Blame |
Last modification |
View Log
| RSS feed
/*
* Project: S.Ha.R.K.
*
* Coordinators:
* Giorgio Buttazzo <giorgio@sssup.it>
* Paolo Gai <pj@gandalf.sssup.it>
*
* Authors :
* Paolo Gai <pj@gandalf.sssup.it>
* Massimiliano Giorgi <massy@gandalf.sssup.it>
* Luca Abeni <luca@gandalf.sssup.it>
* (see the web pages for full authors list)
*
* ReTiS Lab (Scuola Superiore S.Anna - Pisa - Italy)
*
* http://www.sssup.it
* http://retis.sssup.it
* http://shark.sssup.it
*/
/**
------------
CVS : $Id: cbs.c,v 1.1.1.1 2002-03-29 14:12:52 pj Exp $
File: $File$
Revision: $Revision: 1.1.1.1 $
Last update: $Date: 2002-03-29 14:12:52 $
------------
This file contains the aperiodic server CBS (Total Bandwidth Server)
Read CBS.h for further details.
**/
/*
* Copyright (C) 2000 Paolo Gai
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <modules/cbs.h>
#include <ll/stdio.h>
#include <ll/string.h>
#include <kernel/model.h>
#include <kernel/descr.h>
#include <kernel/var.h>
#include <kernel/func.h>
#include <kernel/trace.h>
/*+ 4 debug purposes +*/
#undef CBS_TEST
#undef CBS_COUNTER
#ifdef TESTG
#include "drivers/glib.h"
TIME x
,oldx
;
extern TIME starttime
;
#endif
/*+ Status used in the level +*/
#define CBS_IDLE APER_STATUS_BASE /*+ waiting the activation +*/
#define CBS_ZOMBIE APER_STATUS_BASE+1 /*+ waiting the period end +*/
#define CBS_DELAY APER_STATUS_BASE+2 /*+ waiting the delay end +*/
/*+ task flags +*/
#define CBS_SAVE_ARRIVALS 1
#define CBS_APERIODIC 2
/*+ the level redefinition for the Total Bandwidth Server level +*/
typedef struct {
level_des l
; /*+ the standard level descriptor +*/
/* The wcet are stored in the task descriptor, but we need
an array for the deadlines. We can't use the timespec_priority
field because it is used by the master level!!!...
Notice that however the use of the timespec_priority field
does not cause any problem... */
struct timespec cbs_dline
[MAX_PROC
]; /*+ CBS deadlines +*/
TIME period
[MAX_PROC
]; /*+ CBS activation period +*/
struct timespec reactivation_time
[MAX_PROC
];
/*+ the time at witch the reactivation timer is post +*/
int reactivation_timer
[MAX_PROC
];
/*+ the recativation timer +*/
int nact
[MAX_PROC
]; /*+ number of pending activations +*/
BYTE flag
[MAX_PROC
]; /*+ task flags +*/
int flags
; /*+ the init flags... +*/
bandwidth_t U
; /*+ the used bandwidth by the server +*/
LEVEL scheduling_level
;
} CBS_level_des
;
#ifdef CBS_COUNTER
int cbs_counter
=0;
int cbs_counter2
=0;
#endif
static void CBS_activation
(CBS_level_des
*lev
,
PID p
,
struct timespec
*acttime
)
{
JOB_TASK_MODEL job
;
/* we have to check if the deadline and the wcet are correct before
activating a new task or an old task... */
/* check 1: if the deadline is before than the actual scheduling time */
/* check 2: if ( avail_time >= (cbs_dline - acttime)* (wcet/period) )
(rule 7 in the CBS article!) */
TIME t
;
struct timespec t2
,t3
;
t
= (lev
->period
[p
] * proc_table
[p
].
avail_time) / proc_table
[p
].
wcet;
t3.
tv_sec = t
/ 1000000;
t3.
