Subversion Repositories shark

Rev

Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | RSS feed

#ifndef __LINUX_USB_H
#define __LINUX_USB_H

#include <linux/mod_devicetable.h>
#include <linux/usb_ch9.h>

#define USB_MAJOR                       180


#ifdef __KERNEL__

#include <linux/config.h>
#include <linux/errno.h>        /* for -ENODEV */
#include <linux/delay.h>        /* for mdelay() */
#include <linux/interrupt.h>    /* for in_interrupt() */
#include <linux/list.h>         /* for struct list_head */
#include <linux/device.h>       /* for struct device */
#include <linux/fs.h>           /* for struct file_operations */
#include <linux/completion.h>   /* for struct completion */
#include <linux/sched.h>        /* for current && schedule_timeout */


static __inline__ void wait_ms(unsigned int ms)
{
        if(!in_interrupt()) {
                current->state = TASK_UNINTERRUPTIBLE;
                schedule_timeout(1 + ms * HZ / 1000);
        }
        else
                mdelay(ms);
}

struct usb_device;

/*-------------------------------------------------------------------------*/

/*
 * Host-side wrappers for standard USB descriptors ... these are parsed
 * from the data provided by devices.  Parsing turns them from a flat
 * sequence of descriptors into a hierarchy:
 *
 *  - devices have one (usually) or more configs;
 *  - configs have one (often) or more interfaces;
 *  - interfaces have one (usually) or more settings;
 *  - each interface setting has zero or (usually) more endpoints.
 *
 * And there might be other descriptors mixed in with those.
 *
 * Devices may also have class-specific or vendor-specific descriptors.
 */


/* host-side wrapper for parsed endpoint descriptors */
struct usb_host_endpoint {
        struct usb_endpoint_descriptor  desc;

        unsigned char *extra;   /* Extra descriptors */
        int extralen;
};

/* host-side wrapper for one interface setting's parsed descriptors */
struct usb_host_interface {
        struct usb_interface_descriptor desc;

        /* array of desc.bNumEndpoint endpoints associated with this
         * interface setting.  these will be in no particular order.
         */

        struct usb_host_endpoint *endpoint;

        unsigned char *extra;   /* Extra descriptors */
        int extralen;
};

/**
 * struct usb_interface - what usb device drivers talk to
 * @altsetting: array of interface descriptors, one for each alternate
 *      setting that may be selected.  Each one includes a set of
 *      endpoint configurations and will be in numberic order,
 *      0..num_altsetting.
 * @num_altsetting: number of altsettings defined.
 * @act_altsetting: index of current altsetting.  this number is always
 *      less than num_altsetting.  after the device is configured, each
 *      interface uses its default setting of zero.
 * @driver: the USB driver that is bound to this interface.
 * @minor: the minor number assigned to this interface, if this
 *      interface is bound to a driver that uses the USB major number.
 *      If this interface does not use the USB major, this field should
 *      be unused.  The driver should set this value in the probe()
 *      function of the driver, after it has been assigned a minor
 *      number from the USB core by calling usb_register_dev().
 * @dev: driver model's view of this device
 * @class_dev: driver model's class view of this device.
 *
 * USB device drivers attach to interfaces on a physical device.  Each
 * interface encapsulates a single high level function, such as feeding
 * an audio stream to a speaker or reporting a change in a volume control.
 * Many USB devices only have one interface.  The protocol used to talk to
 * an interface's endpoints can be defined in a usb "class" specification,
 * or by a product's vendor.  The (default) control endpoint is part of
 * every interface, but is never listed among the interface's descriptors.
 *
 * The driver that is bound to the interface can use standard driver model
 * calls such as dev_get_drvdata() on the dev member of this structure.
 *
 * Each interface may have alternate settings.  The initial configuration
 * of a device sets the first of these, but the device driver can change
 * that setting using usb_set_interface().  Alternate settings are often
 * used to control the the use of periodic endpoints, such as by having
 * different endpoints use different amounts of reserved USB bandwidth.
 * All standards-conformant USB devices that use isochronous endpoints
 * will use them in non-default settings.
 */

struct usb_interface {
        /* array of alternate settings for this interface.
         * these will be in numeric order, 0..num_altsettting
         */

        struct usb_host_interface *altsetting;

        unsigned act_altsetting;        /* active alternate setting */
        unsigned num_altsetting;        /* number of alternate settings */

        struct usb_driver *driver;      /* driver */
        int minor;                      /* minor number this interface is bound to */
        struct device dev;              /* interface specific device info */
        struct class_device *class_dev;
};
#define to_usb_interface(d) container_of(d, struct usb_interface, dev)
#define interface_to_usbdev(intf) \
        container_of(intf->dev.parent, struct usb_device, dev)


static inline void *usb_get_intfdata (struct usb_interface *intf)
{
        return dev_get_drvdata (&intf->dev);
}

static inline void usb_set_intfdata (struct usb_interface *intf, void *data)
{
        dev_set_drvdata(&intf->dev, data);
}

/* this maximum is arbitrary */
#define USB_MAXINTERFACES       32

/* USB_DT_CONFIG: Configuration descriptor information.
 *
 * USB_DT_OTHER_SPEED_CONFIG is the same descriptor, except that the
 * descriptor type is different.  Highspeed-capable devices can look
 * different depending on what speed they're currently running.  Only
 * devices with a USB_DT_DEVICE_QUALIFIER have an OTHER_SPEED_CONFIG.
 */

struct usb_host_config {
        struct usb_config_descriptor    desc;

