Rev 107 |
Blame |
Compare with Previous |
Last modification |
View Log
| RSS feed
/* trees.c -- output deflated data using Huffman coding
* Copyright (C) 1995-2002 Jean-loup Gailly
* For conditions of distribution and use, see copyright notice in zlib.h
*/
/*
* ALGORITHM
*
* The "deflation" process uses several Huffman trees. The more
* common source values are represented by shorter bit sequences.
*
* Each code tree is stored in a compressed form which is itself
* a Huffman encoding of the lengths of all the code strings (in
* ascending order by source values). The actual code strings are
* reconstructed from the lengths in the inflate process, as described
* in the deflate specification.
*
* REFERENCES
*
* Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
* Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
*
* Storer, James A.
* Data Compression: Methods and Theory, pp. 49-50.
* Computer Science Press, 1988. ISBN 0-7167-8156-5.
*
* Sedgewick, R.
* Algorithms, p290.
* Addison-Wesley, 1983. ISBN 0-201-06672-6.
*/
/* @(#) $Id: trees.c,v 1.1 2003-03-24 11:13:44 pj Exp $ */
/* #define GEN_TREES_H */
#include "deflate.h"
#ifdef DEBUG
# include <ctype.h>
#endif
/* ===========================================================================
* Constants
*/
#define MAX_BL_BITS 7
/* Bit length codes must not exceed MAX_BL_BITS bits */
#define END_BLOCK 256
/* end of block literal code */
#define REP_3_6 16
/* repeat previous bit length 3-6 times (2 bits of repeat count) */
#define REPZ_3_10 17
/* repeat a zero length 3-10 times (3 bits of repeat count) */
#define REPZ_11_138 18
/* repeat a zero length 11-138 times (7 bits of repeat count) */
local
const int extra_lbits
[LENGTH_CODES
] /* extra bits for each length code */
= {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
local
const int extra_dbits
[D_CODES
] /* extra bits for each distance code */
= {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
local
const int extra_blbits
[BL_CODES
]/* extra bits for each bit length code */
= {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
local
const uch bl_order
[BL_CODES
]
= {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
/* The lengths of the bit length codes are sent in order of decreasing
* probability, to avoid transmitting the lengths for unused bit length codes.
*/
#define Buf_size (8 * 2*sizeof(char))
/* Number of bits used within bi_buf. (bi_buf might be implemented on
* more than 16 bits on some systems.)
*/
/* ===========================================================================
* Local data. These are initialized only once.
*/
#define DIST_CODE_LEN 512 /* see definition of array dist_code below */
#if defined(GEN_TREES_H) || !defined(STDC)
/* non ANSI compilers may not accept trees.h */
local ct_data static_ltree
[L_CODES
+2];
/* The static literal tree. Since the bit lengths are imposed, there is no
* need for the L_CODES extra codes used during heap construction. However
* The codes 286 and 287 are needed to build a canonical tree (see _tr_init
* below).
*/
local ct_data static_dtree
[D_CODES
];
/* The static distance tree. (Actually a trivial tree since all codes use
* 5 bits.)
*/
uch _dist_code
[DIST_CODE_LEN
];
/* Distance codes. The first 256 values correspond to the distances
* 3 .. 258, the last 256 values correspond to the top 8 bits of
* the 15 bit distances.
*/
uch _length_code
[MAX_MATCH
-MIN_MATCH
+1];
/* length code for each normalized match length (0 == MIN_MATCH) */
local
int base_length
[LENGTH_CODES
];
/* First normalized length for each code (0 = MIN_MATCH) */
local
int base_dist
[D_CODES
];
/* First normalized distance for each code (0 = distance of 1) */
#else
# include "trees.h"
#endif /* GEN_TREES_H */
struct static_tree_desc_s
{
const ct_data
*static_tree
; /* static tree or NULL */
const intf
*extra_bits
; /* extra bits for each code or NULL */
int extra_base
; /* base index for extra_bits */
int elems
; /* max number of elements in the tree */
int max_length
; /* max bit length for the codes */
};
local static_tree_desc static_l_desc
=
{static_ltree
, extra_lbits
, LITERALS
+1, L_CODES
, MAX_BITS
};
local static_tree_desc static_d_desc
=
{static_dtree
, extra_dbits
, 0, D_CODES
, MAX_BITS
};
local static_tree_desc static_bl_desc
=
{(const ct_data
*)0, extra_blbits
, 0, BL_CODES
, MAX_BL_BITS
};
/* ===========================================================================
* Local (static) routines in this file.
*/
local
void tr_static_init OF
((void));
local
void init_block OF
((deflate_state
*s
));
local
void pqdownheap OF
((deflate_state
*s
, ct_data
*tree
, int k
));
local
void gen_bitlen OF
((deflate_state
*s
, tree_desc
*desc
));
local
void gen_codes OF
((ct_data
*tree
, int max_code
, ushf
*bl_count
));
local
void build_tree OF
((deflate_state
*s
, tree_desc
*desc
));
local
void scan_tree OF
((deflate_state
*s
, ct_data
*tree
, int max_code
));
local
void send_tree OF
((deflate_state
*s
, ct_data
*tree
, int max_code
));
local
int build_bl_tree OF
((deflate_state
*s
));
local
void send_all_trees OF
((deflate_state
*s
, int lcodes
, int dcodes
,
int blcodes
));
local
void compress_block OF
((deflate_state
*s
, ct_data
*ltree
,
ct_data
*dtree
));
local
void set_data_type OF
((deflate_state
*s
));
local
unsigned bi_reverse OF
((unsigned value
, int length
));
local
void bi_windup OF
((deflate_state
*s
));
local
void bi_flush OF
((deflate_state
*s
));
local
void copy_block OF
((deflate_state
*s
, charf
*buf
, unsigned len
,
int header
));
#ifdef GEN_TREES_H
local
void gen_trees_header OF
((void));
#endif
#ifndef DEBUG
# define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
/* Send a code of the given tree. c and tree must not have side effects */
#else /* DEBUG */
# define send_code(s, c, tree) \
{ if (z_verbose>2) cprintf("\ncd %3d ",(c)); \
send_bits(s, tree[c].Code, tree[c].Len); }
#endif
/* ===========================================================================
* Output a short LSB first on the stream.