tv_nsec = (t
% 1000000) * 1000;
SUBTIMESPEC
(&lev
->cbs_dline
[p
], acttime
, &t2
);
if (/* 1 */ TIMESPEC_A_LT_B
(&lev
->cbs_dline
[p
], acttime
) ||
/* 2 */ TIMESPEC_A_GT_B
(&t3
, &t2
) ) {
/* if (TIMESPEC_A_LT_B(&lev->cbs_dline[p], acttime) )
kern_printf("$");
else
kern_printf("(Ûdline%d.%d act%d.%d wcet%d per%d avail%dÛ)",
lev->cbs_dline[p].tv_sec,lev->cbs_dline[p].tv_nsec/1000,
acttime->tv_sec, acttime->tv_nsec/1000,
proc_table[p].wcet, lev->period[p], proc_table[p].avail_time);
*/ /* we modify the deadline ... */
TIMESPEC_ASSIGN
(&lev
->cbs_dline
[p
], acttime
);
ADDUSEC2TIMESPEC
(lev
->period
[p
], &lev
->cbs_dline
[p
]);
/* and the capacity */
proc_table
[p
].
avail_time = proc_table
[p
].
wcet;
}
#ifdef TESTG
if (starttime
&& p
== 3) {
oldx
= x
;
x
= ((lev
->cbs_dline
[p
].
tv_sec*1000000+lev
->cbs_dline
[p
].
tv_nsec/1000)/5000 - starttime
) + 20;
// kern_printf("(a%d)",lev->cbs_dline[p].tv_sec*1000000+lev->cbs_dline[p].tv_nsec/1000);
if (oldx
> x
) sys_end
();
if (x
<640)
grx_plot
(x
, 15, 8);
}
#endif
/* and, finally, we reinsert the task in the master level */
job_task_default_model
(job
, lev
->cbs_dline
[p
]);
job_task_def_noexc
(job
);
level_table
[ lev
->scheduling_level
]->
guest_create
(lev
->scheduling_level
, p
, (TASK_MODEL
*)&job
);
level_table
[ lev
->scheduling_level
]->
guest_activate
(lev
->scheduling_level
, p
);
}
static char *CBS_status_to_a
(WORD status
)
{
if (status
< MODULE_STATUS_BASE
)
return status_to_a
(status
);
switch (status
) {
case CBS_IDLE
: return "CBS_Idle";
case CBS_ZOMBIE
: return "CBS_Zombie";
case CBS_DELAY
: return "CBS_Delay";
default : return "CBS_Unknown";
}
}
static void CBS_avail_time_check
(CBS_level_des
*lev
, PID p
)
{
/* there is a while because if the wcet is << than the system tick
we need to postpone the deadline many times */
while (proc_table
[p
].
avail_time <= 0) {
ADDUSEC2TIMESPEC
(lev
->period
[p
], &lev
->cbs_dline
[p
]);
proc_table
[p
].
avail_time += proc_table
[p
].
wcet;
#ifdef TESTG
if (starttime
&& p
== 3) {
oldx
= x
;
x
= ((lev
->cbs_dline
[p
].
tv_sec*1000000+lev
->cbs_dline
[p
].
tv_nsec/1000)/5000 - starttime
) + 20;
// kern_printf("(e%d avail%d)",lev->cbs_dline[p].tv_sec*1000000+lev->cbs_dline[p].tv_nsec/1000,proc_table[p].avail_time);
if (oldx
> x
) sys_end
();
if (x
<640)
grx_plot
(x
, 15, 2);
}
#endif
}
}
/* this is the periodic reactivation of the task... it is posted only
if the task is a periodic task */
static void CBS_timer_reactivate
(void *par
)
{
PID p
= (PID
) par
;
CBS_level_des
*lev
;
lev
= (CBS_level_des
*)level_table
[proc_table
[p
].
task_level];
#ifdef CBS_COUNTER
if (p
==5) cbs_counter
++;
#endif
if (proc_table
[p
].
status == CBS_IDLE
) {
/* the task has finished the current activation and must be
reactivated */
CBS_activation
(lev
,p
,&lev
->reactivation_time
[p
]);
event_need_reschedule
();
}
else if (lev
->flag
[p
] & CBS_SAVE_ARRIVALS
)
/* the task has not completed the current activation, so we save
the activation incrementing nact... */
lev
->nact
[p
]++;
/* repost the event at the next period end... */
ADDUSEC2TIMESPEC
(lev
->period
[p
], &lev
->reactivation_time
[p
]);
lev
->reactivation_timer
[p
] = kern_event_post
(&lev
->reactivation_time
[p
],
CBS_timer_reactivate
,
(void *)p
);
#ifdef CBS_COUNTER
if (p
==5) cbs_counter2
++;
#endif
/* tracer stuff */
trc_logevent
(TRC_INTACTIVATION
,&p
);
}
/*+ this function is called when a task finish his delay +*/
static void CBS_timer_delay
(void *par
)
{
PID p
= (PID
) par
;
CBS_level_des
*lev
;
lev
= (CBS_level_des
*)level_table
[proc_table
[p
].
