/*
* Project: S.Ha.R.K.
*
* Coordinators: Giorgio Buttazzo <giorgio@sssup.it>
* Paolo Gai <pj@hartik.sssup.it>
*
* Authors : Marco Caccamo and Paolo Gai
*
* ReTiS Lab (Scuola Superiore S.Anna - Pisa - Italy)
*
* http://www.sssup.it
* http://retis.sssup.it
* http://shark.sssup.it
*/
/**
------------
CVS : $Id: cbs_ft.c,v 1.1.1.1 2002-09-02 09:37:41 pj Exp $
File: $File$
Revision: $Revision: 1.1.1.1 $
Last update: $Date: 2002-09-02 09:37:41 $
------------
This file contains the server CBS_FT
Read CBS_FT.h for further details.
**/
/*
* Copyright (C) 2000 Marco Caccamo and Paolo Gai
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include "cbs_ft.h"
/*+ 4 debug purposes +*/
#undef CBS_FT_TEST
#ifdef TESTG
#include "drivers/glib.h"
TIME x
,oldx
;
extern TIME starttime
;
#endif
/*+ Status used in the level +*/
#define CBS_FT_IDLE APER_STATUS_BASE /*+ waiting the activation +*/
#define CBS_FT_ZOMBIE APER_STATUS_BASE+1 /*+ waiting the period end +*/
#define CBS_FT_DELAY APER_STATUS_BASE+2 /*+ waiting the delay end +*/
/* structure of an element of the capacity queue */
struct cap_queue
{
int cap
;
struct timespec dead
;
struct cap_queue
*next
;
};
/*+ the level redefinition for the CBS_FT level +*/
typedef struct {
level_des l
; /*+ the standard level descriptor +*/
/* The wcet are stored in the task descriptor, but we need
an array for the deadlines. We can't use the timespec_priority
field because it is used by the master level!!!...
Notice that however the use of the timespec_priority field
does not cause any problem... */
struct timespec cbs_ft_dline
[MAX_PROC
]; /*+ CBS_FT deadlines +*/
TIME period
[MAX_PROC
]; /*+ CBS_FT activation period +*/
int maxcap
[MAX_PROC
]; /* amount of capacity reserved to a primary+backup
couple */
PID backup
[MAX_PROC
]; /* Backup task pointers, defined for primary tasks */
char CP
[MAX_PROC
]; /* checkpoint flag */
char P_or_B
[MAX_PROC
]; /* Type of task: PRIMARY or BACKUP */
struct timespec reactivation_time
[MAX_PROC
];
/*+ the time at witch the reactivation timer is post +*/
int reactivation_timer
[MAX_PROC
]; /*+ the recativation timer +*/
struct cap_queue
*queue
; /* pointer to the spare capacity queue */
int flags
; /*+ the init flags... +*/
bandwidth_t U
; /*+ the used bandwidth by the server +*/
int idle
; /* the idle flag... */
struct timespec start_idle
; /*gives the start time of the last idle period */
LEVEL scheduling_level
;
} CBS_FT_level_des
;
/* insert a capacity in the queue capacity ordering by deadline */
static int c_insert
(struct timespec dead
, int cap
, struct cap_queue
**que
,
PID p
)
{
struct cap_queue
*prev
, *n
, *new
;
prev
= NULL
;
n
= *que
;
while ((n
!= NULL
) &&
!TIMESPEC_A_LT_B
(&dead
, &n
->dead
)) {
prev
= n
;
n
= n
->next
;
}
new
= (struct cap_queue
*)kern_alloc
(sizeof(struct cap_queue
));
if (new
== NULL
) {
kern_printf
("\nNew cash_queue element failed\n");
kern_raise
(XUNVALID_TASK
, p
);
return -1;
}
new
->next
= NULL
;
new
->cap
= cap
;
new
->dead
= dead
;
if (prev
!= NULL
)
prev
->next
= new
;
else
*que
= new
;
if (n
!= NULL
)
new
->next
= n
;
return 0;
}
/* extract the first element from the capacity queue */
int c_extractfirst
(struct cap_queue
**que
)
{
struct cap_queue
*p
= *que
;
if (*que
== NULL
) return(-1);
*que
= (*que
)->next
;
kern_free
(p
, sizeof(struct cap_queue
));
return(1);
}
/* read data of the first element from the capacity queue */
static void c_readfirst
(struct timespec
*d
, int *c
, struct cap_queue
*que
)
{
*d
= que
->dead
;
*c
= que
->cap
;
}
/* write data of the first element from the capacity queue */
static void c_writefirst
(struct timespec dead
, int cap
, struct cap_queue
*que
)
{
que
->dead
= dead
;
que
->cap
= cap
;
}
static void CBS_FT_activation
(CBS_FT_level_des
*lev
,
PID p
,
struct timespec
*acttime
)
{
JOB_TASK_MODEL job
;
int capacity
;
/* This rule is used when we recharge the budget at initial task activation
and each time a new task instance must be activated */
if (TIMESPEC_A_GT_B
(acttime
, &lev
->cbs_ft_dline
[p
])) {
/* we modify the deadline ... */
TIMESPEC_ASSIGN
(&lev
->cbs_ft_dline
[p
], acttime
);
}
if (proc_table
[p
].
