! */
kern_printf("timer_deadline:AAARRRGGGHHH!!!");
kern_raise(XDEADLINE_MISS,p);
static void RM_timer_endperiod(void *par)
{
PID p = (PID) par;
RM_level_des *lev;
lev = (RM_level_des *)level_table[proc_table[p].task_level];
 
if (proc_table[p].status == RM_ZOMBIE) {
/* put the task in the FREE state */
proc_table[p].status = FREE;
iq_insertfirst(p,&freedesc);
/* free the allocated bandwidth */
lev->U -= (MAX_BANDWIDTH/lev->rdeadline[p]) * proc_table[p].wcet;
return;
}
if (!(lev->taskflags[p] & RM_FLAG_SPORADIC)) {
/* if the task is periodic, rerelease it (now or later) */
RM_intern_release(p, lev);
} else {
/* else check if the task is waiting for end of period */
if (proc_table[p].status == RM_WAIT) {
proc_table[p].status = SLEEP;
} else {
/* the task is still busy. mark it as late */
lev->taskflags[p] |= RM_FLAG_SPOR_LATE;
}
}
}
 
 
/* This function is called when a guest task misses its deadline */
 
static void RM_timer_guest_deadline(void *par)
{
PID p = (PID) par;
 
kern_printf("AAARRRGGGHHH!!!");
TRACER_LOGEVENT(FTrace_EVT_task_deadline_miss,(unsigned short int)proc_table[p].context,0);
kern_raise(XDEADLINE_MISS,p);
}
 
159,7 → 235,6
static PID RM_public_scheduler(LEVEL l)
{
RM_level_des *lev = (RM_level_des *)(level_table[l]);
 
return iq_query_first(&lev->ready);
}
 
179,7 → 254,6
static int RM_public_create(LEVEL l, PID p, TASK_MODEL *m)
{
RM_level_des *lev = (RM_level_des *)(level_table[l]);
 
HARD_TASK_MODEL *h;
 
if (m->pclass != HARD_PCLASS) return -1;
186,49 → 260,68
if (m->level != 0 && m->level != l) return -1;
h = (HARD_TASK_MODEL *)m;
if (!h->wcet || !h->mit) return -1;
if (h->drel > h->mit) return -1; /* only D <= T supported */
 
/* update the bandwidth... */
if (!h->drel) {
lev->rdeadline[p] = h->mit;
} else {
lev->rdeadline[p] = h->drel;
}
 
/* check the free bandwidth... */
if (lev->flags & RM_ENABLE_GUARANTEE) {
bandwidth_t b;
b = (MAX_BANDWIDTH / h->mit) * h->wcet;
b = (MAX_BANDWIDTH / lev->rdeadline[p]) * h->wcet;
 
/* really update lev->U, checking an overflow... */
if (MAX_BANDWIDTH - lev->U > b)
if (MAX_BANDWIDTH - lev->U > b) {
lev->U += b;
else
} else {
return -1;
}
}
 
/* now we know that m is a valid model */
if (lev->flags & RM_ENABLE_WCET_EXCEPTION) {
lev->flags |= RM_ENABLE_WCET_CHECK;
}
if (lev->flags & RM_ENABLE_DL_EXCEPTION) {
lev->flags |= RM_ENABLE_DL_CHECK;
}
 
*iq_query_priority(p, &lev->ready) = lev->period[p] = h->mit;
lev->period[p] = h->mit;
if (lev->rdeadline[p] == lev->period[p]) {
/* Ensure that D <= T-eps to make dl_timer trigger before rel_timer */
lev->rdeadline[p] = lev->period[p] - 1;
}
lev->taskflags[p] = 0;
 
if (h->periodicity == APERIODIC)
lev->flag[p] = RM_FLAG_SPORADIC;
else
lev->flag[p] = 0;
lev->deadline_timer[p] = -1;
lev->taskflags[p] |= RM_FLAG_SPORADIC;
lev->dl_timer[p] = -1;
lev->eop_timer[p] = -1;
 
/* Enable wcet check */
if (lev->flags & RM_ENABLE_WCET_CHECK) {
proc_table[p].avail_time = h->wcet;
proc_table[p].wcet = h->wcet;
proc_table[p].control |= CONTROL_CAP;
proc_table[p].control |= CONTROL_CAP; /* turn on measurement */
}
 
lev->offset[p] = h->offset;
 
