Blame |
Last modification |
View Log
| RSS feed
/*
* Project: S.Ha.R.K.
*
* Coordinators:
* Giorgio Buttazzo <giorgio@sssup.it>
* Paolo Gai <pj@gandalf.sssup.it>
*
* Authors :
* Paolo Gai <pj@gandalf.sssup.it>
* Massimiliano Giorgi <massy@gandalf.sssup.it>
* Luca Abeni <luca@gandalf.sssup.it>
* (see the web pages for full authors list)
*
* ReTiS Lab (Scuola Superiore S.Anna - Pisa - Italy)
*
* http://www.sssup.it
* http://retis.sssup.it
* http://shark.sssup.it
*/
/**
------------
CVS : $Id: edf2.c,v 1.1.1.1 2002-03-29 14:12:52 pj Exp $
File: $File$
Revision: $Revision: 1.1.1.1 $
Last update: $Date: 2002-03-29 14:12:52 $
------------
This file contains the scheduling module EDF (Earliest Deadline First)
Read edf.h for further details.
**/
/*
* Copyright (C) 2000 Paolo Gai
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <modules/edf.h>
/*+ Status used in the level +*/
#define EDF_READY MODULE_STATUS_BASE /*+ - Ready status +*/
#define EDF_DELAY MODULE_STATUS_BASE+1 /*+ - Delay status +*/
#define EDF_WCET_VIOLATED MODULE_STATUS_BASE+2 /*+ when wcet is finished +*/
#define EDF_WAIT MODULE_STATUS_BASE+3 /*+ to wait the deadline +*/
#define EDF_IDLE MODULE_STATUS_BASE+4 /*+ to wait the deadline +*/
#define EDF_ZOMBIE MODULE_STATUS_BASE+5 /*+ to wait the free time +*/
/*+ the level redefinition for the Earliest Deadline First level +*/
typedef struct {
level_des l
; /*+ the standard level descriptor +*/
TIME period
[MAX_PROC
]; /*+ The task periods; the deadlines are
stored in the priority field +*/
int deadline_timer
[MAX_PROC
];
/*+ The task deadline timers +*/
int noraiseexc
[MAX_PROC
];
/*+ used to manage the JOB_TASK_MODEL +*/
QUEUE ready
; /*+ the ready queue +*/
int flags
; /*+ the init flags... +*/
bandwidth_t U
; /*+ the used bandwidth +*/
} EDF_level_des
;
static char *EDF_status_to_a
(WORD status
)
{
if (status
< MODULE_STATUS_BASE
)
return status_to_a
(status
);
switch (status
) {
case EDF_READY
: return "EDF_Ready";
case EDF_DELAY
: return "EDF_Delay";
case EDF_WCET_VIOLATED
: return "EDF_Wcet_Violated";
case EDF_WAIT
: return "EDF_Sporadic_Wait";
case EDF_IDLE
: return "EDF_Idle";
case EDF_ZOMBIE
: return "EDF_Zombie";
default : return "EDF_Unknown";
}
}
static void EDF_timer_deadline
(void *par
)
{
PID p
= (PID
) par
;
EDF_level_des
*lev
;
lev
= (EDF_level_des
*)level_table
[proc_table
[p
].
task_level];
switch (proc_table
[p
].
status) {
case EDF_ZOMBIE
:
/* we finally put the task in the ready queue */
proc_table
[p
].
status = FREE
;
q_insertfirst
(p
,&freedesc
);
/* and free the allocated bandwidth */
lev
->U
-= (MAX_BANDWIDTH
/lev
->period
[p
]) * proc_table
[p
].
wcet;
break;
case EDF_IDLE
:
/* similar to EDF_task_activate */
TIMESPEC_ASSIGN
(&proc_table
[p
].
request_time,
&proc_table
[p
].
timespec_priority);
ADDUSEC2TIMESPEC
(lev
->period
[p
], &proc_table
[p
].
timespec_priority);
proc_table
[p
].
status = EDF_READY
;
q_timespec_insert
(p
,&lev
->ready
);
lev
->deadline_timer
[p
] = kern_event_post
(&proc_table
[p
].
timespec_priority,
EDF_timer_deadline
,
(void *)p
);
//printk("(d%d idle priority set to %d)",p,proc_table[p].priority );
event_need_reschedule
();
printk
("el%d|",p
);
break;
case EDF_WAIT
:
/* Without this, the task cannot be reactivated!!! */
proc_table
[p
].