* IN assertion: there is enough room in pendingBuf.
*/
#define put_short(s, w) { \
put_byte(s, (uch)((w) & 0xff)); \
put_byte(s, (uch)((ush)(w) >> 8)); \
}
/* ===========================================================================
* Send a value on a given number of bits.
* IN assertion: length <= 16 and value fits in length bits.
*/
#ifdef DEBUG
local
void send_bits OF
((deflate_state
*s
, int value
, int length
));
local
void send_bits
(s
, value
, length
)
deflate_state
*s
;
int value
; /* value to send */
int length
; /* number of bits */
{
Tracevv
((stderr
," l %2d v %4x ", length
, value
));
Assert
(length
> 0 && length
<= 15, "invalid length");
s
->bits_sent
+= (ulg
)length
;
/* If not enough room in bi_buf, use (valid) bits from bi_buf and
* (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
* unused bits in value.
*/
if (s
->bi_valid
> (int)Buf_size
- length
) {
s
->bi_buf
|= (value
<< s
->bi_valid
);
put_short
(s
, s
->bi_buf
);
s
->bi_buf
= (ush
)value
>> (Buf_size
- s
->bi_valid
);
s
->bi_valid
+= length
- Buf_size
;
} else {
s
->bi_buf
|= value
<< s
->bi_valid
;
s
->bi_valid
+= length
;
}
}
#else /* !DEBUG */
#define send_bits(s, value, length) \
{ int len = length;\
if (s->bi_valid > (int)Buf_size - len) {\
int val = value;\
s->bi_buf |= (val << s->bi_valid);\
put_short(s, s->bi_buf);\
s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
s->bi_valid += len - Buf_size;\
} else {\
s->bi_buf |= (value) << s->bi_valid;\
s->bi_valid += len;\
}\
}
#endif /* DEBUG */
#define MAX(a,b) (a >= b ? a : b)
/* the arguments must not have side effects */
/* ===========================================================================
* Initialize the various 'constant' tables.
*/
local
void tr_static_init
()
{
#if defined(GEN_TREES_H) || !defined(STDC)
static int static_init_done
= 0;
int n
; /* iterates over tree elements */
int bits
; /* bit counter */
int length
; /* length value */
int code
; /* code value */
int dist
; /* distance index */
ush bl_count
[MAX_BITS
+1];
/* number of codes at each bit length for an optimal tree */
if (static_init_done
) return;
/* For some embedded targets, global variables are not initialized: */
static_l_desc.
static_tree = static_ltree
;
static_l_desc.
extra_bits = extra_lbits
;
static_d_desc.
static_tree = static_dtree
;
static_d_desc.
extra_bits = extra_dbits
;
static_bl_desc.
extra_bits = extra_blbits
;
/* Initialize the mapping length (0..255) -> length code (0..28) */
length
= 0;
for (code
= 0; code
< LENGTH_CODES
-1; code
++) {
base_length
[code
] = length
;
for (n
= 0; n
< (1<<extra_lbits
[code
]); n
++) {
_length_code
[length
++] = (uch
)code
;
}
}
Assert
(length
== 256, "tr_static_init: length != 256");
/* Note that the length 255 (match length 258) can be represented
* in two different ways: code 284 + 5 bits or code 285, so we
* overwrite length_code[255] to use the best encoding:
*/
_length_code
[length
-1] = (uch
)code
;
/* Initialize the mapping dist (0..32K) -> dist code (0..29) */
dist
= 0;
for (code
= 0 ; code
< 16; code
++) {
base_dist
[code
] = dist
;
for (n
= 0; n
< (1<<extra_dbits
[code
]); n
++) {
_dist_code
[dist
++] = (uch
)code
;
}
}
Assert
(dist
== 256, "tr_static_init: dist != 256");
dist
>>= 7; /* from now on, all distances are divided by 128 */
for ( ; code
< D_CODES
; code
++) {
base_dist
[code
] = dist
<< 7;
for (n
= 0; n
< (1<<(extra_dbits
[code
]-7)); n
++) {
_dist_code
[256 + dist
++] = (uch
)code
;
}
}
Assert
(dist
== 256, "tr_static_init: 256+dist != 512");
/* Construct the codes of the static literal tree */
for (bits
= 0; bits
<= MAX_BITS
; bits
++) bl_count
[bits
] = 0;
n
= 0;
while (n
<= 143) static_ltree
[n
++].
Len = 8, bl_count
[8]++;
while (n
<= 255) static_ltree
[n
++].
Len = 9, bl_count
[9]++;
while (n
<= 279) static_ltree
[n
++].
Len = 7, bl_count
[7]++;
while (n
<= 287) static_ltree
[n
++].
Len = 8, bl_count
[8]++;
/* Codes 286 and 287 do not exist, but we must include them in the
* tree construction to get a canonical Huffman tree (longest code
* all ones)
*/
gen_codes
((ct_data
*)static_ltree
, L_CODES
+1, bl_count
);
/* The static distance tree is trivial: */
for (n
= 0; n
< D_CODES
; n
++) {
static_dtree
[n
].
Len = 5;
static_dtree
[n
].
Code = bi_reverse
((unsigned)n
, 5);
}
static_init_done
= 1;
# ifdef GEN_TREES_H
gen_trees_header
();
# endif
#endif /* defined(GEN_TREES_H) || !defined(STDC) */
}
/* ===========================================================================
* Genererate the file trees.h describing the static trees.
