Rev 56 |
Blame |
Compare with Previous |
Last modification |
View Log
| RSS feed
/* $Id: t_imm_eval.c,v 1.1 2003-02-28 11:48:07 pj Exp $ */
/*
* Mesa 3-D graphics library
* Version: 4.1
*
* Copyright (C) 1999-2002 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* Authors:
* Keith Whitwell <keith@tungstengraphics.com>
* Brian Paul - vertex program updates
*/
#include "glheader.h"
#include "colormac.h"
#include "context.h"
#include "macros.h"
#include "imports.h"
#include "mmath.h"
#include "mtypes.h"
#include "math/m_eval.h"
#include "t_context.h"
#include "t_imm_debug.h"
#include "t_imm_eval.h"
#include "t_imm_exec.h"
#include "t_imm_fixup.h"
#include "t_imm_alloc.h"
static void eval_points1( GLfloat outcoord[][4],
GLfloat coord[][4],
const GLuint *flags,
GLfloat du, GLfloat u1 )
{
GLuint i;
for (i = 0 ; !(flags[i] & VERT_BIT_END_VB) ; i++)
if (flags[i] & VERT_BITS_EVAL_ANY) {
outcoord[i][0] = coord[i][0];
outcoord[i][1] = coord[i][1];
if (flags[i] & VERT_BIT_EVAL_P1)
outcoord[i][0] = coord[i][0] * du + u1;
}
}
static void eval_points2( GLfloat outcoord[][4],
GLfloat coord[][4],
const GLuint *flags,
GLfloat du, GLfloat u1,
GLfloat dv, GLfloat v1 )
{
GLuint i;
for (i = 0 ; !(flags[i] & VERT_BIT_END_VB) ; i++) {
if (flags[i] & VERT_BITS_EVAL_ANY) {
outcoord[i][0] = coord[i][0];
outcoord[i][1] = coord[i][1];
if (flags[i] & VERT_BIT_EVAL_P2) {
outcoord[i][0] = coord[i][0] * du + u1;
outcoord[i][1] = coord[i][1] * dv + v1;
}
}
}
}
static const GLubyte dirty_flags[5] = {
0, /* not possible */
VEC_DIRTY_0,
VEC_DIRTY_1,
VEC_DIRTY_2,
VEC_DIRTY_3
};
static void eval1_4f( GLvector4f *dest,
GLfloat coord[][4],
const GLuint *flags,
GLuint dimension,
const struct gl_1d_map *map )
{
const GLfloat u1 = map->u1;
const GLfloat du = map->du;
GLfloat (*to)[4] = dest->data;
GLuint i;
for (i = 0 ; !(flags[i] & VERT_BIT_END_VB) ; i++)
if (flags[i] & (VERT_BIT_EVAL_C1|VERT_BIT_EVAL_P1)) {
GLfloat u = (coord[i][0] - u1) * du;
ASSIGN_4V(to[i], 0,0,0,1);
_math_horner_bezier_curve(map->Points, to[i], u,
dimension, map->Order);
}
dest->size = MAX2(dest->size, dimension);
dest->flags |= dirty_flags[dimension];
}
/* as above, but dest is a gl_client_array */
static void eval1_4f_ca( struct gl_client_array *dest,
GLfloat coord[][4],
const GLuint *flags,
GLuint dimension,
const struct gl_1d_map *map )
{
const GLfloat u1 = map->u1;
const GLfloat du = map->du;
GLfloat (*to)[4] = (GLfloat (*)[4])dest->Ptr;
GLuint i;
ASSERT(dest->Type == GL_FLOAT);
ASSERT(dest->StrideB == 4 * sizeof(GLfloat));
for (i = 0 ; !(flags[i] & VERT_BIT_END_VB) ; i++)
if (flags[i] & (VERT_BIT_EVAL_C1|VERT_BIT_EVAL_P1)) {
GLfloat u = (coord[i][0] - u1) * du;
ASSIGN_4V(to[i], 0,0,0,1);