task_level];
CBS_activation
(lev
,p
,&proc_table
[p
].
timespec_priority);
event_need_reschedule
();
}
/*+ this function is called when a killed or ended task reach the
period end +*/
static void CBS_timer_zombie
(void *par
)
{
PID p
= (PID
) par
;
CBS_level_des
*lev
;
lev
= (CBS_level_des
*)level_table
[proc_table
[p
].
task_level];
/* we finally put the task in the ready queue */
proc_table
[p
].
status = FREE
;
q_insertfirst
(p
,&freedesc
);
/* and free the allocated bandwidth */
lev
->U
-= (MAX_BANDWIDTH
/lev
->period
[p
]) * proc_table
[p
].
wcet;
}
static int CBS_level_accept_task_model
(LEVEL l
, TASK_MODEL
*m
)
{
if (m
->pclass
== SOFT_PCLASS
|| m
->pclass
== (SOFT_PCLASS
| l
)) {
SOFT_TASK_MODEL
*s
= (SOFT_TASK_MODEL
*)m
;
if (s
->met
&& s
->period
)
return 0;
}
return -1;
}
static int CBS_level_accept_guest_model
(LEVEL l
, TASK_MODEL
*m
)
{
return -1;
}
static char *onoff
(int i
)
{
if (i
)
return "On ";
else
return "Off";
}
static void CBS_level_status
(LEVEL l
)
{
CBS_level_des
*lev
= (CBS_level_des
*)(level_table
[l
]);
PID p
;
kern_printf
("On-line guarantee : %s\n",
onoff
(lev
->flags
& CBS_ENABLE_GUARANTEE
));
kern_printf
("Used Bandwidth : %u/%u\n",
lev
->U
, MAX_BANDWIDTH
);
for (p
=0; p
<MAX_PROC
; p
++)
if (proc_table
[p
].
task_level == l
&& proc_table
[p
].
status != FREE
)
kern_printf
("Pid: %2d Name: %10s Period: %9ld Dline: %9ld.%6ld Stat: %s\n",
p
,
proc_table
[p
].
name,
lev
->period
[p
],
lev
->cbs_dline
[p
].
tv_sec,
lev
->cbs_dline
[p
].
tv_nsec/1000,
CBS_status_to_a
(proc_table
[p
].
status));
}
static PID CBS_level_scheduler
(LEVEL l
)
{
/* the CBS don't schedule anything...
it's an EDF level or similar that do it! */
return NIL
;
}
/* The on-line guarantee is enabled only if the appropriate flag is set... */
static int CBS_level_guarantee
(LEVEL l
, bandwidth_t
*freebandwidth
)
{
CBS_level_des
*lev
= (CBS_level_des
*)(level_table
[l
]);
if (lev
->flags
& CBS_FAILED_GUARANTEE
) {
*freebandwidth
= 0;
return 0;
}
else
if (*freebandwidth
>= lev
->U
) {
*freebandwidth
-= lev
->U
;
return 1;
}
else
return 0;
}
static int CBS_task_create
(LEVEL l
, PID p
, TASK_MODEL
*m
)
{
CBS_level_des
*lev
= (CBS_level_des
*)(level_table
[l
]);
/* if the CBS_task_create is called, then the pclass must be a
valid pclass. */
SOFT_TASK_MODEL
*soft
= (SOFT_TASK_MODEL
*)m
;
/* Enable wcet check */
proc_table
[p
].
avail_time = soft
->met
;
proc_table
[p
].
wcet = soft
->met
;
proc_table
[p
].
