Subversion Repositories shark

Rev

Rev 1049 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | RSS feed

 /*
 * Universal Host Controller Interface driver for USB.
 *
 * Maintainer: Johannes Erdfelt <johannes@erdfelt.com>
 *
 * (C) Copyright 1999 Linus Torvalds
 * (C) Copyright 1999-2002 Johannes Erdfelt, johannes@erdfelt.com
 * (C) Copyright 1999 Randy Dunlap
 * (C) Copyright 1999 Georg Acher, acher@in.tum.de
 * (C) Copyright 1999 Deti Fliegl, deti@fliegl.de
 * (C) Copyright 1999 Thomas Sailer, sailer@ife.ee.ethz.ch
 * (C) Copyright 1999 Roman Weissgaerber, weissg@vienna.at
 * (C) Copyright 2000 Yggdrasil Computing, Inc. (port of new PCI interface
 *               support from usb-ohci.c by Adam Richter, adam@yggdrasil.com).
 * (C) Copyright 1999 Gregory P. Smith (from usb-ohci.c)
 *
 * Intel documents this fairly well, and as far as I know there
 * are no royalties or anything like that, but even so there are
 * people who decided that they want to do the same thing in a
 * completely different way.
 *
 * WARNING! The USB documentation is downright evil. Most of it
 * is just crap, written by a committee. You're better off ignoring
 * most of it, the important stuff is:
 *  - the low-level protocol (fairly simple but lots of small details)
 *  - working around the horridness of the rest
 */


#include <linuxcomp.h>

#include <linux/config.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/ioport.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/smp_lock.h>
#include <linux/errno.h>
#include <linux/unistd.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/proc_fs.h>
#ifdef CONFIG_USB_DEBUG
#define DEBUG
#else
#undef DEBUG
#endif
#include <linux/usb.h>

#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/system.h>

#include "../core/hcd.h"
#include "uhci-hcd.h"

#include <linux/pm.h>

/*
 * Version Information
 */

#define DRIVER_VERSION "v2.1"
#define DRIVER_AUTHOR "Linus 'Frodo Rabbit' Torvalds, Johannes Erdfelt, Randy Dunlap, Georg Acher, Deti Fliegl, Thomas Sailer, Roman Weissgaerber"
#define DRIVER_DESC "USB Universal Host Controller Interface driver"

/*
 * debug = 0, no debugging messages
 * debug = 1, dump failed URB's except for stalls
 * debug = 2, dump all failed URB's (including stalls)
 *            show all queues in /proc/driver/uhci/[pci_addr]
 * debug = 3, show all TD's in URB's when dumping
 */

#ifdef DEBUG
static int debug = 3;
#else
static int debug = 0;
#endif
MODULE_PARM(debug, "i");
MODULE_PARM_DESC(debug, "Debug level");
static char *errbuf;
#define ERRBUF_LEN    (PAGE_SIZE * 8)

#include "uhci-hub.c"
#include "uhci-debug.c"

static kmem_cache_t *uhci_up_cachep;    /* urb_priv */

static int uhci_get_current_frame_number(struct uhci_hcd *uhci);
static int uhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb);
static void uhci_unlink_generic(struct uhci_hcd *uhci, struct urb *urb);

static void hc_state_transitions(struct uhci_hcd *uhci);

/* If a transfer is still active after this much time, turn off FSBR */
#define IDLE_TIMEOUT    (HZ / 20)       /* 50 ms */
#define FSBR_DELAY      (HZ / 20)       /* 50 ms */

/* When we timeout an idle transfer for FSBR, we'll switch it over to */
/* depth first traversal. We'll do it in groups of this number of TD's */
/* to make sure it doesn't hog all of the bandwidth */
#define DEPTH_INTERVAL 5

/*
 * Technically, updating td->status here is a race, but it's not really a
 * problem. The worst that can happen is that we set the IOC bit again
 * generating a spurious interrupt. We could fix this by creating another
 * QH and leaving the IOC bit always set, but then we would have to play
 * games with the FSBR code to make sure we get the correct order in all
 * the cases. I don't think it's worth the effort
 */

static inline void uhci_set_next_interrupt(struct uhci_hcd *uhci)
{
        unsigned long flags;

        spin_lock_irqsave(&uhci->frame_list_lock, flags);
        uhci->term_td->status |= cpu_to_le32(TD_CTRL_IOC);
        spin_unlock_irqrestore(&uhci->frame_list_lock, flags);
}

static inline void uhci_clear_next_interrupt(struct uhci_hcd *uhci)
{
        unsigned long flags;

        spin_lock_irqsave(&uhci->frame_list_lock, flags);
        uhci->term_td->status &= ~cpu_to_le32(TD_CTRL_IOC);
        spin_unlock_irqrestore(&uhci->frame_list_lock, flags);
}

static inline void uhci_add_complete(struct uhci_hcd *uhci, struct urb *urb)
{
        struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
        unsigned long flags;

        spin_lock_irqsave(&uhci->complete_list_lock, flags);
        list_add_tail(&urbp->complete_list, &uhci->complete_list);
        spin_unlock_irqrestore(&uhci->complete_list_lock, flags);
}

static struct uhci_td *uhci_alloc_td(struct uhci_hcd *uhci, struct usb_device *dev)
{
        dma_addr_t dma_handle;
        struct uhci_td *td;

        td = pci_pool_alloc(uhci->td_pool, GFP_ATOMIC, &dma_handle);
        if (!td)
                return NULL;

        td->dma_handle = dma_handle;

        td->link = UHCI_PTR_TERM;
        td->buffer = 0;

        td->frame = -1;
        td->dev = dev;

        INIT_LIST_HEAD(&td->list);
        INIT_LIST_HEAD(&td->remove_list);
        INIT_LIST_HEAD(&td->fl_list);

        usb_get_dev(dev);

        return td;
}

static inline void uhci_fill_td(struct uhci_td *td, __u32 status,
                __u32 token, __u32 buffer)
{
        td->status = cpu_to_le32(status);
        td->token = cpu_to_le32(token);
        td->buffer = cpu_to_le32(buffer);
}

/*
 * We insert Isochronous URB's directly into the frame list at the beginning
 */

static void uhci_insert_td_frame_list(struct uhci_hcd *uhci, struct uhci_td *td, unsigned framenum)
{
        unsigned long flags;

        framenum %= UHCI_NUMFRAMES;

        spin_lock_irqsave(&uhci->frame_list_lock, flags);

        td->frame = framenum;

        /* Is there a TD already mapped there? */
        if (uhci->fl->frame_cpu[framenum]) {
                struct uhci_td *ftd, *ltd;

                ftd = uhci->fl->frame_cpu[framenum];
                ltd = list_entry(ftd->fl_list.prev, struct uhci_td, fl_list);

                list_add_tail(&td->fl_list, &ftd->fl_list);

                td->link = ltd->link;
                mb();
                ltd->link = cpu_to_le32(td->dma_handle);
        } else {
                td->link = uhci->fl->frame[framenum];
                mb();
                uhci->fl->frame[framenum] = cpu_to_le32(td->dma_handle);
                uhci->fl->frame_cpu[framenum] = td;
        }

        spin_unlock_irqrestore(&uhci->frame_list_lock, flags);
}

static void uhci_remove_td(struct uhci_hcd *uhci, struct uhci_td *td)
{
        unsigned long flags;

        /* If it's not inserted, don't remove it */
        spin_lock_irqsave(&uhci->frame_list_lock, flags);
        if (td->frame == -1 && list_empty(&td->fl_list))
                goto out;

        if (td->frame != -1 && uhci->fl->frame_cpu[td->frame] == td) {
                if (list_empty(&td->fl_list)) {
                        uhci->fl->frame[td->frame] = td->link;
                        uhci->fl->frame_cpu[td->frame] = NULL;
                } else {
                        struct uhci_td *ntd;

                        ntd = list_entry(td->fl_list.next, struct uhci_td, fl_list);
                        uhci->fl->frame[td->frame] = cpu_to_le32(ntd->dma_handle);
                        uhci->fl->frame_cpu[td->frame] = ntd;
                }
        } else {
                struct uhci_td *ptd;

                ptd = list_entry(td->fl_list.prev, struct uhci_td, fl_list);
                ptd->link = td->link;
        }

        mb();
        td->link = UHCI_PTR_TERM;

        list_del_init(&td->fl_list);
        td->frame = -1;

out:
        spin_unlock_irqrestore(&uhci->frame_list_lock, flags);
}

/*
 * Inserts a td into qh list at the top.
 */

static void uhci_insert_tds_in_qh(struct uhci_qh *qh, struct urb *urb, u32 breadth)
{
        struct list_head *tmp, *head;
        struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
        struct uhci_td *td, *ptd;

        if (list_empty(&urbp->td_list))
                return;

        head = &urbp->td_list;
        tmp = head->next;

        /* Ordering isn't important here yet since the QH hasn't been */
        /*  inserted into the schedule yet */
        td = list_entry(tmp, struct uhci_td, list);

        /* Add the first TD to the QH element pointer */
        qh->element = cpu_to_le32(td->dma_handle) | breadth;

        ptd = td;

        /* Then link the rest of the TD's */
        tmp = tmp->next;
        while (tmp != head) {
                td = list_entry(tmp, struct uhci_td, list);

                tmp = tmp->next;

                ptd->link = cpu_to_le32(td->dma_handle) | breadth;

                ptd = td;
        }

        ptd->link = UHCI_PTR_TERM;
}

static void uhci_free_td(struct uhci_hcd *uhci, struct uhci_td *td)
{
        if (!list_empty(&td->list))
                dbg("td %p is still in list!", td);
        if (!list_empty(&td->remove_list))
                dbg("td %p still in remove_list!", td);
        if (!list_empty(&td->fl_list))
                dbg("td %p is still in fl_list!", td);

        if (td->dev)
                usb_put_dev(td->dev);

        pci_pool_free(uhci->td_pool, td, td->dma_handle);
}

static struct uhci_qh *uhci_alloc_qh(struct uhci_hcd *uhci, struct usb_device *dev)
{
        dma_addr_t dma_handle;
        struct uhci_qh *qh;

        qh = pci_pool_alloc(uhci->qh_pool, GFP_ATOMIC, &dma_handle);
        if (!qh)
                return NULL;

        qh->dma_handle = dma_handle;

        qh->element = UHCI_PTR_TERM;
        qh->link = UHCI_PTR_TERM;

        qh->dev = dev;
        qh->urbp = NULL;