_math_horner_bezier_curve(map->Points, to[i], u,
dimension, map->Order);
}
dest->Size = MAX2(dest->Size, (GLint) dimension);
}
static void eval1_1ui( GLvector1ui *dest,
GLfloat coord[][4],
const GLuint *flags,
const struct gl_1d_map *map )
{
const GLfloat u1 = map->u1;
const GLfloat du = map->du;
GLuint *to = dest->data;
GLuint i;
for (i = 0 ; !(flags[i] & VERT_BIT_END_VB) ; i++)
if (flags[i] & (VERT_BIT_EVAL_C1|VERT_BIT_EVAL_P1)) {
GLfloat u = (coord[i][0] - u1) * du;
GLfloat tmp;
_math_horner_bezier_curve(map->Points, &tmp, u, 1, map->Order);
to[i] = (GLuint) (GLint) tmp;
}
}
static void eval1_norm( GLvector4f *dest,
GLfloat coord[][4],
const GLuint *flags,
const struct gl_1d_map *map )
{
const GLfloat u1 = map->u1;
const GLfloat du = map->du;
GLfloat (*to)[4] = dest->data;
GLuint i;
for (i = 0 ; !(flags[i] & VERT_BIT_END_VB) ; i++)
if (flags[i] & (VERT_BIT_EVAL_C1|VERT_BIT_EVAL_P1)) {
GLfloat u = (coord[i][0] - u1) * du;
_math_horner_bezier_curve(map->Points, to[i], u, 3, map->Order);
}
}
static void eval2_obj_norm( GLvector4f *obj_ptr,
GLvector4f *norm_ptr,
GLfloat coord[][4],
GLuint *flags,
GLuint dimension,
const struct gl_2d_map *map )
{
const GLfloat u1 = map->u1;
const GLfloat du = map->du;
const GLfloat v1 = map->v1;
const GLfloat dv = map->dv;
GLfloat (*obj)[4] = obj_ptr->data;
GLfloat (*normal)[4] = norm_ptr->data;
GLuint i;
for (i = 0 ; !(flags[i] & VERT_BIT_END_VB) ; i++)
if (flags[i] & (VERT_BIT_EVAL_C2|VERT_BIT_EVAL_P2)) {
GLfloat u = (coord[i][0] - u1) * du;
GLfloat v = (coord[i][1] - v1) * dv;
GLfloat du[4], dv[4];
ASSIGN_4V(obj[i], 0,0,0,1);
_math_de_casteljau_surf(map->Points, obj[i], du, dv, u, v, dimension,
map->Uorder, map->Vorder);
if (dimension == 4) {
du[0] = du[0]*obj[i][3] - du[3]*obj[i][0];
du[1] = du[1]*obj[i][3] - du[3]*obj[i][1];
du[2] = du[2]*obj[i][3] - du[3]*obj[i][2];
dv[0] = dv[0]*obj[i][3] - dv[3]*obj[i][0];
dv[1] = dv[1]*obj[i][3] - dv[3]*obj[i][1];
dv[2] = dv[2]*obj[i][3] - dv[3]*obj[i][2];
}
CROSS3(normal[i], du, dv);
NORMALIZE_3FV(normal[i]);
}
obj_ptr->size = MAX2(obj_ptr->size, dimension);
obj_ptr->flags |= dirty_flags[dimension];
}
static void eval2_4f( GLvector4f *dest,
GLfloat coord[][4],
const GLuint *flags,
GLuint dimension,
const struct gl_2d_map *map )
{
const GLfloat u1 = map->u1;
const GLfloat du = map->du;
const GLfloat v1 = map->v1;
const GLfloat dv = map->dv;
GLfloat (*to)[4] = dest->data;
GLuint i;
for (i = 0 ; !(flags[i] & VERT_BIT_END_VB) ; i++)
if (flags[i] & (VERT_BIT_EVAL_C2|VERT_BIT_EVAL_P2)) {
GLfloat u = (coord[i][0] - u1) * du;
GLfloat v = (coord[i][1] - v1) * dv;
_math_horner_bezier_surf(map->Points, to[i], u, v, dimension,