        /* the interfaces associated with this configuration
         * these will be in numeric order, 0..desc.bNumInterfaces
         */

        struct usb_interface *interface[USB_MAXINTERFACES];

        unsigned char *extra;   /* Extra descriptors */
        int extralen;
};

// FIXME remove; exported only for drivers/usb/misc/auserwald.c
// prefer usb_device->epnum[0..31]
extern struct usb_endpoint_descriptor *
        usb_epnum_to_ep_desc(struct usb_device *dev, unsigned epnum);

int __usb_get_extra_descriptor(char *buffer, unsigned size,
        unsigned char type, void **ptr);
#define usb_get_extra_descriptor(ifpoint,type,ptr)\
        __usb_get_extra_descriptor((ifpoint)->extra,(ifpoint)->extralen,\
                type,(void**)ptr)


/* -------------------------------------------------------------------------- */

struct usb_operations;

/* USB device number allocation bitmap */
struct usb_devmap {
        unsigned long devicemap[128 / (8*sizeof(unsigned long))];
};

/*
 * Allocated per bus (tree of devices) we have:
 */

struct usb_bus {
        struct device *controller;      /* host/master side hardware */
        int busnum;                     /* Bus number (in order of reg) */
        char *bus_name;                 /* stable id (PCI slot_name etc) */

        int devnum_next;                /* Next open device number in round-robin allocation */

        struct usb_devmap devmap;       /* device address allocation map */
        struct usb_operations *op;      /* Operations (specific to the HC) */
        struct usb_device *root_hub;    /* Root hub */
        struct list_head bus_list;      /* list of busses */
        void *hcpriv;                   /* Host Controller private data */

        int bandwidth_allocated;        /* on this bus: how much of the time
                                         * reserved for periodic (intr/iso)
                                         * requests is used, on average?
                                         * Units: microseconds/frame.
                                         * Limits: Full/low speed reserve 90%,
                                         * while high speed reserves 80%.
                                         */

        int bandwidth_int_reqs;         /* number of Interrupt requests */
        int bandwidth_isoc_reqs;        /* number of Isoc. requests */

        struct dentry *usbfs_dentry;    /* usbfs dentry entry for the bus */
        struct dentry *usbdevfs_dentry; /* usbdevfs dentry entry for the bus */

        struct class_device class_dev;  /* class device for this bus */
        void (*release)(struct usb_bus *bus);   /* function to destroy this bus's memory */
};
#define to_usb_bus(d) container_of(d, struct usb_bus, class_dev)


/* -------------------------------------------------------------------------- */

/* This is arbitrary.
 * From USB 2.0 spec Table 11-13, offset 7, a hub can
 * have up to 255 ports. The most yet reported is 10.
 */

#define USB_MAXCHILDREN         (16)

struct usb_tt;

struct usb_device {
        int             devnum;         /* Address on USB bus */
        char            devpath [16];   /* Use in messages: /port/port/... */
        enum usb_device_state   state;  /* configured, not attached, etc */
        enum usb_device_speed   speed;  /* high/full/low (or error) */

        struct usb_tt   *tt;            /* low/full speed dev, highspeed hub */
        int             ttport;         /* device port on that tt hub */

        struct semaphore serialize;

        unsigned int toggle[2];         /* one bit for each endpoint ([0] = IN, [1] = OUT) */
        unsigned int halted[2];         /* endpoint halts; one bit per endpoint # & direction; */
                                        /* [0] = IN, [1] = OUT */
        int epmaxpacketin[16];          /* INput endpoint specific maximums */
        int epmaxpacketout[16];         /* OUTput endpoint specific maximums */

        struct usb_device *parent;      /* our hub, unless we're the root */
        struct usb_bus *bus;            /* Bus we're part of */

        struct device dev;              /* Generic device interface */

        struct usb_device_descriptor descriptor;/* Descriptor */
        struct usb_host_config *config; /* All of the configs */
        struct usb_host_config *actconfig;/* the active configuration */

        char **rawdescriptors;          /* Raw descriptors for each config */

        int have_langid;                /* whether string_langid is valid yet */
        int string_langid;              /* language ID for strings */

        void *hcpriv;                   /* Host Controller private data */
       
        struct list_head filelist;
        struct dentry *usbfs_dentry;    /* usbfs dentry entry for the device */
        struct dentry *usbdevfs_dentry; /* usbdevfs dentry entry for the device */

        /*
         * Child devices - these can be either new devices
         * (if this is a hub device), or different instances
         * of this same device.
         *
         * Each instance needs its own set of data structures.
         */


        int maxchild;                   /* Number of ports if hub */
        struct usb_device *children[USB_MAXCHILDREN];
};
#define to_usb_device(d) container_of(d, struct usb_device, dev)

extern struct usb_device *usb_alloc_dev(struct usb_device *parent, struct usb_bus *);
extern struct usb_device *usb_get_dev(struct usb_device *dev);
extern void usb_put_dev(struct usb_device *dev);

/* mostly for devices emulating SCSI over USB */
extern int usb_reset_device(struct usb_device *dev);

extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id);

