/*
* probe.c - PCI detection and setup code
*/
#include <linuxcomp.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/module.h>
#define DEBUG
#ifdef DEBUG
#define DBG(x...) printk(x)
#else
#define DBG(x...)
#endif
#define CARDBUS_LATENCY_TIMER 176 /* secondary latency timer */
#define CARDBUS_RESERVE_BUSNR 3
/* Ugh. Need to stop exporting this to modules. */
LIST_HEAD
(pci_root_buses
);
EXPORT_SYMBOL
(pci_root_buses
);
LIST_HEAD
(pci_devices
);
/*
* Translate the low bits of the PCI base
* to the resource type
*/
static inline unsigned int pci_calc_resource_flags
(unsigned int flags
)
{
if (flags
& PCI_BASE_ADDRESS_SPACE_IO
)
return IORESOURCE_IO
;
if (flags
& PCI_BASE_ADDRESS_MEM_PREFETCH
)
return IORESOURCE_MEM
| IORESOURCE_PREFETCH
;
return IORESOURCE_MEM
;
}
/*
* Find the extent of a PCI decode..
*/
static u32 pci_size
(u32 base
, u32 maxbase
, unsigned long mask
)
{
u32 size
= mask
& maxbase
; /* Find the significant bits */
if (!size
)
return 0;
/* Get the lowest of them to find the decode size, and
from that the extent. */
size
= (size
& ~
(size
-1)) - 1;
/* base == maxbase can be valid only if the BAR has
already been programmed with all 1s. */
if (base
== maxbase
&& ((base
| size
) & mask
) != mask
)
return 0;
return size
;
}
static void pci_read_bases
(struct pci_dev
*dev
, unsigned int howmany
, int rom
)
{
unsigned int pos
, reg
, next
;
u32 l
, sz
;
struct resource
*res
;
for(pos
=0; pos
<howmany
; pos
= next
) {
next
= pos
+1;
res
= &dev
->resource
[pos
];
res
->name
= pci_name
(dev
);
reg
= PCI_BASE_ADDRESS_0
+ (pos
<< 2);
pci_read_config_dword
(dev
, reg
, &l
);
pci_write_config_dword
(dev
, reg
, ~
0);
pci_read_config_dword
(dev
, reg
, &sz
);
pci_write_config_dword
(dev
, reg
, l
);
if (!sz
|| sz
== 0xffffffff)
continue;
if (l
== 0xffffffff)
l
= 0;
if ((l
& PCI_BASE_ADDRESS_SPACE
) == PCI_BASE_ADDRESS_SPACE_MEMORY
) {
sz
= pci_size
(l
, sz
, PCI_BASE_ADDRESS_MEM_MASK
);
if (!sz
)
continue;
res
->start
= l
& PCI_BASE_ADDRESS_MEM_MASK
;
res
->flags
|= l
& ~PCI_BASE_ADDRESS_MEM_MASK
;
} else {
sz
= pci_size
(l
, sz
, PCI_BASE_ADDRESS_IO_MASK
& 0xffff);
if (!sz
)
continue;
res
->start
= l
& PCI_BASE_ADDRESS_IO_MASK
;
res
->flags
|= l
& ~PCI_BASE_ADDRESS_IO_MASK
;
}
res
->end
= res
->start
+ (unsigned long) sz
;
res
->flags
|= pci_calc_resource_flags
(l
);
if ((l
& (PCI_BASE_ADDRESS_SPACE
| PCI_BASE_ADDRESS_MEM_TYPE_MASK
))
== (PCI_BASE_ADDRESS_SPACE_MEMORY
| PCI_BASE_ADDRESS_MEM_TYPE_64
)) {
pci_read_config_dword
(dev
, reg
+4, &l
);
next
++;
#if BITS_PER_LONG == 64
res
->start
|= ((unsigned long) l
) << 32;
res
->end
= res
->start
+ sz
;
pci_write_config_dword
(dev
, reg
+4, ~
0);
pci_read_config_dword
(dev
, reg
+4, &sz
);
pci_write_config_dword
(dev
, reg
+4, l
);
if (~sz
)
res
->end
= res
->start
+ 0xffffffff +
(((unsigned long) ~sz
) << 32);
#else
if (l
) {
printk
(KERN_ERR
"PCI: Unable to handle 64-bit address for device %s\n", pci_name