*/
#ifdef GEN_TREES_H
# ifndef DEBUG
# include <stdio.h>
# endif
# define SEPARATOR(i, last, width) \
((i) == (last)? "\n};\n\n" : \
((i) % (width) == (width)-1 ? ",\n" : ", "))
void gen_trees_header
()
{
FILE
*header
= fopen("trees.h", "w");
int i
;
Assert
(header
!= NULL
, "Can't open trees.h");
fprintf(header
,
"/* header created automatically with -DGEN_TREES_H */\n\n");
fprintf(header
, "local const ct_data static_ltree[L_CODES+2] = {\n");
for (i
= 0; i
< L_CODES
+2; i
++) {
fprintf(header
, "{{%3u},{%3u}}%s", static_ltree
[i
].
Code,
static_ltree
[i
].
Len, SEPARATOR
(i
, L_CODES
+1, 5));
}
fprintf(header
, "local const ct_data static_dtree[D_CODES] = {\n");
for (i
= 0; i
< D_CODES
; i
++) {
fprintf(header
, "{{%2u},{%2u}}%s", static_dtree
[i
].
Code,
static_dtree
[i
].
Len, SEPARATOR
(i
, D_CODES
-1, 5));
}
fprintf(header
, "const uch _dist_code[DIST_CODE_LEN] = {\n");
for (i
= 0; i
< DIST_CODE_LEN
; i
++) {
fprintf(header
, "%2u%s", _dist_code
[i
],
SEPARATOR
(i
, DIST_CODE_LEN
-1, 20));
}
fprintf(header
, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
for (i
= 0; i
< MAX_MATCH
-MIN_MATCH
+1; i
++) {
fprintf(header
, "%2u%s", _length_code
[i
],
SEPARATOR
(i
, MAX_MATCH
-MIN_MATCH
, 20));
}
fprintf(header
, "local const int base_length[LENGTH_CODES] = {\n");
for (i
= 0; i
< LENGTH_CODES
; i
++) {
fprintf(header
, "%1u%s", base_length
[i
],
SEPARATOR
(i
, LENGTH_CODES
-1, 20));
}
fprintf(header
, "local const int base_dist[D_CODES] = {\n");
for (i
= 0; i
< D_CODES
; i
++) {
fprintf(header
, "%5u%s", base_dist
[i
],
SEPARATOR
(i
, D_CODES
-1, 10));
}
fclose(header
);
}
#endif /* GEN_TREES_H */
/* ===========================================================================
* Initialize the tree data structures for a new zlib stream.
*/
void _tr_init
(s
)
deflate_state
*s
;
{
tr_static_init
();
s
->l_desc.
dyn_tree = s
->dyn_ltree
;
s
->l_desc.
stat_desc = &static_l_desc
;
s
->d_desc.
dyn_tree = s
->dyn_dtree
;
s
->d_desc.
stat_desc = &static_d_desc
;
s
->bl_desc.
dyn_tree = s
->bl_tree
;
s
->bl_desc.
stat_desc = &static_bl_desc
;
s
->bi_buf
= 0;
s
->bi_valid
= 0;
s
->last_eob_len
= 8; /* enough lookahead for inflate */
#ifdef DEBUG
s
->compressed_len
= 0L;
s
->bits_sent
= 0L;
#endif
/* Initialize the first block of the first file: */
init_block
(s
);
}
/* ===========================================================================
* Initialize a new block.
*/
local
void init_block
(s
)
deflate_state
*s
;
{
int n
; /* iterates over tree elements */
/* Initialize the trees. */
for (n
= 0; n
< L_CODES
; n
++) s
->dyn_ltree
[n
].
Freq = 0;
for (n
= 0; n
< D_CODES
; n
++) s
->dyn_dtree
[n
].
Freq = 0;
for (n
= 0; n
< BL_CODES
; n
++) s
->bl_tree
[n
].
Freq = 0;
s
->dyn_ltree
[END_BLOCK
].
Freq = 1;
s
->opt_len
= s
->static_len
= 0L;
s
->last_lit
= s
->matches
= 0;
}
#define SMALLEST 1
/* Index within the heap array of least frequent node in the Huffman tree */
/* ===========================================================================
* Remove the smallest element from the heap and recreate the heap with
* one less element. Updates heap and heap_len.
*/
#define pqremove(s, tree, top) \
{\
top = s->heap[SMALLEST]; \
s->heap[SMALLEST] = s->heap[s->heap_len--]; \
pqdownheap(s, tree, SMALLEST); \
}
/* ===========================================================================
* Compares to subtrees, using the tree depth as tie breaker when
* the subtrees have equal frequency. This minimizes the worst case length.
*/
#define smaller(tree, n, m, depth) \
(tree[n].Freq < tree[m].Freq || \
(tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
/* ===========================================================================
* Restore the heap property by moving down the tree starting at node k,
* exchanging a node with the smallest of its two sons if necessary, stopping
* when the heap property is re-established (each father smaller than its
* two sons).
*/
local
void pqdownheap
(s
, tree
, k
)
deflate_state
*s
;
ct_data
*tree
; /* the tree to restore */
int k
; /* node to move down */
{
int v
= s
->heap
[k
];
int j
= k
<< 1; /* left son of k */
while (j
<= s
->heap_len
) {
/* Set j to the smallest of the two sons: */
if (j
< s
->heap_len
&&
smaller
(tree
, s
->heap
[j
+1], s
->heap
[j
], s
->depth
)) {
j
++;
}
/* Exit if v is smaller than both sons */
if (smaller
(tree
, v
, s
->heap
[j
], s
->depth
)) break;
/* Exchange v with the smallest son */
s
->heap
[k
] = s
->heap
[j
]; k
= j
;
/* And continue down the tree, setting j to the left son of k */
j
<<= 1;
}
s
->heap
[k
] = v
;
}
/* ===========================================================================
* Compute the optimal bit lengths for a tree and update the total bit length
* for the current block.
