Rev 55 |
Blame |
Compare with Previous |
Last modification |
View Log
| RSS feed
/* $Id: project.c,v 1.1 2003-02-28 11:42:07 pj Exp $ */
/*
* Mesa 3-D graphics library
* Version: 3.3
* Copyright (C) 1995-2000 Brian Paul
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the Free
* Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifdef PC_HEADER
#include "all.h"
#else
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "gluP.h"
#endif
/*
* This code was contributed by Marc Buffat (buffat@mecaflu.ec-lyon.fr).
* Thanks Marc!!!
*/
/* implementation de gluProject et gluUnproject */
/* M. Buffat 17/2/95 */
/*
* Transform a point (column vector) by a 4x4 matrix. I.e. out = m * in
* Input: m - the 4x4 matrix
* in - the 4x1 vector
* Output: out - the resulting 4x1 vector.
*/
static void
transform_point
(GLdouble out
[4], const GLdouble m
[16], const GLdouble in
[4])
{
#define M(row,col) m[col*4+row]
out
[0] =
M
(0, 0) * in
[0] + M
(0, 1) * in
[1] + M
(0, 2) * in
[2] + M
(0, 3) * in
[3];
out
[1] =
M
(1, 0) * in
[0] + M
(1, 1) * in
[1] + M
(1, 2) * in
[2] + M
(1, 3) * in
[3];
out
[2] =
M
(2, 0) * in
[0] + M
(2, 1) * in
[1] + M
(2, 2) * in
[2] + M
(2, 3) * in
[3];
out
[3] =
M
(3, 0) * in
[0] + M
(3, 1) * in
[1] + M
(3, 2) * in
[2] + M
(3, 3) * in
[3];
#undef M
}
/*
* Perform a 4x4 matrix multiplication (product = a x b).
* Input: a, b - matrices to multiply
* Output: product - product of a and b
*/
static void
matmul
(GLdouble
* product
, const GLdouble
* a
, const GLdouble
* b
)
{
/* This matmul was contributed by Thomas Malik */
GLdouble temp
[16];
GLint i
;
#define A(row,col) a[(col<<2)+row]
#define B(row,col) b[(col<<2)+row]
#define T(row,col) temp[(col<<2)+row]
/* i-te Zeile */
for (i
= 0; i
< 4; i
++) {
T
(i
, 0) =
A
(i
, 0) * B
(0, 0) + A
(i
, 1) * B
(1, 0) + A
(i
, 2) * B
(2, 0) + A
(i
,
3) *
B
(3, 0);
T
(i
, 1) =
A
(i
, 0) * B
(0, 1) + A
(i
, 1) * B
(1, 1) + A
(i
, 2) * B
(2, 1) + A
(i
,
3) *
B
(3, 1);
T
(i
, 2) =
A
(i
, 0) * B
(0, 2) + A
(i
, 1) * B
(1, 2) + A
(i
, 2) * B
(2, 2) + A
(i
,
3) *
B
(3, 2);
T
(i
, 3) =
A
(i
, 0) * B
(0, 3) + A
(i
, 1) * B
(1, 3) + A
(i
, 2) * B
(2, 3) + A
(i
,
3) *
B
(3, 3);
}
#undef A
#undef B
#undef T
MEMCPY
(product
, temp
, 16 * sizeof(GLdouble
));
}
/*
* Compute inverse of 4x4 transformation matrix.