        INIT_LIST_HEAD(&qh->list);
        INIT_LIST_HEAD(&qh->remove_list);

        usb_get_dev(dev);

        return qh;
}

static void uhci_free_qh(struct uhci_hcd *uhci, struct uhci_qh *qh)
{
        if (!list_empty(&qh->list))
                dbg("qh %p list not empty!", qh);
        if (!list_empty(&qh->remove_list))
                dbg("qh %p still in remove_list!", qh);

        if (qh->dev)
                usb_put_dev(qh->dev);

        pci_pool_free(uhci->qh_pool, qh, qh->dma_handle);
}

/*
 * Append this urb's qh after the last qh in skelqh->list
 * MUST be called with uhci->frame_list_lock acquired
 *
 * Note that urb_priv.queue_list doesn't have a separate queue head;
 * it's a ring with every element "live".
 */

static void _uhci_insert_qh(struct uhci_hcd *uhci, struct uhci_qh *skelqh, struct urb *urb)
{
        struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
        struct list_head *tmp;
        struct uhci_qh *lqh;

        /* Grab the last QH */
        lqh = list_entry(skelqh->list.prev, struct uhci_qh, list);

        /*
         * Patch this endpoint's URB's QHs to point to the next skelqh:
         *    skelqh --> ... lqh --> newqh --> next skelqh
         * Do this first, so the HC always sees the right QH after this one.
         */

        list_for_each (tmp, &urbp->queue_list) {
                struct urb_priv *turbp =
                        list_entry(tmp, struct urb_priv, queue_list);

                turbp->qh->link = lqh->link;
        }
        urbp->qh->link = lqh->link;
        wmb();                          /* Ordering is important */

        /*
         * Patch QHs for previous endpoint's queued URBs?  HC goes
         * here next, not to the next skelqh it now points to.
         *
         *    lqh --> td ... --> qh ... --> td --> qh ... --> td
         *     |                 |                 |
         *     v                 v                 v
         *     +<----------------+-----------------+
         *     v
         *    newqh --> td ... --> td
         *     |
         *     v
         *    ...
         *
         * The HC could see (and use!) any of these as we write them.
         */

        if (lqh->urbp) {
                list_for_each (tmp, &lqh->urbp->queue_list) {
                        struct urb_priv *turbp =
                                list_entry(tmp, struct urb_priv, queue_list);

                        turbp->qh->link = cpu_to_le32(urbp->qh->dma_handle) | UHCI_PTR_QH;
                }
        }
        lqh->link = cpu_to_le32(urbp->qh->dma_handle) | UHCI_PTR_QH;

        list_add_tail(&urbp->qh->list, &skelqh->list);
}

static void uhci_insert_qh(struct uhci_hcd *uhci, struct uhci_qh *skelqh, struct urb *urb)
{
        unsigned long flags;

        spin_lock_irqsave(&uhci->frame_list_lock, flags);
        _uhci_insert_qh(uhci, skelqh, urb);
        spin_unlock_irqrestore(&uhci->frame_list_lock, flags);
}

/*
 * Start removal of QH from schedule; it finishes next frame.
 * TDs should be unlinked before this is called.
 */

static void uhci_remove_qh(struct uhci_hcd *uhci, struct uhci_qh *qh)
{
        unsigned long flags;
        struct uhci_qh *pqh;

        if (!qh)
                return;

        qh->urbp = NULL;

        /*
         * Only go through the hoops if it's actually linked in
         * Queued QHs are removed in uhci_delete_queued_urb,
         * since (for queued URBs) the pqh is pointed to the next
         * QH in the queue, not the next endpoint's QH.
         */

        spin_lock_irqsave(&uhci->frame_list_lock, flags);
        if (!list_empty(&qh->list)) {
                pqh = list_entry(qh->list.prev, struct uhci_qh, list);

                if (pqh->urbp) {
                        struct list_head *head, *tmp;

                        head = &pqh->urbp->queue_list;
                        tmp = head->next;
                        while (head != tmp) {
                                struct urb_priv *turbp =
                                        list_entry(tmp, struct urb_priv, queue_list);

                                tmp = tmp->next;

                                turbp->qh->link = qh->link;
                        }
                }

                pqh->link = qh->link;
                mb();
                /* Leave qh->link in case the HC is on the QH now, it will */
                /* continue the rest of the schedule */
                qh->element = UHCI_PTR_TERM;

                list_del_init(&qh->list);
        }
        spin_unlock_irqrestore(&uhci->frame_list_lock, flags);

        spin_lock_irqsave(&uhci->qh_remove_list_lock, flags);

        /* Check to see if the remove list is empty. Set the IOC bit */
        /* to force an interrupt so we can remove the QH */
        if (list_empty(&uhci->qh_remove_list))
                uhci_set_next_interrupt(uhci);

        list_add(&qh->remove_list, &uhci->qh_remove_list);

        spin_unlock_irqrestore(&uhci->qh_remove_list_lock, flags);
}

static int uhci_fixup_toggle(struct urb *urb, unsigned int toggle)
{
        struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
        struct list_head *head, *tmp;

        head = &urbp->td_list;
        tmp = head->next;
        while (head != tmp) {
                struct uhci_td *td = list_entry(tmp, struct uhci_td, list);

                tmp = tmp->next;

                if (toggle)
                        td->token |= cpu_to_le32(TD_TOKEN_TOGGLE);
                else
                        td->token &= ~cpu_to_le32(TD_TOKEN_TOGGLE);


                toggle ^= 1;
        }

        return toggle;
}

/* This function will append one URB's QH to another URB's QH. This is for */
/* queuing interrupt, control or bulk transfers */
static void uhci_append_queued_urb(struct uhci_hcd *uhci, struct urb *eurb, struct urb *urb)
{
        struct urb_priv *eurbp, *urbp, *furbp, *lurbp;
        struct list_head *tmp;
        struct uhci_td *lltd;
        unsigned long flags;

        eurbp = eurb->hcpriv;
        urbp = urb->hcpriv;

        spin_lock_irqsave(&uhci->frame_list_lock, flags);

        /* Find the first URB in the queue */
        if (eurbp->queued) {
                struct list_head *head = &eurbp->queue_list;

                tmp = head->next;
                while (tmp != head) {
                        struct urb_priv *turbp =
                                list_entry(tmp, struct urb_priv, queue_list);

                        if (!turbp->queued)
                                break;

                        tmp = tmp->next;
                }
        } else
                tmp = &eurbp->queue_list;

        furbp = list_entry(tmp, struct urb_priv, queue_list);
        lurbp = list_entry(furbp->queue_list.prev, struct urb_priv, queue_list);

        lltd = list_entry(lurbp->td_list.prev, struct uhci_td, list);

        usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), usb_pipeout(urb->pipe),
                uhci_fixup_toggle(urb, uhci_toggle(td_token(lltd)) ^ 1));

        /* All qh's in the queue need to link to the next queue */
        urbp->qh->link = eurbp->qh->link;

        mb();                   /* Make sure we flush everything */

        lltd->link = cpu_to_le32(urbp->qh->dma_handle) | UHCI_PTR_QH;

        list_add_tail(&urbp->queue_list, &furbp->queue_list);

        urbp->queued = 1;

        spin_unlock_irqrestore(&uhci->frame_list_lock, flags);
}

static void uhci_delete_queued_urb(struct uhci_hcd *uhci, struct urb *urb)
{
        struct urb_priv *urbp, *nurbp;
        struct list_head *head, *tmp;
        struct urb_priv *purbp;
        struct uhci_td *pltd;
        unsigned int toggle;
        unsigned long flags;

        urbp = urb->hcpriv;

        spin_lock_irqsave(&uhci->frame_list_lock, flags);

        if (list_empty(&urbp->queue_list))
                goto out;

        nurbp = list_entry(urbp->queue_list.next, struct urb_priv, queue_list);

        /* Fix up the toggle for the next URB's */
        if (!urbp->queued)
                /* We just set the toggle in uhci_unlink_generic */
                toggle = usb_gettoggle(urb->dev, usb_pipeendpoint(urb->pipe), usb_pipeout(urb->pipe));
        else {
                /* If we're in the middle of the queue, grab the toggle */
                /*  from the TD previous to us */
                purbp = list_entry(urbp->queue_list.prev, struct urb_priv,
                                queue_list);

                pltd = list_entry(purbp->td_list.prev, struct uhci_td, list);

                toggle = uhci_toggle(td_token(pltd)) ^ 1;
        }

        head = &urbp->queue_list;
        tmp = head->next;
        while (head != tmp) {
                struct urb_priv *turbp;

                turbp = list_entry(tmp, struct urb_priv, queue_list);

                tmp = tmp->next;

                if (!turbp->queued)
                        break;

                toggle = uhci_fixup_toggle(turbp->urb, toggle);
        }

        usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe),
                usb_pipeout(urb->pipe), toggle);

        if (!urbp->queued) {
                struct uhci_qh *pqh;

                nurbp->queued = 0;

                /*
                 * Fixup the previous QH's queue to link to the new head
                 * of this queue.
                 */

                pqh = list_entry(urbp->qh->list.prev, struct uhci_qh, list);

                if (pqh->urbp) {
                        struct list_head *head, *tmp;

                        head = &pqh->urbp->queue_list;
                        tmp = head->next;
                        while (head != tmp) {
                                struct urb_priv *turbp =
                                        list_entry(tmp, struct urb_priv, queue_list);

                                tmp = tmp->next;

                                turbp->qh->link = cpu_to_le32(nurbp->qh->dma_handle) | UHCI_PTR_QH;
                        }
                }

                pqh->link = cpu_to_le32(nurbp->qh->dma_handle) | UHCI_PTR_QH;

                list_add_tail(&nurbp->qh->list, &urbp->qh->list);
                list_del_init(&urbp->qh->list);
        } else {
                /* We're somewhere in the middle (or end). A bit trickier */
                /*  than the head scenario */
                purbp = list_entry(urbp->queue_list.prev, struct urb_priv,
                                queue_list);

                pltd = list_entry(purbp->td_list.prev, struct uhci_td, list);
                if (nurbp->queued)
                        pltd->link = cpu_to_le32(nurbp->qh->dma_handle) | UHCI_PTR_QH;
                else
                        /* The next URB happens to be the beginning, so */
                        /*  we're the last, end the chain */
                        pltd->link = UHCI_PTR_TERM;
        }

        list_del_init(&urbp->queue_list);

out:
        spin_unlock_irqrestore(&uhci->frame_list_lock, flags);
}

extern void* malloc(int size);

static struct urb_priv *uhci_alloc_urb_priv(struct uhci_hcd *uhci, struct urb *urb)
{
        struct urb_priv *urbp;

        urbp = malloc(sizeof(struct urb_priv)); //**kmem_cache_alloc(uhci_up_cachep, SLAB_ATOMIC);
        if (!urbp) {
                err("uhci_alloc_urb_priv: couldn't allocate memory for urb_priv\n");
                return NULL;
        }

        memset((void *)urbp, 0, sizeof(*urbp));

        urbp->inserttime = jiffies26;
        urbp->fsbrtime = jiffies26;
        urbp->urb = urb;
        urbp->dev = urb->dev;
       