avail_time > 0)
proc_table
[p
].
avail_time = 0;
/* A spare capacity is inserted in the capacity queue!! */
ADDUSEC2TIMESPEC
(lev
->period
[p
], &lev
->cbs_ft_dline
[p
]);
capacity
= lev
->maxcap
[p
] - proc_table
[ lev
->backup
[p
] ].
wcet;
c_insert
(lev
->cbs_ft_dline
[p
], capacity
, &lev
->queue
, p
);
/* it exploits available capacities from the capacity queue */
while (proc_table
[p
].
avail_time < proc_table
[p
].
wcet &&
lev
->queue
!= NULL
) {
struct timespec dead
;
int cap
, delta
;
delta
= proc_table
[p
].
wcet - proc_table
[p
].
avail_time;
c_readfirst
(&dead
, &cap
, lev
->queue
);
if (!TIMESPEC_A_GT_B
(&dead
, &lev
->cbs_ft_dline
[p
])) {
if (cap
> delta
) {
proc_table
[p
].
avail_time += delta
;
c_writefirst
(dead
, cap
- delta
, lev
->queue
);
}
else {
proc_table
[p
].
avail_time += cap
;
c_extractfirst
(&lev
->queue
);
}
}
else
break;
}
/* If the budget is still less than 0, an exception is raised */
if (proc_table
[p
].
avail_time <= 0) {
kern_printf
("\nnegative value for the budget!\n");
kern_raise
(XUNVALID_TASK
, p
);
return;
}
/*if (p==6)
kern_printf("(act_time:%d dead:%d av_time:%d)\n",
acttime->tv_sec*1000000+
acttime->tv_nsec/1000,
lev->cbs_ft_dline[p].tv_sec*1000000+
lev->cbs_ft_dline[p].tv_nsec/1000,
proc_table[p].avail_time); */
#ifdef TESTG
if (starttime
&& p
== 3) {
oldx
= x
;
x
= ((lev
->cbs_ft_dline
[p
].
tv_sec*1000000+lev
->cbs_ft_dline
[p
].
tv_nsec/1000)/5000 - starttime
) + 20;
// kern_printf("(a%d)",lev->cbs_ft_dline[p].tv_sec*1000000+lev->cbs_ft_dline[p].tv_nsec/1000);
if (oldx
> x
) sys_end
();
if (x
<640)
grx_plot
(x
, 15, 8);
}
#endif
/* and, finally, we reinsert the task in the master level */
job_task_default_model
(job
, lev
->cbs_ft_dline
[p
]);
job_task_def_yesexc
(job
);
level_table
[ lev
->scheduling_level
]->
guest_create
(lev
->scheduling_level
, p
, (TASK_MODEL
*)&job
);
level_table
[ lev
->scheduling_level
]->
guest_activate
(lev
->scheduling_level
, p
);
}
static char *CBS_FT_status_to_a
(WORD status
)
{
if (status
< MODULE_STATUS_BASE
)
return status_to_a
(status
);
switch (status
) {
case CBS_FT_IDLE
: return "CBS_FT_Idle";
case CBS_FT_ZOMBIE
: return "CBS_FT_Zombie";
case CBS_FT_DELAY
: return "CBS_FT_Delay";
default : return "CBS_FT_Unknown";
}
}
/* this is the periodic reactivation of the task... */
static void CBS_FT_timer_reactivate
(void *par
)
{
PID p
= (PID
) par
;
CBS_FT_level_des
*lev
;
lev
= (CBS_FT_level_des
*)level_table
[proc_table
[p
].
