Subversion Repositories shark

Rev

Rev 1056 | Blame | Compare with Previous | Last modification | View Log | RSS feed

/*
 *  USB HID support for Linux
 *
 *  Copyright (c) 1999 Andreas Gal
 *  Copyright (c) 2000-2001 Vojtech Pavlik <vojtech@suse.cz>
 */


/*
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 */


#include <linuxcomp.h>

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/smp_lock.h>
#include <linux/spinlock.h>
#include <asm/unaligned.h>
#include <asm/byteorder.h>
#include <linux/input.h>

#undef DEBUG
#undef DEBUG_DATA

#include <linux/usb.h>

#include "hid.h"
#include <linux/hiddev.h>

/*
 * Version Information
 */


#define DRIVER_VERSION "v2.0"
#define DRIVER_AUTHOR "Andreas Gal, Vojtech Pavlik"
#define DRIVER_DESC "USB HID core driver"
#define DRIVER_LICENSE "GPL"

static char *hid_types[] = {"Device", "Pointer", "Mouse", "Device", "Joystick",
                                "Gamepad", "Keyboard", "Keypad", "Multi-Axis Controller"};

/*
 * Register a new report for a device.
 */


static struct hid_report *hid_register_report(struct hid_device *device, unsigned type, unsigned id)
{
        struct hid_report_enum *report_enum = device->report_enum + type;
        struct hid_report *report;

        if (report_enum->report_id_hash[id])
                return report_enum->report_id_hash[id];

        if (!(report = kmalloc(sizeof(struct hid_report), GFP_KERNEL)))
                return NULL;
        memset(report, 0, sizeof(struct hid_report));

        if (id != 0)
                report_enum->numbered = 1;

        report->id = id;
        report->type = type;
        report->size = 0;
        report->device = device;
        report_enum->report_id_hash[id] = report;

        list_add_tail(&report->list, &report_enum->report_list);

        return report;
}

/*
 * Register a new field for this report.
 */


static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
{
        struct hid_field *field;

        if (report->maxfield == HID_MAX_FIELDS) {
                dbg("too many fields in report");
                return NULL;
        }

        if (!(field = kmalloc(sizeof(struct hid_field) + usages * sizeof(struct hid_usage)
                + values * sizeof(unsigned), GFP_KERNEL))) return NULL;

        memset(field, 0, sizeof(struct hid_field) + usages * sizeof(struct hid_usage)
                + values * sizeof(unsigned));

        report->field[report->maxfield++] = field;
        field->usage = (struct hid_usage *)(field + 1);
        field->value = (unsigned *)(field->usage + usages);
        field->report = report;

        return field;
}

/*
 * Open a collection. The type/usage is pushed on the stack.
 */


static int open_collection(struct hid_parser *parser, unsigned type)
{
        struct hid_collection *collection;
        unsigned usage;

        usage = parser->local.usage[0];

        if (parser->collection_stack_ptr == HID_COLLECTION_STACK_SIZE) {
                dbg("collection stack overflow");
                return -1;
        }

        if (parser->device->maxcollection == parser->device->collection_size) {
                collection = kmalloc(sizeof(struct hid_collection) *
                                     parser->device->collection_size * 2,
                                     GFP_KERNEL);
                if (collection == NULL) {
                        dbg("failed to reallocate collection array");
                        return -1;
                }
                memcpy(collection, parser->device->collection,
                       sizeof(struct hid_collection) *
                       parser->device->collection_size);
                memset(collection + parser->device->collection_size, 0,
                       sizeof(struct hid_collection) *
                       parser->device->collection_size);
                kfree(parser->device->collection);
                parser->device->collection = collection;
                parser->device->collection_size *= 2;
        }

        parser->collection_stack[parser->collection_stack_ptr++] =
                parser->device->maxcollection;

        collection = parser->device->collection +
                parser->device->maxcollection++;
        collection->type = type;
        collection->usage = usage;
        collection->level = parser->collection_stack_ptr - 1;
       
        if (type == HID_COLLECTION_APPLICATION)
                parser->device->maxapplication++;

        return 0;
}

/*
 * Close a collection.
 */


static int close_collection(struct hid_parser *parser)
{
        if (!parser->collection_stack_ptr) {
                dbg("collection stack underflow");
                return -1;
        }
        parser->collection_stack_ptr--;
        return 0;
}

/*
 * Climb up the stack, search for the specified collection type
 * and return the usage.
 */


static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
{
        int n;
        for (n = parser->collection_stack_ptr - 1; n >= 0; n--)
                if (parser->device->collection[parser->collection_stack[n]].type == type)
                        return parser->device->collection[parser->collection_stack[n]].usage;
        return 0; /* we know nothing about this usage type */
}

/*
 * Add a usage to the temporary parser table.
 */


static int hid_add_usage(struct hid_parser *parser, unsigned usage)
{
        if (parser->local.usage_index >= HID_MAX_USAGES) {
                dbg("usage index exceeded");
                return -1;
        }
        parser->local.usage[parser->local.usage_index] = usage;
        parser->local.collection_index[parser->local.usage_index] =
                parser->collection_stack_ptr ?
                parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
        parser->local.usage_index++;
        return 0;
}

/*
 * Register a new field for this report.
 */


static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
{
        struct hid_report *report;
        struct hid_field *field;
        int usages;
        unsigned offset;
        int i;

        if (!(report = hid_register_report(parser->device, report_type, parser->global.report_id))) {
                dbg("hid_register_report failed");
                return -1;
        }

        if (parser->global.logical_maximum < parser->global.logical_minimum) {
                dbg("logical range invalid %d %d", parser->global.logical_minimum, parser->global.logical_maximum);
                return -1;
        }
        usages = parser->local.usage_index;

        offset = report->size;
        report->size += parser->global.report_size * parser->global.report_count;

        if (usages == 0)
                return 0; /* ignore padding fields */

        if ((field = hid_register_field(report, usages, parser->global.report_count)) == NULL)
                return 0;

        field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
        field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
        field->application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);

        for (i = 0; i < usages; i++) {
                field->usage[i].hid = parser->local.usage[i];
                field->usage[i].collection_index =
                        parser->local.collection_index[i];
        }

        field->maxusage = usages;
        field->flags = flags;
        field->report_offset = offset;
        field->report_type = report_type;
        field->report_size = parser->global.report_size;
        field->report_count = parser->global.report_count;
        field->logical_minimum = parser->global.logical_minimum;
        field->logical_maximum = parser->global.logical_maximum;
        field->physical_minimum = parser->global.physical_minimum;
        field->physical_maximum = parser->global.physical_maximum;
        field->unit_exponent = parser->global.unit_exponent;
        field->unit = parser->global.unit;

        return 0;
}

/*
 * Read data value from item.
 */


static __inline__ __u32 item_udata(struct hid_item *item)
{
        switch (item->size) {
                case 1: return item->data.u8;
                case 2: return item->data.u16;
                case 4: return item->data.u32;
        }
        return 0;
}

static __inline__ __s32 item_sdata(struct hid_item *item)
{
        switch (item->size) {
                case 1: return item->data.s8;
                case 2: return item->data.s16;
                case 4: return item->data.s32;
        }
        return 0;
}