/* for drivers using iso endpoints */
extern int usb_get_current_frame_number (struct usb_device *usb_dev);

/* used these for multi-interface device registration */
extern int usb_driver_claim_interface(struct usb_driver *driver,
                        struct usb_interface *iface, void* priv);
extern int usb_interface_claimed(struct usb_interface *iface);
extern void usb_driver_release_interface(struct usb_driver *driver,
                        struct usb_interface *iface);
const struct usb_device_id *usb_match_id(struct usb_interface *interface,
                                         const struct usb_device_id *id);

extern struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor);
extern struct usb_interface *usb_ifnum_to_if(struct usb_device *dev, unsigned ifnum);


/**
 * usb_make_path - returns stable device path in the usb tree
 * @dev: the device whose path is being constructed
 * @buf: where to put the string
 * @size: how big is "buf"?
 *
 * Returns length of the string (> 0) or negative if size was too small.
 *
 * This identifier is intended to be "stable", reflecting physical paths in
 * hardware such as physical bus addresses for host controllers or ports on
 * USB hubs.  That makes it stay the same until systems are physically
 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
 * controllers.  Adding and removing devices, including virtual root hubs
 * in host controller driver modules, does not change these path identifers;
 * neither does rebooting or re-enumerating.  These are more useful identifiers
 * than changeable ("unstable") ones like bus numbers or device addresses.
 *
 * With a partial exception for devices connected to USB 2.0 root hubs, these
 * identifiers are also predictable.  So long as the device tree isn't changed,
 * plugging any USB device into a given hub port always gives it the same path.
 * Because of the use of "companion" controllers, devices connected to ports on
 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
 * high speed, and a different one if they are full or low speed.
 */

static inline int usb_make_path (struct usb_device *dev, char *buf, size_t size)
{
        int actual;
        actual = snprintf (buf, size, "usb-%s-%s", dev->bus->bus_name, dev->devpath);
        return (actual >= (int)size) ? -1 : actual;
}

/*-------------------------------------------------------------------------*/

#define USB_DEVICE_ID_MATCH_DEVICE              (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
#define USB_DEVICE_ID_MATCH_DEV_RANGE           (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION  (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
#define USB_DEVICE_ID_MATCH_DEV_INFO \
        (USB_DEVICE_ID_MATCH_DEV_CLASS | USB_DEVICE_ID_MATCH_DEV_SUBCLASS | USB_DEVICE_ID_MATCH_DEV_PROTOCOL)

#define USB_DEVICE_ID_MATCH_INT_INFO \
        (USB_DEVICE_ID_MATCH_INT_CLASS | USB_DEVICE_ID_MATCH_INT_SUBCLASS | USB_DEVICE_ID_MATCH_INT_PROTOCOL)


/**
 * USB_DEVICE - macro used to describe a specific usb device
 * @vend: the 16 bit USB Vendor ID
 * @prod: the 16 bit USB Product ID
 *
 * This macro is used to create a struct usb_device_id that matches a
 * specific device.
 */

#define USB_DEVICE(vend,prod) \
        .match_flags = USB_DEVICE_ID_MATCH_DEVICE, .idVendor = (vend), .idProduct = (prod)

/**
 * USB_DEVICE_VER - macro used to describe a specific usb device with a version range
 * @vend: the 16 bit USB Vendor ID
 * @prod: the 16 bit USB Product ID
 * @lo: the bcdDevice_lo value
 * @hi: the bcdDevice_hi value
 *
 * This macro is used to create a struct usb_device_id that matches a
 * specific device, with a version range.
 */

#define USB_DEVICE_VER(vend,prod,lo,hi) \
        .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, .idVendor = (vend), .idProduct = (prod), .bcdDevice_lo = (lo), .bcdDevice_hi = (hi)


/**
 * USB_DEVICE_INFO - macro used to describe a class of usb devices
 * @cl: bDeviceClass value
 * @sc: bDeviceSubClass value
 * @pr: bDeviceProtocol value
 *
 * This macro is used to create a struct usb_device_id that matches a
 * specific class of devices.
 */

#define USB_DEVICE_INFO(cl,sc,pr) \
        .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, .bDeviceClass = (cl), .bDeviceSubClass = (sc), .bDeviceProtocol = (pr)


/**
 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
 * @cl: bInterfaceClass value
 * @sc: bInterfaceSubClass value
 * @pr: bInterfaceProtocol value
 *
 * This macro is used to create a struct usb_device_id that matches a
 * specific class of interfaces.
 */

#define USB_INTERFACE_INFO(cl,sc,pr) \
        .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, .bInterfaceClass = (cl), .bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr)