task_level];
if (proc_table
[p
].
status == CBS_FT_IDLE
) {
/* the task has finished the current activation and must be
reactivated */
/* request_time represents the time of the last instance release!! */
TIMESPEC_ASSIGN
(&proc_table
[p
].
request_time, &lev
->reactivation_time
[p
]);
/* If idle=1, then we have to discharge the capacities stored in
the capacity queue up to the length of the idle interval */
if (lev
->idle
== 1) {
TIME interval
;
struct timespec delta
;
lev
->idle
= 0;
SUBTIMESPEC
(&proc_table
[p
].
request_time, &lev
->start_idle
, &delta
);
/* length of the idle interval expressed in usec! */
interval
= TIMESPEC2NANOSEC
(&delta
) / 1000;
/* it discharges the available capacities from the capacity queue */
while (interval
> 0 && lev
->queue
!= NULL
) {
struct timespec dead
;
int cap
;
c_readfirst
(&dead
, &cap
, lev
->queue
);
if (cap
> interval
) {
c_writefirst
(dead
, cap
- interval
, lev
->queue
);
interval
= 0;
}
else {
interval
-= cap
;
c_extractfirst
(&lev
->queue
);
}
}
}
CBS_FT_activation
(lev
,p
,&lev
->reactivation_time
[p
]);
/* Set the reactivation timer */
TIMESPEC_ASSIGN
(&lev
->reactivation_time
[p
], &lev
->cbs_ft_dline
[p
]);
lev
->reactivation_timer
[p
] = kern_event_post
(&lev
->reactivation_time
[p
],
CBS_FT_timer_reactivate
,
(void *)p
);
event_need_reschedule
();
}
else {
/* this situation cannot occur */
kern_printf
("\nTrying to reactivate a primary task which is not IDLE!\n");
kern_raise
(XUNVALID_TASK
,p
);
}
}
static void CBS_FT_avail_time_check
(CBS_FT_level_des
*lev
, PID p
)
{
/*+ if the capacity became negative the remaining computation time
is diminuished.... +*/
/* if (p==4)
kern_printf("(old dead:%d av_time:%d)\n",
lev->cbs_ft_dline[p].tv_sec*1000000+
lev->cbs_ft_dline[p].tv_nsec/1000,
proc_table[p].avail_time); */
int newcap
= proc_table
[p
].
wcet / 100 * 30;
if (newcap
<= 0)
newcap
= proc_table
[p
].
wcet;
/* it exploits available capacities from the capacity queue */
while (proc_table
[p
].
avail_time < newcap
&& lev
->queue
!= NULL
) {
struct timespec dead
;
int cap
, delta
;
delta
= newcap
- proc_table
[p
].
avail_time;
c_readfirst
(&dead
, &cap
, lev
->queue
);
if (!TIMESPEC_A_GT_B
(&dead
, &lev
->cbs_ft_dline
[p
])) {
if (cap
> delta
) {
proc_table
[p
].
avail_time += delta
;
c_writefirst
(dead
, cap
- delta
, lev
->queue
);
}
else {
proc_table
[p
].
avail_time += cap
;
c_extractfirst
(&lev
->queue
);
}
}
else
break;
}
/*if (p==6)
kern_printf("(ATC dead:%d av_time:%d)\n",
lev->cbs_ft_dline[p].tv_sec*1000000+
lev->cbs_ft_dline[p].tv_nsec/1000,
proc_table[p].avail_time); */
/* if the budget is still empty, the backup task must be woken up.
Remind that a short chunk of primary will go ahead executing
before the task switch occurs */
if (proc_table
[p
].
avail_time <= 0) {
lev
->CP
[p
] = 1;
proc_table
[p
].
avail_time += proc_table
[ lev
->backup
[p
] ].
wcet;
}
/*if (p==6)
kern_printf("(ATC1 dead:%d av_time:%d)\n",
lev->cbs_ft_dline[p].tv_sec*1000000+
lev->cbs_ft_dline[p].tv_nsec/1000,
proc_table[p].avail_time); */
}
/*+ this function is called when a killed or ended task reach the
period end +*/
static void CBS_FT_timer_zombie
(void *par
)
{
PID p
= (PID
) par
;
CBS_FT_level_des
*lev
;
lev
= (CBS_FT_level_des
*)level_table
[proc_table
[p
].
