Go to most recent revision |
Blame |
Compare with Previous |
Last modification |
View Log
| RSS feed
/*
* linux/include/linux/ext3_fs_i.h
*
* Copyright (C) 1992, 1993, 1994, 1995
* Remy Card (card@masi.ibp.fr)
* Laboratoire MASI - Institut Blaise Pascal
* Universite Pierre et Marie Curie (Paris VI)
*
* from
*
* linux/include/linux/minix_fs_i.h
*
* Copyright (C) 1991, 1992 Linus Torvalds
*/
#ifndef _LINUX_EXT3_FS_I
#define _LINUX_EXT3_FS_I
#include <linux/rwsem.h>
/*
* second extended file system inode data in memory
*/
struct ext3_inode_info {
__u32 i_data[15];
__u32 i_flags;
#ifdef EXT3_FRAGMENTS
__u32 i_faddr;
__u8 i_frag_no;
__u8 i_frag_size;
#endif
__u32 i_file_acl;
__u32 i_dir_acl;
__u32 i_dtime;
/*
* i_block_group is the number of the block group which contains
* this file's inode. Constant across the lifetime of the inode,
* it is ued for making block allocation decisions - we try to
* place a file's data blocks near its inode block, and new inodes
* near to their parent directory's inode.
*/
__u32 i_block_group;
__u32 i_state; /* Dynamic state flags for ext3 */
/*
* i_next_alloc_block is the logical (file-relative) number of the
* most-recently-allocated block in this file. Yes, it is misnamed.
* We use this for detecting linearly ascending allocation requests.
*/
__u32 i_next_alloc_block;
/*
* i_next_alloc_goal is the *physical* companion to i_next_alloc_block.
* it the the physical block number of the block which was most-recently
* allocated to this file. This give us the goal (target) for the next
* allocation when we detect linearly ascending requests.
*/
__u32 i_next_alloc_goal;
#ifdef EXT3_PREALLOCATE
__u32 i_prealloc_block;
__u32 i_prealloc_count;
#endif
__u32 i_dir_start_lookup;
#ifdef CONFIG_EXT3_FS_XATTR
/*
* Extended attributes can be read independently of the main file
* data. Taking i_sem even when reading would cause contention
* between readers of EAs and writers of regular file data, so
* instead we synchronize on xattr_sem when reading or changing
* EAs.
*/
struct rw_semaphore xattr_sem;
#endif
#ifdef CONFIG_EXT3_FS_POSIX_ACL
struct posix_acl *i_acl;
struct posix_acl *i_default_acl;
#endif
struct list_head i_orphan; /* unlinked but open inodes */
/*
* i_disksize keeps track of what the inode size is ON DISK, not
* in memory. During truncate, i_size is set to the new size by
* the VFS prior to calling ext3_truncate(), but the filesystem won't
* set i_disksize to 0 until the truncate is actually under way.
*
* The intent is that i_disksize always represents the blocks which
* are used by this file. This allows recovery to restart truncate
* on orphans if we crash during truncate. We actually write i_disksize
* into the on-disk inode when writing inodes out, instead of i_size.
*
* The only time when i_disksize and i_size may be different is when
* a truncate is in progress. The only things which change i_disksize
* are ext3_get_block (growth) and ext3_truncate (shrinkth).
*/
loff_t i_disksize;
/*
* truncate_sem is for serialising ext3_truncate() against
* ext3_getblock(). In the 2.4 ext2 design, great chunks of inode's
* data tree are chopped off during truncate. We can't do that in
* ext3 because whenever we perform intermediate commits during
* truncate, the inode and all the metadata blocks *must* be in a
* consistent state which allows truncation of the orphans to restart
* during recovery. Hence we must fix the get_block-vs-truncate race
* by other means, so we have truncate_sem.
*/
struct semaphore truncate_sem;
struct inode vfs_inode;
};
#endif /* _LINUX_EXT3_FS_I */