* IN assertion: the fields freq and dad are set, heap[heap_max] and
* above are the tree nodes sorted by increasing frequency.
* OUT assertions: the field len is set to the optimal bit length, the
* array bl_count contains the frequencies for each bit length.
* The length opt_len is updated; static_len is also updated if stree is
* not null.
*/
local
void gen_bitlen
(s
, desc
)
deflate_state
*s
;
tree_desc
*desc
; /* the tree descriptor */
{
ct_data
*tree
= desc
->dyn_tree
;
int max_code
= desc
->max_code
;
const ct_data
*stree
= desc
->stat_desc
->static_tree
;
const intf
*extra
= desc
->stat_desc
->extra_bits
;
int base
= desc
->stat_desc
->extra_base
;
int max_length
= desc
->stat_desc
->max_length
;
int h
; /* heap index */
int n
, m
; /* iterate over the tree elements */
int bits
; /* bit length */
int xbits
; /* extra bits */
ush f
; /* frequency */
int overflow
= 0; /* number of elements with bit length too large */
for (bits
= 0; bits
<= MAX_BITS
; bits
++) s
->bl_count
[bits
] = 0;
/* In a first pass, compute the optimal bit lengths (which may
* overflow in the case of the bit length tree).
*/
tree
[s
->heap
[s
->heap_max
]].
Len = 0; /* root of the heap */
for (h
= s
->heap_max
+1; h
< HEAP_SIZE
; h
++) {
n
= s
->heap
[h
];
bits
= tree
[tree
[n
].
Dad].
Len + 1;
if (bits
> max_length
) bits
= max_length
, overflow
++;
tree
[n
].
Len = (ush
)bits
;
/* We overwrite tree[n].Dad which is no longer needed */
if (n
> max_code
) continue; /* not a leaf node */
s
->bl_count
[bits
]++;
xbits
= 0;
if (n
>= base
) xbits
= extra
[n
-base
];
f
= tree
[n
].
Freq;
s
->opt_len
+= (ulg
)f
* (bits
+ xbits
);
if (stree
) s
->static_len
+= (ulg
)f
* (stree
[n
].
Len + xbits
);
}
if (overflow
== 0) return;
Trace
((stderr
,"\nbit length overflow\n"));
/* This happens for example on obj2 and pic of the Calgary corpus */
/* Find the first bit length which could increase: */
do {
bits
= max_length
-1;
while (s
->bl_count
[bits
] == 0) bits
--;
s
->bl_count
[bits
]--; /* move one leaf down the tree */
s
->bl_count
[bits
+1] += 2; /* move one overflow item as its brother */
s
->bl_count
[max_length
]--;
/* The brother of the overflow item also moves one step up,
* but this does not affect bl_count[max_length]
*/
overflow
-= 2;
} while (overflow
> 0);
/* Now recompute all bit lengths, scanning in increasing frequency.
* h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
* lengths instead of fixing only the wrong ones. This idea is taken
* from 'ar' written by Haruhiko Okumura.)
*/
for (bits
= max_length
; bits
!= 0; bits
--) {
n
= s
->bl_count
[bits
];
while (n
!= 0) {
m
= s
->heap
[--h
];
if (m
> max_code
) continue;
if (tree
[m
].
Len != (unsigned) bits
) {
Trace
((stderr
,"code %d bits %d->%d\n", m
, tree
[m
].
Len, bits
));
s
->opt_len
+= ((long)bits
- (long)tree
[m
].
Len)
*(long)tree
[m
].
Freq;
tree
[m
].
Len = (ush
)bits
;
}
n
--;
}
}
}
/* ===========================================================================
* Generate the codes for a given tree and bit counts (which need not be
* optimal).
* IN assertion: the array bl_count contains the bit length statistics for
* the given tree and the field len is set for all tree elements.
* OUT assertion: the field code is set for all tree elements of non
* zero code length.
*/
local
void gen_codes
(tree
, max_code
, bl_count
)
ct_data
*tree
; /* the tree to decorate */
int max_code
; /* largest code with non zero frequency */
ushf
*bl_count
; /* number of codes at each bit length */
{
ush next_code
[MAX_BITS
+1]; /* next code value for each bit length */
ush code
= 0; /* running code value */
int bits
; /* bit index */
int n
; /* code index */
/* The distribution counts are first used to generate the code values
* without bit reversal.
*/
for (bits
= 1; bits
<= MAX_BITS
; bits
++) {
next_code
[bits
] = code
= (code
+ bl_count
[bits
-1]) << 1;
}
/* Check that the bit counts in bl_count are consistent. The last code
* must be all ones.
*/
Assert
(code
+ bl_count
[MAX_BITS
]-1 == (1<<MAX_BITS
)-1,
"inconsistent bit counts");
Tracev
((stderr
,"\ngen_codes: max_code %d ", max_code
));
for (n
= 0; n
<= max_code
; n
++) {
int len
= tree
[n
].
Len;
if (len
== 0) continue;
/* Now reverse the bits */
tree
[n
].
Code = bi_reverse
(next_code
[len
]++, len
);
Tracecv
(tree
!= static_ltree
, (stderr
,"\nn %3d %c l %2d c %4x (%x) ",
n
, (isgraph(n
) ? n
: ' '), len
, tree
[n
].
Code, next_code
[len
]-1));
}
}
/* ===========================================================================
* Construct one Huffman tree and assigns the code bit strings and lengths.
* Update the total bit length for the current block.
* IN assertion: the field freq is set for all tree elements.
* OUT assertions: the fields len and code are set to the optimal bit length
* and corresponding code. The length opt_len is updated; static_len is
* also updated if stree is not null. The field max_code is set.