NULL_TIMESPEC(&lev->release[p]);
 
return 0; /* OK, also if the task cannot be guaranteed... */
}
 
static void RM_public_detach(LEVEL l, PID p)
{
/* the RM level doesn't introduce any dinamic allocated new field.
we have only to reset the NO_GUARANTEE FIELD and decrement the allocated
bandwidth */
 
RM_level_des *lev = (RM_level_des *)(level_table[l]);
 
if (lev->flags & RM_ENABLE_GUARANTEE) {
lev->U -= (MAX_BANDWIDTH / lev->period[p]) * proc_table[p].wcet;
lev->U -= (MAX_BANDWIDTH / lev->rdeadline[p]) * proc_table[p].wcet;
}
}
 
235,12 → 328,6
static void RM_public_dispatch(LEVEL l, PID p, int nostop)
{
RM_level_des *lev = (RM_level_des *)(level_table[l]);
 
// kern_printf("(disp %d)",p);
 
/* the task state is set EXE by the scheduler()
we extract the task from the ready queue
NB: we can't assume that p is the first task in the queue!!! */
iq_extract(p, &lev->ready);
}
 
248,51 → 335,63
{
RM_level_des *lev = (RM_level_des *)(level_table[l]);
 
// kern_printf("(epil %d)",p);
 
/* check if the wcet is finished... */
if ((lev->flags & RM_ENABLE_WCET_CHECK) && proc_table[p].avail_time <= 0) {
/* if it is, raise a XWCET_VIOLATION exception */
kern_raise(XWCET_VIOLATION,p);
proc_table[p].status = RM_WCET_VIOLATED;
if (lev->flags & RM_ENABLE_WCET_CHECK) {
if (proc_table[p].avail_time <= 0) {
TRACER_LOGEVENT(FTrace_EVT_task_wcet_violation,(unsigned short int)proc_table[p].context,0);
if (lev->flags & RM_ENABLE_WCET_EXCEPTION) {
kern_raise(XWCET_VIOLATION,p);
} else {
proc_table[p].control &= ~CONTROL_CAP;
lev->wcet_miss[p]++;
}
}
}
else {
/* the task has been preempted. it returns into the ready queue... */
iq_priority_insert(p,&lev->ready);
proc_table[p].status = RM_READY;
}
 
/* the task returns to the ready queue */
iq_priority_insert(p,&lev->ready);
proc_table[p].status = RM_READY;
 
}
 
static void RM_public_activate(LEVEL l, PID p)
static void RM_public_activate(LEVEL l, PID p, struct timespec *t)
{
struct timespec clocktime;
RM_level_des *lev = (RM_level_des *)(level_table[l]);
struct timespec *temp;
 
if (proc_table[p].status == RM_WAIT) {
kern_raise(XACTIVATION,p);
kern_gettime(&clocktime);
 
/* check if we are not in the SLEEP state */
if (proc_table[p].status != SLEEP) {
if (lev->flags & RM_ENABLE_ACT_EXCEPTION) {
/* too frequent or wrongful activation: raise exception */
kern_raise(XACTIVATION,p);
} else {
/* skip the sporadic job, but increase a counter */
#ifdef RM_DEBUG
rm_printf("At %s: activation of %s skipped\n", pnow(), proc_table[p].name);
#endif
lev->nskip[p]++;
}
return;
}
/* set the release time to the activation time + offset */
lev->release[p] = *t;
ADDUSEC2TIMESPEC(lev->offset[p], &lev->release[p]);
 
/* Test if we are trying to activate a non sleeping task */
/* Ignore this; the task is already active */
if (proc_table[p].status != SLEEP &&
proc_table[p].status != RM_WCET_VIOLATED)
return;
/* Check if release > clocktime. If so, release it later,
otherwise release it now. */
 
proc_table[p].status = RM_IDLE;
 
/* see also RM_timer_deadline */
temp = iq_query_timespec(p, &lev->ready);
kern_gettime(temp);
ADDUSEC2TIMESPEC(lev->period[p], temp);
 
/* Insert task in the correct position */
proc_table[p].status = RM_READY;
iq_priority_insert(p,&lev->ready);
 
