Blame |
Last modification |
View Log
| RSS feed
/*
* jrevdct.c
*
* This file is part of the Independent JPEG Group's software.
* The IJG code is distributed under the terms reproduced here:
*
* LEGAL ISSUES
* ============
*
* In plain English:
*
* 1. We don't promise that this software works. (But if you find any bugs,
* please let us know!)
* 2. You can use this software for whatever you want. You don't have to
* pay us.
* 3. You may not pretend that you wrote this software. If you use it in a
* program, you must acknowledge somewhere in your documentation that
* you've used the IJG code.
*
* In legalese:
*
* The authors make NO WARRANTY or representation, either express or implied,
* with respect to this software, its quality, accuracy, merchantability, or
* fitness for a particular purpose. This software is provided "AS IS", and
* you, its user, assume the entire risk as to its quality and accuracy.
*
* This software is copyright (C) 1991, 1992, Thomas G. Lane.
* All Rights Reserved except as specified below.
*
* Permission is hereby granted to use, copy, modify, and distribute this
* software (or portions thereof) for any purpose, without fee, subject to
* these conditions:
* (1) If any part of the source code for this software is distributed, then
* this copyright and no-warranty notice must be included unaltered; and any
* additions, deletions, or changes to the original files must be clearly
* indicated in accompanying documentation.
* (2) If only executable code is distributed, then the accompanying
* documentation must state that "this software is based in part on the
* work of the Independent JPEG Group".
* (3) Permission for use of this software is granted only if the user
* accepts full responsibility for any undesirable consequences; the authors
* accept NO LIABILITY for damages of any kind.
*
* These conditions apply to any software derived from or based on the IJG
* code, not just to the unmodified library. If you use our work, you ought
* to acknowledge us.
*
* Permission is NOT granted for the use of any IJG author's name or company
* name in advertising or publicity relating to this software or products
* derived from it. This software may be referred to only as
* "the Independent JPEG Group's software".
*
* We specifically permit and encourage the use of this software as the
* basis of commercial products, provided that all warranty or liability
* claims are assumed by the product vendor.
*
*
* ARCHIVE LOCATIONS
* =================
*
* The "official" archive site for this software is ftp.uu.net (Internet
* address 192.48.96.9). The most recent released version can always be
* found there in directory graphics/jpeg. This particular version will
* be archived as graphics/jpeg/jpegsrc.v6a.tar.gz. If you are on the
* Internet, you can retrieve files from ftp.uu.net by standard anonymous
* FTP. If you don't have FTP access, UUNET's archives are also available
* via UUCP; contact help@uunet.uu.net for information on retrieving files
* that way.
*
* Numerous Internet sites maintain copies of the UUNET files. However,
* only ftp.uu.net is guaranteed to have the latest official version.
*
* You can also obtain this software in DOS-compatible "zip" archive
* format from the SimTel archives (ftp.coast.net:/SimTel/msdos/graphics/),
* or on CompuServe in the Graphics Support forum (GO CIS:GRAPHSUP),
* library 12 "JPEG Tools". Again, these versions may sometimes lag behind
* the ftp.uu.net release.
*
* The JPEG FAQ (Frequently Asked Questions) article is a useful source of
* general information about JPEG. It is updated constantly and therefore
* is not included in this distribution. The FAQ is posted every two weeks
* to Usenet newsgroups comp.graphics.misc, news.answers, and other groups.
* You can always obtain the latest version from the news.answers archive
* at rtfm.mit.edu. By FTP, fetch /pub/usenet/news.answers/jpeg-faq/part1
* and .../part2. If you don't have FTP, send e-mail to
* mail-server@rtfm.mit.edu with body
* send usenet/news.answers/jpeg-faq/part1
* send usenet/news.answers/jpeg-faq/part2
*
* ==============
*
*
* This file contains the basic inverse-DCT transformation subroutine.
*
* This implementation is based on an algorithm described in
* C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
* Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
* Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
* The primary algorithm described there uses 11 multiplies and 29 adds.
* We use their alternate method with 12 multiplies and 32 adds.
* The advantage of this method is that no data path contains more than one
* multiplication; this allows a very simple and accurate implementation in
* scaled fixed-point arithmetic, with a minimal number of shifts.
*
*
* CHANGES FOR BERKELEY MPEG
* =========================
*
* This file has been altered to use the Berkeley MPEG header files,
* to add the capability to handle sparse DCT matrices efficiently,
* and to relabel the inverse DCT function as well as the file
* (formerly jidctint.c).
*
* I've made lots of modifications to attempt to take advantage of the
* sparse nature of the DCT matrices we're getting. Although the logic
* is cumbersome, it's straightforward and the resulting code is much
* faster.
*
* A better way to do this would be to pass in the DCT block as a sparse
* matrix, perhaps with the difference cases encoded.
*/
#include <string.h>
#include "video.h"
#include "proto.h"
#define GLOBAL /* a function referenced thru EXTERNs */
/* We assume that right shift corresponds to signed division by 2 with
* rounding towards minus infinity. This is correct for typical "arithmetic
* shift" instructions that shift in copies of the sign bit. But some
* C compilers implement >> with an unsigned shift. For these machines you
* must define RIGHT_SHIFT_IS_UNSIGNED.
* RIGHT_SHIFT provides a proper signed right shift of an INT32 quantity.
* It is only applied with constant shift counts. SHIFT_TEMPS must be
* included in the variables of any routine using RIGHT_SHIFT.
*/
#ifdef RIGHT_SHIFT_IS_UNSIGNED
#define SHIFT_TEMPS INT32 shift_temp;
#define RIGHT_SHIFT(x,shft) \
((shift_temp = (x)) < 0 ? \
(shift_temp >> (shft)) | ((~((INT32) 0)) << (32-(shft))) : \
(shift_temp >> (shft)))
#else
#define SHIFT_TEMPS
#define RIGHT_SHIFT(x,shft) ((x) >> (shft))
#endif
/*
* This routine is specialized to the case DCTSIZE = 8.
*/
#if DCTSIZE != 8
Sorry
, this code only copes with 8x8 DCTs.
/* deliberate syntax err */
#endif
/*
* A 2-D IDCT can be done by 1-D IDCT on each row followed by 1-D IDCT
* on each column. Direct algorithms are also available, but they are
* much more complex and seem not to be any faster when reduced to code.
*
* The poop on this scaling stuff is as follows:
*
* Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
* larger than the true IDCT outputs. The final outputs are therefore
* a factor of N larger than desired; since N=8 this can be cured by
* a simple right shift at the end of the algorithm. The advantage of
* this arrangement is that we save two multiplications per 1-D IDCT,
* because the y0 and y4 inputs need not be divided by sqrt(N).
*
* We have to do addition and subtraction of the integer inputs, which
* is no problem, and multiplication by fractional constants, which is
* a problem to do in integer arithmetic. We multiply all the constants
* by CONST_SCALE and convert them to integer constants (thus retaining
* CONST_BITS bits of precision in the constants). After doing a
* multiplication we have to divide the product by CONST_SCALE, with proper
* rounding, to produce the correct output. This division can be done
* cheaply as a right shift of CONST_BITS bits. We postpone shifting
* as long as possible so that partial sums can be added together with
* full fractional precision.
*
* The outputs of the first pass are scaled up by PASS1_BITS bits so that
* they are represented to better-than-integral precision. These outputs
* require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
* with the recommended scaling. (To scale up 12-bit sample data further, an
* intermediate INT32 array would be needed.)
*
* To avoid overflow of the 32-bit intermediate results in pass 2, we must
* have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
* shows that the values given below are the most effective.
*/
#ifdef EIGHT_BIT_SAMPLES
#define PASS1_BITS 2
#else
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
#endif
#define ONE ((INT32) 1)
#define CONST_SCALE (ONE << CONST_BITS)
/* Convert a positive real constant to an integer scaled by CONST_SCALE.
* IMPORTANT: if your compiler doesn't do this arithmetic at compile time,
* you will pay a significant penalty in run time. In that case, figure
* the correct integer constant values and insert them by hand.
*/
#define FIX(x) ((INT32) ((x) * CONST_SCALE + 0.5))
/* When adding two opposite-signed fixes, the 0.5 cancels */
#define FIX2(x) ((INT32) ((x) * CONST_SCALE))
/* Descale and correctly round an INT32 value that's scaled by N bits.
* We assume RIGHT_SHIFT rounds towards minus infinity, so adding
* the fudge factor is correct for either sign of X.
*/
#define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)
/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
* For 8-bit samples with the recommended scaling, all the variable
* and constant values involved are no more than 16 bits wide, so a
* 16x16->32 bit multiply can be used instead of a full 32x32 multiply;
* this provides a useful speedup on many machines.
* There is no way to specify a 16x16->32 multiply in portable C, but
* some C compilers will do the right thing if you provide the correct
* combination of casts.