*/
local
void build_tree
(s
, desc
)
deflate_state
*s
;
tree_desc
*desc
; /* the tree descriptor */
{
ct_data
*tree
= desc
->dyn_tree
;
const ct_data
*stree
= desc
->stat_desc
->static_tree
;
int elems
= desc
->stat_desc
->elems
;
int n
, m
; /* iterate over heap elements */
int max_code
= -1; /* largest code with non zero frequency */
int node
; /* new node being created */
/* Construct the initial heap, with least frequent element in
* heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
* heap[0] is not used.
*/
s
->heap_len
= 0, s
->heap_max
= HEAP_SIZE
;
for (n
= 0; n
< elems
; n
++) {
if (tree
[n
].
Freq != 0) {
s
->heap
[++(s
->heap_len
)] = max_code
= n
;
s
->depth
[n
] = 0;
} else {
tree
[n
].
Len = 0;
}
}
/* The pkzip format requires that at least one distance code exists,
* and that at least one bit should be sent even if there is only one
* possible code. So to avoid special checks later on we force at least
* two codes of non zero frequency.
*/
while (s
->heap_len
< 2) {
node
= s
->heap
[++(s
->heap_len
)] = (max_code
< 2 ? ++max_code
: 0);
tree
[node
].
Freq = 1;
s
->depth
[node
] = 0;
s
->opt_len
--; if (stree
) s
->static_len
-= stree
[node
].
Len;
/* node is 0 or 1 so it does not have extra bits */
}
desc
->max_code
= max_code
;
/* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
* establish sub-heaps of increasing lengths:
*/
for (n
= s
->heap_len
/2; n
>= 1; n
--) pqdownheap
(s
, tree
, n
);
/* Construct the Huffman tree by repeatedly combining the least two
* frequent nodes.
*/
node
= elems
; /* next internal node of the tree */
do {
pqremove
(s
, tree
, n
); /* n = node of least frequency */
m
= s
->heap
[SMALLEST
]; /* m = node of next least frequency */
s
->heap
[--(s
->heap_max
)] = n
; /* keep the nodes sorted by frequency */
s
->heap
[--(s
->heap_max
)] = m
;
/* Create a new node father of n and m */
tree
[node
].
Freq = tree
[n
].
Freq + tree
[m
].
Freq;
s
->depth
[node
] = (uch
) (MAX
(s
->depth
[n
], s
->depth
[m
]) + 1);
tree
[n
].
Dad = tree
[m
].
Dad = (ush
)node
;
#ifdef DUMP_BL_TREE
if (tree
== s
->bl_tree
) {
cprintf
("\nnode %d(%d), sons %d(%d) %d(%d)",
node
, tree
[node
].
Freq, n
, tree
[n
].
Freq, m
, tree
[m
].
Freq);
}
#endif
/* and insert the new node in the heap */
s
->heap
[SMALLEST
] = node
++;
pqdownheap
(s
, tree
, SMALLEST
);
} while (s
->heap_len
>= 2);
s
->heap
[--(s
->heap_max
)] = s
->heap
[SMALLEST
];
/* At this point, the fields freq and dad are set. We can now
* generate the bit lengths.
*/
gen_bitlen
(s
, (tree_desc
*)desc
);
/* The field len is now set, we can generate the bit codes */
gen_codes
((ct_data
*)tree
, max_code
, s
->bl_count
);
}
/* ===========================================================================
* Scan a literal or distance tree to determine the frequencies of the codes
* in the bit length tree.
*/
local
void scan_tree
(s
, tree
, max_code
)
deflate_state
*s
;
ct_data
*tree
; /* the tree to be scanned */
int max_code
; /* and its largest code of non zero frequency */
{
int n
; /* iterates over all tree elements */
int prevlen
= -1; /* last emitted length */
int curlen
; /* length of current code */
int nextlen
= tree
[0].
Len; /* length of next code */
int count
= 0; /* repeat count of the current code */
int max_count
= 7; /* max repeat count */
int min_count
= 4; /* min repeat count */
if (nextlen
== 0) max_count
= 138, min_count
= 3;
tree
[max_code
+1].
Len = (ush
)0xffff; /* guard */
for (n
= 0; n
<= max_code
; n
++) {
curlen
= nextlen
; nextlen
= tree
[n
+1].
Len;
if (++count
< max_count
&& curlen
== nextlen
) {
continue;
} else if (count
< min_count
) {
s
->bl_tree
[curlen
].
Freq += count
;
} else if (curlen
!= 0) {
if (curlen
!= prevlen
) s
->bl_tree
[curlen
].
Freq++;
s
->bl_tree
[REP_3_6
].
Freq++;
} else if (count
<= 10) {
s
->bl_tree
[REPZ_3_10
].
Freq++;
} else {
s
->bl_tree
[REPZ_11_138
].
Freq++;
}
count
= 0; prevlen
= curlen
;
if (nextlen
== 0) {
max_count
= 138, min_count
= 3;
} else if (curlen
== nextlen
) {
max_count
= 6, min_count
= 3;
} else {
max_count
= 7, min_count
= 4;
}
}
}
/* ===========================================================================
* Send a literal or distance tree in compressed form, using the codes in
* bl_tree.
*/
local
void send_tree
(s
, tree
, max_code
)
deflate_state
*s
;
ct_data
*tree
; /* the tree to be scanned */
int max_code
; /* and its largest code of non zero frequency */
{
int n
; /* iterates over all tree elements */
int prevlen
= -1; /* last emitted length */
int curlen
; /* length of current code */
int nextlen
= tree
[0].
Len; /* length of next code */
int count
= 0; /* repeat count of the current code */
int max_count
= 7; /* max repeat count */
int min_count
= 4; /* min repeat count */
/* tree[max_code+1].Len = -1; */ /* guard already set */
if (nextlen
== 0) max_count
= 138, min_count
= 3;
for (n
= 0; n
<= max_code
; n
++) {
curlen
= nextlen
; nextlen
= tree
[n
+1].