status = SLEEP
;
break;
default:
/* else, a deadline miss occurred!!! */
kern_raise
(XDEADLINE_MISS
,p
);
kern_printf
("avail_time %d\n\n",proc_table
[p
].
avail_time);
}
}
/*+ this function is called when a task finish his delay +*/
static void EDF_timer_delay
(void *par
)
{
PID p
= (PID
) par
;
EDF_level_des
*lev
;
lev
= (EDF_level_des
*)level_table
[proc_table
[p
].
task_level];
proc_table
[p
].
status = EDF_READY
;
q_timespec_insert
(p
,&lev
->ready
);
proc_table
[p
].
delay_timer = NIL
; /* Paranoia */
event_need_reschedule
();
}
static int EDF_level_accept_task_model
(LEVEL l
, TASK_MODEL
*m
)
{
if (m
->pclass
== PERIODIC_PCLASS
|| m
->pclass
== (PERIODIC_PCLASS
| l
) ||
m
->pclass
== SPORADIC_PCLASS
|| m
->pclass
== (SPORADIC_PCLASS
| l
))
return 0;
else
return -1;
}
static int EDF_level_accept_guest_model
(LEVEL l
, TASK_MODEL
*m
)
{
if (m
->pclass
== JOB_PCLASS
|| m
->pclass
== (JOB_PCLASS
| l
) )
return 0;
else
return -1;
}
static char *onoff
(int i
)
{
if (i
)
return "On ";
else
return "Off";
}
static void EDF_level_status
(LEVEL l
)
{
EDF_level_des
*lev
= (EDF_level_des
*)(level_table
[l
]);
PID p
= lev
->ready
;
kern_printf
("Wcet Check : %s\n",
onoff
(lev
->flags
& EDF_ENABLE_WCET_CHECK
));
kern_printf
("On-line guarantee : %s\n",
onoff
(lev
->flags
& EDF_ENABLE_GUARANTEE
));
kern_printf
("Used Bandwidth : %u/%u\n",
lev
->U
, MAX_BANDWIDTH
);
while (p
!= NIL
) {
if ((proc_table
[p
].
pclass & 0xFF00) == JOB_PCLASS
)
kern_printf
("Pid: %2d (GUEST)\n", p
);
else
kern_printf
("Pid: %2d Name: %10s %s: %9d Dline: %9d.%6d Stat: %s\n",
p
,
proc_table
[p
].
name,
(proc_table
[p
].
pclass == PERIODIC_PCLASS
) ? "Period " : "MinITime",
lev
->period
[p
],
proc_table
[p
].
timespec_priority.
tv_sec,
proc_table
[p
].
timespec_priority.
tv_nsec/1000,
EDF_status_to_a
(proc_table
[p
].
status));
p
= proc_table
[p
].
next;
}
for (p
=0; p
<MAX_PROC
; p
++)
if (proc_table
[p
].
task_level == l
&& proc_table
[p
].
status != EDF_READY
&& proc_table
[p
].
status != FREE
)
kern_printf
("Pid: %2d Name: %10s %s: %9d Dline: %9d.%6d Stat: %s\n",
p
,
proc_table
[p
].
name,
(proc_table
[p
].
pclass == PERIODIC_PCLASS
) ? "Period " : "MinITime",
lev
->period
[p
],
proc_table
[p
].
timespec_priority.
tv_sec,
proc_table
[p
].
timespec_priority.
tv_nsec/1000,
EDF_status_to_a
(proc_table
[p
].
status));
}
/* The scheduler only gets the first task in the queue */
static PID EDF_level_scheduler
(LEVEL l
)
{
EDF_level_des
*lev
= (EDF_level_des
*)(level_table
[l
]);
/* { // print 4 dbg the ready queue
PID p= lev->ready;
kern_printf("(s");
while (p != NIL) {
kern_printf("%d ",p);
p = proc_table[p].next;
}
kern_printf(") ");
}
*/
return (PID
)lev
->ready
;
}
/* The on-line guarantee is enabled only if the appropriate flag is set... */
static int EDF_level_guarantee
(LEVEL l
, bandwidth_t
*freebandwidth
)
{
EDF_level_des
*lev
= (EDF_level_des
*)(level_table
[l
]);
if (lev
->flags
& EDF_FAILED_GUARANTEE
) {
*freebandwidth
= 0;
return 0;
}
else
if (*freebandwidth
>= lev
->U
) {
*freebandwidth
-= lev
->U
;
return 1;
}
else
return 0;
}
static int EDF_task_create
(LEVEL l
, PID p
, TASK_MODEL
*m
)
{
EDF_level_des
*lev
= (EDF_level_des
*)(level_table
[l
]);
/* if the EDF_task_create is called, then the pclass must be a
valid pclass.