(dev
));
res
->start
= 0;
res
->flags
= 0;
continue;
}
#endif
}
}
if (rom
) {
dev
->rom_base_reg
= rom
;
res
= &dev
->resource
[PCI_ROM_RESOURCE
];
res
->name
= pci_name
(dev
);
pci_read_config_dword
(dev
, rom
, &l
);
pci_write_config_dword
(dev
, rom
, ~PCI_ROM_ADDRESS_ENABLE
);
pci_read_config_dword
(dev
, rom
, &sz
);
pci_write_config_dword
(dev
, rom
, l
);
if (l
== 0xffffffff)
l
= 0;
if (sz
&& sz
!= 0xffffffff) {
sz
= pci_size
(l
, sz
, PCI_ROM_ADDRESS_MASK
);
if (sz
) {
res
->flags
= (l
& PCI_ROM_ADDRESS_ENABLE
) |
IORESOURCE_MEM
| IORESOURCE_PREFETCH
|
IORESOURCE_READONLY
| IORESOURCE_CACHEABLE
;
res
->start
= l
& PCI_ROM_ADDRESS_MASK
;
res
->end
= res
->start
+ (unsigned long) sz
;
}
}
}
}
void __devinit pci_read_bridge_bases
(struct pci_bus
*child
)
{
struct pci_dev
*dev
= child
->self
;
u8 io_base_lo
, io_limit_lo
;
u16 mem_base_lo
, mem_limit_lo
;
unsigned long base
, limit
;
struct resource
*res
;
int i
;
if (!dev
) /* It's a host bus, nothing to read */
return;
if (dev
->transparent
) {
printk
("Transparent bridge - %s\n", pci_name
(dev
));
for(i
= 0; i
< PCI_BUS_NUM_RESOURCES
; i
++)
child
->resource
[i
] = child
->parent
->resource
[i
];
return;
}
for(i
=0; i
<3; i
++)
child
->resource
[i
] = &dev
->resource
[PCI_BRIDGE_RESOURCES
+i
];
res
= child
->resource
[0];
pci_read_config_byte
(dev
, PCI_IO_BASE
, &io_base_lo
);
pci_read_config_byte
(dev
, PCI_IO_LIMIT
, &io_limit_lo
);
base
= (io_base_lo
& PCI_IO_RANGE_MASK
) << 8;
limit
= (io_limit_lo
& PCI_IO_RANGE_MASK
) << 8;
if ((io_base_lo
& PCI_IO_RANGE_TYPE_MASK
) == PCI_IO_RANGE_TYPE_32
) {
u16 io_base_hi
, io_limit_hi
;
pci_read_config_word
(dev
, PCI_IO_BASE_UPPER16
, &io_base_hi
);
pci_read_config_word
(dev
, PCI_IO_LIMIT_UPPER16
, &io_limit_hi
);
base
|= (io_base_hi
<< 16);
limit
|= (io_limit_hi
<< 16);
}
if (base
&& base
<= limit
) {
res
->flags
= (io_base_lo
& PCI_IO_RANGE_TYPE_MASK
) | IORESOURCE_IO
;
res
->start
= base
;
res
->end
= limit
+ 0xfff;
}
res
= child
->resource
[1];
pci_read_config_word
(dev
, PCI_MEMORY_BASE
, &mem_base_lo
);
pci_read_config_word
(dev
, PCI_MEMORY_LIMIT
, &mem_limit_lo
);
base
= (mem_base_lo
& PCI_MEMORY_RANGE_MASK
) << 16;
limit
= (mem_limit_lo
& PCI_MEMORY_RANGE_MASK
) << 16;
if (base
&& base
<= limit
) {
res
->flags
= (mem_base_lo
& PCI_MEMORY_RANGE_TYPE_MASK
) | IORESOURCE_MEM
;
res
->start
= base
;
res
->end
= limit
+ 0xfffff;
}
res
= child
->resource
[2];
pci_read_config_word
(dev
, PCI_PREF_MEMORY_BASE
, &mem_base_lo
);
pci_read_config_word
(dev
, PCI_PREF_MEMORY_LIMIT
, &mem_limit_lo
);
base
= (mem_base_lo
& PCI_PREF_RANGE_MASK
) << 16;
limit
= (mem_limit_lo
& PCI_PREF_RANGE_MASK
) << 16;
if ((mem_base_lo
& PCI_PREF_RANGE_TYPE_MASK
) == PCI_PREF_RANGE_TYPE_64
) {
u32 mem_base_hi
, mem_limit_hi
;
pci_read_config_dword
(dev
, PCI_PREF_BASE_UPPER32
, &mem_base_hi
);
pci_read_config_dword
(dev