control |= CONTROL_CAP
;
lev
->nact
[p
] = 0;
lev
->period
[p
] = soft
->period
;
NULL_TIMESPEC
(&lev
->cbs_dline
[p
]);
if (soft
->periodicity
== APERIODIC
)
lev
->flag
[p
] = CBS_APERIODIC
;
else
lev
->flag
[p
] = 0;
if (soft
->arrivals
== SAVE_ARRIVALS
)
lev
->flag
[p
] |= CBS_SAVE_ARRIVALS
;
/* update the bandwidth... */
if (lev
->flags
& CBS_ENABLE_GUARANTEE
) {
bandwidth_t b
;
b
= (MAX_BANDWIDTH
/ soft
->period
) * soft
->met
;
/* really update lev->U, checking an overflow... */
if (MAX_BANDWIDTH
- lev
->U
> b
)
lev
->U
+= b
;
else
/* The task can NOT be guaranteed (U>MAX_BANDWIDTH)...
(see EDF.c) */
lev
->flags
|= CBS_FAILED_GUARANTEE
;
}
return 0; /* OK, also if the task cannot be guaranteed... */
}
static void CBS_task_detach
(LEVEL l
, PID p
)
{
/* the CBS level doesn't introduce any dinamic allocated new field.
we have only to reset the NO_GUARANTEE FIELD and decrement the allocated
bandwidth */
CBS_level_des
*lev
= (CBS_level_des
*)(level_table
[l
]);
if (lev
->flags
& CBS_FAILED_GUARANTEE
)
lev
->flags
&= ~CBS_FAILED_GUARANTEE
;
else
lev
->U
-= (MAX_BANDWIDTH
/ lev
->period
[p
]) * proc_table
[p
].
wcet;
}
static int CBS_task_eligible
(LEVEL l
, PID p
)
{
CBS_level_des
*lev
= (CBS_level_des
*)(level_table
[l
]);
JOB_TASK_MODEL job
;
/* we have to check if the deadline and the wcet are correct...
if the CBS level schedules in background with respect to others
levels, there can be the case in witch a task is scheduled by
schedule_time > CBS_deadline; in this case (not covered in the
article because if there is only the standard scheduling policy
this never apply) we reassign the deadline */
if ( TIMESPEC_A_LT_B
(&lev
->cbs_dline
[p
], &schedule_time
) ) {
/* we kill the current activation */
level_table
[ lev
->scheduling_level
]->
guest_end
(lev
->scheduling_level
, p
);
/* we modify the deadline ... */
TIMESPEC_ASSIGN
(&lev
->cbs_dline
[p
], &schedule_time
);
ADDUSEC2TIMESPEC
(lev
->period
[p
], &lev
->cbs_dline
[p
]);
/* and the capacity */
proc_table
[p
].
avail_time = proc_table
[p
].
wcet;
/* and, finally, we reinsert the task in the master level */
job_task_default_model
(job
, lev
->cbs_dline
[p
]);
job_task_def_noexc
(job
);
level_table
[ lev
->scheduling_level
]->
guest_create
(lev
->scheduling_level
, p
, (TASK_MODEL
*)&job
);
level_table
[ lev
->scheduling_level
]->
guest_activate
(lev
->scheduling_level
, p
);
return -1;
}
return 0;
}
#ifdef __TEST1__
extern int testactive
;
extern struct timespec s_stime
[];
extern TIME s_curr
[];
extern TIME s_PID
[];
extern int useds
;
#endif
static void CBS_task_dispatch
(LEVEL l
, PID p
, int nostop
)
{
CBS_level_des
*lev
= (CBS_level_des
*)(level_table
[l
]);
level_table
[ lev
->scheduling_level
]->
guest_dispatch
(lev
->scheduling_level
,p
,nostop
);
#ifdef __TEST1__
if (testactive
)
{
TIMESPEC_ASSIGN
(&s_stime
[useds
], &schedule_time
);
s_curr
[useds
] = proc_table
[p
].
avail_time;
s_PID
[useds
] = p
;
useds
++;
}
#endif
}
static void CBS_task_epilogue
(LEVEL l
, PID p
)
{
CBS_level_des
*lev
= (CBS_level_des
*)(level_table
[l
]);
JOB_TASK_MODEL job
;
/* check if the wcet is finished... */
if ( proc_table
[p
].