* NB: for 12-bit samples, a full 32-bit multiplication will be needed.
*/
#ifdef EIGHT_BIT_SAMPLES
#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
#define MULTIPLY(var,const) (((INT16) (var)) * ((INT16) (const)))
#endif
#ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */
#define MULTIPLY(var,const) (((INT16) (var)) * ((INT32) (const)))
#endif
#endif
#ifndef MULTIPLY /* default definition */
#define MULTIPLY(var,const) ((var) * (const))
#endif
#ifndef NO_SPARSE_DCT
#define SPARSE_SCALE_FACTOR 8
#endif
/* Precomputed idct value arrays. */
static DCTELEM PreIDCT
[64][64];
/*
*--------------------------------------------------------------
*
* init_pre_idct --
*
* Pre-computes singleton coefficient IDCT values.
*
* Results:
* None.
*
* Side effects:
* None.
*
*--------------------------------------------------------------
*/
void
init_pre_idct
() {
int i
;
for (i
=0; i
<64; i
++) {
memset((char *) PreIDCT
[i
], 0, 64*sizeof(DCTELEM
));
PreIDCT
[i
][i
] = 1 << SPARSE_SCALE_FACTOR
;
j_rev_dct
(PreIDCT
[i
]);
}
}
#ifndef NO_SPARSE_DCT
/*
*--------------------------------------------------------------
*
* j_rev_dct_sparse --
*
* Performs the inverse DCT on one block of coefficients.
*
* Results:
* None.
*
* Side effects:
* None.
*
*--------------------------------------------------------------
*/
void
j_rev_dct_sparse
(data
, pos
)
DCTBLOCK data
;
int pos
;
{
short int val
;
register int *dp
;
register int v
;
int quant
;
#ifdef SPARSE_AC
register DCTELEM
*dataptr
;
DCTELEM
*ndataptr
;
int coeff
, rr
;
DCTBLOCK tmpdata
, tmp2data
;
DCTELEM
*tmpdataptr
, *tmp2dataptr
;
int printFlag
= 1;
#endif
/* If DC Coefficient. */
if (pos
== 0) {
dp
= (int *)data
;
v
= *data
;
quant
= 8;
/* Compute 32 bit value to assign. This speeds things up a bit */
if (v
< 0) {
val
= -v
;
val
+= (quant
>> 1);
val
/= quant
;
val
= -val
;
}
else {
val
= (v
+ (quant
>> 1)) / quant
;
}
v
= ((val
& 0xffff) | (val
<< 16));
dp
[0] = v
; dp
[1] = v
; dp
[2] = v
; dp
[3] = v
;
dp
[4] = v
; dp
[5] = v
; dp
[6] = v
; dp
[7] = v
;
dp
[8] = v
; dp
[9] = v
; dp
[10] = v
; dp
[11] = v
;
dp
[12] = v
; dp
[13] = v
; dp
[14] = v
; dp
[15] = v
;
dp
[16] = v
; dp
[17] = v
; dp
[18] = v
; dp
[19] = v
;
dp
[20] = v
; dp
[21] = v
; dp
[22] = v
; dp
[23] = v
;
dp
[24] = v
; dp
[25] = v
; dp
[26] = v
; dp
[27] = v
;
dp
[28] = v
; dp
[29] = v
; dp
[30] = v
; dp
[31] = v
;
return;
}
/* Some other coefficient. */
#ifdef SPARSE_AC
dataptr
= (DCTELEM
*)data
;
coeff
= dataptr
[pos
];
ndataptr
= PreIDCT
[pos
];
printf ("\n");
printf ("COEFFICIENT = %3d, POSITION = %2d\n", coeff
, pos
);
for (v
=0; v
<64; v
++) {
memcpy((char *) tmpdata
, data
, 64*sizeof(DCTELEM
));
}
tmpdataptr
= (DCTELEM
*)tmpdata
;
for (v
=0; v
<64; v
++) {
memcpy((char *) tmp2data
, data
, 64*sizeof(DCTELEM
));
}
tmp2dataptr
= (DCTELEM
*)tmp2data
;
#ifdef DEBUG
printf ("original DCTBLOCK:\n");
for (rr
=0; rr
<8; rr
++) {
for (v
=0; v
<8; v
++) {
if (dataptr
[8*rr
+v
] != tmpdataptr
[8*rr
+v
])
fprintf(stderr
, "Error in copy\n");
printf ("%3d ", dataptr
[8*rr
+v
]);
}
printf("\n");
}
#endif
printf("\n");
for (rr
=0; rr
<4; rr
++) {
dataptr
[0] = (ndataptr
[0] * coeff
) >> SPARSE_SCALE_FACTOR
;
dataptr
[1] = (ndataptr
[1] * coeff
) >> SPARSE_SCALE_FACTOR
;
dataptr
[2] = (ndataptr
[2] * coeff
) >> SPARSE_SCALE_FACTOR
;
dataptr
[3] = (ndataptr
[3] * coeff
) >> SPARSE_SCALE_FACTOR
;
dataptr
[4] = (ndataptr
[4] * coeff
) >> SPARSE_SCALE_FACTOR
;
dataptr
[5] = (ndataptr
[5] * coeff
) >> SPARSE_SCALE_FACTOR
;
dataptr
[6] = (ndataptr
[6] * coeff
) >> SPARSE_SCALE_FACTOR
;
dataptr
[7] = (ndataptr
[7] * coeff
) >> SPARSE_SCALE_FACTOR
;
dataptr
[8] = (ndataptr
[8] * coeff
) >> SPARSE_SCALE_FACTOR
;
dataptr
[9] = (ndataptr
[9] * coeff
) >> SPARSE_SCALE_FACTOR
;
dataptr
[10] = (ndataptr
[10] * coeff
) >> SPARSE_SCALE_FACTOR
;
dataptr
[11] = (ndataptr
[11] * coeff
) >> SPARSE_SCALE_FACTOR
;
dataptr
[12] = (ndataptr
[12] * coeff
) >> SPARSE_SCALE_FACTOR
;
dataptr
[13] = (ndataptr
[13] * coeff
) >> SPARSE_SCALE_FACTOR
;
dataptr
[14] = (ndataptr
[14] * coeff
) >> SPARSE_SCALE_FACTOR
;
dataptr
[15] = (ndataptr
[15] * coeff
) >> SPARSE_SCALE_FACTOR
;
dataptr
+= 16;
ndataptr
+= 16;
}
dataptr
= (DCTELEM
*) data
;
#ifdef DEBUG
printf ("sparse IDCT:\n");
for (rr
=0; rr
<8; rr
++) {
for (v
=0; v
<8; v
++) {
printf ("%3d ", dataptr
[8*rr
+v
]);
}
printf("\n");
}
printf("\n");
#endif /* DEBUG */
#else /* NO_SPARSE_AC */
#ifdef FLOATDCT
if (qualityFlag
)
float_idct
(data
);
else
#endif /* FLOATDCT */
j_rev_dct
(data
);
#endif /* SPARSE_AC */
return;
}
#else
/*
*--------------------------------------------------------------
*
* j_rev_dct_sparse --
*
* Performs the original inverse DCT on one block of
* coefficients.
*
* Results:
* None.
*
* Side effects:
* None.
*
*--------------------------------------------------------------
*/
void
j_rev_dct_sparse
(data
, pos
)
DCTBLOCK data
;
int pos
;
{
j_rev_dct
(data
);
}
#endif /* SPARSE_DCT */
#ifndef FIVE_DCT
#ifndef ORIG_DCT
/*
*--------------------------------------------------------------
*
* j_rev_dct --
*
* The inverse DCT function.
*
* Results:
* None.
*
* Side effects:
* None.
*
*--------------------------------------------------------------
*/
void
j_rev_dct
(data
)
DCTBLOCK data
;
{
INT32 tmp0
, tmp1
, tmp2
, tmp3
;
INT32 tmp10
, tmp11
, tmp12
, tmp13
;
INT32 z1
, z2
, z3
, z4
, z5
;
INT32 d0
, d1
, d2
, d3
, d4
, d5
, d6
, d7
;
register DCTELEM
*dataptr
;
int rowctr
;
SHIFT_TEMPS
/* Pass 1: process rows. */
/* Note results are scaled up by sqrt(8) compared to a true IDCT; */
/* furthermore, we scale the results by 2**PASS1_BITS. */
dataptr
= data
;
for (rowctr
= DCTSIZE
-1; rowctr
>= 0; rowctr
--) {
/* Due to quantization, we will usually find that many of the input
* coefficients are zero, especially the AC terms. We can exploit this
* by short-circuiting the IDCT calculation for any row in which all
* the AC terms are zero. In that case each output is equal to the
* DC coefficient (with scale factor as needed).
* With typical images and quantization tables, half or more of the
* row DCT calculations can be simplified this way.