map->Uorder, map->Vorder);
}
dest->size = MAX2(dest->size, dimension);
dest->flags |= dirty_flags[dimension];
}
/* as above, but dest is a gl_client_array */
static void eval2_4f_ca( struct gl_client_array *dest,
GLfloat coord[][4],
const GLuint *flags,
GLuint dimension,
const struct gl_2d_map *map )
{
const GLfloat u1 = map->u1;
const GLfloat du = map->du;
const GLfloat v1 = map->v1;
const GLfloat dv = map->dv;
GLfloat (*to)[4] = (GLfloat (*)[4])dest->Ptr;
GLuint i;
ASSERT(dest->Type == GL_FLOAT);
ASSERT(dest->StrideB == 4 * sizeof(GLfloat));
for (i = 0 ; !(flags[i] & VERT_BIT_END_VB) ; i++)
if (flags[i] & (VERT_BIT_EVAL_C2|VERT_BIT_EVAL_P2)) {
GLfloat u = (coord[i][0] - u1) * du;
GLfloat v = (coord[i][1] - v1) * dv;
_math_horner_bezier_surf(map->Points, to[i], u, v, dimension,
map->Uorder, map->Vorder);
}
dest->Size = MAX2(dest->Size, (GLint) dimension);
}
static void eval2_norm( GLvector4f *dest,
GLfloat coord[][4],
GLuint *flags,
const struct gl_2d_map *map )
{
const GLfloat u1 = map->u1;
const GLfloat du = map->du;
const GLfloat v1 = map->v1;
const GLfloat dv = map->dv;
GLfloat (*to)[4] = dest->data;
GLuint i;
for (i = 0 ; !(flags[i] & VERT_BIT_END_VB) ; i++) {
if (flags[i] & (VERT_BIT_EVAL_C2|VERT_BIT_EVAL_P2)) {
GLfloat u = (coord[i][0] - u1) * du;
GLfloat v = (coord[i][1] - v1) * dv;
_math_horner_bezier_surf(map->Points, to[i], u, v, 3,
map->Uorder, map->Vorder);
}
}
}
static void eval2_1ui( GLvector1ui *dest,
GLfloat coord[][4],
const GLuint *flags,
const struct gl_2d_map *map )
{
const GLfloat u1 = map->u1;
const GLfloat du = map->du;
const GLfloat v1 = map->v1;
const GLfloat dv = map->dv;
GLuint *to = dest->data;
GLuint i;
for (i = 0 ; !(flags[i] & VERT_BIT_END_VB) ; i++)
if (flags[i] & (VERT_BIT_EVAL_C2|VERT_BIT_EVAL_P2)) {
GLfloat u = (coord[i][0] - u1) * du;
GLfloat v = (coord[i][1] - v1) * dv;
GLfloat tmp;
_math_horner_bezier_surf(map->Points, &tmp, u, v, 1,
map->Uorder, map->Vorder);
to[i] = (GLuint) (GLint) tmp;
}
}
static void copy_4f( GLfloat to[][4], GLfloat from[][4], GLuint count )
{
MEMCPY( to, from, count * sizeof(to[0]));
}
static void copy_4f_stride( GLfloat to[][4], const GLfloat *from,
GLuint stride, GLuint count )
{
if (stride == 4 * sizeof(GLfloat))
MEMCPY( to, from, count * sizeof(to[0]));
else {
GLuint i;
for (i = 0 ; i < count ; i++, STRIDE_F(from, stride))
COPY_4FV( to[i], from );
}
}
static void copy_3f( GLfloat to[][4], GLfloat from[][4], GLuint count )
{
GLuint i;
for (i = 0 ; i < count ; i++) {
COPY_3FV(to[i], from[i]);
}
}
static void copy_1ui( GLuint to[], const GLuint from[], GLuint count )
{
MEMCPY( to, from, (count) * sizeof(to[0]));
}
/* Translate eval enabled flags to VERT_* flags.