Len;
if (++count
< max_count
&& curlen
== nextlen
) {
continue;
} else if (count
< min_count
) {
do { send_code
(s
, curlen
, s
->bl_tree
); } while (--count
!= 0);
} else if (curlen
!= 0) {
if (curlen
!= prevlen
) {
send_code
(s
, curlen
, s
->bl_tree
); count
--;
}
Assert
(count
>= 3 && count
<= 6, " 3_6?");
send_code
(s
, REP_3_6
, s
->bl_tree
); send_bits
(s
, count
-3, 2);
} else if (count
<= 10) {
send_code
(s
, REPZ_3_10
, s
->bl_tree
); send_bits
(s
, count
-3, 3);
} else {
send_code
(s
, REPZ_11_138
, s
->bl_tree
); send_bits
(s
, count
-11, 7);
}
count
= 0; prevlen
= curlen
;
if (nextlen
== 0) {
max_count
= 138, min_count
= 3;
} else if (curlen
== nextlen
) {
max_count
= 6, min_count
= 3;
} else {
max_count
= 7, min_count
= 4;
}
}
}
/* ===========================================================================
* Construct the Huffman tree for the bit lengths and return the index in
* bl_order of the last bit length code to send.
*/
local
int build_bl_tree
(s
)
deflate_state
*s
;
{
int max_blindex
; /* index of last bit length code of non zero freq */
/* Determine the bit length frequencies for literal and distance trees */
scan_tree
(s
, (ct_data
*)s
->dyn_ltree
, s
->l_desc.
max_code);
scan_tree
(s
, (ct_data
*)s
->dyn_dtree
, s
->d_desc.
max_code);
/* Build the bit length tree: */
build_tree
(s
, (tree_desc
*)(&(s
->bl_desc
)));
/* opt_len now includes the length of the tree representations, except
* the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
*/
/* Determine the number of bit length codes to send. The pkzip format
* requires that at least 4 bit length codes be sent. (appnote.txt says
* 3 but the actual value used is 4.)
*/
for (max_blindex
= BL_CODES
-1; max_blindex
>= 3; max_blindex
--) {
if (s
->bl_tree
[bl_order
[max_blindex
]].
Len != 0) break;
}
/* Update opt_len to include the bit length tree and counts */
s
->opt_len
+= 3*(max_blindex
+1) + 5+5+4;
Tracev
((stderr
, "\ndyn trees: dyn %ld, stat %ld",
s
->opt_len
, s
->static_len
));
return max_blindex
;
}
/* ===========================================================================
* Send the header for a block using dynamic Huffman trees: the counts, the
* lengths of the bit length codes, the literal tree and the distance tree.
* IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
*/
local
void send_all_trees
(s
, lcodes
, dcodes
, blcodes
)
deflate_state
*s
;
int lcodes
, dcodes
, blcodes
; /* number of codes for each tree */
{
int rank
; /* index in bl_order */
Assert
(lcodes
>= 257 && dcodes
>= 1 && blcodes
>= 4, "not enough codes");
Assert
(lcodes
<= L_CODES
&& dcodes
<= D_CODES
&& blcodes
<= BL_CODES
,
"too many codes");
Tracev
((stderr
, "\nbl counts: "));
send_bits
(s
, lcodes
-257, 5); /* not +255 as stated in appnote.txt */
send_bits
(s
, dcodes
-1, 5);
send_bits
(s
, blcodes
-4, 4); /* not -3 as stated in appnote.txt */
for (rank
= 0; rank
< blcodes
; rank
++) {
Tracev
((stderr
, "\nbl code %2d ", bl_order
[rank
]));
send_bits
(s
, s
->bl_tree
[bl_order
[rank
]].
Len, 3);
}
Tracev
((stderr
, "\nbl tree: sent %ld", s
->bits_sent
));
send_tree
(s
, (ct_data
*)s
->dyn_ltree
, lcodes
-1); /* literal tree */
Tracev
((stderr
, "\nlit tree: sent %ld", s
->bits_sent
));
send_tree
(s
, (ct_data
*)s
->dyn_dtree
, dcodes
-1); /* distance tree */
Tracev
((stderr
, "\ndist tree: sent %ld", s
->bits_sent
));
}
/* ===========================================================================
* Send a stored block
*/
void _tr_stored_block
(s
, buf
, stored_len
, eof
)
deflate_state
*s
;
charf
*buf
; /* input block */
ulg stored_len
; /* length of input block */
int eof
; /* true if this is the last block for a file */
{
send_bits
(s
, (STORED_BLOCK
<<1)+eof
, 3); /* send block type */
#ifdef DEBUG
s
->compressed_len
= (s
->compressed_len
+ 3 + 7) & (ulg
)~
7L;
s
->compressed_len
+= (stored_len
+ 4) << 3;
#endif
copy_block
(s
, buf
, (unsigned)stored_len
, 1); /* with header */
}
/* ===========================================================================
* Send one empty static block to give enough lookahead for inflate.
* This takes 10 bits, of which 7 may remain in the bit buffer.
* The current inflate code requires 9 bits of lookahead. If the
* last two codes for the previous block (real code plus EOB) were coded
* on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
* the last real code. In this case we send two empty static blocks instead
* of one. (There are no problems if the previous block is stored or fixed.)
* To simplify the code, we assume the worst case of last real code encoded
* on one bit only.
*/
void _tr_align
(s
)
deflate_state
*s
;
{
send_bits
(s
, STATIC_TREES
<<1, 3);
send_code
(s
, END_BLOCK
, static_ltree
);
#ifdef DEBUG
s
->compressed_len
+= 10L; /* 3 for block type, 7 for EOB */
#endif
bi_flush
(s
);
/* Of the 10 bits for the empty block, we have already sent
* (10 - bi_valid) bits. The lookahead for the last real code (before
* the EOB of the previous block) was thus at least one plus the length
* of the EOB plus what we have just sent of the empty static block.