*/
register int *idataptr
= (int*)dataptr
;
d0
= dataptr
[0];
d1
= dataptr
[1];
if ((d1
== 0) && (idataptr
[1] | idataptr
[2] | idataptr
[3]) == 0) {
/* AC terms all zero */
if (d0
) {
/* Compute a 32 bit value to assign. */
DCTELEM dcval
= (DCTELEM
) (d0
<< PASS1_BITS
);
register int v
= (dcval
& 0xffff) | (dcval
<< 16);
idataptr
[0] = v
;
idataptr
[1] = v
;
idataptr
[2] = v
;
idataptr
[3] = v
;
}
dataptr
+= DCTSIZE
; /* advance pointer to next row */
continue;
}
d2
= dataptr
[2];
d3
= dataptr
[3];
d4
= dataptr
[4];
d5
= dataptr
[5];
d6
= dataptr
[6];
d7
= dataptr
[7];
/* Even part: reverse the even part of the forward DCT. */
/* The rotator is sqrt(2)*c(-6). */
if (d6
) {
if (d4
) {
if (d2
) {
if (d0
) {
/* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
z1
= MULTIPLY
(d2
+ d6
, FIX
(0.541196100));
tmp2
= z1
+ MULTIPLY
(d6
, - FIX
(1.847759065));
tmp3
= z1
+ MULTIPLY
(d2
, FIX
(0.765366865));
tmp0
= (d0
+ d4
) << CONST_BITS
;
tmp1
= (d0
- d4
) << CONST_BITS
;
tmp10
= tmp0
+ tmp3
;
tmp13
= tmp0
- tmp3
;
tmp11
= tmp1
+ tmp2
;
tmp12
= tmp1
- tmp2
;
} else {
/* d0 == 0, d2 != 0, d4 != 0, d6 != 0 */
z1
= MULTIPLY
(d2
+ d6
, FIX
(0.541196100));
tmp2
= z1
+ MULTIPLY
(d6
, - FIX
(1.847759065));
tmp3
= z1
+ MULTIPLY
(d2
, FIX
(0.765366865));
tmp0
= d4
<< CONST_BITS
;
tmp10
= tmp0
+ tmp3
;
tmp13
= tmp0
- tmp3
;
tmp11
= tmp2
- tmp0
;
tmp12
= -(tmp0
+ tmp2
);
}
} else {
if (d0
) {
/* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
tmp2
= MULTIPLY
(d6
, - FIX2
(1.306562965));
tmp3
= MULTIPLY
(d6
, FIX
(0.541196100));
tmp0
= (d0
+ d4
) << CONST_BITS
;
tmp1
= (d0
- d4
) << CONST_BITS
;
tmp10
= tmp0
+ tmp3
;
tmp13
= tmp0
- tmp3
;
tmp11
= tmp1
+ tmp2
;
tmp12
= tmp1
- tmp2
;
} else {
/* d0 == 0, d2 == 0, d4 != 0, d6 != 0 */
tmp2
= MULTIPLY
(d6
, - FIX2
(1.306562965));
tmp3
= MULTIPLY
(d6
, FIX
(0.541196100));
tmp0
= d4
<< CONST_BITS
;
tmp10
= tmp0
+ tmp3
;
tmp13
= tmp0
- tmp3
;
tmp11
= tmp2
- tmp0
;
tmp12
= -(tmp0
+ tmp2
);
}
}
} else {
if (d2
) {
if (d0
) {
/* d0 != 0, d2 != 0, d4 == 0, d6 != 0 */
z1
= MULTIPLY
(d2
+ d6
, FIX
(0.541196100));
tmp2
= z1
+ MULTIPLY
(d6
, - FIX
(1.847759065));
tmp3
= z1
+ MULTIPLY
(d2
, FIX
(0.765366865));
tmp0
= d0
<< CONST_BITS
;
tmp10
= tmp0
+ tmp3
;
tmp13
= tmp0
- tmp3
;
tmp11
= tmp0
+ tmp2
;
tmp12
= tmp0
- tmp2
;
} else {
/* d0 == 0, d2 != 0, d4 == 0, d6 != 0 */
z1
= MULTIPLY
(d2
+ d6
, FIX
(0.541196100));
tmp2
= z1
+ MULTIPLY
(d6
, - FIX
(1.847759065));
tmp3
= z1
+ MULTIPLY
(d2
, FIX
(0.765366865));
tmp10
= tmp3
;
tmp13
= -tmp3
;
tmp11
= tmp2
;
tmp12
= -tmp2
;
}
} else {
if (d0
) {
/* d0 != 0, d2 == 0, d4 == 0, d6 != 0 */
tmp2
= MULTIPLY
(d6
, - FIX2
(1.306562965));
tmp3
= MULTIPLY
(d6
, FIX
(0.541196100));
tmp0
= d0
<< CONST_BITS
;
tmp10
= tmp0
+ tmp3
;
tmp13
= tmp0
- tmp3
;
tmp11
= tmp0
+ tmp2
;
tmp12
= tmp0
- tmp2
;
} else {
/* d0 == 0, d2 == 0, d4 == 0, d6 != 0 */
tmp2
= MULTIPLY
(d6
, - FIX2
(1.306562965));
tmp3
= MULTIPLY
(d6
, FIX
(0.541196100));
tmp10
= tmp3
;
tmp13
= -tmp3
;
tmp11
= tmp2
;
tmp12
= -tmp2
;
}
}
}
} else {
if (d4
) {
if (d2
) {
if (d0
) {
/* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
tmp2
= MULTIPLY
(d2
, FIX
(0.541196100));
tmp3
= MULTIPLY
(d2
, (FIX
(1.306562965) + .5));
tmp0
= (d0
+ d4
) << CONST_BITS
;
tmp1
= (d0
- d4
) << CONST_BITS
;
tmp10
= tmp0
+ tmp3
;
tmp13
= tmp0
- tmp3
;
tmp11
= tmp1
+ tmp2
;
tmp12
= tmp1
- tmp2
;
} else {
/* d0 == 0, d2 != 0, d4 != 0, d6 == 0 */
tmp2
= MULTIPLY
(d2
, FIX
(0.541196100));
tmp3
= MULTIPLY
(d2
, (FIX
(1.306562965) + .5));
tmp0
= d4
<< CONST_BITS
;
tmp10
= tmp0
+ tmp3
;
tmp13
= tmp0
- tmp3
;
tmp11
= tmp2
- tmp0
;
tmp12
= -(tmp0
+ tmp2
);
}
} else {
if (d0
) {
/* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
tmp10
= tmp13
= (d0
+ d4
) << CONST_BITS
;
tmp11
= tmp12
= (d0
- d4
) << CONST_BITS
;
} else {
/* d0 == 0, d2 == 0, d4 != 0, d6 == 0 */
tmp10
= tmp13
= d4
<< CONST_BITS
;
tmp11
= tmp12
= -tmp10
;
}
}
} else {
if (d2
) {
if (d0
) {
/* d0 != 0, d2 != 0, d4 == 0, d6 == 0 */
tmp2
= MULTIPLY
(d2
, FIX
(0.541196100));
tmp3
= MULTIPLY
(d2
, (FIX
(1.306562965) + .5));
tmp0
= d0
<< CONST_BITS
;
tmp10
= tmp0
+ tmp3
;
tmp13
= tmp0
- tmp3
;
tmp11
= tmp0
+ tmp2
;
tmp12
= tmp0
- tmp2
;
} else {
/* d0 == 0, d2 != 0, d4 == 0, d6 == 0 */
tmp2
= MULTIPLY
(d2
, FIX
(0.541196100));
tmp3
= MULTIPLY
(d2
, (FIX
(1.306562965) + .5));
tmp10
= tmp3
;
tmp13
= -tmp3
;
tmp11
= tmp2
;
tmp12
= -tmp2
;
}
} else {
if (d0
) {
/* d0 != 0, d2 == 0, d4 == 0, d6 == 0 */
tmp10
= tmp13
= tmp11
= tmp12
= d0
<< CONST_BITS
;
} else {
/* d0 == 0, d2 == 0, d4 == 0, d6 == 0 */
tmp10
= tmp13
= tmp11
= tmp12
= 0;
}
}
}
}
/* Odd part per figure 8; the matrix is unitary and hence its
* transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
*/
if (d7
) {
if (d5
) {
if (d3
) {
if (d1
) {
/* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */
z1
= d7
+ d1
;
z2
= d5
+ d3
;
z3
= d7
+ d3
;
z4
= d5
+ d1
;
z5
= MULTIPLY
(z3
+ z4
, FIX
(1.175875602));
tmp0
= MULTIPLY
(d7
, FIX
(0.298631336));
tmp1
= MULTIPLY
(d5
, FIX
(2.053119869));
tmp2
= MULTIPLY