, PCI_PREF_LIMIT_UPPER32
, &mem_limit_hi
);
#if BITS_PER_LONG == 64
base
|= ((long) mem_base_hi
) << 32;
limit
|= ((long) mem_limit_hi
) << 32;
#else
if (mem_base_hi
|| mem_limit_hi
) {
printk
(KERN_ERR
"PCI: Unable to handle 64-bit address space for %s\n", child
->name
);
return;
}
#endif
}
if (base
&& base
<= limit
) {
res
->flags
= (mem_base_lo
& PCI_MEMORY_RANGE_TYPE_MASK
) | IORESOURCE_MEM
| IORESOURCE_PREFETCH
;
res
->start
= base
;
res
->end
= limit
+ 0xfffff;
}
}
static struct pci_bus
* __devinit pci_alloc_bus
(void)
{
struct pci_bus
*b
;
b
= kmalloc
(sizeof(*b
), GFP_KERNEL
);
if (b
) {
memset(b
, 0, sizeof(*b
));
INIT_LIST_HEAD
(&b
->node
);
INIT_LIST_HEAD
(&b
->children
);
INIT_LIST_HEAD
(&b
->devices
);
}
return b
;
}
static struct pci_bus
* __devinit
pci_alloc_child_bus
(struct pci_bus
*parent
, struct pci_dev
*bridge
, int busnr
)
{
struct pci_bus
*child
;
/*
* Allocate a new bus, and inherit stuff from the parent..
*/
child
= pci_alloc_bus
();
if (child
) {
int i
;
child
->self
= bridge
;
child
->parent
= parent
;
child
->ops
= parent
->ops
;
child
->sysdata
= parent
->sysdata
;
child
->dev
= &bridge
->dev
;
/*
* Set up the primary, secondary and subordinate
* bus numbers.
*/
child
->number
= child
->secondary
= busnr
;
child
->primary
= parent
->secondary
;
child
->subordinate
= 0xff;
/* Set up default resource pointers and names.. */
for (i
= 0; i
< 4; i
++) {
child
->resource
[i
] = &bridge
->resource
[PCI_BRIDGE_RESOURCES
+i
];
child
->resource
[i
]->name
= child
->name
;
}
bridge
->subordinate
= child
;
}
return child
;
}
struct pci_bus
* __devinit pci_add_new_bus
(struct pci_bus
*parent
, struct pci_dev
*dev
, int busnr
)
{
struct pci_bus
*child
;
child
= pci_alloc_child_bus
(parent
, dev
, busnr
);
if (child
)
list_add_tail
(&child
->node
, &parent
->children
);
return child
;
}
static unsigned int __devinit pci_scan_child_bus
(struct pci_bus
*bus
);
/*
* If it's a bridge, configure it and scan the bus behind it.
* For CardBus bridges, we don't scan behind as the devices will
* be handled by the bridge driver itself.
*
* We need to process bridges in two passes -- first we scan those
* already configured by the BIOS and after we are done with all of
* them, we proceed to assigning numbers to the remaining buses in
* order to avoid overlaps between old and new bus numbers.
*/
int __devinit pci_scan_bridge
(struct pci_bus
*bus
, struct pci_dev
* dev
, int max
, int pass
)
{
struct pci_bus
*child
;
int is_cardbus
= (dev
->hdr_type
== PCI_HEADER_TYPE_CARDBUS
);
u32 buses
;
pci_read_config_dword
(dev
, PCI_PRIMARY_BUS
, &buses
);
DBG
("Scanning behind PCI bridge %s, config %06x, pass %d\n",
pci_name
(dev
), buses
& 0xffffff, pass
);
if ((buses
& 0xffff00) && !pcibios_assign_all_busses
() && !is_cardbus
) {
unsigned int cmax
;
/*
* Bus already configured by firmware, process it in the first
* pass and just note the configuration.