*/
if (1 + s
->last_eob_len
+ 10 - s
->bi_valid
< 9) {
send_bits
(s
, STATIC_TREES
<<1, 3);
send_code
(s
, END_BLOCK
, static_ltree
);
#ifdef DEBUG
s
->compressed_len
+= 10L;
#endif
bi_flush
(s
);
}
s
->last_eob_len
= 7;
}
/* ===========================================================================
* Determine the best encoding for the current block: dynamic trees, static
* trees or store, and output the encoded block to the zip file.
*/
void _tr_flush_block
(s
, buf
, stored_len
, eof
)
deflate_state
*s
;
charf
*buf
; /* input block, or NULL if too old */
ulg stored_len
; /* length of input block */
int eof
; /* true if this is the last block for a file */
{
ulg opt_lenb
, static_lenb
; /* opt_len and static_len in bytes */
int max_blindex
= 0; /* index of last bit length code of non zero freq */
/* Build the Huffman trees unless a stored block is forced */
if (s
->level
> 0) {
/* Check if the file is ascii or binary */
if (s
->data_type
== Z_UNKNOWN
) set_data_type
(s
);
/* Construct the literal and distance trees */
build_tree
(s
, (tree_desc
*)(&(s
->l_desc
)));
Tracev
((stderr
, "\nlit data: dyn %ld, stat %ld", s
->opt_len
,
s
->static_len
));
build_tree
(s
, (tree_desc
*)(&(s
->d_desc
)));
Tracev
((stderr
, "\ndist data: dyn %ld, stat %ld", s
->opt_len
,
s
->static_len
));
/* At this point, opt_len and static_len are the total bit lengths of
* the compressed block data, excluding the tree representations.
*/
/* Build the bit length tree for the above two trees, and get the index
* in bl_order of the last bit length code to send.
*/
max_blindex
= build_bl_tree
(s
);
/* Determine the best encoding. Compute first the block length in bytes*/
opt_lenb
= (s
->opt_len
+3+7)>>3;
static_lenb
= (s
->static_len
+3+7)>>3;
Tracev
((stderr
, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
opt_lenb
, s
->opt_len
, static_lenb
, s
->static_len
, stored_len
,
s
->last_lit
));
if (static_lenb
<= opt_lenb
) opt_lenb
= static_lenb
;
} else {
Assert
(buf
!= (char*)0, "lost buf");
opt_lenb
= static_lenb
= stored_len
+ 5; /* force a stored block */
}
#ifdef FORCE_STORED
if (buf
!= (char*)0) { /* force stored block */
#else
if (stored_len
+4 <= opt_lenb
&& buf
!= (char*)0) {
/* 4: two words for the lengths */
#endif
/* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
* Otherwise we can't have processed more than WSIZE input bytes since
* the last block flush, because compression would have been
* successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
* transform a block into a stored block.
*/
_tr_stored_block
(s
, buf
, stored_len
, eof
);
#ifdef FORCE_STATIC
} else if (static_lenb
>= 0) { /* force static trees */
#else
} else if (static_lenb
== opt_lenb
) {
#endif
send_bits
(s
, (STATIC_TREES
<<1)+eof
, 3);
compress_block
(s
, (ct_data
*)static_ltree
, (ct_data
*)static_dtree
);
#ifdef DEBUG
s
->compressed_len
+= 3 + s
->static_len
;
#endif
} else {
send_bits
(s
, (DYN_TREES
<<1)+eof
, 3);
send_all_trees
(s
, s
->l_desc.
max_code+1, s
->d_desc.
max_code+1,
max_blindex
+1);
compress_block
(s
, (ct_data
*)s
->dyn_ltree
, (ct_data
*)s
->dyn_dtree
);
#ifdef DEBUG
s
->compressed_len
+= 3 + s
->opt_len
;
#endif
}
Assert
(s
->compressed_len
== s
->bits_sent
, "bad compressed size");
/* The above check is made mod 2^32, for files larger than 512 MB
* and uLong implemented on 32 bits.
*/
init_block
(s
);
if (eof
) {
bi_windup
(s
);
#ifdef DEBUG
s
->compressed_len
+= 7; /* align on byte boundary */
#endif
}
Tracev
((stderr
,"\ncomprlen %lu(%lu) ", s
->compressed_len
>>3,
s
->compressed_len
-7*eof
));
}
/* ===========================================================================
* Save the match info and tally the frequency counts. Return true if
* the current block must be flushed.
*/
int _tr_tally
(s
, dist
, lc
)
deflate_state
*s
;
unsigned dist
; /* distance of matched string */
unsigned lc
; /* match length-MIN_MATCH or unmatched char (if dist==0) */
{
s
->d_buf
[s
->last_lit
] = (ush
)dist
;
s
->l_buf
[s
->last_lit
++] = (uch
)lc
;
if (dist
== 0) {
/* lc is the unmatched char */
s
->dyn_ltree
[lc
].
Freq++;
} else {
s
->matches
++;
/* Here, lc is the match length - MIN_MATCH */
dist
--; /* dist = match distance - 1 */
Assert
((ush
)dist
< (ush
)MAX_DIST
(s
) &&
(ush
)lc
<= (ush
)(MAX_MATCH
-MIN_MATCH
) &&
(ush
)d_code
(dist
) < (ush
)D_CODES
, "_tr_tally: bad match");
s
->dyn_ltree
[_length_code
[lc
]+LITERALS
+1].
Freq++;
s
->dyn_dtree
[d_code
(dist
)].
Freq++;
}
#ifdef TRUNCATE_BLOCK
/* Try to guess if it is profitable to stop the current block here */
if ((s
->last_lit
& 0x1fff) == 0 && s
->level
> 2) {
/* Compute an upper bound for the compressed length */
ulg out_length
= (ulg
)s
->last_lit
*8L;
ulg in_length
= (ulg
)((long)s
->strstart
- s
->block_start
);
int dcode
;
for (dcode
= 0; dcode
< D_CODES
; dcode
++) {
out_length
+= (ulg
)s
->dyn_dtree
[dcode
].