        INIT_LIST_HEAD(&urbp->td_list);
        INIT_LIST_HEAD(&urbp->queue_list);
        INIT_LIST_HEAD(&urbp->complete_list);
        INIT_LIST_HEAD(&urbp->urb_list);

        list_add_tail(&urbp->urb_list, &uhci->urb_list);

        urb->hcpriv = urbp;

        return urbp;
}

/*
 * MUST be called with urb->lock acquired
 */

static void uhci_add_td_to_urb(struct urb *urb, struct uhci_td *td)
{
        struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;

        td->urb = urb;

        list_add_tail(&td->list, &urbp->td_list);
}

/*
 * MUST be called with urb->lock acquired
 */

static void uhci_remove_td_from_urb(struct uhci_td *td)
{
        if (list_empty(&td->list))
                return;

        list_del_init(&td->list);

        td->urb = NULL;
}

/*
 * MUST be called with urb->lock acquired
 */

static void uhci_destroy_urb_priv(struct uhci_hcd *uhci, struct urb *urb)
{
        struct list_head *head, *tmp;
        struct urb_priv *urbp;
        unsigned long flags;

        urbp = (struct urb_priv *)urb->hcpriv;
        if (!urbp)
                return;

        if (!list_empty(&urbp->urb_list))
                warn("uhci_destroy_urb_priv: urb %p still on uhci->urb_list or uhci->remove_list", urb);

        if (!list_empty(&urbp->complete_list))
                warn("uhci_destroy_urb_priv: urb %p still on uhci->complete_list", urb);

        spin_lock_irqsave(&uhci->td_remove_list_lock, flags);

        /* Check to see if the remove list is empty. Set the IOC bit */
        /* to force an interrupt so we can remove the TD's*/
        if (list_empty(&uhci->td_remove_list))
                uhci_set_next_interrupt(uhci);

        head = &urbp->td_list;
        tmp = head->next;
        while (tmp != head) {
                struct uhci_td *td = list_entry(tmp, struct uhci_td, list);

                tmp = tmp->next;

                uhci_remove_td_from_urb(td);
                uhci_remove_td(uhci, td);
                list_add(&td->remove_list, &uhci->td_remove_list);
        }

        spin_unlock_irqrestore(&uhci->td_remove_list_lock, flags);

        urb->hcpriv = NULL;
        //**kmem_cache_free(uhci_up_cachep, urbp);
        free(urbp);
}

static void uhci_inc_fsbr(struct uhci_hcd *uhci, struct urb *urb)
{
        unsigned long flags;
        struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;

        spin_lock_irqsave(&uhci->frame_list_lock, flags);

        if ((!(urb->transfer_flags & URB_NO_FSBR)) && !urbp->fsbr) {
                urbp->fsbr = 1;
                if (!uhci->fsbr++ && !uhci->fsbrtimeout)
                        uhci->skel_term_qh->link = cpu_to_le32(uhci->skel_hs_control_qh->dma_handle) | UHCI_PTR_QH;
        }

        spin_unlock_irqrestore(&uhci->frame_list_lock, flags);
}

static void uhci_dec_fsbr(struct uhci_hcd *uhci, struct urb *urb)
{
        unsigned long flags;
        struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;

        spin_lock_irqsave(&uhci->frame_list_lock, flags);

        if ((!(urb->transfer_flags & URB_NO_FSBR)) && urbp->fsbr) {
                urbp->fsbr = 0;
                if (!--uhci->fsbr)
                        uhci->fsbrtimeout = jiffies26 + FSBR_DELAY;
        }

        spin_unlock_irqrestore(&uhci->frame_list_lock, flags);
}

/*
 * Map status to standard result codes
 *
 * <status> is (td->status & 0xFE0000) [a.k.a. uhci_status_bits(td->status)]
 * <dir_out> is True for output TDs and False for input TDs.
 */

static int uhci_map_status(int status, int dir_out)
{
        if (!status)
                return 0;
        if (status & TD_CTRL_BITSTUFF)                  /* Bitstuff error */
                return -EPROTO;
        if (status & TD_CTRL_CRCTIMEO) {                /* CRC/Timeout */
                if (dir_out)
                        return -ETIMEDOUT;
                else
                        return -EILSEQ;
        }
        if (status & TD_CTRL_NAK)                       /* NAK */
                return -ETIMEDOUT;
        if (status & TD_CTRL_BABBLE)                    /* Babble */
                return -EOVERFLOW;
        if (status & TD_CTRL_DBUFERR)                   /* Buffer error */
                return -ENOSR;
        if (status & TD_CTRL_STALLED)                   /* Stalled */
                return -EPIPE;
        if (status & TD_CTRL_ACTIVE)                    /* Active */
                return 0;

        return -EINVAL;
}

/*
 * Control transfers
 */

static int uhci_submit_control(struct uhci_hcd *uhci, struct urb *urb, struct urb *eurb)
{
        struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
        struct uhci_td *td;
        struct uhci_qh *qh, *skelqh;
        unsigned long destination, status;
        int maxsze = usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe));
        int len = urb->transfer_buffer_length;
        dma_addr_t data = urb->transfer_dma;

        /* The "pipe" thing contains the destination in bits 8--18 */
        destination = (urb->pipe & PIPE_DEVEP_MASK) | USB_PID_SETUP;

        /* 3 errors */
        status = TD_CTRL_ACTIVE | uhci_maxerr(3);
        if (urb->dev->speed == USB_SPEED_LOW)
                status |= TD_CTRL_LS;

        /*
         * Build the TD for the control request
         */

        td = uhci_alloc_td(uhci, urb->dev);
        if (!td)
                return -ENOMEM;

        uhci_add_td_to_urb(urb, td);
        uhci_fill_td(td, status, destination | uhci_explen(7),
                urb->setup_dma);

        /*
         * If direction is "send", change the frame from SETUP (0x2D)
         * to OUT (0xE1). Else change it from SETUP to IN (0x69).
         */

        destination ^= (USB_PID_SETUP ^ usb_packetid(urb->pipe));

        if (!(urb->transfer_flags & URB_SHORT_NOT_OK))
                status |= TD_CTRL_SPD;

        /*
         * Build the DATA TD's
         */

        while (len > 0) {
                int pktsze = len;

                if (pktsze > maxsze)
                        pktsze = maxsze;

                td = uhci_alloc_td(uhci, urb->dev);
                if (!td)
                        return -ENOMEM;

                /* Alternate Data0/1 (start with Data1) */
                destination ^= TD_TOKEN_TOGGLE;
       
                uhci_add_td_to_urb(urb, td);
                uhci_fill_td(td, status, destination | uhci_explen(pktsze - 1),
                        data);

                data += pktsze;
                len -= pktsze;
        }

        /*
         * Build the final TD for control status
         */

        td = uhci_alloc_td(uhci, urb->dev);
        if (!td)
                return -ENOMEM;

        /*
         * It's IN if the pipe is an output pipe or we're not expecting
         * data back.
         */

        destination &= ~TD_TOKEN_PID_MASK;
        if (usb_pipeout(urb->pipe) || !urb->transfer_buffer_length)
                destination |= USB_PID_IN;
        else
                destination |= USB_PID_OUT;

        destination |= TD_TOKEN_TOGGLE;         /* End in Data1 */

        status &= ~TD_CTRL_SPD;

        uhci_add_td_to_urb(urb, td);
        uhci_fill_td(td, status | TD_CTRL_IOC,
                destination | uhci_explen(UHCI_NULL_DATA_SIZE), 0);

        qh = uhci_alloc_qh(uhci, urb->dev);
        if (!qh)
                return -ENOMEM;

        urbp->qh = qh;
        qh->urbp = urbp;

        uhci_insert_tds_in_qh(qh, urb, UHCI_PTR_BREADTH);

        /* Low speed transfers get a different queue, and won't hog the bus */
        if (urb->dev->speed == USB_SPEED_LOW)
                skelqh = uhci->skel_ls_control_qh;
        else {
                skelqh = uhci->skel_hs_control_qh;
                uhci_inc_fsbr(uhci, urb);
        }

        if (eurb)
                uhci_append_queued_urb(uhci, eurb, urb);
        else
                uhci_insert_qh(uhci, skelqh, urb);

        return -EINPROGRESS;
}

/*
 * If control was short, then end status packet wasn't sent, so this
 * reorganize s so it's sent to finish the transfer.  The original QH is
 * removed from the skel and discarded; all TDs except the last (status)
 * are deleted; the last (status) TD is put on a new QH which is reinserted
 * into the skel.  Since the last TD and urb_priv are reused, the TD->link
 * and urb_priv maintain any queued QHs.
 */

static int usb_control_retrigger_status(struct uhci_hcd *uhci, struct urb *urb)
{
        struct list_head *tmp, *head;
        struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;

        urbp->short_control_packet = 1;

        /* Create a new QH to avoid pointer overwriting problems */
        uhci_remove_qh(uhci, urbp->qh);

        /* Delete all of the TD's except for the status TD at the end */
        head = &urbp->td_list;
        tmp = head->next;
        while (tmp != head && tmp->next != head) {
                struct uhci_td *td = list_entry(tmp, struct uhci_td, list);

                tmp = tmp->next;

                uhci_remove_td_from_urb(td);
                uhci_remove_td(uhci, td);
                uhci_free_td(uhci, td);
        }

        urbp->qh = uhci_alloc_qh(uhci, urb->dev);
        if (!urbp->qh) {
                err("unable to allocate new QH for control retrigger");
                return -ENOMEM;
        }

        urbp->qh->urbp = urbp;

        /* One TD, who cares about Breadth first? */
        uhci_insert_tds_in_qh(urbp->qh, urb, UHCI_PTR_DEPTH);

        /* Low speed transfers get a different queue */
        if (urb->dev->speed == USB_SPEED_LOW)
                uhci_insert_qh(uhci, uhci->skel_ls_control_qh, urb);
        else
                uhci_insert_qh(uhci, uhci->skel_hs_control_qh, urb);

        return -EINPROGRESS;
}


static int uhci_result_control(struct uhci_hcd *uhci, struct urb *urb)
{
        struct list_head *tmp, *head;
        struct urb_priv *urbp = urb->hcpriv;
        struct uhci_td *td;
        unsigned int status;
        int ret = 0;

        if (list_empty(&urbp->td_list))
                return -EINVAL;

        head = &urbp->td_list;
        if (urbp->short_control_packet) {
                tmp = head->prev;
                goto status_phase;
        }
        tmp = head->next;
        td = list_entry(tmp, struct uhci_td, list);