(d3
, FIX
(3.072711026));
tmp3
= MULTIPLY
(d1
, FIX
(1.501321110));
z1
= MULTIPLY
(z1
, - FIX
(0.899976223));
z2
= MULTIPLY
(z2
, - FIX
(2.562915447));
z3
= MULTIPLY
(z3
, - FIX
(1.961570560));
z4
= MULTIPLY
(z4
, - FIX
(0.390180644));
z3
+= z5
;
z4
+= z5
;
tmp0
+= z1
+ z3
;
tmp1
+= z2
+ z4
;
tmp2
+= z2
+ z3
;
tmp3
+= z1
+ z4
;
} else {
/* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */
z2
= d5
+ d3
;
z3
= d7
+ d3
;
z5
= MULTIPLY
(z3
+ d5
, FIX
(1.175875602));
tmp0
= MULTIPLY
(d7
, FIX
(0.298631336));
tmp1
= MULTIPLY
(d5
, FIX
(2.053119869));
tmp2
= MULTIPLY
(d3
, FIX
(3.072711026));
z1
= MULTIPLY
(d7
, - FIX
(0.899976223));
z2
= MULTIPLY
(z2
, - FIX
(2.562915447));
z3
= MULTIPLY
(z3
, - FIX
(1.961570560));
z4
= MULTIPLY
(d5
, - FIX
(0.390180644));
z3
+= z5
;
z4
+= z5
;
tmp0
+= z1
+ z3
;
tmp1
+= z2
+ z4
;
tmp2
+= z2
+ z3
;
tmp3
= z1
+ z4
;
}
} else {
if (d1
) {
/* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */
z1
= d7
+ d1
;
z4
= d5
+ d1
;
z5
= MULTIPLY
(d7
+ z4
, FIX
(1.175875602));
tmp0
= MULTIPLY
(d7
, FIX
(0.298631336));
tmp1
= MULTIPLY
(d5
, FIX
(2.053119869));
tmp3
= MULTIPLY
(d1
, FIX
(1.501321110));
z1
= MULTIPLY
(z1
, - FIX
(0.899976223));
z2
= MULTIPLY
(d5
, - FIX
(2.562915447));
z3
= MULTIPLY
(d7
, - FIX
(1.961570560));
z4
= MULTIPLY
(z4
, - FIX
(0.390180644));
z3
+= z5
;
z4
+= z5
;
tmp0
+= z1
+ z3
;
tmp1
+= z2
+ z4
;
tmp2
= z2
+ z3
;
tmp3
+= z1
+ z4
;
} else {
/* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */
z5
= MULTIPLY
(d7
+ d5
, FIX
(1.175875602));
tmp0
= MULTIPLY
(d7
, - FIX2
(0.601344887));
tmp1
= MULTIPLY
(d5
, - FIX2
(0.509795578));
z1
= MULTIPLY
(d7
, - FIX
(0.899976223));
z3
= MULTIPLY
(d7
, - FIX
(1.961570560));
z2
= MULTIPLY
(d5
, - FIX
(2.562915447));
z4
= MULTIPLY
(d5
, - FIX
(0.390180644));
z3
+= z5
;
z4
+= z5
;
tmp0
+= z3
;
tmp1
+= z4
;
tmp2
= z2
+ z3
;
tmp3
= z1
+ z4
;
}
}
} else {
if (d3
) {
if (d1
) {
/* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */
z1
= d7
+ d1
;
z3
= d7
+ d3
;
z5
= MULTIPLY
(z3
+ d1
, FIX
(1.175875602));
tmp0
= MULTIPLY
(d7
, FIX
(0.298631336));
tmp2
= MULTIPLY
(d3
, FIX
(3.072711026));
tmp3
= MULTIPLY
(d1
, FIX
(1.501321110));
z1
= MULTIPLY
(z1
, - FIX
(0.899976223));
z2
= MULTIPLY
(d3
, - FIX
(2.562915447));
z3
= MULTIPLY
(z3
, - FIX
(1.961570560));
z4
= MULTIPLY
(d1
, - FIX
(0.390180644));
z3
+= z5
;
z4
+= z5
;
tmp0
+= z1
+ z3
;
tmp1
= z2
+ z4
;
tmp2
+= z2
+ z3
;
tmp3
+= z1
+ z4
;
} else {
/* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */
z3
= d7
+ d3
;
z5
= MULTIPLY
(z3
, FIX
(1.175875602));
tmp0
= MULTIPLY
(d7
, - FIX2
(0.601344887));
tmp2
= MULTIPLY
(d3
, FIX
(0.509795579));
z1
= MULTIPLY
(d7
, - FIX
(0.899976223));
z2
= MULTIPLY
(d3
, - FIX
(2.562915447));
z3
= MULTIPLY
(z3
, - FIX2
(0.785694958));
tmp0
+= z3
;
tmp1
= z2
+ z5
;
tmp2
+= z3
;
tmp3
= z1
+ z5
;
}
} else {
if (d1
) {
/* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */
z1
= d7
+ d1
;
z5
= MULTIPLY
(z1
, FIX
(1.175875602));
tmp0
= MULTIPLY
(d7
, - FIX2
(1.662939224));
tmp3
= MULTIPLY
(d1
, FIX2
(1.111140466));
z1
= MULTIPLY
(z1
, FIX2
(0.275899379));
z3
= MULTIPLY
(d7
, - FIX
(1.961570560));
z4
= MULTIPLY
(d1
, - FIX
(0.390180644));
tmp0
+= z1
;
tmp1
= z4
+ z5
;
tmp2
= z3
+ z5
;
tmp3
+= z1
;
} else {
/* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */
tmp0
= MULTIPLY
(d7
, - FIX2
(1.387039845));
tmp1
= MULTIPLY
(d7
, FIX
(1.175875602));
tmp2
= MULTIPLY
(d7
, - FIX2
(0.785694958));
tmp3
= MULTIPLY
(d7
, FIX2
(0.275899379));
}
}
}
} else {
if (d5
) {
if (d3
) {
if (d1
) {
/* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */
z2
= d5
+ d3
;
z4
= d5
+ d1
;
z5
= MULTIPLY
(d3
+ z4
, FIX
(1.175875602));
tmp1
= MULTIPLY
(d5
, FIX
(2.053119869));
tmp2
= MULTIPLY
(d3
, FIX
(3.072711026));
tmp3
= MULTIPLY
(d1
, FIX
(1.501321110));
z1
= MULTIPLY
(d1
, - FIX
(0.899976223));
z2
= MULTIPLY
(z2
, - FIX
(2.562915447));
z3
= MULTIPLY
(d3
, - FIX
(1.961570560));
z4
= MULTIPLY
(z4
, - FIX
(0.390180644));
z3
+= z5
;
z4
+= z5
;
tmp0
= z1
+ z3
;
tmp1
+= z2
+ z4
;
tmp2
+= z2
+ z3
;
tmp3
+= z1
+ z4
;
} else {
/* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */
z2
= d5
+ d3
;
z5
= MULTIPLY
(z2
, FIX
(1.175875602));
tmp1
= MULTIPLY
(d5
, FIX2
(1.662939225));
tmp2
= MULTIPLY
(d3
, FIX2
(1.111140466));
z2
= MULTIPLY
(z2
, - FIX2
(1.387039845));
z3
= MULTIPLY
(d3
, - FIX
(1.961570560));
z4
= MULTIPLY
(d5
, - FIX
(0.390180644));
tmp0
= z3
+ z5
;
tmp1
+= z2
;
tmp2
+= z2
;
tmp3
= z4
+ z5
;
}
} else {
if (d1
) {
/* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */
z4
= d5
+ d1
;
z5
= MULTIPLY
(z4
, FIX
(1.175875602));
tmp1
= MULTIPLY
(d5
, - FIX2
(0.509795578));
tmp3
= MULTIPLY
(d1
, FIX2
(0.601344887));
z1
= MULTIPLY
(d1
, - FIX
(0.899976223));
z2
= MULTIPLY
(d5
, - FIX
(2.562915447));
z4
= MULTIPLY
(z4
, FIX2
(0.785694958));
tmp0
= z1
+ z5
;
tmp1
+= z4
;
tmp2
= z2
+ z5
;
tmp3
+= z4
;
} else {
/* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */
tmp0
= MULTIPLY
(d5
, FIX
(1.175875602));
tmp1
= MULTIPLY
(d5
, FIX2
(0.275899380));
tmp2
= MULTIPLY
(d5
, - FIX2