Freq *
(5L+extra_dbits
[dcode
]);
}
out_length
>>= 3;
Tracev
((stderr
,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
s
->last_lit
, in_length
, out_length
,
100L - out_length
*100L/in_length
));
if (s
->matches
< s
->last_lit
/2 && out_length
< in_length
/2) return 1;
}
#endif
return (s
->last_lit
== s
->lit_bufsize
-1);
/* We avoid equality with lit_bufsize because of wraparound at 64K
* on 16 bit machines and because stored blocks are restricted to
* 64K-1 bytes.
*/
}
/* ===========================================================================
* Send the block data compressed using the given Huffman trees
*/
local
void compress_block
(s
, ltree
, dtree
)
deflate_state
*s
;
ct_data
*ltree
; /* literal tree */
ct_data
*dtree
; /* distance tree */
{
unsigned dist
; /* distance of matched string */
int lc
; /* match length or unmatched char (if dist == 0) */
unsigned lx
= 0; /* running index in l_buf */
unsigned code
; /* the code to send */
int extra
; /* number of extra bits to send */
if (s
->last_lit
!= 0) do {
dist
= s
->d_buf
[lx
];
lc
= s
->l_buf
[lx
++];
if (dist
== 0) {
send_code
(s
, lc
, ltree
); /* send a literal byte */
Tracecv
(isgraph(lc
), (stderr
," '%c' ", lc
));
} else {
/* Here, lc is the match length - MIN_MATCH */
code
= _length_code
[lc
];
send_code
(s
, code
+LITERALS
+1, ltree
); /* send the length code */
extra
= extra_lbits
[code
];
if (extra
!= 0) {
lc
-= base_length
[code
];
send_bits
(s
, lc
, extra
); /* send the extra length bits */
}
dist
--; /* dist is now the match distance - 1 */
code
= d_code
(dist
);
Assert
(code
< D_CODES
, "bad d_code");
send_code
(s
, code
, dtree
); /* send the distance code */
extra
= extra_dbits
[code
];
if (extra
!= 0) {
dist
-= base_dist
[code
];
send_bits
(s
, dist
, extra
); /* send the extra distance bits */
}
} /* literal or match pair ? */
/* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
Assert
(s
->pending
< s
->lit_bufsize
+ 2*lx
, "pendingBuf overflow");
} while (lx
< s
->last_lit
);
send_code
(s
, END_BLOCK
, ltree
);
s
->last_eob_len
= ltree
[END_BLOCK
].
Len;
}
/* ===========================================================================
* Set the data type to ASCII or BINARY, using a crude approximation:
* binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
* IN assertion: the fields freq of dyn_ltree are set and the total of all
* frequencies does not exceed 64K (to fit in an int on 16 bit machines).
*/
local
void set_data_type
(s
)
deflate_state
*s
;
{
int n
= 0;
unsigned ascii_freq
= 0;
unsigned bin_freq
= 0;
while (n
< 7) bin_freq
+= s
->dyn_ltree
[n
++].
Freq;
while (n
< 128) ascii_freq
+= s
->dyn_ltree
[n
++].
Freq;
while (n
< LITERALS
) bin_freq
+= s
->dyn_ltree
[n
++].
Freq;
s
->data_type
= (Byte
)(bin_freq
> (ascii_freq
>> 2) ? Z_BINARY
: Z_ASCII
);
}
/* ===========================================================================
* Reverse the first len bits of a code, using straightforward code (a faster
* method would use a table)
* IN assertion: 1 <= len <= 15
*/
local
unsigned bi_reverse
(code
, len
)
unsigned code
; /* the value to invert */
int len
; /* its bit length */
{
register unsigned res
= 0;
do {
res
|= code
& 1;
code
>>= 1, res
<<= 1;
} while (--len
> 0);
return res
>> 1;
}
/* ===========================================================================
* Flush the bit buffer, keeping at most 7 bits in it.
*/
local
void bi_flush
(s
)
deflate_state
*s
;
{
if (s
->bi_valid
== 16) {
put_short
(s
, s
->bi_buf
);
s
->bi_buf
= 0;
s
->bi_valid
= 0;
} else if (s
->bi_valid
>= 8) {
put_byte
(s
, (Byte
)s
->bi_buf
);
s
->bi_buf
>>= 8;
s
->bi_valid
-= 8;
}
}
/* ===========================================================================
* Flush the bit buffer and align the output on a byte boundary
*/
local
void bi_windup
(s
)
deflate_state
*s
;
{
if (s
->bi_valid
> 8) {
put_short
(s
, s
->bi_buf
);
} else if (s
->bi_valid
> 0) {
put_byte
(s
, (Byte
)s
->bi_buf
);
}
s
->bi_buf
= 0;
s
->bi_valid
= 0;
#ifdef DEBUG
s
->bits_sent
= (s
->bits_sent
+7) & ~
7;
#endif
}
/* ===========================================================================
* Copy a stored block, storing first the length and its
* one's complement if requested.
*/
local
void copy_block
(s
, buf
, len
, header
)
deflate_state
*s
;
charf
*buf
; /* the input data */
unsigned len
; /* its length */
int header
; /* true if block header must be written */
{
bi_windup
(s
); /* align on byte boundary */
s
->last_eob_len
= 8; /* enough lookahead for inflate */
if (header
) {
put_short
(s
, (ush
)len
);
put_short
(s
, (ush
)~len
);
#ifdef DEBUG
s
->bits_sent
+= 2*16;
#endif
}
#ifdef DEBUG
s
->bits_sent
+= (ulg
)len
<<3;
#endif
while (len
--) {
put_byte
(s
, *buf
++);
}
}