Rev 3 |
Go to most recent revision |
Blame |
Compare with Previous |
Last modification |
View Log
| RSS feed
/*
* Copyright (c) 1997-1999 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue May 18 13:56:00 EDT 1999 */
#include <fftw-int.h>
#include <fftw.h>
/* Generated by: ./genfft -magic-alignment-check -magic-twiddle-load-all -magic-variables 4 -magic-loopi -hc2hc-backward 6 */
/*
* This function contains 72 FP additions, 38 FP multiplications,
* (or, 54 additions, 20 multiplications, 18 fused multiply/add),
* 25 stack variables, and 48 memory accesses
*/
static const fftw_real K500000000 = FFTW_KONST(+0.500000000000000000000000000000000000000000000);
static const fftw_real K866025403 = FFTW_KONST(+0.866025403784438646763723170752936183471402627);
static const fftw_real K2_000000000 = FFTW_KONST(+2.000000000000000000000000000000000000000000000);
static const fftw_real K1_732050807 = FFTW_KONST(+1.732050807568877293527446341505872366942805254);
/*
* Generator Id's :
* $Id: fhb_6.c,v 1.2 2003-03-24 11:14:57 pj Exp $
* $Id: fhb_6.c,v 1.2 2003-03-24 11:14:57 pj Exp $
* $Id: fhb_6.c,v 1.2 2003-03-24 11:14:57 pj Exp $
*/
void fftw_hc2hc_backward_6(fftw_real *A, const fftw_complex *W, int iostride, int m, int dist)
{
int i;
fftw_real *X;
fftw_real *Y;
X = A;
Y = A + (6 * iostride);
{
fftw_real tmp71;
fftw_real tmp75;
fftw_real tmp80;
fftw_real tmp82;
fftw_real tmp74;
fftw_real tmp76;
fftw_real tmp69;
fftw_real tmp70;
fftw_real tmp77;
fftw_real tmp81;
ASSERT_ALIGNED_DOUBLE();
tmp69 = X[0];
tmp70 = X[3 * iostride];
tmp71 = tmp69 - tmp70;
tmp75 = tmp69 + tmp70;
{
fftw_real tmp78;
fftw_real tmp79;
fftw_real tmp72;
fftw_real tmp73;
ASSERT_ALIGNED_DOUBLE();
tmp78 = Y[-2 * iostride];
tmp79 = Y[-iostride];
tmp80 = K1_732050807 * (tmp78 + tmp79);
tmp82 = K1_732050807 * (tmp78 - tmp79);
tmp72 = X[2 * iostride];
tmp73 = X[iostride];
tmp74 = tmp72 - tmp73;
tmp76 = tmp72 + tmp73;
}
X[3 * iostride] = tmp71 + (K2_000000000 * tmp74);
tmp77 = tmp71 - tmp74;
X[iostride] = tmp77 - tmp80;
X[5 * iostride] = tmp77 + tmp80;
X[0] = tmp75 + (K2_000000000 * tmp76);
tmp81 = tmp75 - tmp76;
X[2 * iostride] = tmp81 + tmp82;
X[4 * iostride] = tmp81 - tmp82;
}
X = X + dist;
Y = Y - dist;
for (i = 2; i < m; i = i + 2, X = X + dist, Y = Y - dist, W = W + 5) {
fftw_real tmp15;
fftw_real tmp46;
fftw_real tmp25;
fftw_real tmp52;
fftw_real tmp22;
fftw_real tmp35;
fftw_real tmp49;
fftw_real tmp62;
fftw_real tmp32;
fftw_real tmp39;
fftw_real tmp55;
fftw_real tmp59;
ASSERT_ALIGNED_DOUBLE();
{
fftw_real tmp13;
fftw_real tmp14;
fftw_real tmp23;
fftw_real tmp24;
ASSERT_ALIGNED_DOUBLE();
tmp13 = X[0];
tmp14 = Y[-3 * iostride];
tmp15 = tmp13 + tmp14;
tmp46 = tmp13 - tmp14;
tmp23 = Y[0];
tmp24 = X[3 * iostride];
tmp25 = tmp23 - tmp24;
tmp52 = tmp23 + tmp24;
}
{
fftw_real tmp18;
fftw_real tmp47;
fftw_real tmp21;
fftw_real tmp48;
ASSERT_ALIGNED_DOUBLE();
{
fftw_real tmp16;
fftw_real tmp17;
fftw_real tmp19;
fftw_real tmp20;
ASSERT_ALIGNED_DOUBLE();
tmp16 = X[2 * iostride];
tmp17 = Y[-5 * iostride];
tmp18 = tmp16 + tmp17;
tmp47 = tmp16 - tmp17;
tmp19 = Y[-4 * iostride];
tmp20 = X[iostride];
tmp21 = tmp19 + tmp20;
tmp48 = tmp19 - tmp20;
}
tmp22 = tmp18 + tmp21;
tmp35 = K866025403 * (tmp18 - tmp21);
tmp49 = tmp47 + tmp48;