/* -------------------------------------------------------------------------- */

/**
 * struct usb_driver - identifies USB driver to usbcore
 * @owner: Pointer to the module owner of this driver; initialize
 *      it using THIS_MODULE.
 * @name: The driver name should be unique among USB drivers,
 *      and should normally be the same as the module name.
 * @probe: Called to see if the driver is willing to manage a particular
 *      interface on a device.  If it is, probe returns zero and uses
 *      dev_set_drvdata() to associate driver-specific data with the
 *      interface.  It may also use usb_set_interface() to specify the
 *      appropriate altsetting.  If unwilling to manage the interface,
 *      return a negative errno value.
 * @disconnect: Called when the interface is no longer accessible, usually
 *      because its device has been (or is being) disconnected or the
 *      driver module is being unloaded.
 * @ioctl: Used for drivers that want to talk to userspace through
 *      the "usbfs" filesystem.  This lets devices provide ways to
 *      expose information to user space regardless of where they
 *      do (or don't) show up otherwise in the filesystem.
 * @suspend: Called when the device is going to be suspended by the system.
 * @resume: Called when the device is being resumed by the system.
 * @id_table: USB drivers use ID table to support hotplugging.
 *      Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
 *      or your driver's probe function will never get called.
 * @driver: the driver model core driver structure.
 * @serialize: a semaphore used to serialize access to this driver.  Used
 *      in the probe and disconnect functions.  Only the USB core should use
 *      this lock.
 *
 * USB drivers must provide a name, probe() and disconnect() methods,
 * and an id_table.  Other driver fields are optional.
 *
 * The id_table is used in hotplugging.  It holds a set of descriptors,
 * and specialized data may be associated with each entry.  That table
 * is used by both user and kernel mode hotplugging support.
 *
 * The probe() and disconnect() methods are called in a context where
 * they can sleep, but they should avoid abusing the privilege.  Most
 * work to connect to a device should be done when the device is opened,
 * and undone at the last close.  The disconnect code needs to address
 * concurrency issues with respect to open() and close() methods, as
 * well as forcing all pending I/O requests to complete (by unlinking
 * them as necessary, and blocking until the unlinks complete).
 */

struct usb_driver {
        struct module *owner;

        const char *name;

        int (*probe) (struct usb_interface *intf,
                      const struct usb_device_id *id);

        void (*disconnect) (struct usb_interface *intf);

        int (*ioctl) (struct usb_interface *intf, unsigned int code, void *buf);

        int (*suspend) (struct usb_interface *intf, u32 state);
        int (*resume) (struct usb_interface *intf);

        const struct usb_device_id *id_table;

        struct device_driver driver;

        struct semaphore serialize;
};
#define to_usb_driver(d) container_of(d, struct usb_driver, driver)

extern struct bus_type usb_bus_type;

/**
 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
 * @name: devfs name for this driver.  Will also be used by the driver
 *      class code to create a usb class device.
 * @fops: pointer to the struct file_operations of this driver.
 * @mode: the mode for the devfs file to be created for this driver.
 * @minor_base: the start of the minor range for this driver.
 *
 * This structure is used for the usb_register_dev() and
 * usb_unregister_dev() functions, to consolodate a number of the
 * paramaters used for them.
 */

struct usb_class_driver {
        char *name;
        struct file_operations *fops;
        mode_t mode;
        int minor_base;
};

/*
 * use these in module_init()/module_exit()
 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
 */

extern int usb_register(struct usb_driver *);
extern void usb_deregister(struct usb_driver *);

extern int usb_register_dev(struct usb_interface *intf,
                            struct usb_class_driver *class_driver);
extern void usb_deregister_dev(struct usb_interface *intf,
                               struct usb_class_driver *class_driver);

extern int usb_disabled(void);

/* -------------------------------------------------------------------------- */

/*
 * URB support, for asynchronous request completions
 */


/*
 * urb->transfer_flags:
 */

#define URB_SHORT_NOT_OK        0x0001  /* report short reads as errors */
#define URB_ISO_ASAP            0x0002  /* iso-only, urb->start_frame ignored */
#define URB_NO_TRANSFER_DMA_MAP 0x0004  /* urb->transfer_dma valid on submit */
#define URB_NO_SETUP_DMA_MAP    0x0008  /* urb->setup_dma valid on submit */
#define URB_ASYNC_UNLINK        0x0010  /* usb_unlink_urb() returns asap */
#define URB_NO_FSBR             0x0020  /* UHCI-specific */
#define URB_ZERO_PACKET         0x0040  /* Finish bulk OUTs with short packet */
#define URB_NO_INTERRUPT        0x0080  /* HINT: no non-error interrupt needed */

struct usb_iso_packet_descriptor {
        unsigned int offset;
        unsigned int length;            /* expected length */
        unsigned int actual_length;
        unsigned int status;
};

struct urb;
struct pt_regs;

typedef void (*usb_complete_t)(struct urb *, struct pt_regs *);