        /* The first TD is the SETUP phase, check the status, but skip */
        /*  the count */
        status = uhci_status_bits(td_status(td));
        if (status & TD_CTRL_ACTIVE)
                return -EINPROGRESS;

        if (status)
                goto td_error;

        urb->actual_length = 0;

        /* The rest of the TD's (but the last) are data */
        tmp = tmp->next;
        while (tmp != head && tmp->next != head) {
                td = list_entry(tmp, struct uhci_td, list);

                tmp = tmp->next;

                status = uhci_status_bits(td_status(td));
                if (status & TD_CTRL_ACTIVE)
                        return -EINPROGRESS;

                urb->actual_length += uhci_actual_length(td_status(td));

                if (status)
                        goto td_error;

                /* Check to see if we received a short packet */
                if (uhci_actual_length(td_status(td)) < uhci_expected_length(td_token(td))) {
                        if (urb->transfer_flags & URB_SHORT_NOT_OK) {
                                ret = -EREMOTEIO;
                                goto err;
                        }

                        if (uhci_packetid(td_token(td)) == USB_PID_IN)
                                return usb_control_retrigger_status(uhci, urb);
                        else
                                return 0;
                }
        }

status_phase:
        td = list_entry(tmp, struct uhci_td, list);

        /* Control status phase */
        status = td_status(td);

#ifdef I_HAVE_BUGGY_APC_BACKUPS
        /* APC BackUPS Pro kludge */
        /* It tries to send all of the descriptor instead of the amount */
        /*  we requested */
        if (status & TD_CTRL_IOC &&     /* IOC is masked out by uhci_status_bits */
            status & TD_CTRL_ACTIVE &&
            status & TD_CTRL_NAK)
                return 0;
#endif

        if (status & TD_CTRL_ACTIVE)
                return -EINPROGRESS;

        if (uhci_status_bits(status))
                goto td_error;

        return 0;

td_error:
        ret = uhci_map_status(status, uhci_packetout(td_token(td)));

err:
        if ((debug == 1 && ret != -EPIPE) || debug > 1) {
                /* Some debugging code */
                dbg("uhci_result_control() failed with status %x", status);

                if (errbuf) {
                        /* Print the chain for debugging purposes */
                        uhci_show_qh(urbp->qh, errbuf, ERRBUF_LEN, 0);

                        lprintk(errbuf);
                }
        }

        return ret;
}

/*
 * Common submit for bulk and interrupt
 */

static int uhci_submit_common(struct uhci_hcd *uhci, struct urb *urb, struct urb *eurb, struct uhci_qh *skelqh)
{
        struct uhci_td *td;
        struct uhci_qh *qh;
        unsigned long destination, status;
        int maxsze = usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe));
        int len = urb->transfer_buffer_length;
        struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
        dma_addr_t data = urb->transfer_dma;

        if (len < 0)
                return -EINVAL;

        /* The "pipe" thing contains the destination in bits 8--18 */
        destination = (urb->pipe & PIPE_DEVEP_MASK) | usb_packetid(urb->pipe);

        status = uhci_maxerr(3) | TD_CTRL_ACTIVE;
        if (urb->dev->speed == USB_SPEED_LOW)
                status |= TD_CTRL_LS;
        if (!(urb->transfer_flags & URB_SHORT_NOT_OK))
                status |= TD_CTRL_SPD;

        /*
         * Build the DATA TD's
         */

        do {    /* Allow zero length packets */
                int pktsze = len;

                if (pktsze > maxsze)
                        pktsze = maxsze;

                td = uhci_alloc_td(uhci, urb->dev);
                if (!td)
                        return -ENOMEM;

                uhci_add_td_to_urb(urb, td);
                uhci_fill_td(td, status, destination | uhci_explen(pktsze - 1) |
                        (usb_gettoggle(urb->dev, usb_pipeendpoint(urb->pipe),
                         usb_pipeout(urb->pipe)) << TD_TOKEN_TOGGLE_SHIFT),
                        data);

                data += pktsze;
                len -= maxsze;

                usb_dotoggle(urb->dev, usb_pipeendpoint(urb->pipe),
                        usb_pipeout(urb->pipe));
        } while (len > 0);

        /*
         * URB_ZERO_PACKET means adding a 0-length packet, if direction
         * is OUT and the transfer_length was an exact multiple of maxsze,
         * hence (len = transfer_length - N * maxsze) == 0
         * however, if transfer_length == 0, the zero packet was already
         * prepared above.
         */

        if (usb_pipeout(urb->pipe) && (urb->transfer_flags & URB_ZERO_PACKET) &&
            !len && urb->transfer_buffer_length) {
                td = uhci_alloc_td(uhci, urb->dev);
                if (!td)
                        return -ENOMEM;

                uhci_add_td_to_urb(urb, td);
                uhci_fill_td(td, status, destination | uhci_explen(UHCI_NULL_DATA_SIZE) |
                        (usb_gettoggle(urb->dev, usb_pipeendpoint(urb->pipe),
                         usb_pipeout(urb->pipe)) << TD_TOKEN_TOGGLE_SHIFT),
                        data);

                usb_dotoggle(urb->dev, usb_pipeendpoint(urb->pipe),
                        usb_pipeout(urb->pipe));
        }

        /* Set the flag on the last packet */
        td->status |= cpu_to_le32(TD_CTRL_IOC);

        qh = uhci_alloc_qh(uhci, urb->dev);
        if (!qh)
                return -ENOMEM;

        urbp->qh = qh;
        qh->urbp = urbp;

        /* Always breadth first */
        uhci_insert_tds_in_qh(qh, urb, UHCI_PTR_BREADTH);

        if (eurb)
                uhci_append_queued_urb(uhci, eurb, urb);
        else
                uhci_insert_qh(uhci, skelqh, urb);

        return -EINPROGRESS;
}

/*
 * Common result for bulk and interrupt
 */

static int uhci_result_common(struct uhci_hcd *uhci, struct urb *urb)
{
        struct list_head *tmp, *head;
        struct urb_priv *urbp = urb->hcpriv;
        struct uhci_td *td;
        unsigned int status = 0;
        int ret = 0;

        urb->actual_length = 0;

        head = &urbp->td_list;
        tmp = head->next;
        while (tmp != head) {
                td = list_entry(tmp, struct uhci_td, list);

                tmp = tmp->next;

                status = uhci_status_bits(td_status(td));
                if (status & TD_CTRL_ACTIVE)
                        return -EINPROGRESS;

                urb->actual_length += uhci_actual_length(td_status(td));

                if (status)
                        goto td_error;

                if (uhci_actual_length(td_status(td)) < uhci_expected_length(td_token(td))) {
                        if (urb->transfer_flags & URB_SHORT_NOT_OK) {
                                ret = -EREMOTEIO;
                                goto err;
                        } else
                                return 0;
                }
        }

        return 0;

td_error:
        ret = uhci_map_status(status, uhci_packetout(td_token(td)));
        if (ret == -EPIPE)
                /* endpoint has stalled - mark it halted */
                usb_endpoint_halt(urb->dev, uhci_endpoint(td_token(td)),
                                uhci_packetout(td_token(td)));

err:
        /*
         * Enable this chunk of code if you want to see some more debugging.
         * But be careful, it has the tendancy to starve out khubd and prevent
         * disconnects from happening successfully if you have a slow debug
         * log interface (like a serial console.
         */

#if 0
        if ((debug == 1 && ret != -EPIPE) || debug > 1) {
                /* Some debugging code */
                dbg("uhci_result_common() failed with status %x", status);

                if (errbuf) {
                        /* Print the chain for debugging purposes */
                        uhci_show_qh(urbp->qh, errbuf, ERRBUF_LEN, 0);

                        lprintk(errbuf);
                }
        }
#endif
        return ret;
}

static inline int uhci_submit_bulk(struct uhci_hcd *uhci, struct urb *urb, struct urb *eurb)
{
        int ret;

        /* Can't have low speed bulk transfers */
        if (urb->dev->speed == USB_SPEED_LOW)
                return -EINVAL;

        ret = uhci_submit_common(uhci, urb, eurb, uhci->skel_bulk_qh);
        if (ret == -EINPROGRESS)
                uhci_inc_fsbr(uhci, urb);

        return ret;
}

static inline int uhci_submit_interrupt(struct uhci_hcd *uhci, struct urb *urb, struct urb *eurb)
{
        /* USB 1.1 interrupt transfers only involve one packet per interval;
         * that's the uhci_submit_common() "breadth first" policy.  Drivers
         * can submit urbs of any length, but longer ones might need many
         * intervals to complete.
         */

        return uhci_submit_common(uhci, urb, eurb, uhci->skelqh[__interval_to_skel(urb->interval)]);
}

/*
 * Bulk and interrupt use common result
 */

#define uhci_result_bulk uhci_result_common
#define uhci_result_interrupt uhci_result_common

/*
 * Isochronous transfers
 */

static int isochronous_find_limits(struct uhci_hcd *uhci, struct urb *urb, unsigned int *start, unsigned int *end)
{
        struct urb *last_urb = NULL;
        struct list_head *tmp, *head;
        int ret = 0;

        head = &uhci->urb_list;
        tmp = head->next;
        while (tmp != head) {
                struct urb_priv *up = list_entry(tmp, struct urb_priv, urb_list);
                struct urb *u = up->urb;

                tmp = tmp->next;

                /* look for pending URB's with identical pipe handle */
                if ((urb->pipe == u->pipe) && (urb->dev == u->dev) &&
                    (u->status == -EINPROGRESS) && (u != urb)) {
                        if (!last_urb)
                                *start = u->start_frame;
                        last_urb = u;
                }
        }

        if (last_urb) {
                *end = (last_urb->start_frame + last_urb->number_of_packets *
                                last_urb->interval) & (UHCI_NUMFRAMES-1);
                ret = 0;
        } else
                ret = -1;       /* no previous urb found */

        return ret;
}

static int isochronous_find_start(struct uhci_hcd *uhci, struct urb *urb)
{
        int limits;
        unsigned int start = 0, end = 0;

        if (urb->number_of_packets > 900)       /* 900? Why? */
                return -EFBIG;

        limits = isochronous_find_limits(uhci, urb, &start, &end);

        if (urb->transfer_flags & URB_ISO_ASAP) {
                if (limits) {
                        int curframe;

