Subversion Repositories shark

Rev

Blame | Last modification | View Log | RSS feed

/*
   -------------------------------------------------------------------------
   i2c-algo-ite.c i2c driver algorithms for ITE adapters           
   
   Hai-Pao Fan, MontaVista Software, Inc.
   hpfan@mvista.com or source@mvista.com

   Copyright 2000 MontaVista Software Inc.

   ---------------------------------------------------------------------------
   This file was highly leveraged from i2c-algo-pcf.c, which was created
   by Simon G. Vogl and Hans Berglund:


     Copyright (C) 1995-1997 Simon G. Vogl
                   1998-2000 Hans Berglund

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.                */

/* ------------------------------------------------------------------------- */

/* With some changes from Kyösti Mälkki <kmalkki@cc.hut.fi> and
   Frodo Looijaard <frodol@dds.nl> ,and also from Martin Bailey
   <mbailey@littlefeet-inc.com> */


#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <asm/uaccess.h>
#include <linux/ioport.h>
#include <linux/errno.h>
#include <linux/sched.h>

#include <linux/i2c.h>
#include <linux/i2c-algo-ite.h>
#include "i2c-algo-ite.h"

#define PM_DSR          IT8172_PCI_IO_BASE + IT_PM_DSR
#define PM_IBSR         IT8172_PCI_IO_BASE + IT_PM_DSR + 0x04
#define GPIO_CCR        IT8172_PCI_IO_BASE + IT_GPCCR

/* ----- global defines ----------------------------------------------- */
#define DEB(x) if (i2c_debug>=1) x
#define DEB2(x) if (i2c_debug>=2) x
#define DEB3(x) if (i2c_debug>=3) x /* print several statistical values*/
#define DEBPROTO(x) if (i2c_debug>=9) x;
        /* debug the protocol by showing transferred bits */
#define DEF_TIMEOUT 16

/* debugging - slow down transfer to have a look at the data ..         */
/* I use this with two leds&resistors, each one connected to sda,scl    */
/* respectively. This makes sure that the algorithm works. Some chips   */
/* might not like this, as they have an internal timeout of some mils   */
/*
#define SLO_IO      jif=jiffies;while(jiffies<=jif+i2c_table[minor].veryslow)\
                        cond_resched();
*/



/* ----- global variables --------------------------------------------- */

#ifdef SLO_IO
        int jif;
#endif

/* module parameters:
 */

static int i2c_debug=1;
static int iic_test=0;  /* see if the line-setting functions work       */
static int iic_scan=0;  /* have a look at what's hanging 'round         */

/* --- setting states on the bus with the right timing: --------------- */

#define get_clock(adap) adap->getclock(adap->data)
#define iic_outw(adap, reg, val) adap->setiic(adap->data, reg, val)
#define iic_inw(adap, reg) adap->getiic(adap->data, reg)


/* --- other auxiliary functions -------------------------------------- */

static void iic_start(struct i2c_algo_iic_data *adap)
{
        iic_outw(adap,ITE_I2CHCR,ITE_CMD);
}

static void iic_stop(struct i2c_algo_iic_data *adap)
{
        iic_outw(adap,ITE_I2CHCR,0);
        iic_outw(adap,ITE_I2CHSR,ITE_I2CHSR_TDI);
}

static void iic_reset(struct i2c_algo_iic_data *adap)
{
        iic_outw(adap, PM_IBSR, iic_inw(adap, PM_IBSR) | 0x80);
}


static int wait_for_bb(struct i2c_algo_iic_data *adap)
{
        int timeout = DEF_TIMEOUT;
        short status;

        status = iic_inw(adap, ITE_I2CHSR);
#ifndef STUB_I2C
        while (timeout-- && (status & ITE_I2CHSR_HB)) {
                udelay(1000); /* How much is this? */
                status = iic_inw(adap, ITE_I2CHSR);
        }
#endif
        if (timeout<=0) {
                printk(KERN_ERR "Timeout, host is busy\n");
                iic_reset(adap);
        }
        return(timeout<=0);
}