/**
 * struct urb - USB Request Block
 * @urb_list: For use by current owner of the URB.
 * @pipe: Holds endpoint number, direction, type, and more.
 *      Create these values with the eight macros available;
 *      usb_{snd,rcv}TYPEpipe(dev,endpoint), where the type is "ctrl"
 *      (control), "bulk", "int" (interrupt), or "iso" (isochronous).
 *      For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
 *      numbers range from zero to fifteen.  Note that "in" endpoint two
 *      is a different endpoint (and pipe) from "out" endpoint two.
 *      The current configuration controls the existence, type, and
 *      maximum packet size of any given endpoint.
 * @dev: Identifies the USB device to perform the request.
 * @status: This is read in non-iso completion functions to get the
 *      status of the particular request.  ISO requests only use it
 *      to tell whether the URB was unlinked; detailed status for
 *      each frame is in the fields of the iso_frame-desc.
 * @transfer_flags: A variety of flags may be used to affect how URB
 *      submission, unlinking, or operation are handled.  Different
 *      kinds of URB can use different flags.
 * @transfer_buffer:  This identifies the buffer to (or from) which
 *      the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP
 *      is set).  This buffer must be suitable for DMA; allocate it with
 *      kmalloc() or equivalent.  For transfers to "in" endpoints, contents
 *      of this buffer will be modified.  This buffer is used for data
 *      phases of control transfers.
 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
 *      the device driver is saying that it provided this DMA address,
 *      which the host controller driver should use in preference to the
 *      transfer_buffer.
 * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
 *      be broken up into chunks according to the current maximum packet
 *      size for the endpoint, which is a function of the configuration
 *      and is encoded in the pipe.  When the length is zero, neither
 *      transfer_buffer nor transfer_dma is used.
 * @actual_length: This is read in non-iso completion functions, and
 *      it tells how many bytes (out of transfer_buffer_length) were
 *      transferred.  It will normally be the same as requested, unless
 *      either an error was reported or a short read was performed.
 *      The URB_SHORT_NOT_OK transfer flag may be used to make such
 *      short reads be reported as errors.
 * @setup_packet: Only used for control transfers, this points to eight bytes
 *      of setup data.  Control transfers always start by sending this data
 *      to the device.  Then transfer_buffer is read or written, if needed.
 * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the
 *      device driver has provided this DMA address for the setup packet.
 *      The host controller driver should use this in preference to
 *      setup_packet.
 * @start_frame: Returns the initial frame for interrupt or isochronous
 *      transfers.
 * @number_of_packets: Lists the number of ISO transfer buffers.
 * @interval: Specifies the polling interval for interrupt or isochronous
 *      transfers.  The units are frames (milliseconds) for for full and low
 *      speed devices, and microframes (1/8 millisecond) for highspeed ones.
 * @error_count: Returns the number of ISO transfers that reported errors.
 * @context: For use in completion functions.  This normally points to
 *      request-specific driver context.
 * @complete: Completion handler. This URB is passed as the parameter to the
 *      completion function.  The completion function may then do what
 *      it likes with the URB, including resubmitting or freeing it.
 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
 *      collect the transfer status for each buffer.
 * @timeout: If set to zero, the urb will never timeout.  Otherwise this is
 *      the time in jiffies that this urb will timeout in.
 *
 * This structure identifies USB transfer requests.  URBs must be allocated by
 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
 * Initialization may be done using various usb_fill_*_urb() functions.  URBs
 * are submitted using usb_submit_urb(), and pending requests may be canceled
 * using usb_unlink_urb().
 *
 * Data Transfer Buffers:
 *
 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
 * taken from the general page pool.  That is provided by transfer_buffer
 * (control requests also use setup_packet), and host controller drivers
 * perform a dma mapping (and unmapping) for each buffer transferred.  Those
 * mapping operations can be expensive on some platforms (perhaps using a dma
 * bounce buffer or talking to an IOMMU),
 * although they're cheap on commodity x86 and ppc hardware.
 *
 * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags,
 * which tell the host controller driver that no such mapping is needed since
 * the device driver is DMA-aware.  For example, a device driver might
 * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map().
 * When these transfer flags are provided, host controller drivers will
 * attempt to use the dma addresses found in the transfer_dma and/or
 * setup_dma fields rather than determining a dma address themselves.  (Note
 * that transfer_buffer and setup_packet must still be set because not all
 * host controllers use DMA, nor do virtual root hubs).
 *
 * Initialization:
 *
 * All URBs submitted must initialize dev, pipe,
 * transfer_flags (may be zero), complete, timeout (may be zero).
 * The URB_ASYNC_UNLINK transfer flag affects later invocations of
 * the usb_unlink_urb() routine.
 *
 * All URBs must also initialize
 * transfer_buffer and transfer_buffer_length.  They may provide the
 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
 * to be treated as errors; that flag is invalid for write requests.
 *
 * Bulk URBs may
 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
 * should always terminate with a short packet, even if it means adding an
 * extra zero length packet.
 *
 * Control URBs must provide a setup_packet.  The setup_packet and
 * transfer_buffer may each be mapped for DMA or not, independently of
 * the other.  The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and
 * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped.
 * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs.
 *
 * Interrupt UBS must provide an interval, saying how often (in milliseconds
 * or, for highspeed devices, 125 microsecond units)
 * to poll for transfers.  After the URB has been submitted, the interval
 * and start_frame fields reflect how the transfer was actually scheduled.
 * The polling interval may be more frequent than requested.
 * For example, some controllers have a maximum interval of 32 microseconds,
 * while others support intervals of up to 1024 microseconds.
 * Isochronous URBs also have transfer intervals.  (Note that for isochronous
 * endpoints, as well as high speed interrupt endpoints, the encoding of
 * the transfer interval in the endpoint descriptor is logarithmic.)
 *
 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling
 * the host controller to schedule the transfer as soon as bandwidth
 * utilization allows, and then set start_frame to reflect the actual frame
 * selected during submission.  Otherwise drivers must specify the start_frame
 * and handle the case where the transfer can't begin then.  However, drivers
 * won't know how bandwidth is currently allocated, and while they can
 * find the current frame using usb_get_current_frame_number () they can't
 * know the range for that frame number.  (Ranges for frame counter values
 * are HC-specific, and can go from 256 to 65536 frames from "now".)
 *
 * Isochronous URBs have a different data transfer model, in part because
 * the quality of service is only "best effort".  Callers provide specially
 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
 * at the end.  Each such packet is an individual ISO transfer.  Isochronous
 * URBs are normally queued, submitted by drivers to arrange that
 * transfers are at least double buffered, and then explicitly resubmitted
 * in completion handlers, so
 * that data (such as audio or video) streams at as constant a rate as the
 * host controller scheduler can support.
 *
 * Completion Callbacks:
 *
 * The completion callback is made in_interrupt(), and one of the first
 * things that a completion handler should do is check the status field.
 * The status field is provided for all URBs.  It is used to report
 * unlinked URBs, and status for all non-ISO transfers.  It should not
 * be examined before the URB is returned to the completion handler.
 *
 * The context field is normally used to link URBs back to the relevant
 * driver or request state.
 *
 * When completion callback is invoked for non-isochronous URBs, the
 * actual_length field tells how many bytes were transferred.
 *
 * ISO transfer status is reported in the status and actual_length fields
 * of the iso_frame_desc array, and the number of errors is reported in
 * error_count.  Completion callbacks for ISO transfers will normally
 * (re)submit URBs to ensure a constant transfer rate.
 */