avail_time <= 0) {
/* we kill the current activation */
level_table
[ lev
->scheduling_level
]->
guest_end
(lev
->scheduling_level
, p
);
/* we modify the deadline according to rule 4 ... */
CBS_avail_time_check
(lev
, p
);
/* and, finally, we reinsert the task in the master level */
job_task_default_model
(job
, lev
->cbs_dline
[p
]);
job_task_def_noexc
(job
);
level_table
[ lev
->scheduling_level
]->
guest_create
(lev
->scheduling_level
, p
, (TASK_MODEL
*)&job
);
level_table
[ lev
->scheduling_level
]->
guest_activate
(lev
->scheduling_level
, p
);
// kern_printf("epil : dl %d per %d p %d |\n",
// lev->cbs_dline[p].tv_nsec/1000,lev->period[p],p);
}
else
/* the task has been preempted. it returns into the ready queue by
calling the guest_epilogue... */
level_table
[ lev
->scheduling_level
]->
guest_epilogue
(lev
->scheduling_level
,p
);
}
static void CBS_task_activate
(LEVEL l
, PID p
)
{
CBS_level_des
*lev
= (CBS_level_des
*)(level_table
[l
]);
/* save activation (only if needed... */
if (proc_table
[p
].
status != SLEEP
) {
if (lev
->flag
[p
] & CBS_SAVE_ARRIVALS
)
lev
->nact
[p
]++;
return;
}
ll_gettime
(TIME_EXACT
, &proc_table
[p
].
request_time);
CBS_activation
(lev
, p
, &proc_table
[p
].
request_time);
/* Set the reactivation timer */
if (!(lev
->flag
[p
] & CBS_APERIODIC
))
{
/* we cannot use the deadline computed by CBS_activation because
the deadline may be != from actual_time + period
(if we call the task_activate after a task_sleep, and the
deadline was postponed a lot...) */
TIMESPEC_ASSIGN
(&lev
->reactivation_time
[p
], &proc_table
[p
].
request_time);
ADDUSEC2TIMESPEC
(lev
->period
[p
], &lev
->reactivation_time
[p
]);
// TIMESPEC_ASSIGN(&lev->reactivation_time[p], &lev->cbs_dline[p]);
lev
->reactivation_timer
[p
] = kern_event_post
(&lev
->reactivation_time
[p
],
CBS_timer_reactivate
,
(void *)p
);
#ifdef CBS_COUNTER
if (p
==5) cbs_counter2
++;
#endif
}
// kern_printf("act : %d %d |",lev->cbs_dline[p].tv_nsec/1000,p);
}
static void CBS_task_insert
(LEVEL l
, PID p
)
{
CBS_level_des
*lev
= (CBS_level_des
*)(level_table
[l
]);
struct timespec acttime
;
ll_gettime
(TIME_EXACT
, &acttime
);
CBS_activation
(lev
,p
,&acttime
);
}
static void CBS_task_extract
(LEVEL l
, PID p
)
{
CBS_level_des
*lev
= (CBS_level_des
*)(level_table
[l
]);
/* check if the wcet is finished... */
CBS_avail_time_check
(lev
, p
);
level_table
[ lev
->scheduling_level
]->
guest_end
(lev
->scheduling_level
,p
);
}
static void CBS_task_endcycle
(LEVEL l
, PID p
)
{
CBS_level_des
*lev
= (CBS_level_des
*)(level_table
[l
]);
/* check if the wcet is finished... */
CBS_avail_time_check
(lev
, p
);
if (lev
->nact
[p
]) {
/* continue!!!! */
ll_gettime
(TIME_EXACT
, &proc_table
[p
].
request_time);
lev
->nact
[p
]--;
level_table
[ lev
->scheduling_level
]->
guest_epilogue
(lev
->scheduling_level
,p
);
}
else {
level_table
[ lev
->scheduling_level
]->
guest_end
(lev
->scheduling_level
,p
);
if (lev
->flag
[p
] & CBS_APERIODIC
)
proc_table
[p
].
status = SLEEP
;
else /* the task is soft_periodic */
proc_table
[p
].