/*
 * Puts this process to sleep for a period equal to timeout
 */

static inline void iic_sleep(unsigned long timeout)
{
        schedule_timeout( timeout * HZ);
}

/* After we issue a transaction on the IIC bus, this function
 * is called.  It puts this process to sleep until we get an interrupt from
 * from the controller telling us that the transaction we requested in complete.
 */

static int wait_for_pin(struct i2c_algo_iic_data *adap, short *status) {

        int timeout = DEF_TIMEOUT;
       
        timeout = wait_for_bb(adap);
        if (timeout) {
                DEB2(printk("Timeout waiting for host not busy\n");)
                return -EIO;
        }                          
        timeout = DEF_TIMEOUT;

        *status = iic_inw(adap, ITE_I2CHSR);
#ifndef STUB_I2C
        while (timeout-- && !(*status & ITE_I2CHSR_TDI)) {
           adap->waitforpin();
           *status = iic_inw(adap, ITE_I2CHSR);
        }
#endif
        if (timeout <= 0)
                return(-1);
        else
                return(0);
}

static int wait_for_fe(struct i2c_algo_iic_data *adap, short *status)
{
        int timeout = DEF_TIMEOUT;

        *status = iic_inw(adap, ITE_I2CFSR);
#ifndef STUB_I2C
        while (timeout-- && (*status & ITE_I2CFSR_FE)) {
                udelay(1000);
                iic_inw(adap, ITE_I2CFSR);
        }
#endif
        if (timeout <= 0)
                return(-1);
        else
                return(0);
}

static int iic_init (struct i2c_algo_iic_data *adap)
{
        short i;

        /* Clear bit 7 to set I2C to normal operation mode */
        i=iic_inw(adap, PM_DSR)& 0xff7f;
        iic_outw(adap, PM_DSR, i);

        /* set IT_GPCCR port C bit 2&3 as function 2 */
        i = iic_inw(adap, GPIO_CCR) & 0xfc0f;
        iic_outw(adap,GPIO_CCR,i);

        /* Clear slave address/sub-address */
        iic_outw(adap,ITE_I2CSAR, 0);
        iic_outw(adap,ITE_I2CSSAR, 0);

        /* Set clock counter register */
        iic_outw(adap,ITE_I2CCKCNT, get_clock(adap));

        /* Set START/reSTART/STOP time registers */
        iic_outw(adap,ITE_I2CSHDR, 0x0a);
        iic_outw(adap,ITE_I2CRSUR, 0x0a);
        iic_outw(adap,ITE_I2CPSUR, 0x0a);

        /* Enable interrupts on completing the current transaction */
        iic_outw(adap,ITE_I2CHCR, ITE_I2CHCR_IE | ITE_I2CHCR_HCE);

        /* Clear transfer count */
        iic_outw(adap,ITE_I2CFBCR, 0x0);

        DEB2(printk("iic_init: Initialized IIC on ITE 0x%x\n",
                iic_inw(adap, ITE_I2CHSR)));
        return 0;
}


/*
 * Sanity check for the adapter hardware - check the reaction of
 * the bus lines only if it seems to be idle.
 */

static int test_bus(struct i2c_algo_iic_data *adap, char *name) {
#if 0
        int scl,sda;
        sda=getsda(adap);
        if (adap->getscl==NULL) {
                printk("test_bus: Warning: Adapter can't read from clock line - skipping test.\n");
                return 0;              
        }
        scl=getscl(adap);
        printk("test_bus: Adapter: %s scl: %d  sda: %d -- testing...\n",
        name,getscl(adap),getsda(adap));
        if (!scl || !sda ) {
                printk("test_bus: %s seems to be busy.\n",adap->name);
                goto bailout;
        }
        sdalo(adap);
        printk("test_bus:1 scl: %d  sda: %d \n",getscl(adap),
               getsda(adap));
        if ( 0 != getsda(adap) ) {
                printk("test_bus: %s SDA stuck high!\n",name);
                sdahi(adap);
                goto bailout;
        }
        if ( 0 == getscl(adap) ) {
                printk("test_bus: %s SCL unexpected low while pulling SDA low!\n",
                        name);
                goto bailout;
        }              
        sdahi(adap);
        printk("test_bus:2 scl: %d  sda: %d \n",getscl(adap),
               getsda(adap));
        if ( 0 == getsda(adap) ) {
                printk("test_bus: %s SDA stuck low!\n",name);
                sdahi(adap);
                goto bailout;
        }
        if ( 0 == getscl(adap) ) {
                printk("test_bus: %s SCL unexpected low while SDA high!\n",
                       adap->name);
        goto bailout;
        }
        scllo(adap);
        printk("test_bus:3 scl: %d  sda: %d \n",getscl(adap),
               getsda(adap));
        if ( 0 != getscl(adap) ) {