                        curframe = uhci_get_current_frame_number(uhci) % UHCI_NUMFRAMES;
                        urb->start_frame = (curframe + 10) % UHCI_NUMFRAMES;
                } else
                        urb->start_frame = end;
        } else {
                urb->start_frame %= UHCI_NUMFRAMES;
                /* FIXME: Sanity check */
        }

        return 0;
}

/*
 * Isochronous transfers
 */

static int uhci_submit_isochronous(struct uhci_hcd *uhci, struct urb *urb)
{
        struct uhci_td *td;
        int i, ret, frame;
        int status, destination;

        status = TD_CTRL_ACTIVE | TD_CTRL_IOS;
        destination = (urb->pipe & PIPE_DEVEP_MASK) | usb_packetid(urb->pipe);

        ret = isochronous_find_start(uhci, urb);
        if (ret)
                return ret;

        frame = urb->start_frame;
        for (i = 0; i < urb->number_of_packets; i++, frame += urb->interval) {
                if (!urb->iso_frame_desc[i].length)
                        continue;

                td = uhci_alloc_td(uhci, urb->dev);
                if (!td)
                        return -ENOMEM;

                uhci_add_td_to_urb(urb, td);
                uhci_fill_td(td, status, destination | uhci_explen(urb->iso_frame_desc[i].length - 1),
                        urb->transfer_dma + urb->iso_frame_desc[i].offset);

                if (i + 1 >= urb->number_of_packets)
                        td->status |= cpu_to_le32(TD_CTRL_IOC);

                uhci_insert_td_frame_list(uhci, td, frame);
        }

        return -EINPROGRESS;
}

static int uhci_result_isochronous(struct uhci_hcd *uhci, struct urb *urb)
{
        struct list_head *tmp, *head;
        struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
        int status;
        int i, ret = 0;

        urb->actual_length = 0;

        i = 0;
        head = &urbp->td_list;
        tmp = head->next;
        while (tmp != head) {
                struct uhci_td *td = list_entry(tmp, struct uhci_td, list);
                int actlength;

                tmp = tmp->next;

                if (td_status(td) & TD_CTRL_ACTIVE)
                        return -EINPROGRESS;

                actlength = uhci_actual_length(td_status(td));
                urb->iso_frame_desc[i].actual_length = actlength;
                urb->actual_length += actlength;

                status = uhci_map_status(uhci_status_bits(td_status(td)), usb_pipeout(urb->pipe));
                urb->iso_frame_desc[i].status = status;
                if (status) {
                        urb->error_count++;
                        ret = status;
                }

                i++;
        }

        return ret;
}

/*
 * MUST be called with uhci->urb_list_lock acquired
 */

static struct urb *uhci_find_urb_ep(struct uhci_hcd *uhci, struct urb *urb)
{
        struct list_head *tmp, *head;

        /* We don't match Isoc transfers since they are special */
        if (usb_pipeisoc(urb->pipe))
                return NULL;

        head = &uhci->urb_list;
        tmp = head->next;
        while (tmp != head) {
                struct urb_priv *up = list_entry(tmp, struct urb_priv, urb_list);
                struct urb *u = up->urb;

                tmp = tmp->next;

                if (u->dev == urb->dev && u->status == -EINPROGRESS) {
                        /* For control, ignore the direction */
                        if (usb_pipecontrol(urb->pipe) &&
                            (u->pipe & ~USB_DIR_IN) == (urb->pipe & ~USB_DIR_IN))
                                return u;
                        else if (u->pipe == urb->pipe)
                                return u;
                }
        }

        return NULL;
}

static int uhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, int mem_flags)
{
        int ret = -EINVAL;
        struct uhci_hcd *uhci = hcd_to_uhci(hcd);
        unsigned long flags;
        struct urb *eurb;
        int bustime;

        spin_lock_irqsave(&uhci->urb_list_lock, flags);

        eurb = uhci_find_urb_ep(uhci, urb);

        if (!uhci_alloc_urb_priv(uhci, urb)) {
                spin_unlock_irqrestore(&uhci->urb_list_lock, flags);
                return -ENOMEM;
        }

        switch (usb_pipetype(urb->pipe)) {
        case PIPE_CONTROL:
                ret = uhci_submit_control(uhci, urb, eurb);
                break;
        case PIPE_INTERRUPT:
                if (!eurb) {
                        bustime = usb_check_bandwidth(urb->dev, urb);
                        if (bustime < 0)
                                ret = bustime;
                        else {
                                ret = uhci_submit_interrupt(uhci, urb, eurb);
                                if (ret == -EINPROGRESS)
                                        usb_claim_bandwidth(urb->dev, urb, bustime, 0);
                        }
                } else {        /* inherit from parent */
                        urb->bandwidth = eurb->bandwidth;
                        ret = uhci_submit_interrupt(uhci, urb, eurb);
                }
                break;
        case PIPE_BULK:
                ret = uhci_submit_bulk(uhci, urb, eurb);
                break;
        case PIPE_ISOCHRONOUS:
                bustime = usb_check_bandwidth(urb->dev, urb);
                if (bustime < 0) {
                        ret = bustime;
                        break;
                }

                ret = uhci_submit_isochronous(uhci, urb);
                if (ret == -EINPROGRESS)
                        usb_claim_bandwidth(urb->dev, urb, bustime, 1);
                break;
        }

        if (ret != -EINPROGRESS) {
                /* Submit failed, so delete it from the urb_list */
                struct urb_priv *urbp = urb->hcpriv;

                list_del_init(&urbp->urb_list);
                spin_unlock_irqrestore(&uhci->urb_list_lock, flags);
                uhci_destroy_urb_priv (uhci, urb);

                return ret;
        }

        spin_unlock_irqrestore(&uhci->urb_list_lock, flags);

        return 0;
}

/*
 * Return the result of a transfer
 *
 * MUST be called with urb_list_lock acquired
 */

static void uhci_transfer_result(struct uhci_hcd *uhci, struct urb *urb)
{
        int ret = -EINVAL;
        unsigned long flags;
        struct urb_priv *urbp;

        spin_lock_irqsave(&urb->lock, flags);

        urbp = (struct urb_priv *)urb->hcpriv;

        if (urb->status != -EINPROGRESS) {
                info("uhci_transfer_result: called for URB %p not in flight?", urb);
                goto out;
        }

        switch (usb_pipetype(urb->pipe)) {
        case PIPE_CONTROL:
                ret = uhci_result_control(uhci, urb);
                break;
        case PIPE_INTERRUPT:
                ret = uhci_result_interrupt(uhci, urb);
                break;
        case PIPE_BULK:
                ret = uhci_result_bulk(uhci, urb);
                break;
        case PIPE_ISOCHRONOUS:
                ret = uhci_result_isochronous(uhci, urb);
                break;
        }

        urbp->status = ret;

        if (ret == -EINPROGRESS)
                goto out;

        switch (usb_pipetype(urb->pipe)) {
        case PIPE_CONTROL:
        case PIPE_BULK:
        case PIPE_ISOCHRONOUS:
                /* Release bandwidth for Interrupt or Isoc. transfers */
                /* Spinlock needed ? */
                if (urb->bandwidth)
                        usb_release_bandwidth(urb->dev, urb, 1);
                uhci_unlink_generic(uhci, urb);
                break;
        case PIPE_INTERRUPT:
                /* Release bandwidth for Interrupt or Isoc. transfers */
                /* Make sure we don't release if we have a queued URB */
                spin_lock(&uhci->frame_list_lock);
                /* Spinlock needed ? */
                if (list_empty(&urbp->queue_list) && urb->bandwidth)
                        usb_release_bandwidth(urb->dev, urb, 0);
                else
                        /* bandwidth was passed on to queued URB, */
                        /* so don't let usb_unlink_urb() release it */
                        urb->bandwidth = 0;
                spin_unlock(&uhci->frame_list_lock);
                uhci_unlink_generic(uhci, urb);
                break;
        default:
                info("uhci_transfer_result: unknown pipe type %d for urb %p\n",
                        usb_pipetype(urb->pipe), urb);
        }

        /* Remove it from uhci->urb_list */
        list_del_init(&urbp->urb_list);

        uhci_add_complete(uhci, urb);

out:
        spin_unlock_irqrestore(&urb->lock, flags);
}

/*
 * MUST be called with urb->lock acquired
 */

static void uhci_unlink_generic(struct uhci_hcd *uhci, struct urb *urb)
{
        struct list_head *head, *tmp;
        struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
        int prevactive = 1;

        /* We can get called when urbp allocation fails, so check */
        if (!urbp)
                return;

        uhci_dec_fsbr(uhci, urb);       /* Safe since it checks */

        /*
         * Now we need to find out what the last successful toggle was
         * so we can update the local data toggle for the next transfer
         *
         * There's 3 way's the last successful completed TD is found:
         *
         * 1) The TD is NOT active and the actual length < expected length
         * 2) The TD is NOT active and it's the last TD in the chain
         * 3) The TD is active and the previous TD is NOT active
         *
         * Control and Isochronous ignore the toggle, so this is safe
         * for all types
         */

        head = &urbp->td_list;
        tmp = head->next;
        while (tmp != head) {
                struct uhci_td *td = list_entry(tmp, struct uhci_td, list);

                tmp = tmp->next;

                if (!(td_status(td) & TD_CTRL_ACTIVE) &&
                    (uhci_actual_length(td_status(td)) < uhci_expected_length(td_token(td)) ||
                    tmp == head))
                        usb_settoggle(urb->dev, uhci_endpoint(td_token(td)),
                                uhci_packetout(td_token(td)),
                                uhci_toggle(td_token(td)) ^ 1);
                else if ((td_status(td) & TD_CTRL_ACTIVE) && !prevactive)
                        usb_settoggle(urb->dev, uhci_endpoint(td_token(td)),
                                uhci_packetout(td_token(td)),
                                uhci_toggle(td_token(td)));

                prevactive = td_status(td) & TD_CTRL_ACTIVE;
        }

        uhci_delete_queued_urb(uhci, urb);

        /* The interrupt loop will reclaim the QH's */
        uhci_remove_qh(uhci, urbp->qh);
        urbp->qh = NULL;
}

static int uhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb)
{
        struct uhci_hcd *uhci = hcd_to_uhci(hcd);
        unsigned long flags;
        struct urb_priv *urbp = urb->hcpriv;

        /* If this is an interrupt URB that is being killed in urb->complete, */
        /* then just set its status and return */
        if (!urbp) {
          urb->status = -ECONNRESET;
          return 0;
        }

        spin_lock_irqsave(&uhci->urb_list_lock, flags);

        list_del_init(&urbp->urb_list);

        uhci_unlink_generic(uhci, urb);

        spin_lock(&uhci->urb_remove_list_lock);

        /* If we're the first, set the next interrupt bit */
        if (list_empty(&uhci->urb_remove_list))
                uhci_set_next_interrupt(uhci);
        list_add(&urbp->urb_list, &uhci->urb_remove_list);

        spin_unlock(&uhci->urb_remove_list_lock);
        spin_unlock_irqrestore(&uhci->urb_list_lock, flags);
        return 0;
}

static int uhci_fsbr_timeout(struct uhci_hcd *uhci, struct urb *urb)
{
        struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
        struct list_head *head, *tmp;
        int count = 0;

        uhci_dec_fsbr(uhci, urb);

        urbp->fsbr_timeout = 1;