*/
static void update_eval( GLcontext *ctx )
{
TNLcontext *tnl = TNL_CONTEXT(ctx);
GLuint eval1 = 0, eval2 = 0;
GLuint i;
if (ctx->Eval.Map1Index)
eval1 |= VERT_BIT_INDEX;
if (ctx->Eval.Map2Index)
eval2 |= VERT_BIT_INDEX;
if (ctx->Eval.Map1Color4)
eval1 |= VERT_BIT_COLOR0;
if (ctx->Eval.Map2Color4)
eval2 |= VERT_BIT_COLOR0;
if (ctx->Eval.Map1Normal)
eval1 |= VERT_BIT_NORMAL;
if (ctx->Eval.Map2Normal)
eval2 |= VERT_BIT_NORMAL;
if (ctx->Eval.Map1TextureCoord4 ||
ctx->Eval.Map1TextureCoord3 ||
ctx->Eval.Map1TextureCoord2 ||
ctx->Eval.Map1TextureCoord1)
eval1 |= VERT_BIT_TEX0;
if (ctx->Eval.Map2TextureCoord4 ||
ctx->Eval.Map2TextureCoord3 ||
ctx->Eval.Map2TextureCoord2 ||
ctx->Eval.Map2TextureCoord1)
eval2 |= VERT_BIT_TEX0;
if (ctx->Eval.Map1Vertex4)
eval1 |= VERT_BITS_OBJ_234;
if (ctx->Eval.Map1Vertex3)
eval1 |= VERT_BITS_OBJ_23;
if (ctx->Eval.Map2Vertex4) {
if (ctx->Eval.AutoNormal)
eval2 |= VERT_BITS_OBJ_234 | VERT_BIT_NORMAL;
else
eval2 |= VERT_BITS_OBJ_234;
}
else if (ctx->Eval.Map2Vertex3) {
if (ctx->Eval.AutoNormal)
eval2 |= VERT_BITS_OBJ_23 | VERT_BIT_NORMAL;
else
eval2 |= VERT_BITS_OBJ_23;
}
tnl->eval.EvalMap1Flags = eval1;
tnl->eval.EvalMap2Flags = eval2;
/* GL_NV_vertex_program evaluators */
eval1 = eval2 = 0;
for (i = 0; i < VERT_ATTRIB_MAX; i++) {
if (ctx->Eval.Map1Attrib[i])
eval1 |= (1 << i);
if (ctx->Eval.Map2Attrib[i])
eval2 |= (1 << i);
}
tnl->eval.EvalMap1AttribFlags = eval1;
tnl->eval.EvalMap2AttribFlags = eval2;
tnl->eval.EvalNewState = 0;
}
/* This looks a lot like a pipeline stage, but for various reasons is
* better handled outside the pipeline, and considered the final stage
* of fixing up an immediate struct for execution.
*
* Really want to cache the results of this function in display lists,
* at least for EvalMesh commands.
*/
void _tnl_eval_immediate( GLcontext *ctx, struct immediate *IM )
{
TNLcontext *tnl = TNL_CONTEXT(ctx);
struct vertex_arrays *tmp = &tnl->imm_inputs;
struct immediate *store = tnl->eval.im;
GLuint *flags = IM->Flag + IM->CopyStart;
GLuint copycount;
GLuint orflag = IM->OrFlag;
GLuint any_eval1 = orflag & (VERT_BIT_EVAL_C1|VERT_BIT_EVAL_P1);
GLuint any_eval2 = orflag & (VERT_BIT_EVAL_C2|VERT_BIT_EVAL_P2);
GLuint req = 0;
GLuint purge_flags = 0;
GLfloat (*coord)[4] = IM->Attrib[VERT_ATTRIB_POS] + IM->CopyStart;
if (IM->AndFlag & VERT_BITS_EVAL_ANY)
copycount = IM->Start - IM->CopyStart; /* just copy copied vertices */
else
copycount = IM->Count - IM->CopyStart; /* copy all vertices */
if (!store)
store = tnl->eval.im = _tnl_alloc_immediate( ctx );
if (tnl->eval.EvalNewState & _NEW_EVAL)
update_eval( ctx );
if (any_eval1) {
req |= tnl->pipeline.inputs
& (tnl->eval.EvalMap1Flags | tnl->eval.EvalMap1AttribFlags);
if (!ctx->Eval.Map1Vertex4 && !ctx->Eval.Map1Vertex3 &&
!ctx->Eval.Map1Attrib[0])
purge_flags = (VERT_BIT_EVAL_P1|VERT_BIT_EVAL_C1);
if (orflag & VERT_BIT_EVAL_P1) {
eval_points1( store->Attrib[VERT_ATTRIB_POS] + IM->CopyStart,
coord, flags,
ctx->Eval.MapGrid1du,
ctx->Eval.MapGrid1u1);
coord = store->Attrib[VERT_ATTRIB_POS] + IM->CopyStart;
}
}
if (any_eval2) {
req |= tnl->pipeline.inputs
& (tnl->eval.EvalMap2Flags | tnl->eval.EvalMap2AttribFlags);
if (!ctx->Eval.Map2Vertex4 && !ctx->Eval.Map2Vertex3 &&
!ctx->Eval.Map2Attrib[0])
purge_flags |= (VERT_BIT_EVAL_P2|VERT_BIT_EVAL_C2);
if (orflag & VERT_BIT_EVAL_P2) {
eval_points2( store->Attrib[VERT_ATTRIB_POS] + IM->CopyStart,
coord, flags,
ctx->Eval.MapGrid2du,
ctx->Eval.MapGrid2u1,
ctx->Eval.MapGrid2dv,
ctx->Eval.MapGrid2v1 );
coord = store->Attrib[VERT_ATTRIB_POS] + IM->CopyStart;
}
}
/* Perform the evaluations on active data elements.