struct urb
{
        /* private, usb core and host controller only fields in the urb */
        spinlock_t lock;                /* lock for the URB */
        atomic_t count;                 /* reference count of the URB */
        void *hcpriv;                   /* private data for host controller */
        struct list_head urb_list;      /* list pointer to all active urbs */
        int bandwidth;                  /* bandwidth for INT/ISO request */

        /* public, documented fields in the urb that can be used by drivers */
        struct usb_device *dev;         /* (in) pointer to associated device */
        unsigned int pipe;              /* (in) pipe information */
        int status;                     /* (return) non-ISO status */
        unsigned int transfer_flags;    /* (in) URB_SHORT_NOT_OK | ...*/
        void *transfer_buffer;          /* (in) associated data buffer */
        dma_addr_t transfer_dma;        /* (in) dma addr for transfer_buffer */
        int transfer_buffer_length;     /* (in) data buffer length */
        int actual_length;              /* (return) actual transfer length */
        unsigned char *setup_packet;    /* (in) setup packet (control only) */
        dma_addr_t setup_dma;           /* (in) dma addr for setup_packet */
        int start_frame;                /* (modify) start frame (INT/ISO) */
        int number_of_packets;          /* (in) number of ISO packets */
        int interval;                   /* (in) transfer interval (INT/ISO) */
        int error_count;                /* (return) number of ISO errors */
        int timeout;                    /* (in) timeout, in jiffies */
        void *context;                  /* (in) context for completion */
        usb_complete_t complete;        /* (in) completion routine */
        struct usb_iso_packet_descriptor iso_frame_desc[0];     /* (in) ISO ONLY */
};

/* -------------------------------------------------------------------------- */

/**
 * usb_fill_control_urb - initializes a control urb
 * @urb: pointer to the urb to initialize.
 * @dev: pointer to the struct usb_device for this urb.
 * @pipe: the endpoint pipe
 * @setup_packet: pointer to the setup_packet buffer
 * @transfer_buffer: pointer to the transfer buffer
 * @buffer_length: length of the transfer buffer
 * @complete: pointer to the usb_complete_t function
 * @context: what to set the urb context to.
 *
 * Initializes a control urb with the proper information needed to submit
 * it to a device.
 */

static inline void usb_fill_control_urb (struct urb *urb,
                                         struct usb_device *dev,
                                         unsigned int pipe,
                                         unsigned char *setup_packet,
                                         void *transfer_buffer,
                                         int buffer_length,
                                         usb_complete_t complete,
                                         void *context)
{
        spin_lock_init(&urb->lock);
        urb->dev = dev;
        urb->pipe = pipe;
        urb->setup_packet = setup_packet;
        urb->transfer_buffer = transfer_buffer;
        urb->transfer_buffer_length = buffer_length;
        urb->complete = complete;
        urb->context = context;
}

/**
 * usb_fill_bulk_urb - macro to help initialize a bulk urb
 * @urb: pointer to the urb to initialize.
 * @dev: pointer to the struct usb_device for this urb.
 * @pipe: the endpoint pipe
 * @transfer_buffer: pointer to the transfer buffer
 * @buffer_length: length of the transfer buffer
 * @complete: pointer to the usb_complete_t function
 * @context: what to set the urb context to.
 *
 * Initializes a bulk urb with the proper information needed to submit it
 * to a device.
 */

static inline void usb_fill_bulk_urb (struct urb *urb,
                                      struct usb_device *dev,
                                      unsigned int pipe,
                                      void *transfer_buffer,
                                      int buffer_length,
                                      usb_complete_t complete,
                                      void *context)
{
        spin_lock_init(&urb->lock);
        urb->dev = dev;
        urb->pipe = pipe;
        urb->transfer_buffer = transfer_buffer;
        urb->transfer_buffer_length = buffer_length;
        urb->complete = complete;
        urb->context = context;
}