Warning!! PERIODIC_PCLASS and SPORADIC_PCLASS have the same fields
so the code is the same...
... In fact, if the sporadic model will change in the future,
we have to check this code!!!... */
/* PERIODIC_TASK_MODEL handling; SPORADIC_TASK_MODEL works with the same
code... */
PERIODIC_TASK_MODEL
*per
= (PERIODIC_TASK_MODEL
*)m
;
lev
->period
[p
] = per
->period
;
lev
->noraiseexc
[p
] = 0;
lev
->deadline_timer
[p
] = -1;
/* Enable wcet check */
if (lev
->flags
& EDF_ENABLE_WCET_CHECK
) {
proc_table
[p
].
avail_time = per
->wcet
;
proc_table
[p
].
wcet = per
->wcet
;
proc_table
[p
].
control |= CONTROL_CAP
;
}
/* update the bandwidth... */
if (lev
->flags
& EDF_ENABLE_GUARANTEE
) {
bandwidth_t b
;
b
= (MAX_BANDWIDTH
/ per
->period
) * per
->wcet
;
/* really update lev->U, checking an overflow... */
if (MAX_BANDWIDTH
- lev
->U
> b
)
lev
->U
+= b
;
else
/* The task can NOT be guaranteed (U>MAX_BANDWIDTH)...
in this case, we don't raise an exception... in fact, after the
EDF_task_create the task_create will call level_guarantee that return
-1... return -1 in EDF_task_create isn't correct, because:
. generally, the guarantee must be done when also the resources
are registered
. returning -1 will cause the task_create to return with an errno
ETASK_CREATE instead of ENO_GUARANTEE!!!
Why I use the flag??? because if the lev->U overflows, if i.e. I set
it to MAX_BANDWIDTH, I lose the correct allocated bandwidth...
*/
lev
->flags
|= EDF_FAILED_GUARANTEE
;
}
return 0; /* OK, also if the task cannot be guaranteed... */
}
static void EDF_task_detach
(LEVEL l
, PID p
)
{
/* the EDF level doesn't introduce any dinamic allocated new field.
we have only to reset the NO_GUARANTEE FIELD and decrement the allocated
bandwidth */
EDF_level_des
*lev
= (EDF_level_des
*)(level_table
[l
]);
if (lev
->flags
& EDF_FAILED_GUARANTEE
)
lev
->flags
&= ~EDF_FAILED_GUARANTEE
;
else
lev
->U
-= (MAX_BANDWIDTH
/ lev
->period
[p
]) * proc_table
[p
].
wcet;
}
static int EDF_task_eligible
(LEVEL l
, PID p
)
{
return 0; /* if the task p is chosen, it is always eligible */
}
#ifdef __TEST1__
extern int testactive
;
extern struct timespec s_stime
[];
extern TIME s_curr
[];
extern TIME s_PID
[];
extern int useds
;
#endif
static void EDF_task_dispatch
(LEVEL l
, PID p
, int nostop
)
{
EDF_level_des
*lev
= (EDF_level_des
*)(level_table
[l
]);
// kern_printf("(disp %d)",p);
/* the task state is set EXE by the scheduler()
we extract the task from the ready queue
NB: we can't assume that p is the first task in the queue!!! */
q_extract
(p
, &lev
->ready
);
#ifdef __TEST1__
if (testactive
)
{
TIMESPEC_ASSIGN
(&s_stime
[useds
], &schedule_time
);
s_curr
[useds
] = proc_table
[p
].
avail_time;
s_PID
[useds
] = p
;
useds
++;
}
#endif
}
static void EDF_task_epilogue
(LEVEL l
, PID p
)
{
EDF_level_des
*lev
= (EDF_level_des
*)(level_table
[l
]);
// kern_printf("(epil %d)",p);
/* check if the wcet is finished... */
if ((lev
->flags
& EDF_ENABLE_WCET_CHECK
) && proc_table
[p
].
avail_time <= 0) {
/* if it is, raise a XWCET_VIOLATION exception */
kern_raise
(XWCET_VIOLATION
,p
);
proc_table
[p
].