*/
if (pass
)
return max
;
child
= pci_alloc_child_bus
(bus
, dev
, 0);
child
->primary
= buses
& 0xFF;
child
->secondary
= (buses
>> 8) & 0xFF;
child
->subordinate
= (buses
>> 16) & 0xFF;
child
->number
= child
->secondary
;
cmax
= pci_scan_child_bus
(child
);
if (cmax
> max
) max
= cmax
;
} else {
/*
* We need to assign a number to this bus which we always
* do in the second pass.
*/
if (!pass
)
return max
;
/* Clear errors */
pci_write_config_word
(dev
, PCI_STATUS
, 0xffff);
child
= pci_alloc_child_bus
(bus
, dev
, ++max
);
buses
= (buses
& 0xff000000)
| ((unsigned int)(child
->primary
) << 0)
| ((unsigned int)(child
->secondary
) << 8)
| ((unsigned int)(child
->subordinate
) << 16);
/*
* yenta.c forces a secondary latency timer of 176.
* Copy that behaviour here.
*/
if (is_cardbus
) {
buses
&= ~
0xff000000;
buses
|= CARDBUS_LATENCY_TIMER
<< 24;
}
/*
* We need to blast all three values with a single write.
*/
pci_write_config_dword
(dev
, PCI_PRIMARY_BUS
, buses
);
if (!is_cardbus
) {
/* Now we can scan all subordinate buses... */
max
= pci_scan_child_bus
(child
);
} else {
/*
* For CardBus bridges, we leave 4 bus numbers
* as cards with a PCI-to-PCI bridge can be
* inserted later.
*/
max
+= CARDBUS_RESERVE_BUSNR
;
}
/*
* Set the subordinate bus number to its real value.
*/
child
->subordinate
= max
;
pci_write_config_byte
(dev
, PCI_SUBORDINATE_BUS
, max
);
}
sprintf(child
->name
, (is_cardbus
? "PCI CardBus #%02x" : "PCI Bus #%02x"), child
->number
);
return max
;
}
/*
* Read interrupt line and base address registers.
* The architecture-dependent code can tweak these, of course.
*/
static void pci_read_irq
(struct pci_dev
*dev
)
{
unsigned char irq
;
pci_read_config_byte
(dev
, PCI_INTERRUPT_PIN
, &irq
);
if (irq
)
pci_read_config_byte
(dev
, PCI_INTERRUPT_LINE
, &irq
);
dev
->irq
= irq
;
}
/**
* pci_setup_device - fill in class and map information of a device
* @dev: the device structure to fill
*
* Initialize the device structure with information about the device's
* vendor,class,memory and IO-space addresses,IRQ lines etc.
* Called at initialisation of the PCI subsystem and by CardBus services.
* Returns 0 on success and -1 if unknown type of device (not normal, bridge
* or CardBus).
*/
static int pci_setup_device
(struct pci_dev
* dev
)
{
u32 class
;
dev
->slot_name
= dev
->dev.
bus_id;
sprintf(pci_name
(dev
), "%04x:%02x:%02x.%d", pci_domain_nr
(dev
->bus
),
dev
->bus
->number
, PCI_SLOT
(dev
->devfn
), PCI_FUNC
(dev
->devfn
));
INIT_LIST_HEAD
(&dev
->pools
);
pci_read_config_dword
(dev
, PCI_CLASS_REVISION
, &class
);
class
>>= 8; /* upper 3 bytes */
dev
->class
= class
;
class
>>= 8;
DBG
("Found %02x:%02x [%04x/%04x] %06x %02x\n", dev
->bus
->number
,
dev
->devfn
, dev
->vendor
, dev
->device
, class
, dev
->hdr_type
);
/* "Unknown power state" */
dev
->current_state
= 4;
switch (dev
->hdr_type
) { /* header type */
case PCI_HEADER_TYPE_NORMAL
: /* standard header */
if (class
== PCI_CLASS_BRIDGE_PCI
)
goto bad
;
pci_read_irq
(dev
);
pci_read_bases
(dev
, 6, PCI_ROM_ADDRESS
);
pci_read_config_word
(dev
, PCI_SUBSYSTEM_VENDOR_ID
, &dev
->subsystem_vendor
);
pci_read_config_word