                sclhi(adap);
                goto bailout;
        }
        if ( 0 == getsda(adap) ) {
                printk("test_bus: %s SDA unexpected low while pulling SCL low!\n",
                        name);
                goto bailout;
        }
        sclhi(adap);
        printk("test_bus:4 scl: %d  sda: %d \n",getscl(adap),
               getsda(adap));
        if ( 0 == getscl(adap) ) {
                printk("test_bus: %s SCL stuck low!\n",name);
                sclhi(adap);
                goto bailout;
        }
        if ( 0 == getsda(adap) ) {
                printk("test_bus: %s SDA unexpected low while SCL high!\n",
                        name);
                goto bailout;
        }
        printk("test_bus: %s passed test.\n",name);
        return 0;
bailout:
        sdahi(adap);
        sclhi(adap);
        return -ENODEV;
#endif
        return (0);
}

/* ----- Utility functions
 */



/* Verify the device we want to talk to on the IIC bus really exists. */
static inline int try_address(struct i2c_algo_iic_data *adap,
                       unsigned int addr, int retries)
{
        int i, ret = -1;
        short status;

        for (i=0;i<retries;i++) {
                iic_outw(adap, ITE_I2CSAR, addr);
                iic_start(adap);
                if (wait_for_pin(adap, &status) == 0) {
                        if ((status & ITE_I2CHSR_DNE) == 0) {
                                iic_stop(adap);
                                iic_outw(adap, ITE_I2CFCR, ITE_I2CFCR_FLUSH);
                                ret=1;
                                break;  /* success! */
                        }
                }
                iic_stop(adap);
                udelay(adap->udelay);
        }
        DEB2(if (i) printk("try_address: needed %d retries for 0x%x\n",i,
                           addr));
        return ret;
}


static int iic_sendbytes(struct i2c_adapter *i2c_adap,const char *buf,
                         int count)
{
        struct i2c_algo_iic_data *adap = i2c_adap->algo_data;
        int wrcount=0, timeout;
        short status;
        int loops, remainder, i, j;
        union {
                char byte[2];
                unsigned short word;
        } tmp;
   
        iic_outw(adap, ITE_I2CSSAR, (unsigned short)buf[wrcount++]);
        count--;
        if (count == 0)
                return -EIO;

        loops =  count / 32;            /* 32-byte FIFO */
        remainder = count % 32;

        if(loops) {
                for(i=0; i<loops; i++) {

                        iic_outw(adap, ITE_I2CFBCR, 32);
                        for(j=0; j<32/2; j++) {
                                tmp.byte[1] = buf[wrcount++];
                                tmp.byte[0] = buf[wrcount++];
                                iic_outw(adap, ITE_I2CFDR, tmp.word);
                        }

                        /* status FIFO overrun */
                        iic_inw(adap, ITE_I2CFSR);
                        iic_inw(adap, ITE_I2CFBCR);

                        iic_outw(adap, ITE_I2CHCR, ITE_WRITE);  /* Issue WRITE command */

                        /* Wait for transmission to complete */
                        timeout = wait_for_pin(adap, &status);
                        if(timeout) {
                                iic_stop(adap);
                                printk("iic_sendbytes: %s write timeout.\n", i2c_adap->name);
                                return -EREMOTEIO; /* got a better one ?? */
        }
                        if (status & ITE_I2CHSR_DB) {
                                iic_stop(adap);
                                printk("iic_sendbytes: %s write error - no ack.\n", i2c_adap->name);
                                return -EREMOTEIO; /* got a better one ?? */
                        }
                }
        }
        if(remainder) {
                iic_outw(adap, ITE_I2CFBCR, remainder);
                for(i=0; i<remainder/2; i++) {
                        tmp.byte[1] = buf[wrcount++];
                        tmp.byte[0] = buf[wrcount++];
                        iic_outw(adap, ITE_I2CFDR, tmp.word);
                }