(1.387039845));
tmp3
= MULTIPLY
(d5
, FIX2
(0.785694958));
}
}
} else {
if (d3
) {
if (d1
) {
/* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */
z5
= d3
+ d1
;
tmp2
= MULTIPLY
(d3
, - FIX
(1.451774981));
tmp3
= MULTIPLY
(d1
, (FIX
(0.211164243) - 1));
z1
= MULTIPLY
(d1
, FIX
(1.061594337));
z2
= MULTIPLY
(d3
, - FIX
(2.172734803));
z4
= MULTIPLY
(z5
, FIX
(0.785694958));
z5
= MULTIPLY
(z5
, FIX
(1.175875602));
tmp0
= z1
- z4
;
tmp1
= z2
+ z4
;
tmp2
+= z5
;
tmp3
+= z5
;
} else {
/* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */
tmp0
= MULTIPLY
(d3
, - FIX2
(0.785694958));
tmp1
= MULTIPLY
(d3
, - FIX2
(1.387039845));
tmp2
= MULTIPLY
(d3
, - FIX2
(0.275899379));
tmp3
= MULTIPLY
(d3
, FIX
(1.175875602));
}
} else {
if (d1
) {
/* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */
tmp0
= MULTIPLY
(d1
, FIX2
(0.275899379));
tmp1
= MULTIPLY
(d1
, FIX2
(0.785694958));
tmp2
= MULTIPLY
(d1
, FIX
(1.175875602));
tmp3
= MULTIPLY
(d1
, FIX2
(1.387039845));
} else {
/* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */
tmp0
= tmp1
= tmp2
= tmp3
= 0;
}
}
}
}
/* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
dataptr
[0] = (DCTELEM
) DESCALE
(tmp10
+ tmp3
, CONST_BITS
-PASS1_BITS
);
dataptr
[7] = (DCTELEM
) DESCALE
(tmp10
- tmp3
, CONST_BITS
-PASS1_BITS
);
dataptr
[1] = (DCTELEM
) DESCALE
(tmp11
+ tmp2
, CONST_BITS
-PASS1_BITS
);
dataptr
[6] = (DCTELEM
) DESCALE
(tmp11
- tmp2
, CONST_BITS
-PASS1_BITS
);
dataptr
[2] = (DCTELEM
) DESCALE
(tmp12
+ tmp1
, CONST_BITS
-PASS1_BITS
);
dataptr
[5] = (DCTELEM
) DESCALE
(tmp12
- tmp1
, CONST_BITS
-PASS1_BITS
);
dataptr
[3] = (DCTELEM
) DESCALE
(tmp13
+ tmp0
, CONST_BITS
-PASS1_BITS
);
dataptr
[4] = (DCTELEM
) DESCALE
(tmp13
- tmp0
, CONST_BITS
-PASS1_BITS
);
dataptr
+= DCTSIZE
; /* advance pointer to next row */
}
/* Pass 2: process columns. */
/* Note that we must descale the results by a factor of 8 == 2**3, */
/* and also undo the PASS1_BITS scaling. */
dataptr
= data
;
for (rowctr
= DCTSIZE
-1; rowctr
>= 0; rowctr
--) {
/* Columns of zeroes can be exploited in the same way as we did with rows.
* However, the row calculation has created many nonzero AC terms, so the
* simplification applies less often (typically 5% to 10% of the time).
* On machines with very fast multiplication, it's possible that the
* test takes more time than it's worth. In that case this section
* may be commented out.
*/
d0
= dataptr
[DCTSIZE
*0];
d1
= dataptr
[DCTSIZE
*1];
d2
= dataptr
[DCTSIZE
*2];
d3
= dataptr
[DCTSIZE
*3];
d4
= dataptr
[DCTSIZE
*4];
d5
= dataptr
[DCTSIZE
*5];
d6
= dataptr
[DCTSIZE
*6];
d7
= dataptr
[DCTSIZE
*7];
/* Even part: reverse the even part of the forward DCT. */
/* The rotator is sqrt(2)*c(-6). */
if (d6
) {
if (d4
) {
if (d2
) {
if (d0
) {
/* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
z1
= MULTIPLY
(d2
+ d6
, FIX
(0.541196100));
tmp2
= z1
+ MULTIPLY
(d6
, - FIX
(1.847759065));
tmp3
= z1
+ MULTIPLY
(d2
, FIX
(0.765366865));
tmp0
= (d0
+ d4
) << CONST_BITS
;
tmp1
= (d0
- d4
) << CONST_BITS
;
tmp10
= tmp0
+ tmp3
;
tmp13
= tmp0
- tmp3
;
tmp11
= tmp1
+ tmp2
;
tmp12
= tmp1
- tmp2
;
} else {
/* d0 == 0, d2 != 0, d4 != 0, d6 != 0 */
z1
= MULTIPLY
(d2
+ d6
, FIX
(0.541196100));
tmp2
= z1
+ MULTIPLY
(d6
, - FIX
(1.847759065));
tmp3
= z1
+ MULTIPLY
(d2
, FIX
(0.765366865));
tmp0
= d4
<< CONST_BITS
;
tmp10
= tmp0
+ tmp3
;
tmp13
= tmp0
- tmp3
;
tmp11
= tmp2
- tmp0
;
tmp12
= -(tmp0
+ tmp2
);
}
} else {
if (d0
) {
/* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
tmp2
= MULTIPLY
(d6
, - FIX2
(1.306562965));
tmp3
= MULTIPLY
(d6
, FIX
(0.541196100));
tmp0
= (d0
+ d4
) << CONST_BITS
;
tmp1
= (d0
- d4
) << CONST_BITS
;
tmp10
= tmp0
+ tmp3
;
tmp13
= tmp0
- tmp3
;
tmp11
= tmp1
+ tmp2
;
tmp12
= tmp1
- tmp2
;
} else {
/* d0 == 0, d2 == 0, d4 != 0, d6 != 0 */
tmp2
= MULTIPLY
(d6
, -FIX2
(1.306562965));
tmp3
= MULTIPLY
(d6
, FIX
(0.541196100));
tmp0
= d4
<< CONST_BITS
;
tmp10
= tmp0
+ tmp3
;
tmp13
= tmp0
- tmp3
;
tmp11
= tmp2
- tmp0
;
tmp12
= -(tmp0
+ tmp2
);
}
}
} else {
if (d2
) {
if (d0
) {
/* d0 != 0, d2 != 0, d4 == 0, d6 != 0 */
z1
= MULTIPLY
(d2
+ d6
, FIX
(0.541196100));
tmp2
= z1
+ MULTIPLY
(d6
, - FIX
(1.847759065));
tmp3
= z1
+ MULTIPLY
(d2
, FIX
(0.765366865));
tmp0
= d0
<< CONST_BITS
;
tmp10
= tmp0
+ tmp3
;
tmp13
= tmp0
- tmp3
;
tmp11
= tmp0
+ tmp2
;
tmp12
= tmp0
- tmp2
;
} else {
/* d0 == 0, d2 != 0, d4 == 0, d6 != 0 */
z1
= MULTIPLY
(d2
+ d6
, FIX
(0.541196100));
tmp2
= z1
+ MULTIPLY
(d6
, - FIX
(1.847759065));
tmp3
= z1
+ MULTIPLY
(d2
, FIX
(0.765366865));
tmp10
= tmp3
;
tmp13
= -tmp3
;
tmp11
= tmp2
;
tmp12
= -tmp2
;
}
} else {
if (d0
) {
/* d0 != 0, d2 == 0, d4 == 0, d6 != 0 */
tmp2
= MULTIPLY
(d6
, - FIX2
(1.306562965));
tmp3
= MULTIPLY
(d6
, FIX
(0.541196100));
tmp0
= d0
<< CONST_BITS
;
tmp10
= tmp0
+ tmp3
;
tmp13
= tmp0
- tmp3
;
tmp11
= tmp0
+ tmp2
;
tmp12
= tmp0
- tmp2
;
} else {
/* d0 == 0, d2 == 0, d4 == 0, d6 != 0 */
tmp2
= MULTIPLY
(d6
, - FIX2
(1.306562965));
tmp3
= MULTIPLY
(d6
, FIX
(0.541196100));
tmp10
= tmp3
;
tmp13
= -tmp3
;
tmp11
= tmp2