task_level];
/* we finally put the task in the FREE status */
proc_table
[p
].
status = FREE
;
q_insertfirst
(p
,&freedesc
);
/* and free the allocated bandwidth */
lev
->U
-= (MAX_BANDWIDTH
/ lev
->period
[p
]) * (TIME
)lev
->maxcap
[p
];
}
static int CBS_FT_level_accept_task_model
(LEVEL l
, TASK_MODEL
*m
)
{
if (m
->pclass
== FT_PCLASS
|| m
->pclass
==
(FT_PCLASS
| l
)) {
FT_TASK_MODEL
*f
= (FT_TASK_MODEL
*) m
;
//kern_printf("accept :FAULT TOLERANT TASK found!!!!!!\n"); */
if (f
->type
== PRIMARY
&& f
->execP
> 0 && f
->budget
< (int)f
->period
&& f
->backup
!= NIL
) return 0;
if (f
->type
== BACKUP
&& f
->wcetB
> 0)
return 0;
}
return -1;
}
static int CBS_FT_level_accept_guest_model
(LEVEL l
, TASK_MODEL
*m
)
{
return -1;
}
static char *onoff
(int i
)
{
if (i
)
return "On ";
else
return "Off";
}
static void CBS_FT_level_status
(LEVEL l
)
{
CBS_FT_level_des
*lev
= (CBS_FT_level_des
*)(level_table
[l
]);
PID p
;
kern_printf
("On-line guarantee : %s\n",
onoff
(lev
->flags
& CBS_FT_ENABLE_GUARANTEE
));
kern_printf
("Used Bandwidth : %u/%u\n",
lev
->U
, MAX_BANDWIDTH
);
for (p
=0; p
<MAX_PROC
; p
++)
if (proc_table
[p
].
task_level == l
&& proc_table
[p
].
status != FREE
)
kern_printf
("Pid: %2d Name: %10s Period: %9ld Dline: %9ld.%6ld Stat: %s\n",
p
,
proc_table
[p
].
name,
lev
->period
[p
],
lev
->cbs_ft_dline
[p
].
tv_sec,
lev
->cbs_ft_dline
[p
].
tv_nsec/1000,
CBS_FT_status_to_a
(proc_table
[p
].
status));
}
static PID CBS_FT_level_scheduler
(LEVEL l
)
{
CBS_FT_level_des
*lev
= (CBS_FT_level_des
*)(level_table
[l
]);
/* it stores the actual time and set the IDLE flag in order to handle
the capacity queue discharging!!! */
lev
->idle
= 1;
ll_gettime
(TIME_EXACT
, &lev
->start_idle
);
/* the CBS_FT don't schedule anything...
it's an EDF level or similar that do it! */
return NIL
;
}
/* The on-line guarantee is enabled only if the appropriate flag is set... */
static int CBS_FT_level_guarantee
(LEVEL l
, bandwidth_t
*freebandwidth
)
{
CBS_FT_level_des
*lev
= (CBS_FT_level_des
*)(level_table
[l
]);
if (lev
->flags
& CBS_FT_FAILED_GUARANTEE
) {
*freebandwidth
= 0;
kern_printf
("guarantee :garanzia fallita!!!!!!\n");
return 0;
}
else if (*freebandwidth
>= lev
->U
) {
*freebandwidth
-= lev
->U
;
return 1;
}
else {
kern_printf
("guarantee :garanzia fallita per mancanza di banda!!!!!!\n");
kern_printf
("freeband: %d request band: %d", *freebandwidth
, lev
->U
);
return 0;
}
}
static int CBS_FT_task_create
(LEVEL l
, PID p
, TASK_MODEL
*m
)
{
CBS_FT_level_des
*lev
= (CBS_FT_level_des
*)(level_table
[l
]);
/* if the CBS_FT_task_create is called, then the pclass must be a
valid pclass. */
FT_TASK_MODEL
*s
= (FT_TASK_MODEL
*)m
;
/* Enable budget check */
proc_table
[p
].
control |= CONTROL_CAP
;
proc_table
[p
].
avail_time = 0;
NULL_TIMESPEC
(&lev
->cbs_ft_dline
[p
]);
if (s
->type
== PRIMARY
) {
proc_table
[p
].