                /* status FIFO overrun */
                iic_inw(adap, ITE_I2CFSR);
                iic_inw(adap, ITE_I2CFBCR);

                iic_outw(adap, ITE_I2CHCR, ITE_WRITE);  /* Issue WRITE command */

                timeout = wait_for_pin(adap, &status);
                if(timeout) {
                        iic_stop(adap);
                        printk("iic_sendbytes: %s write timeout.\n", i2c_adap->name);
                        return -EREMOTEIO; /* got a better one ?? */
                }
#ifndef STUB_I2C
                if (status & ITE_I2CHSR_DB) {
                        iic_stop(adap);
                        printk("iic_sendbytes: %s write error - no ack.\n", i2c_adap->name);
                        return -EREMOTEIO; /* got a better one ?? */
                }
#endif
        }
        iic_stop(adap);
        return wrcount;
}


static int iic_readbytes(struct i2c_adapter *i2c_adap, char *buf, int count,
        int sread)
{
        int rdcount=0, i, timeout;
        short status;
        struct i2c_algo_iic_data *adap = i2c_adap->algo_data;
        int loops, remainder, j;
        union {
                char byte[2];
                unsigned short word;
        } tmp;
               
        loops = count / 32;                             /* 32-byte FIFO */
        remainder = count % 32;

        if(loops) {
                for(i=0; i<loops; i++) {
                        iic_outw(adap, ITE_I2CFBCR, 32);
                        if (sread)
                                iic_outw(adap, ITE_I2CHCR, ITE_SREAD);
                        else
                                iic_outw(adap, ITE_I2CHCR, ITE_READ);           /* Issue READ command */

                        timeout = wait_for_pin(adap, &status);
                        if(timeout) {
                                iic_stop(adap);
                                printk("iic_readbytes:  %s read timeout.\n", i2c_adap->name);
                                return (-1);
                        }
#ifndef STUB_I2C
                        if (status & ITE_I2CHSR_DB) {
                                iic_stop(adap);
                                printk("iic_readbytes: %s read error - no ack.\n", i2c_adap->name);
                                return (-1);
                        }
#endif

                        timeout = wait_for_fe(adap, &status);
                        if(timeout) {
                                iic_stop(adap);
                                printk("iic_readbytes:  %s FIFO is empty\n", i2c_adap->name);
                                return (-1);
                        }

                        for(j=0; j<32/2; j++) {
                                tmp.word = iic_inw(adap, ITE_I2CFDR);
                                buf[rdcount++] = tmp.byte[1];
                                buf[rdcount++] = tmp.byte[0];
                        }

                        /* status FIFO underrun */
                        iic_inw(adap, ITE_I2CFSR);

                }
        }


        if(remainder) {
                remainder=(remainder+1)/2 * 2;
                iic_outw(adap, ITE_I2CFBCR, remainder);
                if (sread)
                        iic_outw(adap, ITE_I2CHCR, ITE_SREAD);
                else
                iic_outw(adap, ITE_I2CHCR, ITE_READ);           /* Issue READ command */

                timeout = wait_for_pin(adap, &status);
                if(timeout) {
                        iic_stop(adap);
                        printk("iic_readbytes:  %s read timeout.\n", i2c_adap->name);
                        return (-1);
                }
#ifndef STUB_I2C
                if (status & ITE_I2CHSR_DB) {
                        iic_stop(adap);
                        printk("iic_readbytes: %s read error - no ack.\n", i2c_adap->name);
                        return (-1);
                }
#endif
                timeout = wait_for_fe(adap, &status);
                if(timeout) {
                        iic_stop(adap);
                        printk("iic_readbytes:  %s FIFO is empty\n", i2c_adap->name);
                        return (-1);
                }        

                for(i=0; i<(remainder+1)/2; i++) {
                        tmp.word = iic_inw(adap, ITE_I2CFDR);
                        buf[rdcount++] = tmp.byte[1];
                        buf[rdcount++] = tmp.byte[0];
                }