(dev
, PCI_SUBSYSTEM_ID
, &dev
->subsystem_device
);
break;
case PCI_HEADER_TYPE_BRIDGE
: /* bridge header */
if (class
!= PCI_CLASS_BRIDGE_PCI
)
goto bad
;
/* The PCI-to-PCI bridge spec requires that subtractive
decoding (i.e. transparent) bridge must have programming
interface code of 0x01. */
dev
->transparent
= ((dev
->class
& 0xff) == 1);
pci_read_bases
(dev
, 2, PCI_ROM_ADDRESS1
);
break;
case PCI_HEADER_TYPE_CARDBUS
: /* CardBus bridge header */
if (class
!= PCI_CLASS_BRIDGE_CARDBUS
)
goto bad
;
pci_read_irq
(dev
);
pci_read_bases
(dev
, 1, 0);
pci_read_config_word
(dev
, PCI_CB_SUBSYSTEM_VENDOR_ID
, &dev
->subsystem_vendor
);
pci_read_config_word
(dev
, PCI_CB_SUBSYSTEM_ID
, &dev
->subsystem_device
);
break;
default: /* unknown header */
printk
(KERN_ERR
"PCI: device %s has unknown header type %02x, ignoring.\n",
pci_name
(dev
), dev
->hdr_type
);
return -1;
bad
:
printk
(KERN_ERR
"PCI: %s: class %x doesn't match header type %02x. Ignoring class.\n",
pci_name
(dev
), class
, dev
->hdr_type
);
dev
->class
= PCI_CLASS_NOT_DEFINED
;
}
/* We found a fine healthy device, go go go... */
return 0;
}
/**
* pci_release_dev - free a pci device structure when all users of it are finished.
* @dev: device that's been disconnected
*
* Will be called only by the device core when all users of this pci device are
* done.
*/
static void pci_release_dev
(struct device
*dev
)
{
struct pci_dev
*pci_dev
;
pci_dev
= to_pci_dev
(dev
);
kfree
(pci_dev
);
}
/*
* Read the config data for a PCI device, sanity-check it
* and fill in the dev structure...
*/
static struct pci_dev
* __devinit
pci_scan_device
(struct pci_bus
*bus
, int devfn
)
{
struct pci_dev
*dev
;
u32 l
;
u8 hdr_type
;
if (pci_bus_read_config_byte
(bus
, devfn
, PCI_HEADER_TYPE
, &hdr_type
))
return NULL
;
if (pci_bus_read_config_dword
(bus
, devfn
, PCI_VENDOR_ID
, &l
))
return NULL
;
/* some broken boards return 0 or ~0 if a slot is empty: */
if (l
== 0xffffffff || l
== 0x00000000 ||
l
== 0x0000ffff || l
== 0xffff0000)
return NULL
;
dev
= kmalloc
(sizeof(struct pci_dev
), GFP_KERNEL
);
if (!dev
)
return NULL
;
memset(dev
, 0, sizeof(struct pci_dev
));
dev
->bus
= bus
;
dev
->sysdata
= bus
->sysdata
;
dev
->dev.
parent = bus
->dev
;
dev
->dev.
bus = &pci_bus_type
;
dev
->devfn
= devfn
;
dev
->hdr_type
= hdr_type
& 0x7f;
dev
->multifunction
= !!(hdr_type
& 0x80);
dev
->vendor
= l
& 0xffff;
dev
->device
= (l
>> 16) & 0xffff;
/* Assume 32-bit PCI; let 64-bit PCI cards (which are far rarer)
set this higher, assuming the system even supports it. */
dev
->dma_mask
= 0xffffffff;
dev
->consistent_dma_mask
= 0xffffffff;
if (pci_setup_device
(dev
) < 0) {
kfree
(dev
);
return NULL
;
}
device_initialize
(&dev
->dev
);
dev
->dev.
release = pci_release_dev
;
pci_dev_get
(dev
);
pci_name_device
(dev
);
dev
->dev.
dma_mask = &dev
->dma_mask
;
return dev
;
}
/**
* pci_scan_slot - scan a PCI slot on a bus for devices.
* @bus: PCI bus to scan
* @devfn: slot number to scan (must have zero function.)
*
* Scan a PCI slot on the specified PCI bus for devices, adding
* discovered devices to the @bus->devices list. New devices
* will have an empty dev->global_list head.