wcet = (int)s
->execP
;
lev
->period
[p
] = s
->period
;
lev
->maxcap
[p
] = s
->budget
;
lev
->backup
[p
] = s
->backup
;
lev
->CP
[p
] = 0;
lev
->P_or_B
[p
] = PRIMARY
;
/* update the bandwidth... */
if (lev
->flags
& CBS_FT_ENABLE_GUARANTEE
) {
bandwidth_t b
;
b
= (MAX_BANDWIDTH
/ lev
->period
[p
]) * (TIME
)lev
->maxcap
[p
];
/* really update lev->U, checking an overflow... */
if (MAX_BANDWIDTH
- lev
->U
> b
)
lev
->U
+= b
;
else
/* The task can NOT be guaranteed (U>MAX_BANDWIDTH)...
(see EDF.c) */
lev
->flags
|= CBS_FT_FAILED_GUARANTEE
;
}
}
else {
proc_table
[p
].
wcet = (int)s
->wcetB
;
lev
->P_or_B
[p
] = BACKUP
;
/* Backup tasks are unkillable tasks! */
proc_table
[p
].
control |= NO_KILL
;
}
return 0; /* OK, also if the task cannot be guaranteed... */
}
static void CBS_FT_task_detach
(LEVEL l
, PID p
)
{
/* the CBS_FT level doesn't introduce any dynamic allocated new field.
we have only to reset the NO_GUARANTEE FIELD and decrement the allocated
bandwidth */
CBS_FT_level_des
*lev
= (CBS_FT_level_des
*)(level_table
[l
]);
if (lev
->flags
& CBS_FT_FAILED_GUARANTEE
)
lev
->flags
&= ~CBS_FT_FAILED_GUARANTEE
;
else
lev
->U
-= (MAX_BANDWIDTH
/ lev
->period
[p
]) * (TIME
)lev
->maxcap
[p
];
}
static int CBS_FT_task_eligible
(LEVEL l
, PID p
)
{
return 0; /* if the task p is chosen, it is always eligible */
}
#ifdef __TEST1__
extern int testactive
;
extern struct timespec s_stime
[];
extern TIME s_curr
[];
extern TIME s_PID
[];
extern int useds
;
#endif
static void CBS_FT_task_dispatch
(LEVEL l
, PID p
, int nostop
)
{
CBS_FT_level_des
*lev
= (CBS_FT_level_des
*)(level_table
[l
]);
level_table
[ lev
->scheduling_level
]->
guest_dispatch
(lev
->scheduling_level
,p
,nostop
);
#ifdef __TEST1__
if (testactive
)
{
TIMESPEC_ASSIGN
(&s_stime
[useds
], &schedule_time
);
s_curr
[useds
] = proc_table
[p
].
avail_time;
s_PID
[useds
] = p
;
useds
++;
}
#endif
}
static void CBS_FT_task_epilogue
(LEVEL l
, PID p
)
{
CBS_FT_level_des
*lev
= (CBS_FT_level_des
*)(level_table
[l
]);
/* check if the budget is finished... */
if (proc_table
[p
].
avail_time <= 0) {
/* A backup task cannot ever exhaust its budget! */
if (lev
->P_or_B
[p
] == BACKUP
) {
kern_printf
("\nBACKUP wcet violation!\n");
kern_raise
(XWCET_VIOLATION
,p
);
/* we kill the current activation */
level_table
[ lev
->scheduling_level
]->
guest_end
(lev
->scheduling_level
, p
);
return;
}
/* we try to recharge the budget */
CBS_FT_avail_time_check
(lev
, p
);
/* The budget must be greater than 0! */
if (proc_table
[p
].
avail_time <= 0) {
kern_printf
("\nBackup task starting with exhausted budget\n");
kern_raise
(XUNVALID_TASK
, p
);
lev
->CP
[p
] = 0;
/* we kill the current activation */
level_table
[ lev
->scheduling_level
]->
guest_end
(lev
->scheduling_level
, p
);
return;
}
}
/* the task returns into the ready queue by
calling the guest_epilogue... */
level_table
[ lev
->scheduling_level
]->
guest_epilogue
(lev
->scheduling_level
,p
);
}
static void CBS_FT_task_activate
(LEVEL l
, PID p
)
{
CBS_FT_level_des
*lev
= (CBS_FT_level_des
*)(level_table
[l
]);
ll_gettime
(TIME_EXACT
, &proc_table
[p
].