* Code contributed by Jacques Leroy jle@star.be
* Return GL_TRUE for success, GL_FALSE for failure (singular matrix)
*/
static GLboolean
invert_matrix
(const GLdouble
* m
, GLdouble
* out
)
{
/* NB. OpenGL Matrices are COLUMN major. */
#define SWAP_ROWS(a, b) { GLdouble *_tmp = a; (a)=(b); (b)=_tmp; }
#define MAT(m,r,c) (m)[(c)*4+(r)]
GLdouble wtmp
[4][8];
GLdouble m0
, m1
, m2
, m3
, s
;
GLdouble
*r0
, *r1
, *r2
, *r3
;
r0
= wtmp
[0], r1
= wtmp
[1], r2
= wtmp
[2], r3
= wtmp
[3];
r0
[0] = MAT
(m
, 0, 0), r0
[1] = MAT
(m
, 0, 1),
r0
[2] = MAT
(m
, 0, 2), r0
[3] = MAT
(m
, 0, 3),
r0
[4] = 1.0, r0
[5] = r0
[6] = r0
[7] = 0.0,
r1
[0] = MAT
(m
, 1, 0), r1
[1] = MAT
(m
, 1, 1),
r1
[2] = MAT
(m
, 1, 2), r1
[3] = MAT
(m
, 1, 3),
r1
[5] = 1.0, r1
[4] = r1
[6] = r1
[7] = 0.0,
r2
[0] = MAT
(m
, 2, 0), r2
[1] = MAT
(m
, 2, 1),
r2
[2] = MAT
(m
, 2, 2), r2
[3] = MAT
(m
, 2, 3),
r2
[6] = 1.0, r2
[4] = r2
[5] = r2
[7] = 0.0,
r3
[0] = MAT
(m
, 3, 0), r3
[1] = MAT
(m
, 3, 1),
r3
[2] = MAT
(m
, 3, 2), r3
[3] = MAT
(m
, 3, 3),
r3
[7] = 1.0, r3
[4] = r3
[5] = r3
[6] = 0.0;
/* choose pivot - or die */
if (fabs(r3
[0]) > fabs(r2
[0]))
SWAP_ROWS
(r3
, r2
);
if (fabs(r2
[0]) > fabs(r1
[0]))
SWAP_ROWS
(r2
, r1
);
if (fabs(r1
[0]) > fabs(r0
[0]))
SWAP_ROWS
(r1
, r0
);
if (0.0 == r0
[0])
return GL_FALSE
;
/* eliminate first variable */
m1
= r1
[0] / r0
[0];
m2
= r2
[0] / r0
[0];
m3
= r3
[0] / r0
[0];
s
= r0
[1];
r1
[1] -= m1
* s
;
r2
[1] -= m2
* s
;
r3
[1] -= m3
* s
;
s
= r0
[2];
r1
[2] -= m1
* s
;
r2
[2] -= m2
* s
;
r3
[2] -= m3
* s
;
s
= r0
[3];
r1
[3] -= m1
* s
;
r2
[3] -= m2
* s
;
r3
[3] -= m3
* s
;
s
= r0
[4];
if (s
!= 0.0) {
r1
[4] -= m1
* s
;
r2
[4] -= m2
* s
;
r3
[4] -= m3
* s
;
}
s
= r0
[5];
if (s
!= 0.0) {
r1
[5] -= m1
* s
;
r2
[5] -= m2
* s
;
r3
[5] -= m3
* s
;
}
s
= r0
[6];
if (s
!= 0.0) {
r1
[6] -= m1
* s
;
r2
[6] -= m2
* s
;
r3
[6] -= m3
* s
;
}
s
= r0
[7];
if (s
!= 0.0) {
r1
[7] -= m1
* s
;
r2
[7] -= m2
* s
;
r3
[7] -= m3
* s
;
}
/* choose pivot - or die */
if (fabs(r3
[1]) > fabs(r2
[1]))
SWAP_ROWS
(r3
, r2
);
if (fabs(r2
[1]) > fabs(r1
[1]))
SWAP_ROWS
(r2
, r1
);
if (0.0 == r1
[1])
return GL_FALSE
;
/* eliminate second variable */
m2
= r2
[1] / r1
[1];
m3
= r3
[1] / r1
[1];
r2
[2] -= m2
* r1
[2];
r3
[2] -= m3
* r1
[2];
r2
[3] -= m2
* r1
[3];
r3
[3] -= m3
* r1
[3];
s
= r1
[4];
if (0.0 != s
) {
r2
[4] -= m2
* s
;
r3
[4] -= m3
* s
;
}
s
= r1
[5];
if (0.0 != s
) {
r2
[5] -= m2
* s
;
r3
[5] -= m3
* s
;
}
s