*/
int __devinit pci_scan_slot
(struct pci_bus
*bus
, int devfn
)
{
int func
, nr
= 0;
for (func
= 0; func
< 8; func
++, devfn
++) {
struct pci_dev
*dev
;
dev
= pci_scan_device
(bus
, devfn
);
if (func
== 0) {
if (!dev
)
break;
} else {
if (!dev
)
continue;
dev
->multifunction
= 1;
}
/* Fix up broken headers */
pci_fixup_device
(PCI_FIXUP_HEADER
, dev
);
/*
* Add the device to our list of discovered devices
* and the bus list for fixup functions, etc.
*/
INIT_LIST_HEAD
(&dev
->global_list
);
list_add_tail
(&dev
->bus_list
, &bus
->devices
);
nr
++;
/*
* If this is a single function device,
* don't scan past the first function.
*/
if (!dev
->multifunction
)
break;
}
return nr
;
}
static unsigned int __devinit pci_scan_child_bus
(struct pci_bus
*bus
)
{
unsigned int devfn
, pass
, max
= bus
->secondary
;
struct pci_dev
*dev
;
DBG
("Scanning bus %02x\n", bus
->number
);
/* Go find them, Rover! */
for (devfn
= 0; devfn
< 0x100; devfn
+= 8)
pci_scan_slot
(bus
, devfn
);
/*
* After performing arch-dependent fixup of the bus, look behind
* all PCI-to-PCI bridges on this bus.
*/
DBG
("Fixups for bus %02x\n", bus
->number
);
pcibios_fixup_bus
(bus
);
for (pass
=0; pass
< 2; pass
++)
list_for_each_entry
(dev
, &bus
->devices
, bus_list
) {
if (dev
->hdr_type
== PCI_HEADER_TYPE_BRIDGE
||
dev
->hdr_type
== PCI_HEADER_TYPE_CARDBUS
)
max
= pci_scan_bridge
(bus
, dev
, max
, pass
);
}
/*
* We've scanned the bus and so we know all about what's on
* the other side of any bridges that may be on this bus plus
* any devices.
*
* Return how far we've got finding sub-buses.
*/
DBG
("Bus scan for %02x returning with max=%02x\n", bus
->number
, max
);
return max
;
}
unsigned int __devinit pci_do_scan_bus
(struct pci_bus
*bus
)
{
unsigned int max
;
max
= pci_scan_child_bus
(bus
);
/*
* Make the discovered devices available.
*/
pci_bus_add_devices
(bus
);
return max
;
}
struct pci_bus
* __devinit pci_scan_bus_parented
(struct device
*parent
, int bus
, struct pci_ops
*ops
, void *sysdata
)
{
struct pci_bus
*b
;
b
= pci_alloc_bus
();
if (!b
)
return NULL
;
b
->dev
= kmalloc
(sizeof(*(b
->dev
)),GFP_KERNEL
);
if (!b
->dev
){
kfree
(b
);
return NULL
;
}
b
->sysdata
= sysdata
;
b
->ops
= ops
;
if (pci_find_bus
(pci_domain_nr
(b
), bus
)) {
/* If we already got to this bus through a different bridge, ignore it */
DBG
("PCI: Bus %02x already known\n", bus
);
kfree
(b
->dev
);
kfree
(b
);
return NULL
;
}
list_add_tail
(&b
->node
, &pci_root_buses
);
memset(b
->dev
,0,sizeof(*(b
->dev
)));
b
->dev
->parent
= parent
;
sprintf(b
->dev
->bus_id
,"pci%04x:%02x", pci_domain_nr
(b
), bus
);
device_register
(b
->dev
);
b
->number
= b
->secondary
= bus
;
b
->resource
[0] = &ioport_resource
;
b
->resource
[1] = &iomem_resource
;
b
->subordinate
= pci_scan_child_bus
(b
);
pci_bus_add_devices
(b
);
return b
;
}
EXPORT_SYMBOL
(pci_scan_bus_parented
);
#ifdef CONFIG_HOTPLUG
EXPORT_SYMBOL
(pci_add_new_bus
);
EXPORT_SYMBOL
(pci_do_scan_bus
);
EXPORT_SYMBOL
(pci_scan_slot
);
EXPORT_SYMBOL
(pci_scan_bridge
);
#endif