status = EDF_WCET_VIOLATED
;
}
else {
/* the task has been preempted. it returns into the ready queue... */
q_timespec_insert
(p
,&lev
->ready
);
proc_table
[p
].
status = EDF_READY
;
}
}
static void EDF_task_activate
(LEVEL l
, PID p
)
{
EDF_level_des
*lev
= (EDF_level_des
*)(level_table
[l
]);
if (proc_table
[p
].
status == EDF_WAIT
) {
kern_raise
(XACTIVATION
,p
);
return;
}
/* Test if we are trying to activate a non sleeping task */
/* Ignore this; the task is already active */
if (proc_table
[p
].
status != SLEEP
&&
proc_table
[p
].
status != EDF_WCET_VIOLATED
)
return;
/* see also EDF_timer_deadline */
ll_gettime
(TIME_EXACT
, &proc_table
[p
].
request_time);
TIMESPEC_ASSIGN
(&proc_table
[p
].
timespec_priority,
&proc_table
[p
].
request_time);
ADDUSEC2TIMESPEC
(lev
->period
[p
], &proc_table
[p
].
timespec_priority);
/* Insert task in the correct position */
proc_table
[p
].
status = EDF_READY
;
q_timespec_insert
(p
,&lev
->ready
);
/* Set the deadline timer */
lev
->deadline_timer
[p
] = kern_event_post
(&proc_table
[p
].
timespec_priority,
EDF_timer_deadline
,
(void *)p
);
}
static void EDF_task_insert
(LEVEL l
, PID p
)
{
EDF_level_des
*lev
= (EDF_level_des
*)(level_table
[l
]);
/* Similar to EDF_task_activate, but we don't check in what state
the task is and we don't set the request_time*/
/* Insert task in the coEDFect position */
proc_table
[p
].
status = EDF_READY
;
q_timespec_insert
(p
,&lev
->ready
);
}
static void EDF_task_extract
(LEVEL l
, PID p
)
{
/* Extract the running task from the level
. we have already extract it from the ready queue at the dispatch time.
. the capacity event have to be removed by the generic kernel
. the wcet don't need modification...
. the state of the task is set by the calling function
. the deadline must remain...
So, we do nothing!!!
*/
}
static void EDF_task_endcycle
(LEVEL l
, PID p
)
{
EDF_level_des
*lev
= (EDF_level_des
*)(level_table
[l
]);
/* the task has terminated his job before it consume the wcet. All OK! */
if (proc_table
[p
].
pclass = PERIODIC_PCLASS
)
proc_table
[p
].
status = EDF_IDLE
;
else /* pclass = sporadic_pclass */
proc_table
[p
].
status = EDF_WAIT
;
/* we reset the capacity counters... */
if (lev
->flags
& EDF_ENABLE_WCET_CHECK
)
proc_table
[p
].
avail_time = proc_table
[p
].
wcet;
/* when the deadline timer fire, it recognize the situation and set
correctly all the stuffs (like reactivation, request_time, etc... ) */
}
static void EDF_task_end
(LEVEL l
, PID p
)
{
EDF_level_des
*lev
= (EDF_level_des
*)(level_table
[l
]);
if (proc_table
[p
].
status == EDF_READY
)
q_extract
(p
, &lev
->ready
);
else if (proc_table
[p
].
status == EDF_DELAY
) {
event_delete
(proc_table
[p
].
delay_timer);
proc_table
[p
].
delay_timer = NIL
; /* paranoia */
}
proc_table
[p
].
status = EDF_ZOMBIE
;
/* When the deadline timer fire, it put the task descriptor in
the free queue, and free the allocated bandwidth... */
}
static void EDF_task_sleep
(LEVEL l
, PID p
)
{
EDF_level_des
*lev
= (EDF_level_des
*)(level_table
[l
]);
/* the task has terminated his job before it consume the wcet. All OK! */
proc_table
[p
].
status = EDF_WAIT
;
/* we reset the capacity counters... */
if (lev
->flags
& EDF_ENABLE_WCET_CHECK
)
proc_table
[p
].
avail_time = proc_table
[p
].
wcet;
/* when the deadline timer fire, it recognize the situation and set
correctly the task state to sleep... */
}
static void EDF_task_delay
(LEVEL l
, PID p
, TIME usdelay
)
{
struct timespec wakeuptime
;
EDF_level_des
*lev
= (EDF_level_des
*)(level_table
[l
]);
/* equal to EDF_task_endcycle */
proc_table
[p
].