                /* status FIFO underrun */
                iic_inw(adap, ITE_I2CFSR);

        }

        iic_stop(adap);
        return rdcount;
}


/* This function implements combined transactions.  Combined
 * transactions consist of combinations of reading and writing blocks of data.
 * Each transfer (i.e. a read or a write) is separated by a repeated start
 * condition.
 */

#if 0
static int iic_combined_transaction(struct i2c_adapter *i2c_adap, struct i2c_msg msgs[], int num)
{
   int i;
   struct i2c_msg *pmsg;
   int ret;

   DEB2(printk("Beginning combined transaction\n"));

   for(i=0; i<(num-1); i++) {
      pmsg = &msgs[i];
      if(pmsg->flags & I2C_M_RD) {
         DEB2(printk("  This one is a read\n"));
         ret = iic_readbytes(i2c_adap, pmsg->buf, pmsg->len, IIC_COMBINED_XFER);
      }
      else if(!(pmsg->flags & I2C_M_RD)) {
         DEB2(printk("This one is a write\n"));
         ret = iic_sendbytes(i2c_adap, pmsg->buf, pmsg->len, IIC_COMBINED_XFER);
      }
   }
   /* Last read or write segment needs to be terminated with a stop */
   pmsg = &msgs[i];

   if(pmsg->flags & I2C_M_RD) {
      DEB2(printk("Doing the last read\n"));
      ret = iic_readbytes(i2c_adap, pmsg->buf, pmsg->len, IIC_SINGLE_XFER);
   }
   else if(!(pmsg->flags & I2C_M_RD)) {
      DEB2(printk("Doing the last write\n"));
      ret = iic_sendbytes(i2c_adap, pmsg->buf, pmsg->len, IIC_SINGLE_XFER);
   }

   return ret;
}
#endif


/* Whenever we initiate a transaction, the first byte clocked
 * onto the bus after the start condition is the address (7 bit) of the
 * device we want to talk to.  This function manipulates the address specified
 * so that it makes sense to the hardware when written to the IIC peripheral.
 *
 * Note: 10 bit addresses are not supported in this driver, although they are
 * supported by the hardware.  This functionality needs to be implemented.
 */

static inline int iic_doAddress(struct i2c_algo_iic_data *adap,
                                struct i2c_msg *msg, int retries)
{
        unsigned short flags = msg->flags;
        unsigned int addr;
        int ret;

/* Ten bit addresses not supported right now */
        if ( (flags & I2C_M_TEN)  ) {
#if 0
                addr = 0xf0 | (( msg->addr >> 7) & 0x03);
                DEB2(printk("addr0: %d\n",addr));
                ret = try_address(adap, addr, retries);
                if (ret!=1) {
                        printk("iic_doAddress: died at extended address code.\n");
                        return -EREMOTEIO;
                }
                iic_outw(adap,msg->addr & 0x7f);
                if (ret != 1) {
                        printk("iic_doAddress: died at 2nd address code.\n");
                        return -EREMOTEIO;
                }
                if ( flags & I2C_M_RD ) {
                        i2c_repstart(adap);
                        addr |= 0x01;
                        ret = try_address(adap, addr, retries);
                        if (ret!=1) {
                                printk("iic_doAddress: died at extended address code.\n");
                                return -EREMOTEIO;
                        }
                }
#endif
        } else {

                addr = ( msg->addr << 1 );

#if 0
                if (flags & I2C_M_RD )
                        addr |= 1;
                if (flags & I2C_M_REV_DIR_ADDR )
                        addr ^= 1;
#endif

                if (iic_inw(adap, ITE_I2CSAR) != addr) {
                        iic_outw(adap, ITE_I2CSAR, addr);
                        ret = try_address(adap, addr, retries);
                        if (ret!=1) {
                                printk("iic_doAddress: died at address code.\n");
                                return -EREMOTEIO;
                        }
                }