/*
 * Process a global item.
 */


static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
{
        switch (item->tag) {

                case HID_GLOBAL_ITEM_TAG_PUSH:

                        if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
                                dbg("global enviroment stack overflow");
                                return -1;
                        }

                        memcpy(parser->global_stack + parser->global_stack_ptr++,
                                &parser->global, sizeof(struct hid_global));
                        return 0;

                case HID_GLOBAL_ITEM_TAG_POP:

                        if (!parser->global_stack_ptr) {
                                dbg("global enviroment stack underflow");
                                return -1;
                        }

                        memcpy(&parser->global, parser->global_stack + --parser->global_stack_ptr,
                                sizeof(struct hid_global));
                        return 0;

                case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
                        parser->global.usage_page = item_udata(item);
                        return 0;

                case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
                        parser->global.logical_minimum = item_sdata(item);
                        return 0;

                case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
                        if (parser->global.logical_minimum < 0)
                                parser->global.logical_maximum = item_sdata(item);
                        else
                                parser->global.logical_maximum = item_udata(item);
                        return 0;

                case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
                        parser->global.physical_minimum = item_sdata(item);
                        return 0;

                case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
                        if (parser->global.physical_minimum < 0)
                                parser->global.physical_maximum = item_sdata(item);
                        else
                                parser->global.physical_maximum = item_udata(item);
                        return 0;

                case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
                        parser->global.unit_exponent = item_sdata(item);
                        return 0;

                case HID_GLOBAL_ITEM_TAG_UNIT:
                        parser->global.unit = item_udata(item);
                        return 0;

                case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
                        if ((parser->global.report_size = item_udata(item)) > 32) {
                                dbg("invalid report_size %d", parser->global.report_size);
                                return -1;
                        }
                        return 0;

                case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
                        if ((parser->global.report_count = item_udata(item)) > HID_MAX_USAGES) {
                                dbg("invalid report_count %d", parser->global.report_count);
                                return -1;
                        }
                        return 0;

                case HID_GLOBAL_ITEM_TAG_REPORT_ID:
                        if ((parser->global.report_id = item_udata(item)) == 0) {
                                dbg("report_id 0 is invalid");
                                return -1;
                        }
                        return 0;

                default:
                        dbg("unknown global tag 0x%x", item->tag);
                        return -1;
        }
}

/*
 * Process a local item.
 */


static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
{
        __u32 data;
        unsigned n;

        if (item->size == 0) {
                dbg("item data expected for local item");
                return -1;
        }

        data = item_udata(item);

        switch (item->tag) {

                case HID_LOCAL_ITEM_TAG_DELIMITER:

                        if (data) {
                                /*
                                 * We treat items before the first delimiter
                                 * as global to all usage sets (branch 0).
                                 * In the moment we process only these global
                                 * items and the first delimiter set.
                                 */

                                if (parser->local.delimiter_depth != 0) {
                                        dbg("nested delimiters");
                                        return -1;
                                }
                                parser->local.delimiter_depth++;
                                parser->local.delimiter_branch++;
                        } else {
                                if (parser->local.delimiter_depth < 1) {
                                        dbg("bogus close delimiter");
                                        return -1;
                                }
                                parser->local.delimiter_depth--;
                        }
                        return 1;

                case HID_LOCAL_ITEM_TAG_USAGE:

                        if (parser->local.delimiter_branch > 1) {
                                dbg("alternative usage ignored");
                                return 0;
                        }

                        if (item->size <= 2)
                                data = (parser->global.usage_page << 16) + data;

                        return hid_add_usage(parser, data);

                case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:

                        if (parser->local.delimiter_branch > 1) {
                                dbg("alternative usage ignored");
                                return 0;
                        }

                        if (item->size <= 2)
                                data = (parser->global.usage_page << 16) + data;

                        parser->local.usage_minimum = data;
                        return 0;

                case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:

                        if (parser->local.delimiter_branch > 1) {
                                dbg("alternative usage ignored");
                                return 0;
                        }

                        if (item->size <= 2)
                                data = (parser->global.usage_page << 16) + data;

                        for (n = parser->local.usage_minimum; n <= data; n++)
                                if (hid_add_usage(parser, n)) {
                                        dbg("hid_add_usage failed\n");
                                        return -1;
                                }
                        return 0;

                default:

                        dbg("unknown local item tag 0x%x", item->tag);
                        return 0;
        }
        return 0;
}

/*
 * Process a main item.
 */


static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
{
        __u32 data;
        int ret;

        data = item_udata(item);

        switch (item->tag) {
                case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
                        ret = open_collection(parser, data & 0xff);
                        break;
                case HID_MAIN_ITEM_TAG_END_COLLECTION:
                        ret = close_collection(parser);
                        break;
                case HID_MAIN_ITEM_TAG_INPUT:
                        ret = hid_add_field(parser, HID_INPUT_REPORT, data);
                        break;
                case HID_MAIN_ITEM_TAG_OUTPUT:
                        ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
                        break;
                case HID_MAIN_ITEM_TAG_FEATURE:
                        ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
                        break;
                default:
                        dbg("unknown main item tag 0x%x", item->tag);
                        ret = 0;
        }

        memset(&parser->local, 0, sizeof(parser->local));       /* Reset the local parser environment */

        return ret;
}

/*
 * Process a reserved item.
 */


static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
{
        dbg("reserved item type, tag 0x%x", item->tag);
        return 0;
}

/*
 * Free a report and all registered fields. The field->usage and
 * field->value table's are allocated behind the field, so we need
 * only to free(field) itself.
 */


static void hid_free_report(struct hid_report *report)
{
        unsigned n;

        for (n = 0; n < report->maxfield; n++)
                kfree(report->field[n]);
        kfree(report);
}

/*
 * Free a device structure, all reports, and all fields.
 */


static void hid_free_device(struct hid_device *device)
{
        unsigned i,j;

        hid_ff_exit(device);

        for (i = 0; i < HID_REPORT_TYPES; i++) {
                struct hid_report_enum *report_enum = device->report_enum + i;

                for (j = 0; j < 256; j++) {
                        struct hid_report *report = report_enum->report_id_hash[j];
                        if (report)
                                hid_free_report(report);
                }
        }

        if (device->rdesc)
                kfree(device->rdesc);
        kfree(device);
}

/*
 * Fetch a report description item from the data stream. We support long
 * items, though they are not used yet.
 */


static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
{
        u8 b;

        if ((end - start) <= 0)
                return NULL;

        b = *start++;

        item->type = (b >> 2) & 3;
        item->tag  = (b >> 4) & 15;

        if (item->tag == HID_ITEM_TAG_LONG) {

                item->format = HID_ITEM_FORMAT_LONG;

                if ((end - start) < 2)
                        return NULL;

                item->size = *start++;
                item->tag  = *start++;

                if ((end - start) < item->size)
                        return NULL;

                item->data.longdata = start;
                start += item->size;
                return start;
        }

        item->format = HID_ITEM_FORMAT_SHORT;
        item->size = b & 3;

        switch (item->size) {

                case 0:
                        return start;

                case 1:
                        if ((end - start) < 1)
                                return NULL;
                        item->data.u8 = *start++;
                        return start;

                case 2:
                        if ((end - start) < 2)
                                return NULL;
                       
                        // changed for gcc4 compatibility
                        //item->data.u16 = le16_to_cpu(get_unaligned(((__u16*)start)++));
                        item->data.u16 = le16_to_cpu(get_unaligned(((__u16*)start)));
                        start += sizeof(u16);
                        return start;

                case 3:
                        item->size++;
                        if ((end - start) < 4)
                                return NULL;
                       
                        // changed for gcc4 compatibility
                        //item->data.u32 = le32_to_cpu(get_unaligned(((__u32*)start)++));
                        item->data.u32 = le32_to_cpu(get_unaligned(((__u32*)start)));
                        start += sizeof(u32);
                        return start;
        }

        return NULL;
}

/*
 * Parse a report description into a hid_device structure. Reports are
 * enumerated, fields are attached to these reports.
 */


static struct hid_device *hid_parse_report(__u8 *start, unsigned size)
{
        struct hid_device *device;
        struct hid_parser *parser;
        struct hid_item item;
        __u8 *end;
        unsigned i;
        static int (*dispatch_type[])(struct hid_parser *parser,
                                      struct hid_item *item) = {
                hid_parser_main,
                hid_parser_global,
                hid_parser_local,
                hid_parser_reserved
        };

        if (!(device = kmalloc(sizeof(struct hid_device), GFP_KERNEL)))
                return NULL;
        memset(device, 0, sizeof(struct hid_device));

        if (!(device->collection =kmalloc(sizeof(struct hid_collection) *
                                   HID_DEFAULT_NUM_COLLECTIONS, GFP_KERNEL))) {
                kfree(device);
                return NULL;
        }
        memset(device->collection, 0, sizeof(struct hid_collection) *
               HID_DEFAULT_NUM_COLLECTIONS);
        device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;

        for (i = 0; i < HID_REPORT_TYPES; i++)
                INIT_LIST_HEAD(&device->report_enum[i].report_list);

        if (!(device->rdesc = (__u8 *)kmalloc(size, GFP_KERNEL))) {
                kfree(device->collection);
                kfree(device);
                return NULL;
        }
        memcpy(device->rdesc, start, size);
        device->rsize = size;

        if (!(parser = kmalloc(sizeof(struct hid_parser), GFP_KERNEL))) {
                kfree(device->rdesc);
                kfree(device->collection);
                kfree(device);
                return NULL;
        }
        memset(parser, 0, sizeof(struct hid_parser));
        parser->device = device;

        end = start + size;
        while ((start = fetch_item(start, end, &item)) != 0) {

                if (item.format != HID_ITEM_FORMAT_SHORT) {
                        dbg("unexpected long global item");
                        kfree(device->collection);
                        hid_free_device(device);
                        kfree(parser);
                        return NULL;
                }

                if (dispatch_type[item.type](parser, &item)) {
                        dbg("item %u %u %u %u parsing failed\n",
                                item.format, (unsigned)item.size, (unsigned)item.type, (unsigned)item.tag);
                        kfree(device->collection);
                        hid_free_device(device);
                        kfree(parser);
                        return NULL;
                }

                if (start == end) {
                        if (parser->collection_stack_ptr) {
                                dbg("unbalanced collection at end of report description");
                                kfree(device->collection);
                                hid_free_device(device);
                                kfree(parser);
                                return NULL;
                        }
                        if (parser->local.delimiter_depth) {
                                dbg("unbalanced delimiter at end of report description");
                                kfree(device->collection);
                                hid_free_device(device);
                                kfree(parser);
                                return NULL;
                        }
                        kfree(parser);
                        return device;
                }
        }

        dbg("item fetching failed at offset %d\n", (int)(end - start));
        kfree(device->collection);
        hid_free_device(device);
        kfree(parser);
        return NULL;
}

/*
 * Convert a signed n-bit integer to signed 32-bit integer. Common
 * cases are done through the compiler, the screwed things has to be
 * done by hand.
 */


static __inline__ __s32 snto32(__u32 value, unsigned n)
{
        switch (n) {
                case 8:  return ((__s8)value);
                case 16: return ((__s16)value);
                case 32: return ((__s32)value);
        }
        return value & (1 << (n - 1)) ? value | (-1 << n) : value;
}

/*
 * Convert a signed 32-bit integer to a signed n-bit integer.
 */


static __inline__ __u32 s32ton(__s32 value, unsigned n)
{
        __s32 a = value >> (n - 1);
        if (a && a != -1)
                return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
        return value & ((1 << n) - 1);
}

/*
 * Extract/implement a data field from/to a report.
 */


static __inline__ __u32 extract(__u8 *report, unsigned offset, unsigned n)
{
        report += (offset >> 5) << 2; offset &= 31;
        return (le64_to_cpu(get_unaligned((__u64*)report)) >> offset) & ((1 << n) - 1);
}

static __inline__ void implement(__u8 *report, unsigned offset, unsigned n, __u32 value)
{
        report += (offset >> 5) << 2; offset &= 31;
        put_unaligned((get_unaligned((__u64*)report)
                & cpu_to_le64(~((((__u64) 1 << n) - 1) << offset)))
                | cpu_to_le64((__u64)value << offset), (__u64*)report);
}

/*
 * Search an array for a value.
 */


static __inline__ int search(__s32 *array, __s32 value, unsigned n)
{
        while (n--) {
                if (*array++ == value)
                        return 0;
        }
        return -1;
}

static void hid_process_event(struct hid_device *hid, struct hid_field *field, struct hid_usage *usage, __s32 value, struct pt_regs *regs)
{
        hid_dump_input(usage, value);
        if (hid->claimed & HID_CLAIMED_INPUT)
                hidinput_hid_event(hid, field, usage, value, regs);
        if (hid->claimed & HID_CLAIMED_HIDDEV)
                hiddev_hid_event(hid, field, usage, value, regs);
}

/*
 * Analyse a received field, and fetch the data from it. The field
 * content is stored for next report processing (we do differential
 * reporting to the layer).
 */


static void hid_input_field(struct hid_device *hid, struct hid_field *field, __u8 *data, struct pt_regs *regs)
{
        unsigned n;
        unsigned count = field->report_count;
        unsigned offset = field->report_offset;
        unsigned size = field->report_size;
        __s32 min = field->logical_minimum;
        __s32 max = field->logical_maximum;
        __s32 value[count]; /* WARNING: gcc specific */

        for (n = 0; n < count; n++) {

                        value[n] = min < 0 ? snto32(extract(data, offset + n * size, size), size) :
                                                    extract(data, offset + n * size, size);

                        if (!(field->flags & HID_MAIN_ITEM_VARIABLE) /* Ignore report if ErrorRollOver */
                            && value[n] >= min && value[n] <= max
                            && field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
                                return;
        }

        for (n = 0; n < count; n++) {

                if (HID_MAIN_ITEM_VARIABLE & field->flags) {

                        if (field->flags & HID_MAIN_ITEM_RELATIVE) {
                                if (!value[n])
                                        continue;
                        } else {
                                if (value[n] == field->value[n])
                                        continue;
                        }      
                        hid_process_event(hid, field, &field->usage[n], value[n], regs);
                        continue;
                }

                if (field->value[n] >= min && field->value[n] <= max
                        && field->usage[field->value[n] - min].hid
                        && search(value, field->value[n], count))
                                hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, regs);

                if (value[n] >= min && value[n] <= max
                        && field->usage[value[n] - min].hid
                        && search(field->value, value[n], count))
                                hid_process_event(hid, field, &field->usage[value[n] - min], 1, regs);
        }

        memcpy(field->value, value, count * sizeof(__s32));
}

static int hid_input_report(int type, struct urb *urb, struct pt_regs *regs)
{
        struct hid_device *hid = urb->context;
        struct hid_report_enum *report_enum = hid->report_enum + type;
        u8 *data = urb->transfer_buffer;
        int len = urb->actual_length;
        struct hid_report *report;
        int n, size;

        if (!len) {
                dbg("empty report");
                return -1;
        }

#ifdef DEBUG_DATA
        printk(KERN_DEBUG __FILE__ ": report (size %u) (%snumbered)\n", len, report_enum->numbered ? "" : "un");
#endif

        n = 0;                          /* Normally report number is 0 */
        if (report_enum->numbered) {    /* Device uses numbered reports, data[0] is report number */
                n = *data++;
                len--;
        }

#ifdef DEBUG_DATA
        {
                int i;
                printk(KERN_DEBUG __FILE__ ": report %d (size %u) = ", n, len);
                for (i = 0; i < len; i++)
                        printk(" %02x", data[i]);
                printk("\n");
        }
#endif

        if (!(report = report_enum->report_id_hash[n])) {
                dbg("undefined report_id %d received", n);
                return -1;
        }

        size = ((report->size - 1) >> 3) + 1;

        if (len < size) {
                dbg("report %d is too short, (%d < %d)", report->id, len, size);
                return -1;
        }

        if (hid->claimed & HID_CLAIMED_HIDDEV)
                hiddev_report_event(hid, report);

        for (n = 0; n < report->maxfield; n++)
                hid_input_field(hid, report->field[n], data, regs);

        if (hid->claimed & HID_CLAIMED_INPUT)
                hidinput_report_event(hid, report);

        return 0;
}

/*
 * Input interrupt completion handler.
 */


static void hid_irq_in(struct urb *urb, struct pt_regs *regs)
{
        struct hid_device       *hid = urb->context;
        int                     status;

        switch (urb->status) {
        case 0:                 /* success */
                hid_input_report(HID_INPUT_REPORT, urb, regs);
                break;
        case -ECONNRESET:       /* unlink */
        case -ENOENT:
        case -ESHUTDOWN:
                return;
        default:                /* error */
                dbg("nonzero status in input irq %d", urb->status);
        }
       
        status = usb_submit_urb (urb, SLAB_ATOMIC);
        if (status)
                err ("can't resubmit intr, %s-%s/input%d, status %d",
                                hid->dev->bus->bus_name, hid->dev->devpath,
                                hid->ifnum, status);
}

/*
 * Output the field into the report.
 */


static void hid_output_field(struct hid_field *field, __u8 *data)
{
        unsigned count = field->report_count;
        unsigned offset = field->report_offset;
        unsigned size = field->report_size;
        unsigned n;

        for (n = 0; n < count; n++) {
                if (field->logical_minimum < 0) /* signed values */
                        implement(data, offset + n * size, size, s32ton(field->value[n], size));
                 else                           /* unsigned values */
                        implement(data, offset + n * size, size, field->value[n]);
        }
}

/*
 * Create a report.
 */


void hid_output_report(struct hid_report *report, __u8 *data)
{
        unsigned n;

        if (report->id > 0)
                *data++ = report->id;

        for (n = 0; n < report->maxfield; n++)
                hid_output_field(report->field[n], data);
}

/*
 * Set a field value. The report this field belongs to has to be
 * created and transferred to the device, to set this value in the
 * device.
 */


int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
{
        unsigned size = field->report_size;

        hid_dump_input(field->usage + offset, value);

        if (offset >= field->report_count) {
                dbg("offset (%d) exceeds report_count (%d)", offset, field->report_count);
                hid_dump_field(field, 8);
                return -1;
        }
        if (field->logical_minimum < 0) {
                if (value != snto32(s32ton(value, size), size)) {
                        dbg("value %d is out of range", value);
                        return -1;
                }
        }
        field->value[offset] = value;
        return 0;
}

int hid_find_field(struct hid_device *hid, unsigned int type, unsigned int code, struct hid_field **field)
{
        struct hid_report_enum *report_enum = hid->report_enum + HID_OUTPUT_REPORT;
        struct list_head *list = report_enum->report_list.next;
        int i, j;

        while (list != &report_enum->report_list) {
                struct hid_report *report = (struct hid_report *) list;
                list = list->next;
                for (i = 0; i < report->maxfield; i++) {
                        *field = report->field[i];
                        for (j = 0; j < (*field)->maxusage; j++)
                                if ((*field)->usage[j].type == type && (*field)->usage[j].code == code)
                                        return j;
                }
        }
        return -1;
}

/*
 * Find a report with a specified HID usage.
 */


int hid_find_report_by_usage(struct hid_device *hid, __u32 wanted_usage, struct hid_report **report, int type)
{
        struct hid_report_enum *report_enum = hid->report_enum + type;
        struct list_head *list = report_enum->report_list.next;
        int i, j;

        while (list != &report_enum->report_list) {
                *report = (struct hid_report *) list;
                list = list->next;
                for (i = 0; i < (*report)->maxfield; i++) {
                        struct hid_field *field = (*report)->field[i];
                        for (j = 0; j < field->maxusage; j++)
                                if (field->logical == wanted_usage)
                                        return j;
                }
        }
        return -1;
}

int hid_find_field_in_report(struct hid_report *report, __u32 wanted_usage, struct hid_field **field)
{
        int i, j;

        for (i = 0; i < report->maxfield; i++) {
                *field = report->field[i];
                for (j = 0; j < (*field)->maxusage; j++)
                        if ((*field)->usage[j].hid == wanted_usage)
                                return j;
        }

        return -1;
}

static int hid_submit_out(struct hid_device *hid)
{
        struct hid_report *report;

        report = hid->out[hid->outtail];

        hid_output_report(report, hid->outbuf);
        hid->urbout->transfer_buffer_length = ((report->size - 1) >> 3) + 1 + (report->id > 0);
        hid->urbout->dev = hid->dev;

        dbg("submitting out urb");

        if (usb_submit_urb(hid->urbout, GFP_ATOMIC)) {
                err("usb_submit_urb(out) failed");
                return -1;
        }

        return 0;
}

static int hid_submit_ctrl(struct hid_device *hid)
{
        struct hid_report *report;
        unsigned char dir;

        report = hid->ctrl[hid->ctrltail].report;
        dir = hid->ctrl[hid->ctrltail].dir;

        if (dir == USB_DIR_OUT)
                hid_output_report(report, hid->ctrlbuf);

        hid->urbctrl->transfer_buffer_length = ((report->size - 1) >> 3) + 1 + (report->id > 0);
        hid->urbctrl->pipe = (dir == USB_DIR_OUT) ?  usb_sndctrlpipe(hid->dev, 0) : usb_rcvctrlpipe(hid->dev, 0);
        hid->urbctrl->dev = hid->dev;

        hid->cr->bRequestType = USB_TYPE_CLASS | USB_RECIP_INTERFACE | dir;
        hid->cr->bRequest = (dir == USB_DIR_OUT) ? HID_REQ_SET_REPORT : HID_REQ_GET_REPORT;
        hid->cr->wValue = cpu_to_le16(((report->type + 1) << 8) | report->id);
        hid->cr->wIndex = cpu_to_le16(hid->ifnum);
        hid->cr->wLength = cpu_to_le16(hid->urbctrl->transfer_buffer_length);

        dbg("submitting ctrl urb");

        if (usb_submit_urb(hid->urbctrl, GFP_ATOMIC)) {
                err("usb_submit_urb(ctrl) failed");
                return -1;
        }

        return 0;
}

/*
 * Output interrupt completion handler.
 */


static void hid_irq_out(struct urb *urb, struct pt_regs *regs)
{
        struct hid_device *hid = urb->context;
        unsigned long flags;

        if (urb->status)
                warn("output irq status %d received", urb->status);

        spin_lock_irqsave(&hid->outlock, flags);

        hid->outtail = (hid->outtail + 1) & (HID_OUTPUT_FIFO_SIZE - 1);

        if (hid->outhead != hid->outtail) {
                hid_submit_out(hid);
                spin_unlock_irqrestore(&hid->outlock, flags);
                return;
        }

        clear_bit(HID_OUT_RUNNING, &hid->iofl);

        spin_unlock_irqrestore(&hid->outlock, flags);

        wake_up(&hid->wait);
}

/*
 * Control pipe completion handler.
 */


static void hid_ctrl(struct urb *urb, struct pt_regs *regs)
{
        struct hid_device *hid = urb->context;
        unsigned long flags;

        if (urb->status)
                warn("ctrl urb status %d received", urb->status);

        spin_lock_irqsave(&hid->ctrllock, flags);

        if (hid->ctrl[hid->ctrltail].dir == USB_DIR_IN)
                hid_input_report(hid->ctrl[hid->ctrltail].report->type, urb, regs);

        hid->ctrltail = (hid->ctrltail + 1) & (HID_CONTROL_FIFO_SIZE - 1);

        if (hid->ctrlhead != hid->ctrltail) {
                hid_submit_ctrl(hid);
                spin_unlock_irqrestore(&hid->ctrllock, flags);
                return;
        }

        clear_bit(HID_CTRL_RUNNING, &hid->iofl);

        spin_unlock_irqrestore(&hid->ctrllock, flags);

        wake_up(&hid->wait);
}

void hid_submit_report(struct hid_device *hid, struct hid_report *report, unsigned char dir)
{
        int head;
        unsigned long flags;

        if ((hid->quirks & HID_QUIRK_NOGET) && dir == USB_DIR_IN)
                return;

        if (hid->urbout && dir == USB_DIR_OUT && report->type == HID_OUTPUT_REPORT) {

                spin_lock_irqsave(&hid->outlock, flags);

                if ((head = (hid->outhead + 1) & (HID_OUTPUT_FIFO_SIZE - 1)) == hid->outtail) {
                        spin_unlock_irqrestore(&hid->outlock, flags);
                        warn("output queue full");
                        return;
                }

                hid->out[hid->outhead] = report;
                hid->outhead = head;

                if (!test_and_set_bit(HID_OUT_RUNNING, &hid->iofl))
                        hid_submit_out(hid);

                spin_unlock_irqrestore(&hid->outlock, flags);
                return;
        }

        spin_lock_irqsave(&hid->ctrllock, flags);

        if ((head = (hid->ctrlhead + 1) & (HID_CONTROL_FIFO_SIZE - 1)) == hid->ctrltail) {
                spin_unlock_irqrestore(&hid->ctrllock, flags);
                warn("control queue full");
                return;
        }

        hid->ctrl[hid->ctrlhead].report = report;
        hid->ctrl[hid->ctrlhead].dir = dir;
        hid->ctrlhead = head;

        if (!test_and_set_bit(HID_CTRL_RUNNING, &hid->iofl))
                hid_submit_ctrl(hid);

        spin_unlock_irqrestore(&hid->ctrllock, flags);
}

int hid_wait_io(struct hid_device *hid)
{
        DECLARE_WAITQUEUE(wait, current);
  int timeout = 1*HZ;

        set_current_state(TASK_UNINTERRUPTIBLE);
        add_wait_queue(&hid->wait, &wait);

  while (timeout && (test_bit(HID_CTRL_RUNNING, &hid->iofl) ||
                           test_bit(HID_OUT_RUNNING, &hid->iofl)))
    timeout = schedule_timeout(timeout);

        set_current_state(TASK_RUNNING);
        remove_wait_queue(&hid->wait, &wait);

/*  if (!timeout) {
                dbg("timeout waiting for ctrl or out queue to clear");
                return -1;
  } */

        return 0;
}

static int hid_get_class_descriptor(struct usb_device *dev, int ifnum,
                unsigned char type, void *buf, int size)
{
        return usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
                USB_REQ_GET_DESCRIPTOR, USB_RECIP_INTERFACE | USB_DIR_IN,
                (type << 8), ifnum, buf, size, HZ * USB_CTRL_GET_TIMEOUT);
}

int hid_open(struct hid_device *hid)
{
        if (hid->open++)
                return 0;

        hid->urbin->dev = hid->dev;

        if (usb_submit_urb(hid->urbin, GFP_KERNEL))
                return -EIO;

        return 0;
}

void hid_close(struct hid_device *hid)
{
        if (!--hid->open)
                usb_unlink_urb(hid->urbin);
}

/*
 * Initialize all reports
 */


void hid_init_reports(struct hid_device *hid)
{
        struct hid_report_enum *report_enum;
        struct hid_report *report;
        struct list_head *list;
        int len;
        int err, ret;

        report_enum = hid->report_enum + HID_INPUT_REPORT;
        list = report_enum->report_list.next;
        while (list != &report_enum->report_list) {
                report = (struct hid_report *) list;
                hid_submit_report(hid, report, USB_DIR_IN);
                list = list->next;
        }

        report_enum = hid->report_enum + HID_FEATURE_REPORT;
        list = report_enum->report_list.next;
        while (list != &report_enum->report_list) {
                report = (struct hid_report *) list;
                hid_submit_report(hid, report, USB_DIR_IN);
                list = list->next;
        }

        err = 0;
  while ((ret = hid_wait_io(hid))) {
                err |= ret;
                if (test_bit(HID_CTRL_RUNNING, &hid->iofl))
                        usb_unlink_urb(hid->urbctrl);
                if (test_bit(HID_OUT_RUNNING, &hid->iofl))
                        usb_unlink_urb(hid->urbout);
        }

        if (err)
                warn("timeout initializing reports\n");

        report_enum = hid->report_enum + HID_INPUT_REPORT;
        list = report_enum->report_list.next;
        while (list != &report_enum->report_list) {
                report = (struct hid_report *) list;
                len = ((report->size - 1) >> 3) + 1 + report_enum->numbered;
                if (len > hid->urbin->transfer_buffer_length)
                        hid->urbin->transfer_buffer_length = len < HID_BUFFER_SIZE ? len : HID_BUFFER_SIZE;
                usb_control_msg(hid->dev, usb_sndctrlpipe(hid->dev, 0),
                        0x0a, USB_TYPE_CLASS | USB_RECIP_INTERFACE, report->id,
                        hid->ifnum, NULL, 0, HZ * USB_CTRL_SET_TIMEOUT);
                list = list->next;
        }
}

#define USB_VENDOR_ID_WACOM             0x056a
#define USB_DEVICE_ID_WACOM_PENPARTNER  0x0000
#define USB_DEVICE_ID_WACOM_GRAPHIRE    0x0010
#define USB_DEVICE_ID_WACOM_INTUOS      0x0020
#define USB_DEVICE_ID_WACOM_PL          0x0030
#define USB_DEVICE_ID_WACOM_INTUOS2     0x0040

#define USB_VENDOR_ID_KBGEAR            0x084e
#define USB_DEVICE_ID_KBGEAR_JAMSTUDIO  0x1001


#define USB_VENDOR_ID_AIPTEK            0x08ca
#define USB_DEVICE_ID_AIPTEK_6000       0x0020

#define USB_VENDOR_ID_GRIFFIN           0x077d
#define USB_DEVICE_ID_POWERMATE         0x0410
#define USB_DEVICE_ID_SOUNDKNOB         0x04AA

#define USB_VENDOR_ID_ATEN             0x0557  
#define USB_DEVICE_ID_ATEN_UC100KM     0x2004
#define USB_DEVICE_ID_ATEN_CS124U      0x2202
#define USB_DEVICE_ID_ATEN_2PORTKVM    0x2204
#define USB_DEVICE_ID_ATEN_4PORTKVM    0x2205
#define USB_DEVICE_ID_ATEN_4PORTKVMC   0x2208

#define USB_VENDOR_ID_TOPMAX           0x0663
#define USB_DEVICE_ID_TOPMAX_COBRAPAD  0x0103

#define USB_VENDOR_ID_HAPP             0x078b
#define USB_DEVICE_ID_UGCI_DRIVING     0x0010
#define USB_DEVICE_ID_UGCI_FLYING      0x0020
#define USB_DEVICE_ID_UGCI_FIGHTING    0x0030

#define USB_VENDOR_ID_MGE              0x0463
#define USB_DEVICE_ID_MGE_UPS          0xffff
#define USB_DEVICE_ID_MGE_UPS1         0x0001

#define USB_VENDOR_ID_ONTRAK            0x0a07
#define USB_DEVICE_ID_ONTRAK_ADU100     0x0064

#define USB_VENDOR_ID_TANGTOP          0x0d3d
#define USB_DEVICE_ID_TANGTOP_USBPS2   0x0001

#define USB_VENDOR_ID_ESSENTIAL_REALITY 0x0d7f
#define USB_DEVICE_ID_ESSENTIAL_REALITY_P5      0x0100

#define USB_VENDOR_ID_A4TECH            0x09DA
#define USB_DEVICE_ID_A4TECH_WCP32PU    0x0006

struct hid_blacklist {
        __u16 idVendor;
        __u16 idProduct;
        unsigned quirks;
} hid_blacklist[] = {
        { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_PENPARTNER, HID_QUIRK_IGNORE },
        { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_GRAPHIRE, HID_QUIRK_IGNORE },
        { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_GRAPHIRE + 1, HID_QUIRK_IGNORE },
        { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_GRAPHIRE + 2, HID_QUIRK_IGNORE },
        { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS, HID_QUIRK_IGNORE },
        { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS + 1, HID_QUIRK_IGNORE },
        { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS + 2, HID_QUIRK_IGNORE },
        { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS + 3, HID_QUIRK_IGNORE },
        { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS + 4, HID_QUIRK_IGNORE },
        { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_PL, HID_QUIRK_IGNORE },
        { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_PL + 1, HID_QUIRK_IGNORE },
        { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_PL + 2, HID_QUIRK_IGNORE },
        { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_PL + 3, HID_QUIRK_IGNORE },
        { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_PL + 4, HID_QUIRK_IGNORE },
        { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_PL + 5, HID_QUIRK_IGNORE },
        { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS2, HID_QUIRK_IGNORE },
        { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS2 + 1, HID_QUIRK_IGNORE },
        { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS2 + 2, HID_QUIRK_IGNORE },
        { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS2 + 3, HID_QUIRK_IGNORE },
        { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS2 + 4, HID_QUIRK_IGNORE },
        { USB_VENDOR_ID_KBGEAR, USB_DEVICE_ID_KBGEAR_JAMSTUDIO, HID_QUIRK_IGNORE },
        { USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_6000, HID_QUIRK_IGNORE },
        { USB_VENDOR_ID_GRIFFIN, USB_DEVICE_ID_POWERMATE, HID_QUIRK_IGNORE },
        { USB_VENDOR_ID_GRIFFIN, USB_DEVICE_ID_SOUNDKNOB, HID_QUIRK_IGNORE },
        { USB_VENDOR_ID_ATEN, USB_DEVICE_ID_ATEN_UC100KM, HID_QUIRK_NOGET },
        { USB_VENDOR_ID_ATEN, USB_DEVICE_ID_ATEN_CS124U, HID_QUIRK_NOGET },
        { USB_VENDOR_ID_ATEN, USB_DEVICE_ID_ATEN_2PORTKVM, HID_QUIRK_NOGET },
        { USB_VENDOR_ID_ATEN, USB_DEVICE_ID_ATEN_4PORTKVM, HID_QUIRK_NOGET },
        { USB_VENDOR_ID_ATEN, USB_DEVICE_ID_ATEN_4PORTKVMC, HID_QUIRK_NOGET },
        { USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS, HID_QUIRK_HIDDEV },
        { USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1, HID_QUIRK_HIDDEV },
        { USB_VENDOR_ID_TOPMAX, USB_DEVICE_ID_TOPMAX_COBRAPAD, HID_QUIRK_BADPAD },
        { USB_VENDOR_ID_HAPP, USB_DEVICE_ID_UGCI_DRIVING, HID_QUIRK_BADPAD|HID_QUIRK_MULTI_INPUT },
        { USB_VENDOR_ID_HAPP, USB_DEVICE_ID_UGCI_FLYING, HID_QUIRK_BADPAD|HID_QUIRK_MULTI_INPUT },
        { USB_VENDOR_ID_HAPP, USB_DEVICE_ID_UGCI_FIGHTING, HID_QUIRK_BADPAD|HID_QUIRK_MULTI_INPUT },
        { USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100, HID_QUIRK_IGNORE },
        { USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 100, HID_QUIRK_IGNORE },
        { USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 200, HID_QUIRK_IGNORE },
        { USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 300, HID_QUIRK_IGNORE },
        { USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 400, HID_QUIRK_IGNORE },
        { USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 500, HID_QUIRK_IGNORE },
        { USB_VENDOR_ID_TANGTOP, USB_DEVICE_ID_TANGTOP_USBPS2, HID_QUIRK_NOGET },
        { USB_VENDOR_ID_ESSENTIAL_REALITY, USB_DEVICE_ID_ESSENTIAL_REALITY_P5, HID_QUIRK_IGNORE },
        { USB_VENDOR_ID_A4TECH, USB_DEVICE_ID_A4TECH_WCP32PU, HID_QUIRK_2WHEEL_MOUSE_HACK },
        { 0, 0 }
};

static int hid_alloc_buffers(struct usb_device *dev, struct hid_device *hid)
{
        if (!(hid->inbuf = usb_buffer_alloc(dev, HID_BUFFER_SIZE, SLAB_ATOMIC, &hid->inbuf_dma)))
                return -1;
        if (!(hid->outbuf = usb_buffer_alloc(dev, HID_BUFFER_SIZE, SLAB_ATOMIC, &hid->outbuf_dma)))
                return -1;
        if (!(hid->cr = usb_buffer_alloc(dev, sizeof(*(hid->cr)), SLAB_ATOMIC, &hid->cr_dma)))
                return -1;
        if (!(hid->ctrlbuf = usb_buffer_alloc(dev, HID_BUFFER_SIZE, SLAB_ATOMIC, &hid->ctrlbuf_dma)))
                return -1;

        return 0;
}

static void hid_free_buffers(struct usb_device *dev, struct hid_device *hid)
{
        if (hid->inbuf)
                usb_buffer_free(dev, HID_BUFFER_SIZE, hid->inbuf, hid->inbuf_dma);
        if (hid->outbuf)
                usb_buffer_free(dev, HID_BUFFER_SIZE, hid->outbuf, hid->outbuf_dma);
        if (hid->cr)
                usb_buffer_free(dev, sizeof(*(hid->cr)), hid->cr, hid->cr_dma);
        if (hid->ctrlbuf)
                usb_buffer_free(dev, HID_BUFFER_SIZE, hid->ctrlbuf, hid->ctrlbuf_dma);
}

static struct hid_device *usb_hid_configure(struct usb_interface *intf)
{
        struct usb_host_interface *interface = intf->altsetting + intf->act_altsetting;
        struct usb_device *dev = interface_to_usbdev (intf);
        struct hid_descriptor *hdesc;
        struct hid_device *hid;
        unsigned quirks = 0, rsize = 0;
        char *buf, *rdesc;
        int n;

        for (n = 0; hid_blacklist[n].idVendor; n++)
                if ((hid_blacklist[n].idVendor == dev->descriptor.idVendor) &&
                        (hid_blacklist[n].idProduct == dev->descriptor.idProduct))
                                quirks = hid_blacklist[n].quirks;

        if (quirks & HID_QUIRK_IGNORE)
                return NULL;

        if (usb_get_extra_descriptor(interface, HID_DT_HID, &hdesc) && ((!interface->desc.bNumEndpoints) ||
                usb_get_extra_descriptor(&interface->endpoint[0], HID_DT_HID, &hdesc))) {
                        dbg("class descriptor not present\n");
                        return NULL;
        }

        for (n = 0; n < hdesc->bNumDescriptors; n++)
                if (hdesc->desc[n].bDescriptorType == HID_DT_REPORT)
                        rsize = le16_to_cpu(hdesc->desc[n].wDescriptorLength);

        if (!rsize || rsize > HID_MAX_DESCRIPTOR_SIZE) {
                dbg("weird size of report descriptor (%u)", rsize);
                return NULL;
        }

        if (!(rdesc = kmalloc(rsize, GFP_KERNEL))) {
                dbg("couldn't allocate rdesc memory");
                return NULL;
        }

        if ((n = hid_get_class_descriptor(dev, interface->desc.bInterfaceNumber, HID_DT_REPORT, rdesc, rsize)) < 0) {
                dbg("reading report descriptor failed");
                kfree(rdesc);
                return NULL;
        }

#ifdef DEBUG_DATA
        printk(KERN_DEBUG __FILE__ ": report descriptor (size %u, read %d) = ", rsize, n);
        for (n = 0; n < rsize; n++)
                printk(" %02x", (unsigned char) rdesc[n]);
        printk("\n");
#endif

        if (!(hid = hid_parse_report(rdesc, rsize))) {
                dbg("parsing report descriptor failed");
                kfree(rdesc);
                return NULL;
        }

        kfree(rdesc);
        hid->quirks = quirks;

        if (hid_alloc_buffers(dev, hid)) {
                hid_free_buffers(dev, hid);
                goto fail;
        }

        for (n = 0; n < interface->desc.bNumEndpoints; n++) {

                struct usb_endpoint_descriptor *endpoint;
                int pipe;

                endpoint = &interface->endpoint[n].desc;
                if ((endpoint->bmAttributes & 3) != 3)          /* Not an interrupt endpoint */
                        continue;

                if (endpoint->bEndpointAddress & USB_DIR_IN) {
                        if (hid->urbin)
                                continue;
                        if (!(hid->urbin = usb_alloc_urb(0, GFP_KERNEL)))
                                goto fail;
                        pipe = usb_rcvintpipe(dev, endpoint->bEndpointAddress);
                        usb_fill_int_urb(hid->urbin, dev, pipe, hid->inbuf, 0,
                                         hid_irq_in, hid, endpoint->bInterval);
                        hid->urbin->transfer_dma = hid->inbuf_dma;
                        hid->urbin->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
                } else {
                        if (hid->urbout)
                                continue;
                        if (!(hid->urbout = usb_alloc_urb(0, GFP_KERNEL)))
                                goto fail;
                        pipe = usb_sndbulkpipe(dev, endpoint->bEndpointAddress);
                        usb_fill_bulk_urb(hid->urbout, dev, pipe, hid->outbuf, 0,
                                          hid_irq_out, hid);
                        hid->urbout->transfer_dma = hid->outbuf_dma;
                        hid->urbout->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
                }
        }

        if (!hid->urbin) {
                err("couldn't find an input interrupt endpoint");
                goto fail;
        }

        init_waitqueue_head(&hid->wait);
       
        hid->outlock = SPIN_LOCK_UNLOCKED;
        hid->ctrllock = SPIN_LOCK_UNLOCKED;

        hid->version = le16_to_cpu(hdesc->bcdHID);
        hid->country = hdesc->bCountryCode;
        hid->dev = dev;
        hid->ifnum = interface->desc.bInterfaceNumber;

        hid->name[0] = 0;

        if (!(buf = kmalloc(64, GFP_KERNEL)))
                goto fail;

        if (usb_string(dev, dev->descriptor.iManufacturer, buf, 64) > 0) {
                strcat(hid->name, buf);
                if (usb_string(dev, dev->descriptor.iProduct, buf, 64) > 0)
                        snprintf26(hid->name, 64, "%s %s", hid->name, buf);
        } else if (usb_string(dev, dev->descriptor.iProduct, buf, 128) > 0) {
                        snprintf26(hid->name, 128, "%s", buf);
        } else
                snprintf26(hid->name, 128, "%04x:%04x", dev->descriptor.idVendor, dev->descriptor.idProduct);

        usb_make_path(dev, buf, 64);
        snprintf26(hid->phys, 64, "%s/input%d", buf,
                        intf->altsetting[0].desc.bInterfaceNumber);

        if (usb_string(dev, dev->descriptor.iSerialNumber, hid->uniq, 64) <= 0)
                hid->uniq[0] = 0;

        kfree(buf);

        hid->urbctrl = usb_alloc_urb(0, GFP_KERNEL);
        if (!hid->urbctrl)
                goto fail;
        usb_fill_control_urb(hid->urbctrl, dev, 0, (void *) hid->cr,
                             hid->ctrlbuf, 1, hid_ctrl, hid);
        hid->urbctrl->setup_dma = hid->cr_dma;
        hid->urbctrl->transfer_dma = hid->ctrlbuf_dma;
        hid->urbctrl->transfer_flags |= (URB_NO_TRANSFER_DMA_MAP
                                | URB_NO_SETUP_DMA_MAP);

        return hid;

fail:

        if (hid->urbin)
                usb_free_urb(hid->urbin);
        if (hid->urbout)
                usb_free_urb(hid->urbout);
        if (hid->urbctrl)
                usb_free_urb(hid->urbctrl);
        hid_free_buffers(dev, hid);
        hid_free_device(hid);

        return NULL;
}

static void hid_disconnect(struct usb_interface *intf)
{
        struct hid_device *hid = usb_get_intfdata (intf);

        if (!hid)
                return;

        usb_set_intfdata(intf, NULL);
        usb_unlink_urb(hid->urbin);
        usb_unlink_urb(hid->urbout);
        usb_unlink_urb(hid->urbctrl);

        if (hid->claimed & HID_CLAIMED_INPUT)
                hidinput_disconnect(hid);
        if (hid->claimed & HID_CLAIMED_HIDDEV)
                hiddev_disconnect(hid);

        usb_free_urb(hid->urbin);
        usb_free_urb(hid->urbctrl);
        if (hid->urbout)
                usb_free_urb(hid->urbout);

        hid_free_buffers(hid->dev, hid);
        hid_free_device(hid);
}

static int hid_probe (struct usb_interface *intf, const struct usb_device_id *id)
{
        struct hid_device *hid;
        char path[64];
        int i;
        char *c;

        dbg("HID probe called for ifnum %d",
                        intf->altsetting->desc.bInterfaceNumber);

        if (!(hid = usb_hid_configure(intf)))
                return -EIO;

  hid_init_reports(hid);
        hid_dump_device(hid);

        if (!hidinput_connect(hid))
                hid->claimed |= HID_CLAIMED_INPUT;
        if (!hiddev_connect(hid))
                hid->claimed |= HID_CLAIMED_HIDDEV;

        usb_set_intfdata(intf, hid);

        if (!hid->claimed) {
                printk ("HID device not claimed by input or hiddev\n");
                hid_disconnect(intf);
                return -EIO;
        }

        printk(KERN_INFO);

        if (hid->claimed & HID_CLAIMED_INPUT)
                printk("input");
        if (hid->claimed == (HID_CLAIMED_INPUT | HID_CLAIMED_HIDDEV))
                printk(",");
        if (hid->claimed & HID_CLAIMED_HIDDEV)
                printk("hiddev%d", hid->minor);

        c = "Device";
        for (i = 0; i < hid->maxcollection; i++) {
                if (hid->collection[i].type == HID_COLLECTION_APPLICATION &&
                    (hid->collection[i].usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
                    (hid->collection[i].usage & 0xffff) < ARRAY_SIZE(hid_types)) {
                        c = hid_types[hid->collection[i].usage & 0xffff];
                        break;
                }
        }

        usb_make_path(interface_to_usbdev(intf), path, 63);

        printk(": USB HID v%x.%02x %s [%s] on %s\n",
                hid->version >> 8, hid->version & 0xff, c, hid->name, path);

        return 0;
}

static struct usb_device_id hid_usb_ids [] = {
        { .match_flags = USB_DEVICE_ID_MATCH_INT_CLASS,
            .bInterfaceClass = USB_INTERFACE_CLASS_HID },
        { }                                             /* Terminating entry */
};

MODULE_DEVICE_TABLE (usb, hid_usb_ids);

static struct usb_driver hid_driver = {
        .owner =        THIS_MODULE,
        .name =         "hid",
        .probe =        hid_probe,
        .disconnect =   hid_disconnect,
        .id_table =     hid_usb_ids,
};

/*static*/ int __init hid_init(void)
{
        int retval;
        retval = hiddev_init();
        if (retval)
                goto hiddev_init_fail;
        retval = usb_register(&hid_driver);
        if (retval)
                goto usb_register_fail;
        info(DRIVER_VERSION ":" DRIVER_DESC);

        return 0;
usb_register_fail:
        hiddev_exit();
hiddev_init_fail:
        return retval;
}

/*static*/ void __exit hid_exit(void)
{
        hiddev_exit();
        usb_deregister(&hid_driver);
}

module_init(hid_init);
module_exit(hid_exit);

MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE(DRIVER_LICENSE);