*/
if (req & VERT_BIT_INDEX) {
GLuint generated = 0;
if (copycount)
copy_1ui( store->Index + IM->CopyStart, tmp->Index.data, copycount );
tmp->Index.data = store->Index + IM->CopyStart;
tmp->Index.start = store->Index + IM->CopyStart;
if (ctx->Eval.Map1Index && any_eval1) {
eval1_1ui( &tmp->Index, coord, flags, &ctx->EvalMap.Map1Index );
generated |= VERT_BIT_EVAL_C1|VERT_BIT_EVAL_P1;
}
if (ctx->Eval.Map2Index && any_eval2) {
eval2_1ui( &tmp->Index, coord, flags, &ctx->EvalMap.Map2Index );
generated |= VERT_BIT_EVAL_C2|VERT_BIT_EVAL_P2;
}
}
if (req & VERT_BIT_COLOR0) {
GLuint generated = 0;
if (copycount)
copy_4f_stride( store->Attrib[VERT_ATTRIB_COLOR0] + IM->CopyStart,
(GLfloat *)tmp->Color.Ptr,
tmp->Color.StrideB,
copycount );
tmp->Color.Ptr = store->Attrib[VERT_ATTRIB_COLOR0] + IM->CopyStart;
tmp->Color.StrideB = 4 * sizeof(GLfloat);
tmp->Color.Flags = 0;
tnl->vb.importable_data &= ~VERT_BIT_COLOR0;
if (ctx->VertexProgram.Enabled) {
tmp->Attribs[VERT_ATTRIB_COLOR0].data =
store->Attrib[VERT_ATTRIB_COLOR0] + IM->CopyStart;
tmp->Attribs[VERT_ATTRIB_COLOR0].start =
(GLfloat *) tmp->Attribs[VERT_ATTRIB_COLOR0].data;
tmp->Attribs[VERT_ATTRIB_COLOR0].size = 0;
}
/* Vertex program maps have priority over conventional attribs */
if (any_eval1) {
if (ctx->VertexProgram.Enabled
&& ctx->Eval.Map1Attrib[VERT_ATTRIB_COLOR0]) {
eval1_4f_ca( &tmp->Color, coord, flags, 4,
&ctx->EvalMap.Map1Attrib[VERT_ATTRIB_COLOR0] );
generated |= VERT_BIT_EVAL_C1|VERT_BIT_EVAL_P1;
}
else if (ctx->Eval.Map1Color4) {
eval1_4f_ca( &tmp->Color, coord, flags, 4,
&ctx->EvalMap.Map1Color4 );
generated |= VERT_BIT_EVAL_C1|VERT_BIT_EVAL_P1;
}
}
if (any_eval2) {
if (ctx->VertexProgram.Enabled
&& ctx->Eval.Map2Attrib[VERT_ATTRIB_COLOR0]) {
eval2_4f_ca( &tmp->Color, coord, flags, 4,
&ctx->EvalMap.Map2Attrib[VERT_ATTRIB_COLOR0] );
generated |= VERT_BIT_EVAL_C2|VERT_BIT_EVAL_P2;
}
else if (ctx->Eval.Map2Color4) {
eval2_4f_ca( &tmp->Color, coord, flags, 4,
&ctx->EvalMap.Map2Color4 );
generated |= VERT_BIT_EVAL_C2|VERT_BIT_EVAL_P2;
}
}
}
if (req & VERT_BIT_TEX0) {
GLuint generated = 0;
if (copycount)
copy_4f( store->Attrib[VERT_ATTRIB_TEX0] + IM->CopyStart,
tmp->TexCoord[0].data, copycount );