status = CBS_IDLE
;
}
}
static void CBS_task_end
(LEVEL l
, PID p
)
{
CBS_level_des
*lev
= (CBS_level_des
*)(level_table
[l
]);
/* check if the wcet is finished... */
CBS_avail_time_check
(lev
, p
);
level_table
[ lev
->scheduling_level
]->
guest_end
(lev
->scheduling_level
,p
);
/* we delete the reactivation timer */
if (!(lev
->flag
[p
] & CBS_APERIODIC
)) {
event_delete
(lev
->reactivation_timer
[p
]);
lev
->reactivation_timer
[p
] = -1;
}
/* Finally, we post the zombie event. when the end period is reached,
the task descriptor and banwidth are freed */
proc_table
[p
].
status = CBS_ZOMBIE
;
lev
->reactivation_timer
[p
] = kern_event_post
(&lev
->cbs_dline
[p
],
CBS_timer_zombie
,
(void *)p
);
}
static void CBS_task_sleep
(LEVEL l
, PID p
)
{
CBS_level_des
*lev
= (CBS_level_des
*)(level_table
[l
]);
/* check if the wcet is finished... */
CBS_avail_time_check
(lev
, p
);
/* a task activation is finished, but we are using a JOB_TASK_MODEL
that implements a single activation, so we have to call
the guest_end, that representsa single activation... */
level_table
[ lev
->scheduling_level
]->
guest_end
(lev
->scheduling_level
,p
);
/* we delete the reactivation timer */
if (!(lev
->flag
[p
] & CBS_APERIODIC
)) {
event_delete
(lev
->reactivation_timer
[p
]);
lev
->reactivation_timer
[p
] = -1;
}
proc_table
[p
].
status = SLEEP
;
/* the sleep forgets pending activations... */
lev
->nact
[p
] = 0;
}
static void CBS_task_delay
(LEVEL l
, PID p
, TIME usdelay
)
{
struct timespec wakeuptime
;
CBS_level_des
*lev
= (CBS_level_des
*)(level_table
[l
]);
/* check if the wcet is finished... */
CBS_avail_time_check
(lev
, p
);
level_table
[ lev
->scheduling_level
]->
guest_end
(lev
->scheduling_level
,p
);
proc_table
[p
].
status = CBS_DELAY
;
/* we need to delete this event if we kill the task while it is sleeping */
ll_gettime
(TIME_EXACT
, &wakeuptime
);
ADDUSEC2TIMESPEC
(usdelay
, &wakeuptime
);
/* the timespec_priority field is used to store the time at witch the delay
timer raises */
TIMESPEC_ASSIGN
(&proc_table
[p
].
timespec_priority, &wakeuptime
);
proc_table
[p
].
delay_timer = kern_event_post
(&wakeuptime
,
CBS_timer_delay
,
(void *)p
);
}
static int CBS_guest_create
(LEVEL l
, PID p
, TASK_MODEL
*m
)
{ kern_raise
(XUNVALID_GUEST
,exec_shadow
); return 0; }
static void CBS_guest_detach
(LEVEL l
, PID p
)
{ kern_raise
(XUNVALID_GUEST
,exec_shadow
); }
static void CBS_guest_dispatch
(LEVEL l
, PID p
, int nostop
)
{ kern_raise
(XUNVALID_GUEST
,exec_shadow
); }
static void CBS_guest_epilogue
(LEVEL l
, PID p
)
{ kern_raise
(XUNVALID_GUEST
,exec_shadow
); }
static void CBS_guest_activate
(LEVEL l
, PID p
)
{ kern_raise
(XUNVALID_GUEST
,exec_shadow
); }
static void CBS_guest_insert
(LEVEL l
, PID p
)
{ kern_raise
(XUNVALID_GUEST
,exec_shadow
); }
static void CBS_guest_extract
(LEVEL l
, PID p
)
{ kern_raise
(XUNVALID_GUEST
,exec_shadow
); }
static void CBS_guest_endcycle
(LEVEL l
, PID p
)
{ kern_raise
(XUNVALID_GUEST
,exec_shadow
); }
static void CBS_guest_end
(LEVEL l
, PID p
)
{ kern_raise
(XUNVALID_GUEST
,exec_shadow
); }
static void CBS_guest_sleep
(LEVEL l
, PID p
)
{ kern_raise
(XUNVALID_GUEST
,exec_shadow
); }
static void CBS_guest_delay
(LEVEL l
, PID p
,DWORD tickdelay
)
{ kern_raise
(XUNVALID_GUEST
,exec_shadow
); }
/* Registration functions */
/*+ Registration function:
int flags the init flags ... see CBS.h +*/
void CBS_register_level
(int flags
, LEVEL master
)
{
LEVEL l
; /* the level that we register */
CBS_level_des
*lev
; /* for readableness only */
PID i
; /* a counter */
printk
("CBS_register_level\n");
/* request an entry in the level_table */
l
= level_alloc_descriptor
();
printk
(" alloco descrittore %d %d\n",l
,(int)sizeof(CBS_level_des
));
/* alloc the space needed for the CBS_level_des */
lev
= (CBS_level_des
*)kern_alloc
(sizeof(CBS_level_des
));
printk
(" lev=%d\n",(int)lev
);
/* update the level_table with the new entry */
level_table
[l
] = (level_des
*)lev
;
/* fill the standard descriptor */
strncpy(lev
->l.