request_time);
if (lev
->P_or_B
[p
] == BACKUP
) {
kern_printf
("\nTrying to activate a BACKUP task!\n");
kern_raise
(XUNVALID_TASK
, p
);
}
else {
/* If idle=1, then we have to discharge the capacities stored in
the capacity queue up to the length of the idle interval */
if (lev
->idle
== 1) {
TIME interval
;
struct timespec delta
;
lev
->idle
= 0;
SUBTIMESPEC
(&proc_table
[p
].
request_time, &lev
->start_idle
, &delta
);
/* length of the idle interval expressed in usec! */
interval
= TIMESPEC2NANOSEC
(&delta
) / 1000;
/* it discharge the available capacities from the capacity queue */
while (interval
> 0 && lev
->queue
!= NULL
) {
struct timespec dead
;
int cap
;
c_readfirst
(&dead
, &cap
, lev
->queue
);
if (cap
> interval
) {
c_writefirst
(dead
, cap
- interval
, lev
->queue
);
interval
= 0;
}
else {
interval
-= cap
;
c_extractfirst
(&lev
->queue
);
}
}
}
CBS_FT_activation
(lev
, p
, &proc_table
[p
].
request_time);
/* Set the reactivation timer */
TIMESPEC_ASSIGN
(&lev
->reactivation_time
[p
], &lev
->cbs_ft_dline
[p
]);
lev
->reactivation_timer
[p
] = kern_event_post
(&lev
->reactivation_time
[p
],
CBS_FT_timer_reactivate
,
(void *)p
);
// kern_printf("act : %d %d |",lev->cbs_ft_dline[p].tv_nsec/1000,p);
}
}
static void CBS_FT_task_insert
(LEVEL l
, PID p
)
{
printk
("CBS_FT_task_insert\n");
kern_raise
(XUNVALID_TASK
,p
);
}
static void CBS_FT_task_extract
(LEVEL l
, PID p
)
{
printk
("CBS_FT_task_extract\n");
kern_raise
(XUNVALID_TASK
,p
);
}
static void CBS_FT_task_endcycle
(LEVEL l
, PID p
)
{
CBS_FT_level_des
*lev
= (CBS_FT_level_des
*)(level_table
[l
]);
level_table
[ lev
->scheduling_level
]->
guest_end
(lev
->scheduling_level
,p
);
proc_table
[p
].
status = CBS_FT_IDLE
;
if (lev
->P_or_B
[p
] == PRIMARY
) {
if (lev
->CP
[p
]) {
JOB_TASK_MODEL job
;
/* We have to start the backup task */
TIMESPEC_ASSIGN
(&lev
->cbs_ft_dline
[ lev
->backup
[p
] ],
&lev
->cbs_ft_dline
[p
]);
proc_table
[ lev
->backup
[p
] ].
avail_time = proc_table
[p
].
avail_time;
lev
->CP
[p
] = 0;
/* and, finally, we insert the backup task in the master level */
job_task_default_model
(job
, lev
->cbs_ft_dline
[p
]);
job_task_def_yesexc
(job
);
level_table
[ lev
->scheduling_level
]->
guest_create
(lev
->scheduling_level
, lev
->backup
[p
],
(TASK_MODEL
*)&job
);
level_table
[ lev
->scheduling_level
]->
guest_activate
(lev
->scheduling_level
, lev
->backup
[p
]);
}
else {
/* A spare capacity is inserted in the capacity queue!! */
proc_table
[p
].
avail_time += proc_table
[ lev
->backup
[p
] ].
wcet;
if (proc_table
[p
].
avail_time > 0) {
c_insert
(lev
->cbs_ft_dline
[p
], proc_table
[p
].
avail_time,
&lev
->queue
, p
);
proc_table
[p
].
avail_time = 0;
}
}
}
else {
/* this branch is for backup tasks:
A spare capacity is inserted in the capacity queue!! */
if (proc_table
[p
].
avail_time > 0) {
c_insert
(lev
->cbs_ft_dline
[p
], proc_table
[p
].
avail_time,
&lev
->queue
, p
);
proc_table
[p
].