else
tmp->TexCoord[0].size = 0;
tmp->TexCoord[0].data = store->Attrib[VERT_ATTRIB_TEX0] + IM->CopyStart;
tmp->TexCoord[0].start = (GLfloat *)tmp->TexCoord[0].data;
if (ctx->VertexProgram.Enabled) {
tmp->Attribs[VERT_ATTRIB_TEX0].data =
store->Attrib[VERT_ATTRIB_TEX0] + IM->CopyStart;
tmp->Attribs[VERT_ATTRIB_TEX0].start =
(GLfloat *) tmp->Attribs[VERT_ATTRIB_TEX0].data;
tmp->Attribs[VERT_ATTRIB_TEX0].size = 0;
}
/* Vertex program maps have priority over conventional attribs */
if (any_eval1) {
if (ctx->VertexProgram.Enabled
&& ctx->Eval.Map1Attrib[VERT_ATTRIB_TEX0]) {
eval1_4f( &tmp->TexCoord[0], coord, flags, 4,
&ctx->EvalMap.Map1Attrib[VERT_ATTRIB_TEX0] );
generated |= VERT_BIT_EVAL_C1|VERT_BIT_EVAL_P1;
}
else if (ctx->Eval.Map1TextureCoord4) {
eval1_4f( &tmp->TexCoord[0], coord, flags, 4,
&ctx->EvalMap.Map1Texture4 );
generated |= VERT_BIT_EVAL_C1|VERT_BIT_EVAL_P1;
}
else if (ctx->Eval.Map1TextureCoord3) {
eval1_4f( &tmp->TexCoord[0], coord, flags, 3,
&ctx->EvalMap.Map1Texture3 );
generated |= VERT_BIT_EVAL_C1|VERT_BIT_EVAL_P1;
}
else if (ctx->Eval.Map1TextureCoord2) {
eval1_4f( &tmp->TexCoord[0], coord, flags, 2,
&ctx->EvalMap.Map1Texture2 );
generated |= VERT_BIT_EVAL_C1|VERT_BIT_EVAL_P1;
}
else if (ctx->Eval.Map1TextureCoord1) {
eval1_4f( &tmp->TexCoord[0], coord, flags, 1,
&ctx->EvalMap.Map1Texture1 );
generated |= VERT_BIT_EVAL_C1|VERT_BIT_EVAL_P1;
}
}
if (any_eval2) {
if (ctx->VertexProgram.Enabled
&& ctx->Eval.Map2Attrib[VERT_ATTRIB_TEX0]) {
eval2_4f( &tmp->TexCoord[0], coord, flags, 4,
&ctx->EvalMap.Map2Attrib[VERT_ATTRIB_TEX0] );
generated |= VERT_BIT_EVAL_C1|VERT_BIT_EVAL_P1;
}
else if (ctx->Eval.Map2TextureCoord4) {
eval2_4f( &tmp->TexCoord[0], coord, flags, 4,
&ctx->EvalMap.Map2Texture4 );
generated |= VERT_BIT_EVAL_C2|VERT_BIT_EVAL_P2;
}
else if (ctx->Eval.Map2TextureCoord3) {
eval2_4f( &tmp->TexCoord[0], coord, flags, 3,
&ctx->EvalMap.Map2Texture3 );
generated |= VERT_BIT_EVAL_C2|VERT_BIT_EVAL_P2;
}
else if (ctx->Eval.Map2TextureCoord2) {
eval2_4f( &tmp->TexCoord[0], coord, flags, 2,
&ctx->EvalMap.Map2Texture2 );
generated |= VERT_BIT_EVAL_C2|VERT_BIT_EVAL_P2;
}
else if (ctx->Eval.Map2TextureCoord1) {