level_name, CBS_LEVELNAME
, MAX_LEVELNAME
);
lev
->l.
level_code = CBS_LEVEL_CODE
;
lev
->l.
level_version = CBS_LEVEL_VERSION
;
lev
->l.
level_accept_task_model = CBS_level_accept_task_model
;
lev
->l.
level_accept_guest_model = CBS_level_accept_guest_model
;
lev
->l.
level_status = CBS_level_status
;
lev
->l.
level_scheduler = CBS_level_scheduler
;
if (flags
& CBS_ENABLE_GUARANTEE
)
lev
->l.
level_guarantee = CBS_level_guarantee
;
else
lev
->l.
level_guarantee = NULL
;
lev
->l.
task_create = CBS_task_create
;
lev
->l.
task_detach = CBS_task_detach
;
lev
->l.
task_eligible = CBS_task_eligible
;
lev
->l.
task_dispatch = CBS_task_dispatch
;
lev
->l.
task_epilogue = CBS_task_epilogue
;
lev
->l.
task_activate = CBS_task_activate
;
lev
->l.
task_insert = CBS_task_insert
;
lev
->l.
task_extract = CBS_task_extract
;
lev
->l.
task_endcycle = CBS_task_endcycle
;
lev
->l.
task_end = CBS_task_end
;
lev
->l.
task_sleep = CBS_task_sleep
;
lev
->l.
task_delay = CBS_task_delay
;
lev
->l.
guest_create = CBS_guest_create
;
lev
->l.
guest_detach = CBS_guest_detach
;
lev
->l.
guest_dispatch = CBS_guest_dispatch
;
lev
->l.
guest_epilogue = CBS_guest_epilogue
;
lev
->l.
guest_activate = CBS_guest_activate
;
lev
->l.
guest_insert = CBS_guest_insert
;
lev
->l.
guest_extract = CBS_guest_extract
;
lev
->l.
guest_endcycle = CBS_guest_endcycle
;
lev
->l.
guest_end = CBS_guest_end
;
lev
->l.
guest_sleep = CBS_guest_sleep
;
lev
->l.
guest_delay = CBS_guest_delay
;
/* fill the CBS descriptor part */
for (i
=0; i
<MAX_PROC
; i
++) {
NULL_TIMESPEC
(&lev
->cbs_dline
[i
]);
lev
->period
[i
] = 0;
NULL_TIMESPEC
(&lev
->reactivation_time
[i
]);
lev
->reactivation_timer
[i
] = -1;
lev
->nact
[i
] = 0;
lev
->flag
[i
] = 0;
}
lev
->U
= 0;
lev
->scheduling_level
= master
;
lev
->flags
= flags
& 0x01;
}
bandwidth_t CBS_usedbandwidth
(LEVEL l
)
{
CBS_level_des
*lev
= (CBS_level_des
*)(level_table
[l
]);
if (lev
->l.
level_code == CBS_LEVEL_CODE
&&
lev
->l.
level_version == CBS_LEVEL_VERSION
)
return lev
->U
;
else
return 0;
}
int CBS_get_nact
(LEVEL l
, PID p
)
{
CBS_level_des
*lev
= (CBS_level_des
*)(level_table
[l
]);
return lev
->nact
[p
];
}