        /*
         * Ideally we would want to fix qh->element as well, but it's
         * read/write by the HC, so that can introduce a race. It's not
         * really worth the hassle
         */


        head = &urbp->td_list;
        tmp = head->next;
        while (tmp != head) {
                struct uhci_td *td = list_entry(tmp, struct uhci_td, list);

                tmp = tmp->next;

                /*
                 * Make sure we don't do the last one (since it'll have the
                 * TERM bit set) as well as we skip every so many TD's to
                 * make sure it doesn't hog the bandwidth
                 */

                if (tmp != head && (count % DEPTH_INTERVAL) == (DEPTH_INTERVAL - 1))
                        td->link |= UHCI_PTR_DEPTH;

                count++;
        }

        return 0;
}

/*
 * uhci_get_current_frame_number()
 *
 * returns the current frame number for a USB bus/controller.
 */

static int uhci_get_current_frame_number(struct uhci_hcd *uhci)
{
        return inw(uhci->io_addr + USBFRNUM);
}

static int init_stall_timer(struct usb_hcd *hcd);

static void stall_callback(unsigned long ptr)
{
        struct usb_hcd *hcd = (struct usb_hcd *)ptr;
        struct uhci_hcd *uhci = hcd_to_uhci(hcd);
        struct list_head list, *tmp, *head;
        unsigned long flags;

        INIT_LIST_HEAD(&list);

        spin_lock_irqsave(&uhci->urb_list_lock, flags);
        head = &uhci->urb_list;
        tmp = head->next;
        while (tmp != head) {
                struct urb_priv *up = list_entry(tmp, struct urb_priv, urb_list);
                struct urb *u = up->urb;

                tmp = tmp->next;

                spin_lock(&u->lock);

                /* Check if the FSBR timed out */
                if (up->fsbr && !up->fsbr_timeout && time_after_eq(jiffies26, up->fsbrtime + IDLE_TIMEOUT))
                        uhci_fsbr_timeout(uhci, u);

                /* Check if the URB timed out */
                if (u->timeout && time_after_eq(jiffies26, up->inserttime + u->timeout))
                        list_move_tail(&up->urb_list, &list);

                spin_unlock(&u->lock);
        }
        spin_unlock_irqrestore(&uhci->urb_list_lock, flags);

        head = &list;
        tmp = head->next;
        while (tmp != head) {
                struct urb_priv *up = list_entry(tmp, struct urb_priv, urb_list);
                struct urb *u = up->urb;

                tmp = tmp->next;

                uhci_urb_dequeue(hcd, u);
        }

        /* Really disable FSBR */
        if (!uhci->fsbr && uhci->fsbrtimeout && time_after_eq(jiffies26, uhci->fsbrtimeout)) {
                uhci->fsbrtimeout = 0;
                uhci->skel_term_qh->link = UHCI_PTR_TERM;
        }

        /* Poll for and perform state transitions */
        hc_state_transitions(uhci);

        init_stall_timer(hcd);
}

static int init_stall_timer(struct usb_hcd *hcd)
{
        struct uhci_hcd *uhci = hcd_to_uhci(hcd);

        init_timer(&uhci->stall_timer);
        uhci->stall_timer.function = stall_callback;
        uhci->stall_timer.data = (unsigned long)hcd;
        uhci->stall_timer.expires = jiffies26 + (HZ / 10);
        add_timer(&uhci->stall_timer);

        return 0;
}

static void uhci_free_pending_qhs(struct uhci_hcd *uhci)
{
        struct list_head *tmp, *head;
        unsigned long flags;

        spin_lock_irqsave(&uhci->qh_remove_list_lock, flags);
        head = &uhci->qh_remove_list;
        tmp = head->next;
        while (tmp != head) {
                struct uhci_qh *qh = list_entry(tmp, struct uhci_qh, remove_list);

                tmp = tmp->next;

                list_del_init(&qh->remove_list);

                uhci_free_qh(uhci, qh);
        }
        spin_unlock_irqrestore(&uhci->qh_remove_list_lock, flags);
}

static void uhci_free_pending_tds(struct uhci_hcd *uhci)
{
        struct list_head *tmp, *head;
        unsigned long flags;

        spin_lock_irqsave(&uhci->td_remove_list_lock, flags);
        head = &uhci->td_remove_list;
        tmp = head->next;
        while (tmp != head) {
                struct uhci_td *td = list_entry(tmp, struct uhci_td, remove_list);

                tmp = tmp->next;

                list_del_init(&td->remove_list);

                uhci_free_td(uhci, td);
        }
        spin_unlock_irqrestore(&uhci->td_remove_list_lock, flags);
}

static void uhci_finish_urb(struct usb_hcd *hcd, struct urb *urb, struct pt_regs *regs)
{
        struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
        struct uhci_hcd *uhci = hcd_to_uhci(hcd);
        int status;
        unsigned long flags;

        spin_lock_irqsave(&urb->lock, flags);
        status = urbp->status;
        uhci_destroy_urb_priv(uhci, urb);

        if (urb->status != -ENOENT && urb->status != -ECONNRESET)
                urb->status = status;
        spin_unlock_irqrestore(&urb->lock, flags);

        usb_hcd_giveback_urb(hcd, urb, regs);
}

static void uhci_finish_completion(struct usb_hcd *hcd, struct pt_regs *regs)
{
        struct uhci_hcd *uhci = hcd_to_uhci(hcd);
        struct list_head *tmp, *head;
        unsigned long flags;

        spin_lock_irqsave(&uhci->complete_list_lock, flags);
        head = &uhci->complete_list;
        tmp = head->next;
        while (tmp != head) {
                struct urb_priv *urbp = list_entry(tmp, struct urb_priv, complete_list);
                struct urb *urb = urbp->urb;

                list_del_init(&urbp->complete_list);
                spin_unlock_irqrestore(&uhci->complete_list_lock, flags);

                uhci_finish_urb(hcd, urb, regs);

                spin_lock_irqsave(&uhci->complete_list_lock, flags);
                head = &uhci->complete_list;
                tmp = head->next;
        }
        spin_unlock_irqrestore(&uhci->complete_list_lock, flags);
}

static void uhci_remove_pending_qhs(struct uhci_hcd *uhci)
{
        struct list_head *tmp, *head;
        unsigned long flags;

        spin_lock_irqsave(&uhci->urb_remove_list_lock, flags);
        head = &uhci->urb_remove_list;
        tmp = head->next;
        while (tmp != head) {
                struct urb_priv *urbp = list_entry(tmp, struct urb_priv, urb_list);
                struct urb *urb = urbp->urb;

                tmp = tmp->next;

                list_del_init(&urbp->urb_list);

                urbp->status = urb->status = -ECONNRESET;

                uhci_add_complete(uhci, urb);
        }
        spin_unlock_irqrestore(&uhci->urb_remove_list_lock, flags);
}

static void uhci_irq(struct usb_hcd *hcd, struct pt_regs *regs)
{
        struct uhci_hcd *uhci = hcd_to_uhci(hcd);
        unsigned int io_addr = uhci->io_addr;
        unsigned short status;
        struct list_head *tmp, *head;
       
        static int count =0;

        /*
         * Read the interrupt status, and write it back to clear the
         * interrupt cause
         */

        status = inw(io_addr + USBSTS);        
        if (!status)    /* shared interrupt, not mine */
                return;
        outw(status, io_addr + USBSTS);         /* Clear it */

//        printk("%x uhci_irq\n", io_addr);

        if (status & ~(USBSTS_USBINT | USBSTS_ERROR | USBSTS_RD)) {
                if (status & USBSTS_HSE)
                {
                        err("%x: host system error, PCI problems?", io_addr);
                }
                if (status & USBSTS_HCPE)
                        err("%x: host controller process error. something bad happened", io_addr);
                if ((status & USBSTS_HCH) && uhci->state > 0) {
                        err("%x: host controller halted. very bad", io_addr);
                        /* FIXME: Reset the controller, fix the offending TD */
                }
        }

        if (status & USBSTS_RD)
                uhci->resume_detect = 1;

        uhci_free_pending_qhs(uhci);

        uhci_free_pending_tds(uhci);

        uhci_remove_pending_qhs(uhci);

        uhci_clear_next_interrupt(uhci);

        /* Walk the list of pending URB's to see which ones completed */
        spin_lock(&uhci->urb_list_lock);
        head = &uhci->urb_list;
        tmp = head->next;
        while (tmp != head) {
                struct urb_priv *urbp = list_entry(tmp, struct urb_priv, urb_list);
                struct urb *urb = urbp->urb;

                tmp = tmp->next;

                /* Checks the status and does all of the magic necessary */
                uhci_transfer_result(uhci, urb);
        }
        spin_unlock(&uhci->urb_list_lock);

        uhci_finish_completion(hcd, regs);
}

static void reset_hc(struct uhci_hcd *uhci)
{
        unsigned int io_addr = uhci->io_addr;

        /* Global reset for 50ms */
        uhci->state = UHCI_RESET;
        outw(USBCMD_GRESET, io_addr + USBCMD);
        set_current_state(TASK_UNINTERRUPTIBLE);
        schedule_timeout((HZ*50+999) / 1000);
        outw(0, io_addr + USBCMD);

        /* Another 10ms delay */
        set_current_state(TASK_UNINTERRUPTIBLE);
        schedule_timeout((HZ*10+999) / 1000);
        uhci->resume_detect = 0;
}

static void suspend_hc(struct uhci_hcd *uhci)
{
        unsigned int io_addr = uhci->io_addr;

        dbg("%x: suspend_hc", io_addr);
        uhci->state = UHCI_SUSPENDED;
        uhci->resume_detect = 0;
        outw(USBCMD_EGSM, io_addr + USBCMD);
}

static void wakeup_hc(struct uhci_hcd *uhci)
{
        unsigned int io_addr = uhci->io_addr;

        switch (uhci->state) {
                case UHCI_SUSPENDED:            /* Start the resume */
                        dbg("%x: wakeup_hc", io_addr);

                        /* Global resume for >= 20ms */
                        outw(USBCMD_FGR | USBCMD_EGSM, io_addr + USBCMD);
                        uhci->state = UHCI_RESUMING_1;
                        uhci->state_end = jiffies26 + (20*HZ+999) / 1000;
                        break;

                case UHCI_RESUMING_1:           /* End global resume */
                        uhci->state = UHCI_RESUMING_2;
                        outw(0, io_addr + USBCMD);
                        /* Falls through */

                case UHCI_RESUMING_2:           /* Wait for EOP to be sent */
                        if (inw(io_addr + USBCMD) & USBCMD_FGR)
                                break;