eval2_4f( &tmp->TexCoord[0], coord, flags, 1,
&ctx->EvalMap.Map2Texture1 );
generated |= VERT_BIT_EVAL_C2|VERT_BIT_EVAL_P2;
}
}
}
if (req & VERT_BIT_NORMAL) {
GLuint generated = 0;
if (copycount) {
copy_3f( store->Attrib[VERT_ATTRIB_NORMAL] + IM->CopyStart,
tmp->Normal.data, copycount );
}
tmp->Normal.data = store->Attrib[VERT_ATTRIB_NORMAL] + IM->CopyStart;
tmp->Normal.start = (GLfloat *)tmp->Normal.data;
if (ctx->VertexProgram.Enabled) {
tmp->Attribs[VERT_ATTRIB_NORMAL].data =
store->Attrib[VERT_ATTRIB_NORMAL] + IM->CopyStart;
tmp->Attribs[VERT_ATTRIB_NORMAL].start =
(GLfloat *) tmp->Attribs[VERT_ATTRIB_NORMAL].data;
tmp->Attribs[VERT_ATTRIB_NORMAL].size = 0;
}
if (any_eval1) {
if (ctx->VertexProgram.Enabled &&
ctx->Eval.Map1Attrib[VERT_ATTRIB_NORMAL]) {
eval1_norm( &tmp->Normal, coord, flags,
&ctx->EvalMap.Map1Attrib[VERT_ATTRIB_NORMAL] );
generated |= VERT_BIT_EVAL_C1|VERT_BIT_EVAL_P1;
}
else if (ctx->Eval.Map1Normal) {
eval1_norm( &tmp->Normal, coord, flags, &ctx->EvalMap.Map1Normal );
generated |= VERT_BIT_EVAL_C1|VERT_BIT_EVAL_P1;
}
}
if (any_eval2) {
if (ctx->VertexProgram.Enabled &&
ctx->Eval.Map2Attrib[VERT_ATTRIB_NORMAL]) {
eval2_norm( &tmp->Normal, coord, flags,
&ctx->EvalMap.Map2Attrib[VERT_ATTRIB_NORMAL] );
generated |= VERT_BIT_EVAL_C2|VERT_BIT_EVAL_P2;
}
else if (ctx->Eval.Map2Normal) {
eval2_norm( &tmp->Normal, coord, flags, &ctx->EvalMap.Map2Normal );
generated |= VERT_BIT_EVAL_C2|VERT_BIT_EVAL_P2;
}
}
}
/* In the AutoNormal case, the copy and assignment of tmp->NormalPtr
* are done above.
*/
if (req & VERT_BIT_POS) {
if (copycount) {
/* This copy may already have occurred when eliminating
* glEvalPoint calls:
*/
if (coord != store->Attrib[VERT_ATTRIB_POS] + IM->CopyStart) {
copy_4f( store->Attrib[VERT_ATTRIB_POS] + IM->CopyStart,
tmp->Obj.data, copycount );
}
}
else {
tmp->Obj.size = 0;
}
tmp->Obj.data = store->Attrib[VERT_ATTRIB_POS] + IM->CopyStart;
tmp->Obj.start = (GLfloat *) tmp->Obj.data;
#if 1
/*tmp->Attribs[0].count = count;*/
tmp->Attribs[0].data = store->Attrib[0] + IM->CopyStart;
tmp->Attribs[0].start = (GLfloat *) tmp->Attribs[0].data;
tmp->Attribs[0].size = 0;
#endif
/* Note: Normal data is already prepared above.