/* Set the deadline timer */
lev->deadline_timer[p] = kern_event_post(temp,
RM_timer_deadline,
(void *)p);
if (TIMESPEC_A_GT_B(&lev->release[p], &clocktime)) {
/* release later */
kern_event_post(&lev->release[p],RM_timer_offset,(void *)p);
} else {
/* release now */
RM_intern_release(p, lev);
}
}
 
static void RM_public_unblock(LEVEL l, PID p)
299,9 → 398,6
{
RM_level_des *lev = (RM_level_des *)(level_table[l]);
 
/* Similar to RM_task_activate,
but we don't check in what state the task is */
 
/* Insert task in the correct position */
proc_table[p].status = RM_READY;
iq_priority_insert(p,&lev->ready);
324,31 → 420,105
{
RM_level_des *lev = (RM_level_des *)(level_table[l]);
 
/* the task has terminated his job before it consume the wcet. All OK! */
if (lev->flag[p] & RM_FLAG_SPORADIC)
proc_table[p].status = RM_WAIT;
else /* pclass = sporadic_pclass */
proc_table[p].status = RM_IDLE;
switch((long)(m)) {
/* task_endcycle() */
case 0:
/* if there are no pending jobs */
if (lev->nact[p] == 0) {
/* remove deadline timer, if any */
if (lev->dl_timer[p] != -1) {
kern_event_delete(lev->dl_timer[p]);
lev->dl_timer[p] = -1;
}
if (lev->taskflags[p] & RM_FLAG_SPORADIC) {
/* sporadic task */
if (!(lev->taskflags[p] & RM_FLAG_SPOR_LATE)) {
proc_table[p].status = RM_WAIT;
} else {
/* it's late, move it directly to SLEEP */
proc_table[p].status = SLEEP;
lev->taskflags[p] &= ~RM_FLAG_SPOR_LATE;
}
} else {
/* periodic task */
proc_table[p].status = RM_IDLE;
}
} else {
/* we are late / there are pending jobs */
lev->nact[p]--;
*iq_query_priority(p,&lev->ready) = lev->rdeadline[p];
iq_priority_insert(p,&lev->ready);
#ifdef RM_DEBUG
rm_printf("(Late) At %s: releasing %s\n",
pnow(), proc_table[p].name);
#endif
}
break;
/* task_sleep() */
case 1:
/* remove deadline timer, if any */
if (lev->dl_timer[p] != -1) {
kern_event_delete(lev->dl_timer[p]);
lev->dl_timer[p] = -1;
}
if (lev->taskflags[p] & RM_FLAG_SPORADIC) {
/* sporadic task */
if (!(lev->taskflags[p] & RM_FLAG_SPOR_LATE)) {
proc_table[p].status = RM_WAIT;
} else {
/* it's late, move it directly to SLEEP */
proc_table[p].status = SLEEP;
lev->taskflags[p] &= ~RM_FLAG_SPOR_LATE;
}
} else {
/* periodic task */
if (!(lev->nact[p] > 0)) {
/* we are on time. go to the RM_WAIT state */
proc_table[p].status = RM_WAIT;
} else {
/* we are late. delete pending activations and go to SLEEP */
lev->nact[p] = 0;
proc_table[p].status = SLEEP;
/* remove end of period timer */
if (lev->eop_timer[p] != -1) {
kern_event_delete(lev->eop_timer[p]);
lev->eop_timer[p] = -1;
}
}
}
break;
}
 
/* we reset the capacity counters... */
if (lev->flags & RM_ENABLE_WCET_CHECK)
proc_table[p].avail_time = proc_table[p].wcet;
 
if (lev->flags & RM_ENABLE_WCET_CHECK) {
proc_table[p].control |= CONTROL_CAP;
}
proc_table[p].avail_time = proc_table[p].wcet;
jet_update_endcycle(); /* Update the Jet data... */
TRACER_LOGEVENT(FTrace_EVT_task_end_cycle,(unsigned short int)proc_table[p].context,(unsigned int)l);
/* when the deadline timer fire, it recognize the situation and set
correctly all the stuffs (like reactivation, sleep, etc... ) */
TRACER_LOGEVENT(FTrace_EVT_task_end_cycle,(unsigned short int)proc_table[p].context,(unsigned int)l);
 
return 0;
 
}
 
static void RM_public_end(LEVEL l, PID p)
{
proc_table[p].status = RM_ZOMBIE;
RM_level_des *lev = (RM_level_des *)(level_table[l]);
 