  }

        return 0;
}


/* Description: Prepares the controller for a transaction (clearing status
 * registers, data buffers, etc), and then calls either iic_readbytes or
 * iic_sendbytes to do the actual transaction.
 *
 * still to be done: Before we issue a transaction, we should
 * verify that the bus is not busy or in some unknown state.
 */

static int iic_xfer(struct i2c_adapter *i2c_adap,
                    struct i2c_msg msgs[],
                    int num)
{
        struct i2c_algo_iic_data *adap = i2c_adap->algo_data;
        struct i2c_msg *pmsg;
        int i = 0;
        int ret, timeout;
   
        pmsg = &msgs[i];

        if(!pmsg->len) {
                DEB2(printk("iic_xfer: read/write length is 0\n");)
                return -EIO;
        }
        if(!(pmsg->flags & I2C_M_RD) && (!(pmsg->len)%2) ) {
                DEB2(printk("iic_xfer: write buffer length is not odd\n");)
                return -EIO;
        }

        /* Wait for any pending transfers to complete */
        timeout = wait_for_bb(adap);
        if (timeout) {
                DEB2(printk("iic_xfer: Timeout waiting for host not busy\n");)
                return -EIO;
        }

        /* Flush FIFO */
        iic_outw(adap, ITE_I2CFCR, ITE_I2CFCR_FLUSH);

        /* Load address */
        ret = iic_doAddress(adap, pmsg, i2c_adap->retries);
        if (ret)
                return -EIO;

#if 0
        /* Combined transaction (read and write) */
        if(num > 1) {
           DEB2(printk("iic_xfer: Call combined transaction\n"));
           ret = iic_combined_transaction(i2c_adap, msgs, num);
  }
#endif

        DEB3(printk("iic_xfer: Msg %d, addr=0x%x, flags=0x%x, len=%d\n",
                i, msgs[i].addr, msgs[i].flags, msgs[i].len);)

        if(pmsg->flags & I2C_M_RD)              /* Read */
                ret = iic_readbytes(i2c_adap, pmsg->buf, pmsg->len, 0);
        else {                                                                                                  /* Write */
                udelay(1000);
                ret = iic_sendbytes(i2c_adap, pmsg->buf, pmsg->len);
        }

        if (ret != pmsg->len)
                DEB3(printk("iic_xfer: error or fail on read/write %d bytes.\n",ret));
        else
                DEB3(printk("iic_xfer: read/write %d bytes.\n",ret));

        return ret;
}


/* Implements device specific ioctls.  Higher level ioctls can
 * be found in i2c-core.c and are typical of any i2c controller (specifying
 * slave address, timeouts, etc).  These ioctls take advantage of any hardware
 * features built into the controller for which this algorithm-adapter set
 * was written.  These ioctls allow you to take control of the data and clock
 * lines and set the either high or low,
 * similar to a GPIO pin.
 */

static int algo_control(struct i2c_adapter *adapter,
        unsigned int cmd, unsigned long arg)
{

  struct i2c_algo_iic_data *adap = adapter->algo_data;
  struct i2c_iic_msg s_msg;
  char *buf;
        int ret;

  if (cmd == I2C_SREAD) {
                if(copy_from_user(&s_msg, (struct i2c_iic_msg *)arg,
                                sizeof(struct i2c_iic_msg)))
                        return -EFAULT;
                buf = kmalloc(s_msg.len, GFP_KERNEL);
                if (buf== NULL)
                        return -ENOMEM;

                /* Flush FIFO */
                iic_outw(adap, ITE_I2CFCR, ITE_I2CFCR_FLUSH);

                /* Load address */
                iic_outw(adap, ITE_I2CSAR,s_msg.addr<<1);
                iic_outw(adap, ITE_I2CSSAR,s_msg.waddr & 0xff);

                ret = iic_readbytes(adapter, buf, s_msg.len, 1);
                if (ret>=0) {
                        if(copy_to_user( s_msg.buf, buf, s_msg.len) )
                                ret = -EFAULT;
                }
                kfree(buf);
        }
        return 0;
}


static u32 iic_func(struct i2c_adapter *adap)
{
        return I2C_FUNC_SMBUS_EMUL | I2C_FUNC_10BIT_ADDR |
               I2C_FUNC_PROTOCOL_MANGLING;
}