*/
if (any_eval1) {
if (ctx->VertexProgram.Enabled &&
ctx->Eval.Map1Attrib[VERT_ATTRIB_POS]) {
eval1_4f( &tmp->Obj, coord, flags, 4,
&ctx->EvalMap.Map1Attrib[VERT_ATTRIB_POS] );
}
else if (ctx->Eval.Map1Vertex4) {
eval1_4f( &tmp->Obj, coord, flags, 4,
&ctx->EvalMap.Map1Vertex4 );
}
else if (ctx->Eval.Map1Vertex3) {
eval1_4f( &tmp->Obj, coord, flags, 3,
&ctx->EvalMap.Map1Vertex3 );
}
}
if (any_eval2) {
if (ctx->VertexProgram.Enabled &&
ctx->Eval.Map2Attrib[VERT_ATTRIB_POS]) {
if (ctx->Eval.AutoNormal && (req & VERT_BIT_NORMAL))
eval2_obj_norm( &tmp->Obj, &tmp->Normal, coord, flags, 4,
&ctx->EvalMap.Map2Attrib[VERT_ATTRIB_POS] );
else
eval2_4f( &tmp->Obj, coord, flags, 4,
&ctx->EvalMap.Map2Attrib[VERT_ATTRIB_POS] );
}
else if (ctx->Eval.Map2Vertex4) {
if (ctx->Eval.AutoNormal && (req & VERT_BIT_NORMAL))
eval2_obj_norm( &tmp->Obj, &tmp->Normal, coord, flags, 4,
&ctx->EvalMap.Map2Vertex4 );
else
eval2_4f( &tmp->Obj, coord, flags, 4,
&ctx->EvalMap.Map2Vertex4 );
}
else if (ctx->Eval.Map2Vertex3) {
if (ctx->Eval.AutoNormal && (req & VERT_BIT_NORMAL))
eval2_obj_norm( &tmp->Obj, &tmp->Normal, coord, flags, 3,
&ctx->EvalMap.Map2Vertex3 );
else
eval2_4f( &tmp->Obj, coord, flags, 3,
&ctx->EvalMap.Map2Vertex3 );
}
}
}
if (ctx->VertexProgram.Enabled) {
/* We already evaluated position, normal, color and texture 0 above.
* now evaluate any other generic attributes.
*/
const GLuint skipBits = (VERT_BIT_POS |
VERT_BIT_NORMAL |
VERT_BIT_COLOR0 |
VERT_BIT_TEX0);
GLuint generated = 0;
GLuint attr;
for (attr = 0; attr < VERT_ATTRIB_MAX; attr++) {
if ((1 << attr) & req & ~skipBits) {
if (any_eval1 && ctx->Eval.Map1Attrib[attr]) {
/* evaluate 1-D vertex attrib map [i] */
eval1_4f( &tmp->Attribs[attr], coord, flags, 4,
&ctx->EvalMap.Map1Attrib[attr] );
generated |= VERT_BIT_EVAL_C1|VERT_BIT_EVAL_P1;
}
if (any_eval2 && ctx->Eval.Map2Attrib[attr]) {
/* evaluate 2-D vertex attrib map [i] */
eval2_4f( &tmp->Attribs[attr], coord, flags, 4,
&ctx->EvalMap.Map2Attrib[attr] );
generated |= VERT_BIT_EVAL_C1|VERT_BIT_EVAL_P1;
}
}
}
}
/* Calculate new IM->Elts, IM->Primitive, IM->PrimitiveLength for
* the case where vertex maps are not enabled for some received
* eval coordinates. In this case those slots in the immediate
* must be ignored.
*/
if (purge_flags) {
const GLuint vertex = VERT_BIT_POS|(VERT_BITS_EVAL_ANY & ~purge_flags);
GLuint last_new_prim = 0;
GLuint new_prim_length = 0;
GLuint next_old_prim = 0;
struct vertex_buffer *VB = &tnl->vb;
const GLuint count = VB->Count;
GLuint i, j;
for (i = 0, j = 0 ; i < count ; i++) {
if (flags[i] & vertex) {
store->Elt[j++] = i;
new_prim_length++;
}
if (i == next_old_prim) {
next_old_prim += VB->PrimitiveLength[i];
VB->PrimitiveLength[last_new_prim] = new_prim_length;
VB->Primitive[j] = VB->Primitive[i];
last_new_prim = j;
}
}
VB->Elts = store->Elt;
_tnl_get_purged_copy_verts( ctx, store );
}
/* Produce new flags array:
*/
{
const GLuint count = tnl->vb.Count + 1;
GLuint i;
copy_1ui( store->Flag, flags, count );
tnl->vb.Flag = store->Flag;
for (i = 0 ; i < count ; i++)
store->Flag[i] |= req;
IM->Evaluated = req; /* hack for copying. */
}
}