avail_time = 0;
}
}
}
static void CBS_FT_task_end
(LEVEL l
, PID p
)
{
CBS_FT_level_des
*lev
= (CBS_FT_level_des
*)(level_table
[l
]);
/* A backup task cannot be killed, this behaviour can be modified
in a new release */
if (lev
->P_or_B
[p
] == BACKUP
) {
kern_printf
("\nKilling a BACKUP task!\n");
kern_raise
(XUNVALID_TASK
, p
);
return;
}
/* check if the capacity becomes negative... */
/* there is a while because if the wcet is << than the system tick
we need to postpone the deadline many times */
while (proc_table
[p
].
avail_time < 0) {
/* the CBS_FT rule for recharging the capacity */
proc_table
[p
].
avail_time += lev
->maxcap
[p
];
ADDUSEC2TIMESPEC
(lev
->period
[p
], &lev
->cbs_ft_dline
[p
]);
}
level_table
[ lev
->scheduling_level
]->
guest_end
(lev
->scheduling_level
,p
);
/* we delete the reactivation timer */
event_delete
(lev
->reactivation_timer
[p
]);
lev
->reactivation_timer
[p
] = -1;
/* Finally, we post the zombie event. when the end period is reached,
the task descriptor and banwidth are freed */
proc_table
[p
].
status = CBS_FT_ZOMBIE
;
lev
->reactivation_timer
[p
] = kern_event_post
(&lev
->cbs_ft_dline
[p
],
CBS_FT_timer_zombie
,
(void *)p
);
}
static void CBS_FT_task_sleep
(LEVEL l
, PID p
)
{
printk
("CBS_FT_task_sleep\n");
kern_raise
(XUNVALID_TASK
,p
);
}
static void CBS_FT_task_delay
(LEVEL l
, PID p
, TIME usdelay
)
{
printk
("CBS_FT_task_delay\n");
kern_raise
(XUNVALID_TASK
,p
);
}
static int CBS_FT_guest_create
(LEVEL l
, PID p
, TASK_MODEL
*m
)
{ kern_raise
(XUNVALID_GUEST
,exec_shadow
); return 0; }
static void CBS_FT_guest_detach
(LEVEL l
, PID p
)
{ kern_raise
(XUNVALID_GUEST
,exec_shadow
); }
static void CBS_FT_guest_dispatch
(LEVEL l
, PID p
, int nostop
)
{ kern_raise
(XUNVALID_GUEST
,exec_shadow
); }
static void CBS_FT_guest_epilogue
(LEVEL l
, PID p
)
{ kern_raise
(XUNVALID_GUEST
,exec_shadow
); }
static void CBS_FT_guest_activate
(LEVEL l
, PID p
)
{ kern_raise
(XUNVALID_GUEST
,exec_shadow
); }
static void CBS_FT_guest_insert
(LEVEL l
, PID p
)
{ kern_raise
(XUNVALID_GUEST
,exec_shadow
); }
static void CBS_FT_guest_extract
(LEVEL l
, PID p
)
{ kern_raise
(XUNVALID_GUEST
,exec_shadow
); }
static void CBS_FT_guest_endcycle
(LEVEL l
, PID p
)
{ kern_raise
(XUNVALID_GUEST
,exec_shadow
); }
static void CBS_FT_guest_end
(LEVEL l
, PID p
)
{ kern_raise
(XUNVALID_GUEST
,exec_shadow
); }
static void CBS_FT_guest_sleep
(LEVEL l
, PID p
)
{ kern_raise
(XUNVALID_GUEST
,exec_shadow
); }
static void CBS_FT_guest_delay
(LEVEL l
, PID p
,DWORD tickdelay
)
{ kern_raise
(XUNVALID_GUEST
,exec_shadow
); }
/* Registration functions */
/*+ Registration function:
int flags the init flags ... see CBS.h +*/
void CBS_FT_register_level
(int flags
, LEVEL master
)
{
LEVEL l
; /* the level that we register */
CBS_FT_level_des
*lev
; /* for readableness only */
PID i
; /* a counter */
printk
("CBS_FT_register_level\n");
/* request an entry in the level_table */
l
= level_alloc_descriptor
();
printk
(" alloco descrittore %d %d\n",l
,sizeof(CBS_FT_level_des
));
/* alloc the space needed for the CBS_FT_level_des */
lev
= (CBS_FT_level_des
*)kern_alloc
(sizeof(CBS_FT_level_des
));
printk
(" lev=%d\n",(int)lev
);
/* update the level_table with the new entry */
level_table
[l
] = (level_des
*)lev
;
/* fill the standard descriptor */
strncpy(lev
->l.