/**
 * usb_fill_int_urb - macro to help initialize a interrupt urb
 * @urb: pointer to the urb to initialize.
 * @dev: pointer to the struct usb_device for this urb.
 * @pipe: the endpoint pipe
 * @transfer_buffer: pointer to the transfer buffer
 * @buffer_length: length of the transfer buffer
 * @complete: pointer to the usb_complete_t function
 * @context: what to set the urb context to.
 * @interval: what to set the urb interval to, encoded like
 *      the endpoint descriptor's bInterval value.
 *
 * Initializes a interrupt urb with the proper information needed to submit
 * it to a device.
 * Note that high speed interrupt endpoints use a logarithmic encoding of
 * the endpoint interval, and express polling intervals in microframes
 * (eight per millisecond) rather than in frames (one per millisecond).
 */

static inline void usb_fill_int_urb (struct urb *urb,
                                     struct usb_device *dev,
                                     unsigned int pipe,
                                     void *transfer_buffer,
                                     int buffer_length,
                                     usb_complete_t complete,
                                     void *context,
                                     int interval)
{
        spin_lock_init(&urb->lock);
        urb->dev = dev;
        urb->pipe = pipe;
        urb->transfer_buffer = transfer_buffer;
        urb->transfer_buffer_length = buffer_length;
        urb->complete = complete;
        urb->context = context;
        if (dev->speed == USB_SPEED_HIGH)
                urb->interval = 1 << (interval - 1);
        else
                urb->interval = interval;
        urb->start_frame = -1;
}

extern void usb_init_urb(struct urb *urb);
extern struct urb *usb_alloc_urb(int iso_packets, int mem_flags);
extern void usb_free_urb(struct urb *urb);
#define usb_put_urb usb_free_urb
extern struct urb *usb_get_urb(struct urb *urb);
extern int usb_submit_urb(struct urb *urb, int mem_flags);
extern int usb_unlink_urb(struct urb *urb);

#define HAVE_USB_BUFFERS
void *usb_buffer_alloc (struct usb_device *dev, size_t size,
        int mem_flags, dma_addr_t *dma);
void usb_buffer_free (struct usb_device *dev, size_t size,
        void *addr, dma_addr_t dma);

struct urb *usb_buffer_map (struct urb *urb);
void usb_buffer_dmasync (struct urb *urb);
void usb_buffer_unmap (struct urb *urb);

struct scatterlist;
int usb_buffer_map_sg (struct usb_device *dev, unsigned pipe,
                struct scatterlist *sg, int nents);
void usb_buffer_dmasync_sg (struct usb_device *dev, unsigned pipe,
                struct scatterlist *sg, int n_hw_ents);
void usb_buffer_unmap_sg (struct usb_device *dev, unsigned pipe,
                struct scatterlist *sg, int n_hw_ents);

/*-------------------------------------------------------------------*
 *                         SYNCHRONOUS CALL SUPPORT                  *
 *-------------------------------------------------------------------*/


extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
        __u8 request, __u8 requesttype, __u16 value, __u16 index,
        void *data, __u16 size, int timeout);
extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
        void *data, int len, int *actual_length,
        int timeout);

/* wrappers around usb_control_msg() for the most common standard requests */
extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
        unsigned char descindex, void *buf, int size);
extern int usb_get_device_descriptor(struct usb_device *dev);
extern int usb_get_status(struct usb_device *dev,
        int type, int target, void *data);
extern int usb_get_string(struct usb_device *dev,
        unsigned short langid, unsigned char index, void *buf, int size);
extern int usb_string(struct usb_device *dev, int index,
        char *buf, size_t size);

/* wrappers that also update important state inside usbcore */
extern int usb_clear_halt(struct usb_device *dev, int pipe);
extern int usb_reset_configuration(struct usb_device *dev);
extern int usb_set_configuration(struct usb_device *dev, int configuration);
extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);

/*
 * timeouts, in seconds, used for sending/receiving control messages
 * they typically complete within a few frames (msec) after they're issued
 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
 */

#define USB_CTRL_GET_TIMEOUT    5
#define USB_CTRL_SET_TIMEOUT    5


/**
 * struct usb_sg_request - support for scatter/gather I/O
 * @status: zero indicates success, else negative errno
 * @bytes: counts bytes transferred.
 *
 * These requests are initialized using usb_sg_init(), and then are used
 * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
 * members of the request object aren't for driver access.
 *
 * The status and bytecount values are valid only after usb_sg_wait()
 * returns.  If the status is zero, then the bytecount matches the total
 * from the request.
 *
 * After an error completion, drivers may need to clear a halt condition
 * on the endpoint.
 */

struct usb_sg_request {
        int                     status;
        size_t                  bytes;

        /*
         * members below are private to usbcore,
         * and are not provided for driver access!
         */

        spinlock_t              lock;

        struct usb_device       *dev;
        int                     pipe;
        struct scatterlist      *sg;
        int                     nents;

        int                     entries;
        struct urb              **urbs;

        int                     count;
        struct completion       complete;
};

int usb_sg_init (
        struct usb_sg_request   *io,
        struct usb_device       *dev,
        unsigned                pipe,
        unsigned                period,
        struct scatterlist      *sg,
        int                     nents,
        size_t                  length,
        int                     mem_flags
);
void usb_sg_cancel (struct usb_sg_request *io);
void usb_sg_wait (struct usb_sg_request *io);