;
tmp12
= -tmp2
;
}
}
}
} else {
if (d4
) {
if (d2
) {
if (d0
) {
/* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
tmp2
= MULTIPLY
(d2
, FIX
(0.541196100));
tmp3
= MULTIPLY
(d2
, (FIX
(1.306562965) + .5));
tmp0
= (d0
+ d4
) << CONST_BITS
;
tmp1
= (d0
- d4
) << CONST_BITS
;
tmp10
= tmp0
+ tmp3
;
tmp13
= tmp0
- tmp3
;
tmp11
= tmp1
+ tmp2
;
tmp12
= tmp1
- tmp2
;
} else {
/* d0 == 0, d2 != 0, d4 != 0, d6 == 0 */
tmp2
= MULTIPLY
(d2
, FIX
(0.541196100));
tmp3
= MULTIPLY
(d2
, (FIX
(1.306562965) + .5));
tmp0
= d4
<< CONST_BITS
;
tmp10
= tmp0
+ tmp3
;
tmp13
= tmp0
- tmp3
;
tmp11
= tmp2
- tmp0
;
tmp12
= -(tmp0
+ tmp2
);
}
} else {
if (d0
) {
/* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
tmp10
= tmp13
= (d0
+ d4
) << CONST_BITS
;
tmp11
= tmp12
= (d0
- d4
) << CONST_BITS
;
} else {
/* d0 == 0, d2 == 0, d4 != 0, d6 == 0 */
tmp10
= tmp13
= d4
<< CONST_BITS
;
tmp11
= tmp12
= -tmp10
;
}
}
} else {
if (d2
) {
if (d0
) {
/* d0 != 0, d2 != 0, d4 == 0, d6 == 0 */
tmp2
= MULTIPLY
(d2
, FIX
(0.541196100));
tmp3
= MULTIPLY
(d2
, (FIX
(1.306562965) + .5));
tmp0
= d0
<< CONST_BITS
;
tmp10
= tmp0
+ tmp3
;
tmp13
= tmp0
- tmp3
;
tmp11
= tmp0
+ tmp2
;
tmp12
= tmp0
- tmp2
;
} else {
/* d0 == 0, d2 != 0, d4 == 0, d6 == 0 */
tmp2
= MULTIPLY
(d2
, FIX
(0.541196100));
tmp3
= MULTIPLY
(d2
, (FIX
(1.306562965) + .5));
tmp10
= tmp3
;
tmp13
= -tmp3
;
tmp11
= tmp2
;
tmp12
= -tmp2
;
}
} else {
if (d0
) {
/* d0 != 0, d2 == 0, d4 == 0, d6 == 0 */
tmp10
= tmp13
= tmp11
= tmp12
= d0
<< CONST_BITS
;
} else {
/* d0 == 0, d2 == 0, d4 == 0, d6 == 0 */
tmp10
= tmp13
= tmp11
= tmp12
= 0;
}
}
}
}
/* Odd part per figure 8; the matrix is unitary and hence its
* transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
*/
if (d7
) {
if (d5
) {
if (d3
) {
if (d1
) {
/* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */
z1
= d7
+ d1
;
z2
= d5
+ d3
;
z3
= d7
+ d3
;
z4
= d5
+ d1
;
z5
= MULTIPLY
(z3
+ z4
, FIX
(1.175875602));
tmp0
= MULTIPLY
(d7
, FIX
(0.298631336));
tmp1
= MULTIPLY
(d5
, FIX
(2.053119869));
tmp2
= MULTIPLY
(d3
, FIX
(3.072711026));
tmp3
= MULTIPLY
(d1
, FIX
(1.501321110));
z1
= MULTIPLY
(z1
, - FIX
(0.899976223));
z2
= MULTIPLY
(z2
, - FIX
(2.562915447));
z3
= MULTIPLY
(z3
, - FIX
(1.961570560));
z4
= MULTIPLY
(z4
, - FIX
(0.390180644));
z3
+= z5
;
z4
+= z5
;
tmp0
+= z1
+ z3
;
tmp1
+= z2
+ z4
;
tmp2
+= z2
+ z3
;
tmp3
+= z1
+ z4
;
} else {
/* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */
z2
= d5
+ d3
;
z3
= d7
+ d3
;
z5
= MULTIPLY
(z3
+ d5
, FIX
(1.175875602));
tmp0
= MULTIPLY
(d7
, FIX
(0.298631336));
tmp1
= MULTIPLY
(d5
, FIX
(2.053119869));
tmp2
= MULTIPLY
(d3
, FIX
(3.072711026));
z1
= MULTIPLY
(d7
, - FIX
(0.899976223));
z2
= MULTIPLY
(z2
, - FIX
(2.562915447));
z3
= MULTIPLY
(z3
, - FIX
(1.961570560));
z4
= MULTIPLY
(d5
, - FIX
(0.390180644));
z3
+= z5
;
z4
+= z5
;
tmp0
+= z1
+ z3
;
tmp1
+= z2
+ z4
;
tmp2
+= z2
+ z3
;
tmp3
= z1
+ z4
;
}
} else {
if (d1
) {
/* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */
z1
= d7
+ d1
;
z4
= d5
+ d1
;
z5
= MULTIPLY
(d7
+ z4
, FIX
(1.175875602));
tmp0
= MULTIPLY
(d7
, FIX
(0.298631336));
tmp1
= MULTIPLY
(d5
, FIX
(2.053119869));
tmp3
= MULTIPLY
(d1
, FIX
(1.501321110));
z1
= MULTIPLY
(z1
, - FIX
(0.899976223));
z2
= MULTIPLY
(d5
, - FIX
(2.562915447));
z3
= MULTIPLY
(d7
, - FIX
(1.961570560));
z4
= MULTIPLY
(z4
, - FIX
(0.390180644));
z3
+= z5
;
z4
+= z5
;
tmp0
+= z1
+ z3
;
tmp1
+= z2
+ z4
;
tmp2
= z2
+ z3
;
tmp3
+= z1
+ z4
;
} else {
/* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */
z5
= MULTIPLY
(d5
+ d7
, FIX
(1.175875602));
tmp0
= MULTIPLY
(d7
, - FIX2
(0.601344887));
tmp1
= MULTIPLY
(d5
, - FIX2
(0.509795578));
z1
= MULTIPLY
(d7
, - FIX
(0.899976223));
z3
= MULTIPLY
(d7
, - FIX
(1.961570560));
z2
= MULTIPLY
(d5
, - FIX
(2.562915447));
z4
= MULTIPLY
(d5
, - FIX
(0.390180644));
z3
+= z5
;
z4
+= z5
;
tmp0
+= z3
;
tmp1
+= z4
;
tmp2
= z2
+ z3
;
tmp3
= z1
+ z4
;
}
}
} else {
if (d3
) {
if (d1
) {
/* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */
z1
= d7
+ d1
;
z3
= d7
+ d3
;
z5
= MULTIPLY
(z3
+ d1
, FIX
(1.175875602));
tmp0
= MULTIPLY
(d7
, FIX
(0.298631336));
tmp2
= MULTIPLY
(d3
, FIX
(3.072711026));
tmp3
= MULTIPLY
(d1
, FIX
(1.501321110));
z1
= MULTIPLY
(z1
, - FIX
(0.899976223));
z2
= MULTIPLY
(d3
, - FIX
(2.562915447));
z3
= MULTIPLY
(z3
, - FIX
(1.961570560));
z4
= MULTIPLY
(d1
, - FIX
(0.390180644));
z3
+= z5
;
z4
+= z5
;
tmp0
+= z1
+ z3
;
tmp1
= z2
+ z4
;
tmp2
+= z2
+ z3
;
tmp3
+= z1
+ z4
;
} else {
/* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */
z3
= d7
+ d3
;
z5
= MULTIPLY
(z3
, FIX
(1.175875602));
tmp0
= MULTIPLY
(d7
, - FIX2
(0.601344887));
z1
= MULTIPLY
(d7
, - FIX
(0.899976223));
tmp2
= MULTIPLY
(d3
, FIX
(0.509795579));
z2
= MULTIPLY
(d3
, - FIX
(2.562915447));
z3
= MULTIPLY
(z3
, - FIX2
(0.785694958));
tmp0
+= z3
;
tmp1
= z2
+ z5
;
tmp2
+= z3
;
tmp3
= z1
+ z5
;
}
} else {
if (d1
) {
/* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */
z1
= d7
+ d1
;
z5
= MULTIPLY
(z1
, FIX
(1.175875602));
tmp0
= MULTIPLY
(d7
, - FIX2
(1.662939224));