/* When the deadline timer fire, it put the task descriptor in
the free queue, and free the allocated bandwidth... */
if (!(lev->taskflags[p] & RM_FLAG_SPOR_LATE)) {
/* remove the deadline timer (if any) */
if (lev->dl_timer[p] != -1) {
kern_event_delete(lev->dl_timer[p]);
lev->dl_timer[p] = -1;
}
proc_table[p].status = RM_ZOMBIE;
} else {
/* no endperiod timer will be fired, free the task now! */
proc_table[p].status = FREE;
iq_insertfirst(p,&freedesc);
/* free the allocated bandwidth */
lev->U -= (MAX_BANDWIDTH/lev->rdeadline[p]) * proc_table[p].wcet;
}
}
 
static void RM_private_insert(LEVEL l, PID p, TASK_MODEL *m)
363,22 → 533,21
 
job = (JOB_TASK_MODEL *)m;
 
*iq_query_timespec(p,&lev->ready) = job->deadline;
/* Insert task in the correct position */
*iq_query_timespec(p, &lev->ready) = job->deadline;
/* THIS IS QUESTIONABLE!! rel deadline? */
*iq_query_priority(p, &lev->ready) = lev->period[p] = job->period;
lev->deadline_timer[p] = -1;
 
/* Insert task in the correct position */
iq_priority_insert(p,&lev->ready);
proc_table[p].status = RM_READY;
lev->dl_timer[p] = -1;
 
if (job->noraiseexc)
lev->flag[p] = RM_FLAG_NORAISEEXC;
else {
lev->flag[p] = 0;
lev->deadline_timer[p] = kern_event_post(iq_query_timespec(p, &lev->ready),
RM_timer_guest_deadline,
(void *)p);
lev->period[p] = job->period;
 
if (!job->noraiseexc) {
lev->dl_timer[p] = kern_event_post(iq_query_timespec(p, &lev->ready),
RM_timer_guest_deadline,(void *)p);
}
}
 
405,26 → 574,21
{
RM_level_des *lev = (RM_level_des *)(level_table[l]);
 
//kern_printf("RM_guest_end: dline timer %d\n",lev->deadline_timer[p]);
if (proc_table[p].status == RM_READY)
{
iq_extract(p, &lev->ready);
//kern_printf("(g_end rdy extr)");
}
 
/* we remove the deadline timer, because the slice is finished */
if (lev->deadline_timer[p] != NIL) {
// kern_printf("RM_guest_end: dline timer %d\n",lev->deadline_timer[p]);
kern_event_delete(lev->deadline_timer[p]);
lev->deadline_timer[p] = NIL;
if (lev->dl_timer[p] != -1) {
kern_event_delete(lev->dl_timer[p]);
lev->dl_timer[p] = -1;
}
 
}
 
/* Registration functions */
 
/*+ Registration function:
int flags the init flags ... see rm.h +*/
 
/* Registration function:
int flags the init flags ... see rm.h */
LEVEL RM_register_level(int flags)
{
LEVEL l; /* the level that we register */
462,9 → 626,13
 
/* fill the RM descriptor part */
for(i=0; i<MAX_PROC; i++) {
lev->period[i] = 0;
lev->deadline_timer[i] = -1;
lev->flag[i] = 0;
lev->period[i] = 0;
lev->dl_timer[i] = -1;
lev->taskflags[i] = 0;
lev->dl_miss[i] = 0;
lev->wcet_miss[i] = 0;
lev->nact[i] = 0;
lev->nskip[i] = 0;
}
 
iq_init(&lev->ready, &freedesc, 0);
481,3 → 649,35
return lev->U;
}
 
int RM_get_nact(PID p)
{
LEVEL l = proc_table[p].task_level;
RM_level_des *lev = (RM_level_des *)(level_table[l]);
return lev->nact[p];
}
 
int RM_get_dl_miss(PID p)
{
LEVEL l = proc_table[p].task_level;
RM_level_des *lev = (RM_level_des *)(level_table[l]);
 
return lev->dl_miss[p];
}
 
int RM_get_wcet_miss(PID p)
{
LEVEL l = proc_table[p].task_level;
RM_level_des *lev = (RM_level_des *)(level_table[l]);
 
return lev->wcet_miss[p];
}
 
int RM_get_nskip(PID p)
{
LEVEL l = proc_table[p].task_level;
RM_level_des *lev = (RM_level_des *)(level_table[l]);
return lev->nskip[p];
}