Rev 3 |
Go to most recent revision |
Blame |
Compare with Previous |
Last modification |
View Log
| RSS feed
/*
* Copyright (c) 1997-1999 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue May 18 13:55:47 EDT 1999 */
#include <fftw-int.h>
#include <fftw.h>
/* Generated by: ./genfft -magic-alignment-check -magic-twiddle-load-all -magic-variables 4 -magic-loopi -twiddleinv 5 */
/*
* This function contains 40 FP additions, 28 FP multiplications,
* (or, 26 additions, 14 multiplications, 14 fused multiply/add),
* 26 stack variables, and 20 memory accesses
*/
static const fftw_real K559016994 = FFTW_KONST(+0.559016994374947424102293417182819058860154590);
static const fftw_real K250000000 = FFTW_KONST(+0.250000000000000000000000000000000000000000000);
static const fftw_real K951056516 = FFTW_KONST(+0.951056516295153572116439333379382143405698634);
static const fftw_real K587785252 = FFTW_KONST(+0.587785252292473129168705954639072768597652438);
/*
* Generator Id's :
* $Id: ftwi_5.c,v 1.2 2003-03-24 11:14:53 pj Exp $
* $Id: ftwi_5.c,v 1.2 2003-03-24 11:14:53 pj Exp $
* $Id: ftwi_5.c,v 1.2 2003-03-24 11:14:53 pj Exp $
*/
void fftwi_twiddle_5(fftw_complex *A, const fftw_complex *W, int iostride, int m, int dist)
{
int i;
fftw_complex *inout;
inout = A;
for (i = m; i > 0; i = i - 1, inout = inout + dist, W = W + 4) {
fftw_real tmp1;
fftw_real tmp40;
fftw_real tmp30;
fftw_real tmp33;
fftw_real tmp37;
fftw_real tmp38;
fftw_real tmp39;
fftw_real tmp42;
fftw_real tmp41;
fftw_real tmp12;
fftw_real tmp23;
fftw_real tmp24;
ASSERT_ALIGNED_DOUBLE();
tmp1 = c_re(inout[0]);
tmp40 = c_im(inout[0]);
{
fftw_real tmp6;
fftw_real tmp28;
fftw_real tmp22;
fftw_real tmp32;
fftw_real tmp11;
fftw_real tmp29;
fftw_real tmp17;
fftw_real tmp31;
ASSERT_ALIGNED_DOUBLE();
{
fftw_real tmp3;
fftw_real tmp5;
fftw_real tmp2;
fftw_real tmp4;
ASSERT_ALIGNED_DOUBLE();
tmp3 = c_re(inout[iostride]);
tmp5 = c_im(inout[iostride]);
tmp2 = c_re(W[0]);
tmp4 = c_im(W[0]);
tmp6 = (tmp2 * tmp3) + (tmp4 * tmp5);
tmp28 = (tmp2 * tmp5) - (tmp4 * tmp3);
}
{
fftw_real tmp19;
fftw_real tmp21;
fftw_real tmp18;
fftw_real tmp20;
ASSERT_ALIGNED_DOUBLE();
tmp19 = c_re(inout[3 * iostride]);
tmp21 = c_im(inout[3 * iostride]);
tmp18 = c_re(W[2]);
tmp20 = c_im(W[2]);
tmp22 = (tmp18 * tmp19) + (tmp20 * tmp21);
tmp32 = (tmp18 * tmp21) - (tmp20 * tmp19);
}
{
fftw_real tmp8;
fftw_real tmp10;
fftw_real tmp7;
fftw_real tmp9;
ASSERT_ALIGNED_DOUBLE();
tmp8 = c_re(inout[4 * iostride]);
tmp10 = c_im(inout[4 * iostride]);
tmp7 = c_re(W[3]);
tmp9 = c_im(W[3]);
tmp11 = (tmp7 * tmp8) + (tmp9 * tmp10);
tmp29 = (tmp7 * tmp10) - (tmp9 * tmp8);
}
{
fftw_real tmp14;
fftw_real tmp16;
fftw_real tmp13;
fftw_real tmp15;
ASSERT_ALIGNED_DOUBLE();
tmp14 = c_re(inout[2 * iostride]);
tmp16 = c_im(inout[2 * iostride]);
tmp13 = c_re(W[1]);
tmp15 = c_im(W[1]);
tmp17 = (tmp13 * tmp14) + (tmp15 * tmp16);
tmp31 = (tmp13 * tmp16) - (tmp15 * tmp14);
}
tmp30 = tmp28 - tmp29;
tmp33 = tmp31 - tmp32;
tmp37 = tmp28 + tmp29;
tmp38 = tmp31 + tmp32;
tmp39 = tmp37 + tmp38;
tmp42 = tmp17 - tmp22;
tmp41 = tmp6 - tmp11;
tmp12 = tmp6 + tmp11;
tmp23 = tmp17 + tmp22;
tmp24 = tmp12 + tmp23;
}
c_re(inout[0]) = tmp1 + tmp24;
{
fftw_real tmp34;
fftw_real tmp36;
fftw_real tmp27;
fftw_real tmp35;
fftw_real tmp25;
fftw_real tmp26;
ASSERT_ALIGNED_DOUBLE();
tmp34 = (K587785252 * tmp30) - (K951056516 * tmp33);
tmp36 = (K951056516 * tmp30) + (K587785252 * tmp33);
tmp25 = tmp1 - (K250000000 * tmp24);
tmp26 = K559016994 * (tmp12 - tmp23);
tmp27 = tmp25 - tmp26;
tmp35 = tmp26 + tmp25;
c_re(inout[2 * iostride]) = tmp27 - tmp34;
c_re(inout[3 * iostride]) = tmp27 + tmp34;
c_re(inout[iostride]) = tmp35 - tmp36;
c_re(inout[4 * iostride]) = tmp35 + tmp36;
}
c_im(inout[0]) = tmp39 + tmp40;
{
fftw_real tmp43;
fftw_real tmp47;
fftw_real tmp46;
fftw_real tmp48;
fftw_real tmp44;
fftw_real tmp45;
ASSERT_ALIGNED_DOUBLE();
tmp43 = (K951056516 * tmp41) + (K587785252 * tmp42);
tmp47 = (K587785252 * tmp41) - (K951056516 * tmp42);
tmp44 = K559016994 * (tmp37 - tmp38);
tmp45 = tmp40 - (K250000000 * tmp39);
tmp46 = tmp44 + tmp45;
tmp48 = tmp45 - tmp44;
c_im(inout[iostride]) = tmp43 + tmp46;
c_im(inout[4 * iostride]) = tmp46 - tmp43;
c_im(inout[2 * iostride]) = tmp47 + tmp48;
c_im(inout[3 * iostride]) = tmp48 - tmp47;
}
}
}
static const int twiddle_order[] =
{1, 2, 3, 4};
fftw_codelet_desc fftwi_twiddle_5_desc =
{
"fftwi_twiddle_5",
(void (*)()) fftwi_twiddle_5,
5,
FFTW_BACKWARD,
FFTW_TWIDDLE,
121,
4,
twiddle_order,
};