tmp3
= MULTIPLY
(d1
, FIX2
(1.111140466));
z1
= MULTIPLY
(z1
, FIX2
(0.275899379));
z3
= MULTIPLY
(d7
, - FIX
(1.961570560));
z4
= MULTIPLY
(d1
, - FIX
(0.390180644));
tmp0
+= z1
;
tmp1
= z4
+ z5
;
tmp2
= z3
+ z5
;
tmp3
+= z1
;
} else {
/* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */
tmp0
= MULTIPLY
(d7
, - FIX2
(1.387039845));
tmp1
= MULTIPLY
(d7
, FIX
(1.175875602));
tmp2
= MULTIPLY
(d7
, - FIX2
(0.785694958));
tmp3
= MULTIPLY
(d7
, FIX2
(0.275899379));
}
}
}
} else {
if (d5
) {
if (d3
) {
if (d1
) {
/* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */
z2
= d5
+ d3
;
z4
= d5
+ d1
;
z5
= MULTIPLY
(d3
+ z4
, FIX
(1.175875602));
tmp1
= MULTIPLY
(d5
, FIX
(2.053119869));
tmp2
= MULTIPLY
(d3
, FIX
(3.072711026));
tmp3
= MULTIPLY
(d1
, FIX
(1.501321110));
z1
= MULTIPLY
(d1
, - FIX
(0.899976223));
z2
= MULTIPLY
(z2
, - FIX
(2.562915447));
z3
= MULTIPLY
(d3
, - FIX
(1.961570560));
z4
= MULTIPLY
(z4
, - FIX
(0.390180644));
z3
+= z5
;
z4
+= z5
;
tmp0
= z1
+ z3
;
tmp1
+= z2
+ z4
;
tmp2
+= z2
+ z3
;
tmp3
+= z1
+ z4
;
} else {
/* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */
z2
= d5
+ d3
;
z5
= MULTIPLY
(z2
, FIX
(1.175875602));
tmp1
= MULTIPLY
(d5
, FIX2
(1.662939225));
tmp2
= MULTIPLY
(d3
, FIX2
(1.111140466));
z2
= MULTIPLY
(z2
, - FIX2
(1.387039845));
z3
= MULTIPLY
(d3
, - FIX
(1.961570560));
z4
= MULTIPLY
(d5
, - FIX
(0.390180644));
tmp0
= z3
+ z5
;
tmp1
+= z2
;
tmp2
+= z2
;
tmp3
= z4
+ z5
;
}
} else {
if (d1
) {
/* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */
z4
= d5
+ d1
;
z5
= MULTIPLY
(z4
, FIX
(1.175875602));
tmp1
= MULTIPLY
(d5
, - FIX2
(0.509795578));
tmp3
= MULTIPLY
(d1
, FIX2
(0.601344887));
z1
= MULTIPLY
(d1
, - FIX
(0.899976223));
z2
= MULTIPLY
(d5
, - FIX
(2.562915447));
z4
= MULTIPLY
(z4
, FIX2
(0.785694958));
tmp0
= z1
+ z5
;
tmp1
+= z4
;
tmp2
= z2
+ z5
;
tmp3
+= z4
;
} else {
/* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */
tmp0
= MULTIPLY
(d5
, FIX
(1.175875602));
tmp1
= MULTIPLY
(d5
, FIX2
(0.275899380));
tmp2
= MULTIPLY
(d5
, - FIX2
(1.387039845));
tmp3
= MULTIPLY
(d5
, FIX2
(0.785694958));
}
}
} else {
if (d3
) {
if (d1
) {
/* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */
z5
= d3
+ d1
;
tmp2
= MULTIPLY
(d3
, - FIX
(1.451774981));
tmp3
= MULTIPLY
(d1
, (FIX
(0.211164243) - 1));
z1
= MULTIPLY
(d1
, FIX
(1.061594337));
z2
= MULTIPLY
(d3
, - FIX
(2.172734803));
z4
= MULTIPLY
(z5
, FIX
(0.785694958));
z5
= MULTIPLY
(z5
, FIX
(1.175875602));
tmp0
= z1
- z4
;
tmp1
= z2
+ z4
;
tmp2
+= z5
;
tmp3
+= z5
;
} else {
/* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */
tmp0
= MULTIPLY
(d3
, - FIX2
(0.785694958));
tmp1
= MULTIPLY
(d3
, - FIX2
(1.387039845));
tmp2
= MULTIPLY
(d3
, - FIX2
(0.275899379));
tmp3
= MULTIPLY
(d3
, FIX
(1.175875602));
}
} else {
if (d1
) {
/* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */
tmp0
= MULTIPLY
(d1
, FIX2
(0.275899379));
tmp1
= MULTIPLY
(d1
, FIX2
(0.785694958));
tmp2
= MULTIPLY
(d1
, FIX
(1.175875602));
tmp3
= MULTIPLY
(d1
, FIX2
(1.387039845));
} else {
/* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */
tmp0
= tmp1
= tmp2
= tmp3
= 0;
}
}
}
}
/* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
dataptr
[DCTSIZE
*0] = (DCTELEM
) DESCALE
(tmp10
+ tmp3
,
CONST_BITS
+PASS1_BITS
+3);
dataptr
[DCTSIZE
*7] = (DCTELEM
) DESCALE
(tmp10
- tmp3
,
CONST_BITS
+PASS1_BITS
+3);
dataptr
[DCTSIZE
*1] = (DCTELEM
) DESCALE
(tmp11
+ tmp2
,
CONST_BITS
+PASS1_BITS
+3);
dataptr
[DCTSIZE
*6] = (DCTELEM
) DESCALE
(tmp11
- tmp2
,
CONST_BITS
+PASS1_BITS
+3);
dataptr
[DCTSIZE
*2] = (DCTELEM
) DESCALE
(tmp12
+ tmp1
,
CONST_BITS
+PASS1_BITS
+3);
dataptr
[DCTSIZE
*5] = (DCTELEM
) DESCALE
(tmp12
- tmp1
,
CONST_BITS
+PASS1_BITS
+3);
dataptr
[DCTSIZE
*3] = (DCTELEM
) DESCALE
(tmp13
+ tmp0
,
CONST_BITS
+PASS1_BITS
+3);
dataptr
[DCTSIZE
*4] = (DCTELEM
) DESCALE
(tmp13
- tmp0
,
CONST_BITS
+PASS1_BITS
+3);
dataptr
++; /* advance pointer to next column */
}
}
#else
/*
*--------------------------------------------------------------
*
* j_rev_dct --
*
* The original inverse DCT function.
*
* Results:
* None.
*
* Side effects:
* None.
*
*--------------------------------------------------------------
*/
void
j_rev_dct
(data
)
DCTBLOCK data
;
{
INT32 tmp0
, tmp1
, tmp2
, tmp3
;
INT32 tmp10
, tmp11
, tmp12
, tmp13
;
INT32 z1
, z2
, z3
, z4
, z5
;
register DCTELEM
*dataptr
;
int rowctr
;
SHIFT_TEMPS
/* Pass 1: process rows. */
/* Note results are scaled up by sqrt(8) compared to a true IDCT; */
/* furthermore, we scale the results by 2**PASS1_BITS. */
dataptr
= data
;
for (rowctr
= DCTSIZE
-1; rowctr
>= 0; rowctr
--) {
/* Due to quantization, we will usually find that many of the input
* coefficients are zero, especially the AC terms. We can exploit this
* by short-circuiting the IDCT calculation for any row in which all
* the AC terms are zero. In that case each output is equal to the
* DC coefficient (with scale factor as needed).
* With typical images and quantization tables, half or more of the
* row DCT calculations can be simplified this way.