/* -----exported algorithm data: -------------------------------------  */

static struct i2c_algorithm iic_algo = {
        "ITE IIC algorithm",
        I2C_ALGO_IIC,
        iic_xfer,               /* master_xfer  */
        NULL,                           /* smbus_xfer   */
        NULL,                           /* slave_xmit           */
        NULL,                           /* slave_recv           */
        algo_control,                   /* ioctl                */
        iic_func,                       /* functionality        */
};


/*
 * registering functions to load algorithms at runtime
 */

int i2c_iic_add_bus(struct i2c_adapter *adap)
{
        int i;
        short status;
        struct i2c_algo_iic_data *iic_adap = adap->algo_data;

        if (iic_test) {
                int ret = test_bus(iic_adap, adap->name);
                if (ret<0)
                        return -ENODEV;
        }

        DEB2(printk("i2c-algo-ite: hw routines for %s registered.\n",
                    adap->name));

        /* register new adapter to i2c module... */

        adap->id |= iic_algo.id;
        adap->algo = &iic_algo;

        adap->timeout = 100;    /* default values, should       */
        adap->retries = 3;              /* be replaced by defines       */
        adap->flags = 0;

        i2c_add_adapter(adap);
        iic_init(iic_adap);

        /* scan bus */
        /* By default scanning the bus is turned off. */
        if (iic_scan) {
                printk(KERN_INFO " i2c-algo-ite: scanning bus %s.\n",
                       adap->name);
                for (i = 0x00; i < 0xff; i+=2) {
                        iic_outw(iic_adap, ITE_I2CSAR, i);
                        iic_start(iic_adap);
                        if ( (wait_for_pin(iic_adap, &status) == 0) &&
                            ((status & ITE_I2CHSR_DNE) == 0) ) {
                                printk(KERN_INFO "\n(%02x)\n",i>>1);
                        } else {
                                printk(KERN_INFO ".");
                                iic_reset(iic_adap);
                        }
                        udelay(iic_adap->udelay);
                }
        }
        return 0;
}


int i2c_iic_del_bus(struct i2c_adapter *adap)
{
        int res;
        if ((res = i2c_del_adapter(adap)) < 0)
                return res;
        DEB2(printk("i2c-algo-ite: adapter unregistered: %s\n",adap->name));

        return 0;
}


int __init i2c_algo_iic_init (void)
{
        printk(KERN_INFO "ITE iic (i2c) algorithm module\n");
        return 0;
}


void i2c_algo_iic_exit(void)
{
        return;
}


EXPORT_SYMBOL(i2c_iic_add_bus);
EXPORT_SYMBOL(i2c_iic_del_bus);

/* The MODULE_* macros resolve to nothing if MODULES is not defined
 * when this file is compiled.
 */

MODULE_AUTHOR("MontaVista Software <www.mvista.com>");
MODULE_DESCRIPTION("ITE iic algorithm");
MODULE_LICENSE("GPL");

MODULE_PARM(iic_test, "i");
MODULE_PARM(iic_scan, "i");
MODULE_PARM(i2c_debug,"i");

MODULE_PARM_DESC(iic_test, "Test if the I2C bus is available");
MODULE_PARM_DESC(iic_scan, "Scan for active chips on the bus");
MODULE_PARM_DESC(i2c_debug,
        "debug level - 0 off; 1 normal; 2,3 more verbose; 9 iic-protocol");


/* This function resolves to init_module (the function invoked when a module
 * is loaded via insmod) when this file is compiled with MODULES defined.
 * Otherwise (i.e. if you want this driver statically linked to the kernel),
 * a pointer to this function is stored in a table and called
 * during the initialization of the kernel (in do_basic_setup in /init/main.c)
 *
 * All this functionality is complements of the macros defined in linux/init.h
 */

module_init(i2c_algo_iic_init);


/* If MODULES is defined when this file is compiled, then this function will
 * resolved to cleanup_module.
 */

module_exit(i2c_algo_iic_exit);