/* -------------------------------------------------------------------------- */

/*
 * Calling this entity a "pipe" is glorifying it. A USB pipe
 * is something embarrassingly simple: it basically consists
 * of the following information:
 *  - device number (7 bits)
 *  - endpoint number (4 bits)
 *  - current Data0/1 state (1 bit) [Historical; now gone]
 *  - direction (1 bit)
 *  - speed (1 bit) [Historical and specific to USB 1.1; now gone.]
 *  - max packet size (2 bits: 8, 16, 32 or 64) [Historical; now gone.]
 *  - pipe type (2 bits: control, interrupt, bulk, isochronous)
 *
 * That's 18 bits. Really. Nothing more. And the USB people have
 * documented these eighteen bits as some kind of glorious
 * virtual data structure.
 *
 * Let's not fall in that trap. We'll just encode it as a simple
 * unsigned int. The encoding is:
 *
 *  - max size:         bits 0-1        [Historical; now gone.]
 *  - direction:        bit 7           (0 = Host-to-Device [Out],
 *                                       1 = Device-to-Host [In] ...
 *                                      like endpoint bEndpointAddress)
 *  - device:           bits 8-14       ... bit positions known to uhci-hcd
 *  - endpoint:         bits 15-18      ... bit positions known to uhci-hcd
 *  - Data0/1:          bit 19          [Historical; now gone. ]
 *  - lowspeed:         bit 26          [Historical; now gone. ]
 *  - pipe type:        bits 30-31      (00 = isochronous, 01 = interrupt,
 *                                       10 = control, 11 = bulk)
 *
 * Why? Because it's arbitrary, and whatever encoding we select is really
 * up to us. This one happens to share a lot of bit positions with the UHCI
 * specification, so that much of the uhci driver can just mask the bits
 * appropriately.
 */


/* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
#define PIPE_ISOCHRONOUS                0
#define PIPE_INTERRUPT                  1
#define PIPE_CONTROL                    2
#define PIPE_BULK                       3

#define usb_maxpacket(dev, pipe, out)   (out \
                                ? (dev)->epmaxpacketout[usb_pipeendpoint(pipe)] \
                                : (dev)->epmaxpacketin [usb_pipeendpoint(pipe)] )


#define usb_pipein(pipe)        ((pipe) & USB_DIR_IN)
#define usb_pipeout(pipe)       (!usb_pipein(pipe))
#define usb_pipedevice(pipe)    (((pipe) >> 8) & 0x7f)
#define usb_pipeendpoint(pipe)  (((pipe) >> 15) & 0xf)
#define usb_pipetype(pipe)      (((pipe) >> 30) & 3)
#define usb_pipeisoc(pipe)      (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
#define usb_pipeint(pipe)       (usb_pipetype((pipe)) == PIPE_INTERRUPT)
#define usb_pipecontrol(pipe)   (usb_pipetype((pipe)) == PIPE_CONTROL)
#define usb_pipebulk(pipe)      (usb_pipetype((pipe)) == PIPE_BULK)

/* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */
#define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1)
#define usb_dotoggle(dev, ep, out)  ((dev)->toggle[out] ^= (1 << (ep)))
#define usb_settoggle(dev, ep, out, bit) ((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | ((bit) << (ep)))

/* Endpoint halt control/status ... likewise USE WITH CAUTION */
#define usb_endpoint_running(dev, ep, out) ((dev)->halted[out] &= ~(1 << (ep)))
#define usb_endpoint_halted(dev, ep, out) ((dev)->halted[out] & (1 << (ep)))


static inline unsigned int __create_pipe(struct usb_device *dev, unsigned int endpoint)
{
        return (dev->devnum << 8) | (endpoint << 15);
}

/* Create various pipes... */
#define usb_sndctrlpipe(dev,endpoint)   ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint))
#define usb_rcvctrlpipe(dev,endpoint)   ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
#define usb_sndisocpipe(dev,endpoint)   ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint))
#define usb_rcvisocpipe(dev,endpoint)   ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
#define usb_sndbulkpipe(dev,endpoint)   ((PIPE_BULK << 30) | __create_pipe(dev,endpoint))
#define usb_rcvbulkpipe(dev,endpoint)   ((PIPE_BULK << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
#define usb_sndintpipe(dev,endpoint)    ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint))
#define usb_rcvintpipe(dev,endpoint)    ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)

/* -------------------------------------------------------------------------- */

/*
 * Debugging and troubleshooting/diagnostic helpers.
 */

void usb_show_device_descriptor(struct usb_device_descriptor *);
void usb_show_config_descriptor(struct usb_config_descriptor *);
void usb_show_interface_descriptor(struct usb_interface_descriptor *);
void usb_show_endpoint_descriptor(struct usb_endpoint_descriptor *);
void usb_show_device(struct usb_device *);
void usb_show_string(struct usb_device *dev, char *id, int index);

#ifdef DEBUG
#define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , __FILE__ , ## arg)
#else
#define dbg(format, arg...) do {} while (0)
#endif

#define err(format, arg...) printk(KERN_ERR "%s: " format "\n" , __FILE__ , ## arg)
#define info(format, arg...) printk(KERN_INFO "%s: " format "\n" , __FILE__ , ## arg)
#define warn(format, arg...) printk(KERN_WARNING "%s: " format "\n" , __FILE__ , ## arg)


#endif  /* __KERNEL__ */

#endif