level_name, CBS_FT_LEVELNAME
, MAX_LEVELNAME
);
lev
->l.
level_code = CBS_FT_LEVEL_CODE
;
lev
->l.
level_version = CBS_FT_LEVEL_VERSION
;
lev
->l.
level_accept_task_model = CBS_FT_level_accept_task_model
;
lev
->l.
level_accept_guest_model = CBS_FT_level_accept_guest_model
;
lev
->l.
level_status = CBS_FT_level_status
;
lev
->l.
level_scheduler = CBS_FT_level_scheduler
;
if (flags
& CBS_FT_ENABLE_GUARANTEE
)
lev
->l.
level_guarantee = CBS_FT_level_guarantee
;
else
lev
->l.
level_guarantee = NULL
;
lev
->l.
task_create = CBS_FT_task_create
;
lev
->l.
task_detach = CBS_FT_task_detach
;
lev
->l.
task_eligible = CBS_FT_task_eligible
;
lev
->l.
task_dispatch = CBS_FT_task_dispatch
;
lev
->l.
task_epilogue = CBS_FT_task_epilogue
;
lev
->l.
task_activate = CBS_FT_task_activate
;
lev
->l.
task_insert = CBS_FT_task_insert
;
lev
->l.
task_extract = CBS_FT_task_extract
;
lev
->l.
task_endcycle = CBS_FT_task_endcycle
;
lev
->l.
task_end = CBS_FT_task_end
;
lev
->l.
task_sleep = CBS_FT_task_sleep
;
lev
->l.
task_delay = CBS_FT_task_delay
;
lev
->l.
guest_create = CBS_FT_guest_create
;
lev
->l.
guest_detach = CBS_FT_guest_detach
;
lev
->l.
guest_dispatch = CBS_FT_guest_dispatch
;
lev
->l.
guest_epilogue = CBS_FT_guest_epilogue
;
lev
->l.
guest_activate = CBS_FT_guest_activate
;
lev
->l.
guest_insert = CBS_FT_guest_insert
;
lev
->l.
guest_extract = CBS_FT_guest_extract
;
lev
->l.
guest_endcycle = CBS_FT_guest_endcycle
;
lev
->l.
guest_end = CBS_FT_guest_end
;
lev
->l.
guest_sleep = CBS_FT_guest_sleep
;
lev
->l.
guest_delay = CBS_FT_guest_delay
;
/* fill the CBS_FT descriptor part */
for (i
=0; i
<MAX_PROC
; i
++) {
NULL_TIMESPEC
(&lev
->cbs_ft_dline
[i
]);
lev
->period
[i
] = 0;
NULL_TIMESPEC
(&lev
->reactivation_time
[i
]);
lev
->reactivation_timer
[i
] = -1;
lev
->maxcap
[i
] = 0;
lev
->backup
[i
] = NIL
;
lev
->CP
[i
] = 0;
lev
->P_or_B
[i
] = PRIMARY
;
}
lev
->U
= 0;
lev
->idle
= 0;
lev
->queue
= NULL
;
lev
->scheduling_level
= master
;
lev
->flags
= flags
& 0x07;
}
bandwidth_t CBS_FT_usedbandwidth
(LEVEL l
)
{
CBS_FT_level_des
*lev
= (CBS_FT_level_des
*)(level_table
[l
]);
if (lev
->l.
level_code == CBS_FT_LEVEL_CODE
&&
lev
->l.
level_version == CBS_FT_LEVEL_VERSION
)
return lev
->U
;
else
return 0;
}
void CBS_FT_Primary_Abort
()
{
PID p
;
CBS_FT_level_des
*lev
;
kern_cli
();
p
= exec_shadow
;
lev
= (CBS_FT_level_des
*)level_table
[proc_table
[p
].
task_level];
lev
->CP
[p
] = 1;
kern_sti
();
}
char CBS_FT_Checkpoint
()
{
char f
;
PID p
;
CBS_FT_level_des
*lev
;
kern_cli
();
p
= exec_shadow
;
lev
= (CBS_FT_level_des
*)level_table
[proc_table
[p
].
task_level];
f
= lev
->CP
[p
];
kern_sti
();
return f
;
}