= r1
[6];
if (0.0 != s
) {
r2
[6] -= m2
* s
;
r3
[6] -= m3
* s
;
}
s
= r1
[7];
if (0.0 != s
) {
r2
[7] -= m2
* s
;
r3
[7] -= m3
* s
;
}
/* choose pivot - or die */
if (fabs(r3
[2]) > fabs(r2
[2]))
SWAP_ROWS
(r3
, r2
);
if (0.0 == r2
[2])
return GL_FALSE
;
/* eliminate third variable */
m3
= r3
[2] / r2
[2];
r3
[3] -= m3
* r2
[3], r3
[4] -= m3
* r2
[4],
r3
[5] -= m3
* r2
[5], r3
[6] -= m3
* r2
[6], r3
[7] -= m3
* r2
[7];
/* last check */
if (0.0 == r3
[3])
return GL_FALSE
;
s
= 1.0 / r3
[3]; /* now back substitute row 3 */
r3
[4] *= s
;
r3
[5] *= s
;
r3
[6] *= s
;
r3
[7] *= s
;
m2
= r2
[3]; /* now back substitute row 2 */
s
= 1.0 / r2
[2];
r2
[4] = s
* (r2
[4] - r3
[4] * m2
), r2
[5] = s
* (r2
[5] - r3
[5] * m2
),
r2
[6] = s
* (r2
[6] - r3
[6] * m2
), r2
[7] = s
* (r2
[7] - r3
[7] * m2
);
m1
= r1
[3];
r1
[4] -= r3
[4] * m1
, r1
[5] -= r3
[5] * m1
,
r1
[6] -= r3
[6] * m1
, r1
[7] -= r3
[7] * m1
;
m0
= r0
[3];
r0
[4] -= r3
[4] * m0
, r0
[5] -= r3
[5] * m0
,
r0
[6] -= r3
[6] * m0
, r0
[7] -= r3
[7] * m0
;
m1
= r1
[2]; /* now back substitute row 1 */
s
= 1.0 / r1
[1];
r1
[4] = s
* (r1
[4] - r2
[4] * m1
), r1
[5] = s
* (r1
[5] - r2
[5] * m1
),
r1
[6] = s
* (r1
[6] - r2
[6] * m1
), r1
[7] = s
* (r1
[7] - r2
[7] * m1
);
m0
= r0
[2];
r0
[4] -= r2
[4] * m0
, r0
[5] -= r2
[5] * m0
,
r0
[6] -= r2
[6] * m0
, r0
[7] -= r2
[7] * m0
;
m0
= r0
[1]; /* now back substitute row 0 */
s
= 1.0 / r0
[0];
r0
[4] = s
* (r0
[4] - r1
[4] * m0
), r0
[5] = s
* (r0
[5] - r1
[5] * m0
),
r0
[6] = s
* (r0
[6] - r1
[6] * m0
), r0
[7] = s
* (r0
[7] - r1
[7] * m0
);
MAT
(out
, 0, 0) = r0
[4];
MAT
(out
, 0, 1) = r0
[5], MAT
(out
, 0, 2) = r0
[6];
MAT
(out
, 0, 3) = r0
[7], MAT
(out
, 1, 0) = r1
[4];
MAT
(out
, 1, 1) = r1
[5], MAT
(out
, 1, 2) = r1
[6];
MAT
(out
, 1, 3) = r1
[7], MAT
(out
, 2, 0) = r2
[4];
MAT
(out
, 2, 1) = r2
[5], MAT
(out
, 2, 2) = r2
[6];
MAT
(out
, 2, 3) = r2
[7], MAT
(out
, 3, 0) = r3
[4];
MAT
(out
, 3, 1) = r3
[5], MAT
(out
, 3, 2) = r3
[6];
MAT
(out
, 3, 3) = r3
[7];
return GL_TRUE
;
#undef MAT
#undef SWAP_ROWS
}
/* projection du point (objx,objy,obz) sur l'ecran (winx,winy,winz) */
GLint GLAPIENTRY
gluProject
(GLdouble objx
, GLdouble objy
, GLdouble objz
,
const GLdouble model
[16], const GLdouble proj
[16],
const GLint viewport
[4],
GLdouble
* winx
, GLdouble
* winy
, GLdouble
* winz
)
{
/* matrice de transformation */
GLdouble in
[4], out
[4];
/* initilise la matrice et le vecteur a transformer */
in