                        /* Run for at least 1 second, and
                         * mark it configured with a 64-byte max packet */

                        uhci->state = UHCI_RUNNING_GRACE;
                        uhci->state_end = jiffies26 + HZ;
                        outw(USBCMD_RS | USBCMD_CF | USBCMD_MAXP,
                                        io_addr + USBCMD);
                        break;

                case UHCI_RUNNING_GRACE:        /* Now allowed to suspend */
                        uhci->state = UHCI_RUNNING;
                        break;

                default:
                        break;
        }
}

static int ports_active(struct uhci_hcd *uhci)
{
        unsigned int io_addr = uhci->io_addr;
        int connection = 0;
        int i;

        for (i = 0; i < uhci->rh_numports; i++)
                connection |= (inw(io_addr + USBPORTSC1 + i * 2) & USBPORTSC_CCS);

        return connection;
}

static int suspend_allowed(struct uhci_hcd *uhci)
{
        unsigned int io_addr = uhci->io_addr;
        int i;

        if (!uhci->hcd.pdev || uhci->hcd.pdev->vendor != PCI_VENDOR_ID_INTEL)
                return 1;

        /* Some of Intel's USB controllers have a bug that causes false
         * resume indications if any port has an over current condition.
         * To prevent problems, we will not allow a global suspend if
         * any ports are OC.
         *
         * Some motherboards using Intel's chipsets (but not using all
         * the USB ports) appear to hardwire the over current inputs active
         * to disable the USB ports.
         */


        /* check for over current condition on any port */
        for (i = 0; i < uhci->rh_numports; i++) {
                if (inw(io_addr + USBPORTSC1 + i * 2) & USBPORTSC_OC)
                        return 0;
        }

        return 1;
}

static void hc_state_transitions(struct uhci_hcd *uhci)
{
        switch (uhci->state) {
                case UHCI_RUNNING:

                        /* global suspend if nothing connected for 1 second */
                        if (!ports_active(uhci) && suspend_allowed(uhci)) {
                                uhci->state = UHCI_SUSPENDING_GRACE;
                                uhci->state_end = jiffies26 + HZ;
                        }
                        break;

                case UHCI_SUSPENDING_GRACE:
                        if (ports_active(uhci))
                                uhci->state = UHCI_RUNNING;
                        else if (time_after_eq(jiffies26, uhci->state_end))
                                suspend_hc(uhci);
                        break;

                case UHCI_SUSPENDED:

                        /* wakeup if requested by a device */
                        if (uhci->resume_detect)
                                wakeup_hc(uhci);
                        break;

                case UHCI_RESUMING_1:
                case UHCI_RESUMING_2:
                case UHCI_RUNNING_GRACE:
                        if (time_after_eq(jiffies26, uhci->state_end))
                                wakeup_hc(uhci);
                        break;

                default:
                        break;
        }
}

static void start_hc(struct uhci_hcd *uhci)
{
        unsigned int io_addr = uhci->io_addr;
        int timeout = 1000;
                       
        /*
         * Reset the HC - this will force us to get a
         * new notification of any already connected
         * ports due to the virtual disconnect that it
         * implies.
         */

        outw(USBCMD_HCRESET, io_addr + USBCMD);
        while (inw(io_addr + USBCMD) & USBCMD_HCRESET) {
                if (!--timeout) {
                        printk(KERN_ERR "uhci: USBCMD_HCRESET timed out!\n");
                        break;
                }
        }

        /* Turn on all interrupts */
        outw(USBINTR_TIMEOUT | USBINTR_RESUME | USBINTR_IOC | USBINTR_SP,
                io_addr + USBINTR);

        /* Start at frame 0 */
        outw(0, io_addr + USBFRNUM);
        outl(uhci->fl->dma_handle, io_addr + USBFLBASEADD);

        /* Run and mark it configured with a 64-byte max packet */
        uhci->state = UHCI_RUNNING_GRACE;
        uhci->state_end = jiffies26 + HZ;
        outw(USBCMD_RS | USBCMD_CF | USBCMD_MAXP, io_addr + USBCMD);

        uhci->hcd.state = USB_STATE_RUNNING;

#ifdef DEB
{
            __u32 *tdp;
                int i;
                int status = inw(io_addr + USBSTS);        
            printk(KERN_INFO "[%x] Frame = %d Status =%x fl=%x\n", io_addr, inw(io_addr + USBFRNUM), status, uhci->fl->dma_handle);
            for (i=0; i<20; i++)
                {
                        int status = inw(io_addr + USBSTS);        
                        wait_ms26(500);
                        tdp=(__u32*)uhci->fl->frame[i];
                        printk(KERN_INFO "[%x] Frame[%d] -> @%x = %x status=%x fl=%x\n", io_addr, i, uhci->fl->frame[i], *tdp, status, uhci->fl->dma_handle );
                }
        }
#endif

}

/*
 * De-allocate all resources..
 */

static void release_uhci(struct uhci_hcd *uhci)
{
        int i;

        for (i = 0; i < UHCI_NUM_SKELQH; i++)
                if (uhci->skelqh[i]) {
                        uhci_free_qh(uhci, uhci->skelqh[i]);
                        uhci->skelqh[i] = NULL;
                }

        if (uhci->term_td) {
                uhci_free_td(uhci, uhci->term_td);
                uhci->term_td = NULL;
        }

        if (uhci->qh_pool) {
                pci_pool_destroy(uhci->qh_pool);
                uhci->qh_pool = NULL;
        }

        if (uhci->td_pool) {
                pci_pool_destroy(uhci->td_pool);
                uhci->td_pool = NULL;
        }

        if (uhci->fl) {
                pci_free_consistent(uhci->hcd.pdev, sizeof(*uhci->fl), uhci->fl, uhci->fl->dma_handle);
                uhci->fl = NULL;
        }

#ifdef CONFIG_PROC_FS
        if (uhci->proc_entry) {
                remove_proc_entry(uhci->hcd.self.bus_name, uhci_proc_root);
                uhci->proc_entry = NULL;
        }
#endif
}

static int uhci_reset(struct usb_hcd *hcd)
{
        struct uhci_hcd *uhci = hcd_to_uhci(hcd);

        uhci->io_addr = (unsigned long) hcd->regs;

        /* Maybe kick BIOS off this hardware.  Then reset, so we won't get
         * interrupts from any previous setup.
         */

        reset_hc(uhci);
        pci_write_config_word(hcd->pdev, USBLEGSUP, USBLEGSUP_DEFAULT);
        return 0;
}

/*
 * Allocate a frame list, and then setup the skeleton
 *
 * The hardware doesn't really know any difference
 * in the queues, but the order does matter for the
 * protocols higher up. The order is:
 *
 *  - any isochronous events handled before any
 *    of the queues. We don't do that here, because
 *    we'll create the actual TD entries on demand.
 *  - The first queue is the interrupt queue.
 *  - The second queue is the control queue, split into low and high speed
 *  - The third queue is bulk queue.
 *  - The fourth queue is the bandwidth reclamation queue, which loops back
 *    to the high speed control queue.
 */

static int uhci_start(struct usb_hcd *hcd)
{
        struct uhci_hcd *uhci = hcd_to_uhci(hcd);
        int retval = -EBUSY;
        int i, port;
        unsigned io_size;
        dma_addr_t dma_handle;
        struct usb_device *udev;
#ifdef CONFIG_PROC_FS
        struct proc_dir_entry *ent;
#endif

        io_size = pci_resource_len(hcd->pdev, hcd->region);

#ifdef CONFIG_PROC_FS
        ent = create_proc_entry(hcd->self.bus_name, S_IFREG|S_IRUGO|S_IWUSR, uhci_proc_root);
        if (!ent) {
                err("couldn't create uhci proc entry");
                retval = -ENOMEM;
                goto err_create_proc_entry;
        }

        ent->data = uhci;
        ent->proc_fops = &uhci_proc_operations;
        ent->size = 0;
        uhci->proc_entry = ent;
#endif

        uhci->fsbr = 0;
        uhci->fsbrtimeout = 0;

        spin_lock_init(&uhci->qh_remove_list_lock);
        INIT_LIST_HEAD(&uhci->qh_remove_list);

        spin_lock_init(&uhci->td_remove_list_lock);
        INIT_LIST_HEAD(&uhci->td_remove_list);

        spin_lock_init(&uhci->urb_remove_list_lock);
        INIT_LIST_HEAD(&uhci->urb_remove_list);

        spin_lock_init(&uhci->urb_list_lock);
        INIT_LIST_HEAD(&uhci->urb_list);

        spin_lock_init(&uhci->complete_list_lock);
        INIT_LIST_HEAD(&uhci->complete_list);

        spin_lock_init(&uhci->frame_list_lock);

        uhci->fl = pci_alloc_consistent(hcd->pdev, sizeof(*uhci->fl), &dma_handle);
        if (!uhci->fl) {
                err("unable to allocate consistent memory for frame list");
                goto err_alloc_fl;
        }

        memset((void *)uhci->fl, 0, sizeof(*uhci->fl));
        uhci->fl->dma_handle = dma_handle;

        uhci->td_pool = pci_pool_create("uhci_td", hcd->pdev,
                sizeof(struct uhci_td), 16, 0);
        if (!uhci->td_pool) {
                err("unable to create td pci_pool");
                goto err_create_td_pool;
        }

        uhci->qh_pool = pci_pool_create("uhci_qh", hcd->pdev,
                sizeof(struct uhci_qh), 16, 0);
        if (!uhci->qh_pool) {
                err("unable to create qh pci_pool");
                goto err_create_qh_pool;
        }

        /* Initialize the root hub */

        /* UHCI specs says devices must have 2 ports, but goes on to say */
        /*  they may have more but give no way to determine how many they */
        /*  have. However, according to the UHCI spec, Bit 7 is always set */
        /*  to 1. So we try to use this to our advantage */
        for (port = 0; port < (io_size - 0x10) / 2; port++) {
                unsigned int portstatus;

                portstatus = inw(uhci->io_addr + 0x10 + (port * 2));
                if (!(portstatus & 0x0080))
                        break;
        }
        if (debug)
                info("detected %d ports", port);

        /* This is experimental so anything less than 2 or greater than 8 is */
        /*  something weird and we'll ignore it */
        if (port < 2 || port > 8) {
                info("port count misdetected? forcing to 2 ports");
                port = 2;
        }

        uhci->rh_numports = port;

        hcd->self.root_hub = udev = usb_alloc_dev(NULL, &hcd->self);
        if (!udev) {
                err("unable to allocate root hub");
                goto err_alloc_root_hub;
        }

        uhci->term_td = uhci_alloc_td(uhci, udev);
        if (!uhci->term_td) {
                err("unable to allocate terminating TD");
                goto err_alloc_term_td;
        }

        for (i = 0; i < UHCI_NUM_SKELQH; i++) {
                uhci->skelqh[i] = uhci_alloc_qh(uhci, udev);
                if (!uhci->skelqh[i]) {
                        err("unable to allocate QH %d", i);
                        goto err_alloc_skelqh;
                }
        }