*/
if ((dataptr
[1] | dataptr
[2] | dataptr
[3] | dataptr
[4] |
dataptr
[5] | dataptr
[6] | dataptr
[7]) == 0) {
/* AC terms all zero */
DCTELEM dcval
= (DCTELEM
) (dataptr
[0] << PASS1_BITS
);
dataptr
[0] = dcval
;
dataptr
[1] = dcval
;
dataptr
[2] = dcval
;
dataptr
[3] = dcval
;
dataptr
[4] = dcval
;
dataptr
[5] = dcval
;
dataptr
[6] = dcval
;
dataptr
[7] = dcval
;
dataptr
+= DCTSIZE
; /* advance pointer to next row */
continue;
}
/* Even part: reverse the even part of the forward DCT. */
/* The rotator is sqrt(2)*c(-6). */
z2
= (INT32
) dataptr
[2];
z3
= (INT32
) dataptr
[6];
z1
= MULTIPLY
(z2
+ z3
, FIX
(0.541196100));
tmp2
= z1
+ MULTIPLY
(z3
, - FIX
(1.847759065));
tmp3
= z1
+ MULTIPLY
(z2
, FIX
(0.765366865));
tmp0
= ((INT32
) dataptr
[0] + (INT32
) dataptr
[4]) << CONST_BITS
;
tmp1
= ((INT32
) dataptr
[0] - (INT32
) dataptr
[4]) << CONST_BITS
;
tmp10
= tmp0
+ tmp3
;
tmp13
= tmp0
- tmp3
;
tmp11
= tmp1
+ tmp2
;
tmp12
= tmp1
- tmp2
;
/* Odd part per figure 8; the matrix is unitary and hence its
* transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
*/
tmp0
= (INT32
) dataptr
[7];
tmp1
= (INT32
) dataptr
[5];
tmp2
= (INT32
) dataptr
[3];
tmp3
= (INT32
) dataptr
[1];
z1
= tmp0
+ tmp3
;
z2
= tmp1
+ tmp2
;
z3
= tmp0
+ tmp2
;
z4
= tmp1
+ tmp3
;
z5
= MULTIPLY
(z3
+ z4
, FIX
(1.175875602)); /* sqrt(2) * c3 */
tmp0
= MULTIPLY
(tmp0
, FIX
(0.298631336)); /* sqrt(2) * (-c1+c3+c5-c7) */
tmp1
= MULTIPLY
(tmp1
, FIX
(2.053119869)); /* sqrt(2) * ( c1+c3-c5+c7) */
tmp2
= MULTIPLY
(tmp2
, FIX
(3.072711026)); /* sqrt(2) * ( c1+c3+c5-c7) */
tmp3
= MULTIPLY
(tmp3
, FIX
(1.501321110)); /* sqrt(2) * ( c1+c3-c5-c7) */
z1
= MULTIPLY
(z1
, - FIX
(0.899976223)); /* sqrt(2) * (c7-c3) */
z2
= MULTIPLY
(z2
, - FIX
(2.562915447)); /* sqrt(2) * (-c1-c3) */
z3
= MULTIPLY
(z3
, - FIX
(1.961570560)); /* sqrt(2) * (-c3-c5) */
z4
= MULTIPLY
(z4
, - FIX
(0.390180644)); /* sqrt(2) * (c5-c3) */
z3
+= z5
;
z4
+= z5
;
tmp0
+= z1
+ z3
;
tmp1
+= z2
+ z4
;
tmp2
+= z2
+ z3
;
tmp3
+= z1
+ z4
;
/* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
dataptr
[0] = (DCTELEM
) DESCALE
(tmp10
+ tmp3
, CONST_BITS
-PASS1_BITS
);
dataptr
[7] = (DCTELEM
) DESCALE
(tmp10
- tmp3
, CONST_BITS
-PASS1_BITS
);
dataptr
[1] = (DCTELEM
) DESCALE
(tmp11
+ tmp2
, CONST_BITS
-PASS1_BITS
);
dataptr
[6] = (DCTELEM
) DESCALE
(tmp11
- tmp2
, CONST_BITS
-PASS1_BITS
);
dataptr
[2] = (DCTELEM
) DESCALE
(tmp12
+ tmp1
, CONST_BITS
-PASS1_BITS
);
dataptr
[5] = (DCTELEM
) DESCALE
(tmp12
- tmp1
, CONST_BITS
-PASS1_BITS
);
dataptr
[3] = (DCTELEM
) DESCALE
(tmp13
+ tmp0
, CONST_BITS
-PASS1_BITS
);
dataptr
[4] = (DCTELEM
) DESCALE
(tmp13
- tmp0
, CONST_BITS
-PASS1_BITS
);
dataptr
+= DCTSIZE
; /* advance pointer to next row */
}
/* Pass 2: process columns. */
/* Note that we must descale the results by a factor of 8 == 2**3, */
/* and also undo the PASS1_BITS scaling. */
dataptr
= data
;
for (rowctr
= DCTSIZE
-1; rowctr
>= 0; rowctr
--) {
/* Columns of zeroes can be exploited in the same way as we did with rows.
* However, the row calculation has created many nonzero AC terms, so the
* simplification applies less often (typically 5% to 10% of the time).
* On machines with very fast multiplication, it's possible that the
* test takes more time than it's worth. In that case this section
* may be commented out.
*/
#ifndef NO_ZERO_COLUMN_TEST
if ((dataptr
[DCTSIZE
*1] | dataptr
[DCTSIZE
*2] | dataptr
[DCTSIZE
*3] |
dataptr
[DCTSIZE
*4] | dataptr
[DCTSIZE
*5] | dataptr
[DCTSIZE
*6] |
dataptr
[DCTSIZE
*7]) == 0) {
/* AC terms all zero */
DCTELEM dcval
= (DCTELEM
) DESCALE
((INT32
) dataptr
[0], PASS1_BITS
+3);
dataptr
[DCTSIZE
*0] = dcval
;
dataptr
[DCTSIZE
*1] = dcval
;
dataptr
[DCTSIZE
*2] = dcval
;
dataptr
[DCTSIZE
*3] = dcval
;
dataptr
[DCTSIZE
*4] = dcval
;
dataptr
[DCTSIZE
*5] = dcval
;
dataptr
[DCTSIZE
*6] = dcval
;
dataptr
[DCTSIZE
*7] = dcval
;
dataptr
++; /* advance pointer to next column */
continue;
}
#endif
/* Even part: reverse the even part of the forward DCT. */
/* The rotator is sqrt(2)*c(-6). */
z2
= (INT32
) dataptr
[DCTSIZE
*2];
z3
= (INT32
) dataptr
[DCTSIZE
*6];
z1
= MULTIPLY
(z2
+ z3
, FIX
(0.541196100));
tmp2
= z1
+ MULTIPLY
(z3
, - FIX
(1.847759065));
tmp3
= z1
+ MULTIPLY
(z2
, FIX
(0.765366865));
tmp0
= ((INT32
) dataptr
[DCTSIZE
*0] + (INT32
) dataptr
[DCTSIZE
*4]) << CONST_BITS
;
tmp1
= ((INT32
) dataptr
[DCTSIZE
*0] - (INT32
) dataptr
[DCTSIZE
*4]) << CONST_BITS
;
tmp10
= tmp0
+ tmp3
;
tmp13
= tmp0
- tmp3
;
tmp11
= tmp1
+ tmp2
;
tmp12
= tmp1
- tmp2
;
/* Odd part per figure 8; the matrix is unitary and hence its
* transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
*/
tmp0
= (INT32
) dataptr
[DCTSIZE
*7];
tmp1
= (INT32
) dataptr
[DCTSIZE
*5];
tmp2
= (INT32
) dataptr
[DCTSIZE
*3];
tmp3
= (INT32
) dataptr
[DCTSIZE
*1];
z1
= tmp0
+ tmp3
;
z2
= tmp1
+ tmp2
;
z3
= tmp0
+ tmp2
;
z4
= tmp1
+ tmp3
;
z5
= MULTIPLY
(z3
+ z4
, FIX
(1.175875602)); /* sqrt(2) * c3 */
tmp0
= MULTIPLY
(tmp0
, FIX
(0.298631336)); /* sqrt(2) * (-c1+c3+c5-c7) */
tmp1
= MULTIPLY
(tmp1
, FIX
(2.053119869)); /* sqrt(2) * ( c1+c3-c5+c7) */
tmp2
= MULTIPLY
(tmp2
, FIX
(3.072711026)); /* sqrt(2) * ( c1+c3+c5-c7) */
tmp3
= MULTIPLY
(tmp3
, FIX
(1.501321110)); /* sqrt(2) * ( c1+c3-c5-c7) */
z1
= MULTIPLY
(z1
, - FIX
(0.899976223)); /* sqrt(2) * (c7-c3) */
z2
= MULTIPLY
(z2
, - FIX
(2.562915447)); /* sqrt(2) * (-c1-c3) */
z3
= MULTIPLY
(z3
, - FIX
(1.961570560)); /* sqrt(2) * (-c3-c5) */
z4
= MULTIPLY
(z4
, - FIX
(0.390180644)); /* sqrt(2) * (c5-c3) */
z3
+= z5
;
z4
+= z5
;
tmp0
+= z1
+ z3
;
tmp1
+= z2
+ z4
;
tmp2
+= z2
+ z3
;
tmp3
+= z1
+ z4
;
/* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
dataptr
[DCTSIZE
*0] = (DCTELEM
) DESCALE
(tmp10
+ tmp3
,
CONST_BITS
+PASS1_BITS
+3);
dataptr
[DCTSIZE
*7] = (DCTELEM
) DESCALE
(tmp10
- tmp3
,
CONST_BITS
+PASS1_BITS
+3);
dataptr
[DCTSIZE
*1] = (DCTELEM
) DESCALE
(tmp11
+ tmp2
,
CONST_BITS
+PASS1_BITS
+3);
dataptr
[DCTSIZE
*6] = (DCTELEM
) DESCALE
(tmp11
- tmp2
,
CONST_BITS
+PASS1_BITS
+3);
dataptr
[DCTSIZE
*2] = (DCTELEM
) DESCALE
(tmp12
+ tmp1
,
CONST_BITS
+PASS1_BITS
+3);
dataptr
[DCTSIZE
*5] = (DCTELEM
) DESCALE
(tmp12
- tmp1
,
CONST_BITS
+PASS1_BITS
+3);
dataptr
[DCTSIZE
*3] = (DCTELEM
) DESCALE
(tmp13
+ tmp0
,
CONST_BITS
+PASS1_BITS
+3);
dataptr
[DCTSIZE
*4] = (DCTELEM
) DESCALE
(tmp13
- tmp0
,
CONST_BITS
+PASS1_BITS
+3);
dataptr
++; /* advance pointer to next column */
}
}
#endif /* ORIG_DCT */
#endif /* FIVE_DCT */