Rev 650 |
Go to most recent revision |
Blame |
Compare with Previous |
Last modification |
View Log
| RSS feed
/* Project: OSLib
* Description: The OS Construction Kit
* Date: 1.6.2000
* Idea by: Luca Abeni & Gerardo Lamastra
*
* OSLib is an SO project aimed at developing a common, easy-to-use
* low-level infrastructure for developing OS kernels and Embedded
* Applications; it partially derives from the HARTIK project but it
* currently is independently developed.
*
* OSLib is distributed under GPL License, and some of its code has
* been derived from the Linux kernel source; also some important
* ideas come from studying the DJGPP go32 extender.
*
* We acknowledge the Linux Community, Free Software Foundation,
* D.J. Delorie and all the other developers who believe in the
* freedom of software and ideas.
*
* For legalese, check out the included GPL license.
*/
/* File: Vm86.C
*
* VM86 mode switch routines!
* This is basically an alternative way of invoking the
* BIOS service routines; it is very useful to support
* native VBE compliant Video card, without writing an explicit driver
*/
#include <ll/i386/hw-data.h>
#include <ll/i386/hw-instr.h>
#include <ll/i386/hw-func.h>
#include <ll/i386/mem.h>
#include <ll/i386/x-bios.h>
#include <ll/i386/x-dosmem.h>
#include <ll/i386/cons.h>
#include <ll/i386/error.h>
#include <ll/i386/apic.h>
#include <ll/i386/advtimer.h>
FILE
(VM
-86);
/*
#define __LL_DEBUG__
#define __DUMB_CODE__
#define __CHK_IO__
*/
//#define __LL_DEBUG__
#define VM86_STACK_SIZE 8192
extern DWORD ll_irq_table
[256];
extern unsigned char use_apic
, use_tsc
;
/* TSS optional section */
static BYTE vm86_stack0
[VM86_STACK_SIZE
];
static BYTE init
= 0;
static struct {
TSS t
;
DWORD io_map
[2048];
} vm86_TSS
;
static LIN_ADDR vm86_stack
;
static LIN_ADDR vm86_iretAddress
;
struct registers
*global_regs
;
WORD VM86_ret_ctx
;
#ifdef __DUMB_CODE__
static LIN_ADDR vm86_code
;
static BYTE prova86
[] = {
0x1e, /* push ds */
0xb8,0x00,0xb8, /* mov ax,0xb800 */
0x8e,0xd8, /* mov ds,ax */
0xbf,0x9e,0x00, /* mov di,0x009e (158) */
0xb0,0x2a, /* mov ax,'*' */
0x88,0x05, /* mov ds:[di],al */
0x1f, /* pop ds */
0xcd, 0x40, /*???*/
#ifdef __CHK_IO__
0xb0, 0x00, /* movb $0x0,%al*/
0x66,0xba, 0x80, 0x00, /* movw $0x80,%dx */
0x66,0xef, /* outw %ax, (%dx) */
#endif
0xcf, /* iret */
0xf4, /* hlt */
0};
#endif
static BYTE vm86_retAddr
[] = {0xcd, 0x48, /* int 48h */
0xf4,
0};
TSS
*vm86_get_tss
(void)
{
return &(vm86_TSS.
t);
}
/* Just a debugging function; it dumps the status of the TSS */
void vm86_dump_TSS
(void)
{
BYTE acc
,gran
;
DWORD base
,lim
;
message
("vm86_TSS.t dump\n");
message
("Flag: %lx\n",vm86_TSS.
t.
eflags);
message
("SS: %hx SP:%lx\n", vm86_TSS.
t.
ss,vm86_TSS.
t.
esp);
message
("Stack0: %hx:%lx\n",vm86_TSS.
t.
ss0,vm86_TSS.
t.
esp0);
message
("Stack1: %hx:%lx\n",vm86_TSS.
t.
ss1,vm86_TSS.
t.
esp1);
message
("Stack2: %hx:%lx\n",vm86_TSS.
t.
ss2,vm86_TSS.
t.
esp2);
message
("CS: %hx IP: %lx",vm86_TSS.
t.
cs, vm86_TSS.
t.
eip);
message
("DS: %hx\n",vm86_TSS.
t.
ds);
base
= GDT_read
(X_VM86_TSS
,&lim
,&acc
,&gran
);
message
("Base : %lx Lim : %lx Acc : %x Gran %x\n",
base
,lim
,(unsigned)(acc
),(unsigned)(gran
));
}
void vm86_init
(void)
{
int register i
;
if (init
!= 0) return;
init
= 1;
/* First of all, we need to setup a GDT entries to
* allow vm86 task execution. We just need a free 386 TSS, which
* will be used to store the execution context of the virtual 8086
* task
*/
GDT_place
(X_VM86_TSS
,(DWORD
)(&vm86_TSS
),
sizeof(vm86_TSS
),FREE_TSS386
,GRAN_16
);
/* Return Registers */
global_regs
= DOS_alloc
(sizeof(struct registers
));
/* Prepare a real-mode stack, obtaining it from the
* DOS memory allocator!
* 8K should be OK! Stack top is vm86_stack + SIZE!
*/
vm86_stack
= DOS_alloc
(VM86_STACK_SIZE
*2);
vm86_stack
+= VM86_STACK_SIZE
/2;
vm86_iretAddress
= DOS_alloc
(sizeof(vm86_retAddr
));
memcpy(vm86_iretAddress
,vm86_retAddr
,sizeof(vm86_retAddr
));
#ifdef __LL_DEBUG__
message
("PM reentry linear address=0x%lx\n", (DWORD
)vm86_iretAddress
);
#endif
#ifdef __DUMB_CODE__
vm86_code
= DOS_alloc
(2048);
lmemcpy
(vm86_code
,prova86
,sizeof(prova86
));
#endif
/* Zero the PM/Ring[1,2] ss:esp; they're unused! */
vm86_TSS.
t.
esp1 = 0;
vm86_TSS.
t.
esp2 = 0;
vm86_TSS.
t.
ss1 = 0;
vm86_TSS.
t.
ss2 = 0;
/* Use only the GDT */
vm86_TSS.
t.
ldt = 0;
/* No paging activated */
vm86_TSS.
t.
cr3 = 0;
vm86_TSS.
t.
trap = 0;
/* Yeah, free access to any I/O port; we trust BIOS anyway! */
/* Here is the explanation: we have 65536 I/O ports... each bit
* in the io_map masks/unmasks the exception for the given I/O port
* If the bit is set, an exception is generated; otherwise, if the bit
* is clear, everythings works fine...
* Because of alignment problem, we need to add an extra byte all set
* to 1, according to Intel manuals
*/
vm86_TSS.
t.
io_base = (DWORD
)(&(vm86_TSS.
io_map)) -
(DWORD
)(&(vm86_TSS
));
for (i
= 0; i
< 2047; i
++) vm86_TSS.
io_map[i
] = 0;
vm86_TSS.
io_map[2047] = 0xFF000000;
}
int vm86_callBIOS
(int service
,X_REGS16
*in
,X_REGS16
*out
,X_SREGS16
*s
)
{
DWORD vm86_tmpAddr
;
DWORD vm86_flags
, vm86_cs
,vm86_ip
;
LIN_ADDR vm86_stackPtr
;
DWORD
*IRQTable_entry
;
BYTE p1
,p2
;
DWORD msr1
= 0,msr2
= 0;
SYS_FLAGS f
;
if (service
< 0x10 || in
== NULL
) return -1;
f
= ll_fsave
();
/* Setup the stack frame */
vm86_tmpAddr
= (DWORD
)(vm86_stack
);
vm86_TSS.
t.
ss = (vm86_tmpAddr
& 0xFF000) >> 4;
vm86_TSS.
t.
ebp = vm86_TSS.
t.
esp = (vm86_tmpAddr
& 0x0FFF)
+ VM86_STACK_SIZE
- 6;
/* Build an iret stack frame which returns to vm86_iretAddress */
vm86_tmpAddr
= (DWORD
)(vm86_iretAddress
);
vm86_cs
= (vm86_tmpAddr
& 0xFF000) >> 4;
vm86_ip
= (vm86_tmpAddr
& 0xFFF);
vm86_flags
= 0;
vm86_stackPtr
= vm86_stack
+ VM86_STACK_SIZE
;
lmempokew
(vm86_stackPtr
-6,vm86_ip
);
lmempokew
(vm86_stackPtr
-4,vm86_cs
);
lmempokew
(vm86_stackPtr
-2,vm86_flags
);
#ifdef __LL_DEBUG__
message
("Stack: %lx SS: %lx SP: %lx\n",
vm86_tmpAddr
+ VM86_STACK_SIZE
,(DWORD
)vm86_TSS.
t.
ss,vm86_TSS.
t.
esp);
#endif
/* Wanted VM86 mode + IOPL = 3! */
vm86_TSS.
t.
eflags = CPU_FLAG_VM
+ CPU_FLAG_IOPL
;
/* Preload some standard values into the registers */
vm86_TSS.
t.
ss0 = X_FLATDATA_SEL
;
vm86_TSS.
t.
esp0 = (DWORD
)&(vm86_stack0
[VM86_STACK_SIZE
-1]);
#ifdef __DUMB_CODE__
vm86_TSS.
t.
cs = ((DWORD
)(vm86_code
) & 0xFFFF0) >> 4;
vm86_TSS.
t.
eip = ((DWORD
)(vm86_code
) & 0x000F);
#ifdef __LL_DEBUG_
message
("(DUMB CODE) CS:%x IP:%x/%x\n",
(DWORD
)vm86_TSS.
t.
cs,vm86_TSS.
t.
eip,&prova86
);
message
("(DUMB CODE) Go...\n");
#endif
p1
= inp
(0x21);
p2
= inp
(0xA1);
outp
(0x21,0xFF);
outp
(0xA1,0xFF);
if (use_apic
) {
rdmsr
(APIC_BASE_MSR
,msr1
,msr2
);
disable_APIC_timer
();
}
vm86_TSS.
t.
back_link = ll_context_save
();
VM86_ret_ctx
= vm86_TSS.
t.
back_link
sti
();
ll_context_load
(X_VM86_TSS
);
cli
();
if (use_apic
) {
wrmsr
(APIC_BASE_MSR
,msr1
,msr2
);
enable_APIC_timer
();
}
outp
(0x21,p1
);
outp
(0xA1,p2
);
#ifdef __LL_DEBUG_
message
("(DUMB CODE) I am back...\n");
#endif
#else
/* Copy the parms from the X_*REGS structures in the vm86 TSS */
vm86_TSS.
t.
eax = (DWORD
)in
->x.
ax;
vm86_TSS.
t.
ebx = (DWORD
)in
->x.
bx;
vm86_TSS.
t.
ecx = (DWORD
)in
->x.
cx;
vm86_TSS.
t.
edx = (DWORD
)in
->x.
dx;
vm86_TSS.
t.
esi = (DWORD
)in
->x.
si;
vm86_TSS.
t.
edi = (DWORD
)in
->x.
di;
/* IF Segment registers are required, copy them... */
if (s
!= NULL
) {
vm86_TSS.
t.
es = (WORD
)s
->es
;
vm86_TSS.
t.
ds = (WORD
)s
->ds
;
} else {
vm86_TSS.
t.
ds = vm86_TSS.
t.
ss;
vm86_TSS.
t.
es = vm86_TSS.
t.
ss;
}
vm86_TSS.
t.
gs = vm86_TSS.
t.
ss;
vm86_TSS.
t.
fs = vm86_TSS.
t.
ss;
/* Execute the BIOS call, fetching the CS:IP of the real interrupt
* handler from 0:0 (DOS irq table!)
*/
IRQTable_entry
= (void *)(0L);
vm86_TSS.
t.
cs= ((IRQTable_entry
[service
]) & 0xFFFF0000) >> 16;
vm86_TSS.
t.
eip = ((IRQTable_entry
[service
]) & 0x0000FFFF);
#ifdef __LL_DEBUG__
message
("CS:%x IP:%lx\n", vm86_TSS.
t.
cs, vm86_TSS.
t.
eip);
#endif
/* Let's use the ll standard call... */
p1
= inp
(0x21);
p2
= inp
(0xA1);
outp
(0x21,0xFF);
outp
(0xA1,0xFF);
if (use_apic
) {
rdmsr
(APIC_BASE_MSR
,msr1
,msr2
);
disable_APIC_timer
();
}
vm86_TSS.
t.
back_link = ll_context_save
();
VM86_ret_ctx
= vm86_TSS.
t.
back_link;
sti
();
ll_context_load
(X_VM86_TSS
);
cli
();
if (use_apic
) {
wrmsr
(APIC_BASE_MSR
,msr1
,msr2
);
enable_APIC_timer
();
}
outp
(0x21,p1
);
outp
(0xA1,p2
);
#ifdef __LL_DEBUG__
message
("I am back...\n");
message
("TSS CS=%hx IP=%lx\n", vm86_TSS.
t.
cs, vm86_TSS.
t.
eip);
#endif
/* Send back in the X_*REGS structure the value obtained with
* the real-mode interrupt call
*/
if (out
!= NULL
) {
out
->x.
ax = global_regs
->eax
;
out
->x.
bx = global_regs
->ebx
;
out
->x.
cx = global_regs
->ecx
;
out
->x.
dx = global_regs
->edx
;
out
->x.
si = global_regs
->esi
;
out
->x.
di = global_regs
->edi
;
out
->x.
cflag = global_regs
->flags
;
//message("ax = %d bx = %d cx = %d dx = %d\n",out->x.ax,out->x.bx,out->x.cx,out->x.dx);
//message("si = %d di = %d\n",out->x.si,out->x.di);
}
if (s
!= NULL
) {
s
->es
= vm86_TSS.
t.
es;
s
->ds
= vm86_TSS.
t.
ds;
}
#endif
ll_frestore
(f
);
return 1;
}