        /*
         * 8 Interrupt queues; link int2 to int1, int4 to int2, etc
         * then link int1 to control and control to bulk
         */

        uhci->skel_int128_qh->link = cpu_to_le32(uhci->skel_int64_qh->dma_handle) | UHCI_PTR_QH;
        uhci->skel_int64_qh->link = cpu_to_le32(uhci->skel_int32_qh->dma_handle) | UHCI_PTR_QH;
        uhci->skel_int32_qh->link = cpu_to_le32(uhci->skel_int16_qh->dma_handle) | UHCI_PTR_QH;
        uhci->skel_int16_qh->link = cpu_to_le32(uhci->skel_int8_qh->dma_handle) | UHCI_PTR_QH;
        uhci->skel_int8_qh->link = cpu_to_le32(uhci->skel_int4_qh->dma_handle) | UHCI_PTR_QH;
        uhci->skel_int4_qh->link = cpu_to_le32(uhci->skel_int2_qh->dma_handle) | UHCI_PTR_QH;
        uhci->skel_int2_qh->link = cpu_to_le32(uhci->skel_int1_qh->dma_handle) | UHCI_PTR_QH;
        uhci->skel_int1_qh->link = cpu_to_le32(uhci->skel_ls_control_qh->dma_handle) | UHCI_PTR_QH;

        uhci->skel_ls_control_qh->link = cpu_to_le32(uhci->skel_hs_control_qh->dma_handle) | UHCI_PTR_QH;
        uhci->skel_hs_control_qh->link = cpu_to_le32(uhci->skel_bulk_qh->dma_handle) | UHCI_PTR_QH;
        uhci->skel_bulk_qh->link = cpu_to_le32(uhci->skel_term_qh->dma_handle) | UHCI_PTR_QH;

        /* This dummy TD is to work around a bug in Intel PIIX controllers */
        uhci_fill_td(uhci->term_td, 0, (UHCI_NULL_DATA_SIZE << 21) |
                (0x7f << TD_TOKEN_DEVADDR_SHIFT) | USB_PID_IN, 0);
        uhci->term_td->link = cpu_to_le32(uhci->term_td->dma_handle);

        uhci->skel_term_qh->link = UHCI_PTR_TERM;
        uhci->skel_term_qh->element = cpu_to_le32(uhci->term_td->dma_handle);

        /*
         * Fill the frame list: make all entries point to
         * the proper interrupt queue.
         *
         * This is probably silly, but it's a simple way to
         * scatter the interrupt queues in a way that gives
         * us a reasonable dynamic range for irq latencies.
         */

        for (i = 0; i < UHCI_NUMFRAMES; i++) {
                int irq = 0;

                if (i & 1) {
                        irq++;
                        if (i & 2) {
                                irq++;
                                if (i & 4) {
                                        irq++;
                                        if (i & 8) {
                                                irq++;
                                                if (i & 16) {
                                                        irq++;
                                                        if (i & 32) {
                                                                irq++;
                                                                if (i & 64)
                                                                        irq++;
                                                        }
                                                }
                                        }
                                }
                        }
                }

                /* Only place we don't use the frame list routines */
                uhci->fl->frame[i] = cpu_to_le32(uhci->skelqh[7 - irq]->dma_handle);
        }

        start_hc(uhci);

        init_stall_timer(hcd);

        udev->speed = USB_SPEED_FULL;

        if (usb_register_root_hub(udev, &hcd->pdev->dev) != 0) {
                err("unable to start root hub");
                retval = -ENOMEM;
                goto err_start_root_hub;
        }

        return 0;

/*
 * error exits:
 */

err_start_root_hub:
        reset_hc(uhci);

        del_timer_sync(&uhci->stall_timer);

err_alloc_skelqh:
        for (i = 0; i < UHCI_NUM_SKELQH; i++)
                if (uhci->skelqh[i]) {
                        uhci_free_qh(uhci, uhci->skelqh[i]);
                        uhci->skelqh[i] = NULL;
                }

        uhci_free_td(uhci, uhci->term_td);
        uhci->term_td = NULL;

err_alloc_term_td:
        usb_put_dev(udev);
        hcd->self.root_hub = NULL;

err_alloc_root_hub:
        pci_pool_destroy(uhci->qh_pool);
        uhci->qh_pool = NULL;

err_create_qh_pool:
        pci_pool_destroy(uhci->td_pool);
        uhci->td_pool = NULL;

err_create_td_pool:
        pci_free_consistent(hcd->pdev, sizeof(*uhci->fl), uhci->fl, uhci->fl->dma_handle);
        uhci->fl = NULL;

err_alloc_fl:
#ifdef CONFIG_PROC_FS
        remove_proc_entry(hcd->self.bus_name, uhci_proc_root);
        uhci->proc_entry = NULL;

err_create_proc_entry:
#endif

        return retval;
}

static void uhci_stop(struct usb_hcd *hcd)
{
        struct uhci_hcd *uhci = hcd_to_uhci(hcd);

        del_timer_sync(&uhci->stall_timer);

        /*
         * At this point, we're guaranteed that no new connects can be made
         * to this bus since there are no more parents
         */

        uhci_free_pending_qhs(uhci);
        uhci_free_pending_tds(uhci);
        uhci_remove_pending_qhs(uhci);

        reset_hc(uhci);

        uhci_free_pending_qhs(uhci);
        uhci_free_pending_tds(uhci);

        release_uhci(uhci);
}

#ifdef CONFIG_PM
static int uhci_suspend(struct usb_hcd *hcd, u32 state)
{
        struct uhci_hcd *uhci = hcd_to_uhci(hcd);

        /* Don't try to suspend broken motherboards, reset instead */
        if (suspend_allowed(uhci))
                suspend_hc(uhci);
        else
                reset_hc(uhci);
        return 0;
}

static int uhci_resume(struct usb_hcd *hcd)
{
        struct uhci_hcd *uhci = hcd_to_uhci(hcd);

        pci_set_master(uhci->hcd.pdev);

        if (uhci->state == UHCI_SUSPENDED)
                uhci->resume_detect = 1;
        else {
                reset_hc(uhci);
                start_hc(uhci);
        }
        uhci->hcd.state = USB_STATE_RUNNING;
        return 0;
}
#endif

static struct usb_hcd *uhci_hcd_alloc(void)
{
        struct uhci_hcd *uhci;

        uhci = (struct uhci_hcd *)kmalloc(sizeof(*uhci), GFP_KERNEL);
        if (!uhci)
                return NULL;

        memset(uhci, 0, sizeof(*uhci));
        uhci->hcd.product_desc = "UHCI Host Controller";
        return &uhci->hcd;
}

static void uhci_hcd_free(struct usb_hcd *hcd)
{
        kfree(hcd_to_uhci(hcd));
}

static int uhci_hcd_get_frame_number(struct usb_hcd *hcd)
{
        return uhci_get_current_frame_number(hcd_to_uhci(hcd));
}

static const char hcd_name[] = "uhci_hcd";

static const struct hc_driver uhci_driver = {
        .description =          hcd_name,

        /* Generic hardware linkage */
        .irq =                  uhci_irq,
        .flags =                HCD_USB11,

        /* Basic lifecycle operations */
        .reset =                uhci_reset,
        .start =                uhci_start,
#ifdef CONFIG_PM
        .suspend =              uhci_suspend,
        .resume =               uhci_resume,
#endif
        .stop =                 uhci_stop,

        .hcd_alloc =            uhci_hcd_alloc,
        .hcd_free =             uhci_hcd_free,

        .urb_enqueue =          uhci_urb_enqueue,
        .urb_dequeue =          uhci_urb_dequeue,

        .get_frame_number =     uhci_hcd_get_frame_number,

        .hub_status_data =      uhci_hub_status_data,
        .hub_control =          uhci_hub_control,
};

static const struct pci_device_id uhci_pci_ids[] = { {
        /* handle any USB UHCI controller */
        PCI_DEVICE_CLASS(((PCI_CLASS_SERIAL_USB << 8) | 0x00), ~0),
        .driver_data =  (unsigned long) &uhci_driver,
        }, { /* end: all zeroes */ }
};

MODULE_DEVICE_TABLE(pci, uhci_pci_ids);

static struct pci_driver uhci_pci_driver = {
        .name =         (char *)hcd_name,
        .id_table =     uhci_pci_ids,

        .probe =        usb_hcd_pci_probe,
        .remove =       usb_hcd_pci_remove,

#ifdef  CONFIG_PM
        .suspend =      usb_hcd_pci_suspend,
        .resume =       usb_hcd_pci_resume,
#endif  /* PM */
};
 
/*static*/ int __init uhci_hcd_init(void)
{
        int retval = -ENOMEM;

        info(DRIVER_DESC " " DRIVER_VERSION);

        if (usb_disabled())
                return -ENODEV;

        if (debug) {
                errbuf = kmalloc(ERRBUF_LEN, GFP_KERNEL);
                if (!errbuf)
                        goto errbuf_failed;
        }

#ifdef CONFIG_PROC_FS
        uhci_proc_root = create_proc_entry("driver/uhci", S_IFDIR, 0);
        if (!uhci_proc_root)
                goto proc_failed;
#endif

//**    uhci_up_cachep = kmem_cache_create("uhci_urb_priv",
//**            sizeof(struct urb_priv), 0, 0, NULL, NULL);
//**    if (!uhci_up_cachep)
//**            goto up_failed;

        retval = pci_module_init(&uhci_pci_driver);
        if (retval)
                goto init_failed;

        return 0;

init_failed:
//**    if (kmem_cache_destroy(uhci_up_cachep))
//**            printk(KERN_INFO "uhci: not all urb_priv's were freed\n");

up_failed:

#ifdef CONFIG_PROC_FS
        remove_proc_entry("driver/uhci", 0);

proc_failed:
#endif
        if (errbuf)
                kfree(errbuf);

errbuf_failed:

        return retval;
}

/*static*/ void __exit uhci_hcd_cleanup(void)
{
        pci_unregister_driver(&uhci_pci_driver);
       
//**    if (kmem_cache_destroy(uhci_up_cachep))
//**            printk(KERN_INFO "uhci: not all urb_priv's were freed\n");

#ifdef CONFIG_PROC_FS
        remove_proc_entry("driver/uhci", 0);
#endif

        if (errbuf)
                kfree(errbuf);
}

module_init(uhci_hcd_init);
module_exit(uhci_hcd_cleanup);

MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL");