Subversion Repositories shark

Rev

Rev 1618 | Blame | Compare with Previous | Last modification | View Log | RSS feed

/* @(#)e_atanh.c 5.1 93/09/24 */
/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */


#ifndef lint
static char rcsid[] = "$\Id: e_atanh.c,v 1.2 1995/05/30 05:48:01 rgrimes Exp $";
#endif

/* __ieee754_atanh(x)
 * Method :
 *    1.Reduced x to positive by atanh(-x) = -atanh(x)
 *    2.For x>=0.5
 *                  1              2x                          x
 *      atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------)
 *                  2             1 - x                      1 - x
 *
 *      For x<0.5
 *      atanh(x) = 0.5*log1p(2x+2x*x/(1-x))
 *
 * Special cases:
 *      atanh(x) is NaN if |x| > 1 with signal;
 *      atanh(NaN) is that NaN with no signal;
 *      atanh(+-1) is +-INF with signal.
 *
 */


#include "math.h"
#include "math_private.h"

#ifdef __STDC__
static const double one = 1.0, huge = 1e300;
#else
static double one = 1.0, huge = 1e300;
#endif

#ifdef __STDC__
static const double zero = 0.0;
#else
static double zero = 0.0;
#endif

#ifdef __STDC__
        double __ieee754_atanh(double x)
#else
        double __ieee754_atanh(x)
        double x;
#endif
{
        double t;
        int32_t hx,ix;
        u_int32_t lx;
        EXTRACT_WORDS(hx,lx,x);
        ix = hx&0x7fffffff;
        if ((ix|((lx|(-lx))>>31))>0x3ff00000) /* |x|>1 */
            return (x-x)/(x-x);
        if(ix==0x3ff00000)
            return x/zero;
        if(ix<0x3e300000&&(huge+x)>zero) return x;      /* x<2**-28 */
        SET_HIGH_WORD(x,ix);
        if(ix<0x3fe00000) {             /* x < 0.5 */
            t = x+x;
            t = 0.5*log1p(t+t*x/(one-x));
        } else
            t = 0.5*log1p((x+x)/(one-x));
        if(hx>=0) return t; else return -t;
}