[0] = objx
;
in
[1] = objy
;
in
[2] = objz
;
in
[3] = 1.0;
transform_point
(out
, model
, in
);
transform_point
(in
, proj
, out
);
/* d'ou le resultat normalise entre -1 et 1 */
if (in
[3] == 0.0)
return GL_FALSE
;
in
[0] /= in
[3];
in
[1] /= in
[3];
in
[2] /= in
[3];
/* en coordonnees ecran */
*winx
= viewport
[0] + (1 + in
[0]) * viewport
[2] / 2;
*winy
= viewport
[1] + (1 + in
[1]) * viewport
[3] / 2;
/* entre 0 et 1 suivant z */
*winz
= (1 + in
[2]) / 2;
return GL_TRUE
;
}
/* transformation du point ecran (winx,winy,winz) en point objet */
GLint GLAPIENTRY
gluUnProject
(GLdouble winx
, GLdouble winy
, GLdouble winz
,
const GLdouble model
[16], const GLdouble proj
[16],
const GLint viewport
[4],
GLdouble
* objx
, GLdouble
* objy
, GLdouble
* objz
)
{
/* matrice de transformation */
GLdouble m
[16], A
[16];
GLdouble in
[4], out
[4];
/* transformation coordonnees normalisees entre -1 et 1 */
in
[0] = (winx
- viewport
[0]) * 2 / viewport
[2] - 1.0;
in
[1] = (winy
- viewport
[1]) * 2 / viewport
[3] - 1.0;
in
[2] = 2 * winz
- 1.0;
in
[3] = 1.0;
/* calcul transformation inverse */
matmul
(A
, proj
, model
);
invert_matrix
(A
, m
);
/* d'ou les coordonnees objets */
transform_point
(out
, m
, in
);
if (out
[3] == 0.0)
return GL_FALSE
;
*objx
= out
[0] / out
[3];
*objy
= out
[1] / out
[3];
*objz
= out
[2] / out
[3];
return GL_TRUE
;
}
/*
* New in GLU 1.3
* This is like gluUnProject but also takes near and far DepthRange values.
*/
#ifdef GLU_VERSION_1_3
GLint GLAPIENTRY
gluUnProject4
(GLdouble winx
, GLdouble winy
, GLdouble winz
, GLdouble clipw
,
const GLdouble modelMatrix
[16],
const GLdouble projMatrix
[16],
const GLint viewport
[4],
GLclampd nearZ
, GLclampd farZ
,
GLdouble
* objx
, GLdouble
* objy
, GLdouble
* objz
,
GLdouble
* objw
)
{
/* matrice de transformation */
GLdouble m
[16], A
[16];
GLdouble in
[4], out
[4];
GLdouble z
= nearZ
+ winz
* (farZ
- nearZ
);
/* transformation coordonnees normalisees entre -1 et 1 */
in
[0] = (winx
- viewport
[0]) * 2 / viewport
[2] - 1.0;
in
[1] = (winy
- viewport
[1]) * 2 / viewport
[3] - 1.0;
in
[2] = 2.0 * z
- 1.0;
in
[3] = clipw
;
/* calcul transformation inverse */
matmul
(A
, projMatrix
, modelMatrix
);
invert_matrix
(A
, m
);
/* d'ou les coordonnees objets */
transform_point
(out
, m
, in
);
if (out
[3] == 0.0)
return GL_FALSE
;
*objx
= out
[0] / out
[3];
*objy
= out
[1] / out
[3];
*objz
= out
[2] / out
[3];
*objw
= out
[3];
return GL_TRUE
;
}
#endif