tmp62 = K866025403 * (tmp47 - tmp48);
}
{
fftw_real tmp28;
fftw_real tmp54;
fftw_real tmp31;
fftw_real tmp53;
ASSERT_ALIGNED_DOUBLE();
{
fftw_real tmp26;
fftw_real tmp27;
fftw_real tmp29;
fftw_real tmp30;
ASSERT_ALIGNED_DOUBLE();
tmp26 = Y[-2 * iostride];
tmp27 = X[5 * iostride];
tmp28 = tmp26 - tmp27;
tmp54 = tmp26 + tmp27;
tmp29 = Y[-iostride];
tmp30 = X[4 * iostride];
tmp31 = tmp29 - tmp30;
tmp53 = tmp29 + tmp30;
}
tmp32 = tmp28 + tmp31;
tmp39 = K866025403 * (tmp31 - tmp28);
tmp55 = tmp53 - tmp54;
tmp59 = K866025403 * (tmp54 + tmp53);
}
X[0] = tmp15 + tmp22;
{
fftw_real tmp36;
fftw_real tmp42;
fftw_real tmp40;
fftw_real tmp44;
fftw_real tmp34;
fftw_real tmp38;
ASSERT_ALIGNED_DOUBLE();
tmp34 = tmp25 - (K500000000 * tmp32);
tmp36 = tmp34 - tmp35;
tmp42 = tmp35 + tmp34;
tmp38 = tmp15 - (K500000000 * tmp22);
tmp40 = tmp38 - tmp39;
tmp44 = tmp38 + tmp39;
{
fftw_real tmp33;
fftw_real tmp37;
fftw_real tmp41;
fftw_real tmp43;
ASSERT_ALIGNED_DOUBLE();
tmp33 = c_re(W[1]);
tmp37 = c_im(W[1]);
Y[-3 * iostride] = (tmp33 * tmp36) - (tmp37 * tmp40);
X[2 * iostride] = (tmp37 * tmp36) + (tmp33 * tmp40);
tmp41 = c_re(W[3]);
tmp43 = c_im(W[3]);
Y[-iostride] = (tmp41 * tmp42) - (tmp43 * tmp44);
X[4 * iostride] = (tmp43 * tmp42) + (tmp41 * tmp44);
}
}
Y[-5 * iostride] = tmp25 + tmp32;
{
fftw_real tmp50;
fftw_real tmp56;
fftw_real tmp45;
fftw_real tmp51;
ASSERT_ALIGNED_DOUBLE();
tmp50 = tmp46 + tmp49;
tmp56 = tmp52 - tmp55;
tmp45 = c_re(W[2]);
tmp51 = c_im(W[2]);
X[3 * iostride] = (tmp45 * tmp50) + (tmp51 * tmp56);
Y[-2 * iostride] = (tmp45 * tmp56) - (tmp51 * tmp50);
}
{
fftw_real tmp60;
fftw_real tmp66;
fftw_real tmp64;
fftw_real tmp68;
fftw_real tmp58;
fftw_real tmp63;
ASSERT_ALIGNED_DOUBLE();
tmp58 = tmp46 - (K500000000 * tmp49);
tmp60 = tmp58 - tmp59;
tmp66 = tmp58 + tmp59;
tmp63 = tmp52 + (K500000000 * tmp55);
tmp64 = tmp62 + tmp63;
tmp68 = tmp63 - tmp62;
{
fftw_real tmp57;
fftw_real tmp61;
fftw_real tmp65;
fftw_real tmp67;
ASSERT_ALIGNED_DOUBLE();
tmp57 = c_re(W[0]);
tmp61 = c_im(W[0]);
X[iostride] = (tmp57 * tmp60) + (tmp61 * tmp64);
Y[-4 * iostride] = (tmp57 * tmp64) - (tmp61 * tmp60);
tmp65 = c_re(W[4]);
tmp67 = c_im(W[4]);
X[5 * iostride] = (tmp65 * tmp66) + (tmp67 * tmp68);
Y[0] = (tmp65 * tmp68) - (tmp67 * tmp66);
}
}
}
if (i == m) {
fftw_real tmp1;
fftw_real tmp6;
fftw_real tmp4;
fftw_real tmp5;
fftw_real tmp9;
fftw_real tmp11;
fftw_real tmp12;
fftw_real tmp10;
ASSERT_ALIGNED_DOUBLE();
tmp1 = X[iostride];
tmp6 = Y[-iostride];
{
fftw_real tmp2;
fftw_real tmp3;
fftw_real tmp7;
fftw_real tmp8;
ASSERT_ALIGNED_DOUBLE();
tmp2 = X[2 * iostride];
tmp3 = X[0];
tmp4 = tmp2 + tmp3;
tmp5 = K1_732050807 * (tmp2 - tmp3);
tmp7 = Y[-2 * iostride];
tmp8 = Y[0];
tmp9 = tmp7 + tmp8;
tmp11 = K1_732050807 * (tmp7 - tmp8);
}
X[0] = K2_000000000 * (tmp1 + tmp4);
tmp12 = (K2_000000000 * tmp1) - tmp4;
X[2 * iostride] = tmp11 - tmp12;
X[4 * iostride] = tmp12 + tmp11;
X[3 * iostride] = K2_000000000 * (tmp6 - tmp9);
tmp10 = (K2_000000000 * tmp6) + tmp9;
X[iostride] = -(tmp5 + tmp10);
X[5 * iostride] = tmp5 - tmp10;
}
}
static const int twiddle_order[] =
{1, 2, 3, 4, 5};
fftw_codelet_desc fftw_hc2hc_backward_6_desc =
{
"fftw_hc2hc_backward_6",
(void (*)()) fftw_hc2hc_backward_6,
6,
FFTW_BACKWARD,
FFTW_HC2HC,
146,
5,
twiddle_order,
};