status = EDF_DELAY
;
/* we need to delete this event if we kill the task while it is sleeping */
ll_gettime
(TIME_EXACT
, &wakeuptime
);
ADDUSEC2TIMESPEC
(usdelay
, &wakeuptime
);
proc_table
[p
].
delay_timer = kern_event_post
(&wakeuptime
,
EDF_timer_delay
,
(void *)p
);
}
/* Guest Functions
These functions manages a JOB_TASK_MODEL, that is used to put
a guest task in the EDF ready queue. */
static int EDF_guest_create
(LEVEL l
, PID p
, TASK_MODEL
*m
)
{
EDF_level_des
*lev
= (EDF_level_des
*)(level_table
[l
]);
/* if the EDF_guest_create is called, then the pclass must be a
valid pclass. */
JOB_TASK_MODEL
*job
= (JOB_TASK_MODEL
*)m
;
proc_table
[p
].
guest_pclass = m
->pclass
;
TIMESPEC_ASSIGN
(&proc_table
[p
].
timespec_priority, &job
->deadline
);
lev
->deadline_timer
[p
] = -1;
lev
->noraiseexc
[p
] = job
->noraiseexc
;
/* there is no bandwidth guarantee at this level, it is performed
by the level that inserts guest tasks... */
return 0; /* OK, also if the task cannot be guaranteed... */
}
static void EDF_guest_detach
(LEVEL l
, PID p
)
{
/* the EDF level doesn't introduce any dinamic allocated new field.
No guarantee is performed on guest tasks... so we don't have to reset
the NO_GUARANTEE FIELD */
}
static void EDF_guest_dispatch
(LEVEL l
, PID p
, int nostop
)
{
EDF_level_des
*lev
= (EDF_level_des
*)(level_table
[l
]);
/* the task state is set to EXE by the scheduler()
we extract the task from the ready queue
NB: we can't assume that p is the first task in the queue!!! */
q_extract
(p
, &lev
->ready
);
}
static void EDF_guest_epilogue
(LEVEL l
, PID p
)
{
EDF_level_des
*lev
= (EDF_level_des
*)(level_table
[l
]);
/* the task has been preempted. it returns into the ready queue... */
q_timespec_insert
(p
,&lev
->ready
);
proc_table
[p
].
status = EDF_READY
;
}
static void EDF_guest_activate
(LEVEL l
, PID p
)
{
EDF_level_des
*lev
= (EDF_level_des
*)(level_table
[l
]);
/* Insert task in the correct position */
q_timespec_insert
(p
,&lev
->ready
);
proc_table
[p
].
status = EDF_READY
;
/* Set the deadline timer */
if (!lev
->noraiseexc
[p
])
lev
->deadline_timer
[p
] = kern_event_post
(&proc_table
[p
].
timespec_priority,
EDF_timer_deadline
,
(void *)p
);
}
static void EDF_guest_insert
(LEVEL l
, PID p
)
{
EDF_level_des
*lev
= (EDF_level_des
*)(level_table
[l
]);
/* Insert task in the correct position */
q_timespec_insert
(p
,&lev
->ready
);
proc_table
[p
].
status = EDF_READY
;
}
static void EDF_guest_extract
(LEVEL l
, PID p
)
{
/* Extract the running task from the level
. we have already extract it from the ready queue at the dispatch time.
. the state of the task is set by the calling function
. the deadline must remain...
So, we do nothing!!!
*/
}
static void EDF_guest_endcycle
(LEVEL l
, PID p
)
{ kern_raise
(XUNVALID_GUEST
,exec_shadow
); }
static void EDF_guest_end
(LEVEL l
, PID p
)
{
EDF_level_des
*lev
= (EDF_level_des
*)(level_table
[l
]);
//kern_printf("EDF_guest_end: dline timer %d\n",lev->deadline_timer[p]);
if (proc_table
[p
].
status == EDF_READY
)
q_extract
(p
, &lev
->ready
);
else if (proc_table
[p
].
status == EDF_DELAY
) {
event_delete
(proc_table
[p
].
delay_timer);
proc_table
[p
].
delay_timer = NIL
; /* paranoia */
}
/* we remove the deadline timer, because the slice is finished */
if (lev
->deadline_timer
[p
] != NIL
) {
event_delete
(lev
->deadline_timer
[p
]);
lev
->deadline_timer
[p
] = NIL
;
}
}
static void EDF_guest_sleep
(LEVEL l
, PID p
)
{ kern_raise
(XUNVALID_GUEST
,exec_shadow
); }
static void EDF_guest_delay
(LEVEL l
, PID p
, TIME usdelay
)
{
struct timespec wakeuptime
;
EDF_level_des
*lev
= (EDF_level_des
*)(level_table
[l
]);
/* equal to EDF_task_endcycle */
proc_table
[p
].
status = EDF_DELAY
;
/* we need to delete this event if we kill the task while it is sleeping */
ll_gettime
(TIME_EXACT
, &wakeuptime
);
ADDUSEC2TIMESPEC
(usdelay
, &wakeuptime
);
proc_table
[p
].
delay_timer = kern_event_post
(&wakeuptime
,
EDF_timer_delay
,
(void *)p
);
}
/* Registration functions */
/*+ Registration function:
int flags the init flags ... see edf.h +*/
void EDF_register_level
(int flags
)
{
LEVEL l
; /* the level that we register */
EDF_level_des
*lev
; /* for readableness only */
PID i
; /* a counter */
printk
("EDF_register_level\n");
/* request an entry in the level_table */
l
= level_alloc_descriptor
();
printk
(" alloco descrittore %d %d\n",l
,sizeof(EDF_level_des
));
/* alloc the space needed for the EDF_level_des */
lev
= (EDF_level_des
*)kern_alloc
(sizeof(EDF_level_des
));
printk
(" lev=%d\n",(int)lev
);
/* update the level_table with the new entry */
level_table
[l
] = (level_des
*)lev
;
/* fill the standard descriptor */
strncpy(lev
->l.
level_name, EDF_LEVELNAME
, MAX_LEVELNAME
);
lev
->l.
level_code = EDF_LEVEL_CODE
;
lev
->l.
level_version = EDF_LEVEL_VERSION
;
lev
->l.
level_accept_task_model = EDF_level_accept_task_model
;
lev
->l.
level_accept_guest_model = EDF_level_accept_guest_model
;
lev
->l.
level_status = EDF_level_status
;
lev
->l.
level_scheduler = EDF_level_scheduler
;
if (flags
& EDF_ENABLE_GUARANTEE
)
lev
->l.
level_guarantee = EDF_level_guarantee
;
else
lev
->l.
level_guarantee = NULL
;
lev
->l.
task_create = EDF_task_create
;
lev
->l.
task_detach = EDF_task_detach
;
lev
->l.
task_eligible = EDF_task_eligible
;
lev
->l.
task_dispatch = EDF_task_dispatch
;
lev
->l.
task_epilogue = EDF_task_epilogue
;
lev
->l.
task_activate = EDF_task_activate
;
lev
->l.
task_insert = EDF_task_insert
;
lev
->l.
task_extract = EDF_task_extract
;
lev
->l.
task_endcycle = EDF_task_endcycle
;
lev
->l.
task_end = EDF_task_end
;
lev
->l.
task_sleep = EDF_task_sleep
;
lev
->l.
task_delay = EDF_task_delay
;
lev
->l.
guest_create = EDF_guest_create
;
lev
->l.
guest_detach = EDF_guest_detach
;
lev
->l.
guest_dispatch = EDF_guest_dispatch
;
lev
->l.
guest_epilogue = EDF_guest_epilogue
;
lev
->l.
guest_activate = EDF_guest_activate
;
lev
->l.
guest_insert = EDF_guest_insert
;
lev
->l.
guest_extract = EDF_guest_extract
;
lev
->l.
guest_endcycle = EDF_guest_endcycle
;
lev
->l.
guest_end = EDF_guest_end
;
lev
->l.
guest_sleep = EDF_guest_sleep
;
lev
->l.
guest_delay = EDF_guest_delay
;
/* fill the EDF descriptor part */
for(i
=0; i
<MAX_PROC
; i
++) {
lev
->period
[i
] = 0;
lev
->deadline_timer
[i
] = -1;
}
lev
->ready
= NIL
;
lev
->flags
= flags
& 0x07;
lev
->U
= 0;
}
bandwidth_t EDF_usedbandwidth
(LEVEL l
)
{
EDF_level_des
*lev
= (EDF_level_des
*)(level_table
[l
]);
if (lev
->l.
level_code == EDF_LEVEL_CODE
&&
lev
->l.
level_version == EDF_LEVEL_VERSION
)
return lev
->U
;
else
return 0;
}