/* deflate.c -- compress data using the deflation algorithm
* Copyright (C) 1995-2002 Jean-loup Gailly.
* For conditions of distribution and use, see copyright notice in zlib.h
*/
/*
* ALGORITHM
*
* The "deflation" process depends on being able to identify portions
* of the input text which are identical to earlier input (within a
* sliding window trailing behind the input currently being processed).
*
* The most straightforward technique turns out to be the fastest for
* most input files: try all possible matches and select the longest.
* The key feature of this algorithm is that insertions into the string
* dictionary are very simple and thus fast, and deletions are avoided
* completely. Insertions are performed at each input character, whereas
* string matches are performed only when the previous match ends. So it
* is preferable to spend more time in matches to allow very fast string
* insertions and avoid deletions. The matching algorithm for small
* strings is inspired from that of Rabin & Karp. A brute force approach
* is used to find longer strings when a small match has been found.
* A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
* (by Leonid Broukhis).
* A previous version of this file used a more sophisticated algorithm
* (by Fiala and Greene) which is guaranteed to run in linear amortized
* time, but has a larger average cost, uses more memory and is patented.
* However the F&G algorithm may be faster for some highly redundant
* files if the parameter max_chain_length (described below) is too large.
*
* ACKNOWLEDGEMENTS
*
* The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
* I found it in 'freeze' written by Leonid Broukhis.
* Thanks to many people for bug reports and testing.
*
* REFERENCES
*
* Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
* Available in ftp://ds.internic.net/rfc/rfc1951.txt
*
* A description of the Rabin and Karp algorithm is given in the book
* "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
*
* Fiala,E.R., and Greene,D.H.
* Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
*
*/
/* @(#) $Id: deflate.c,v 1.2 2003-04-23 09:08:13 giacomo Exp $ */
#include "deflate.h"
const char deflate_copyright
[] =
" deflate 1.1.4 Copyright 1995-2002 Jean-loup Gailly ";
/*
If you use the zlib library in a product, an acknowledgment is welcome
in the documentation of your product. If for some reason you cannot
include such an acknowledgment, I would appreciate that you keep this
copyright string in the executable of your product.
*/
/* ===========================================================================
* Function prototypes.
*/
typedef enum {
need_more
, /* block not completed, need more input or more output */
block_done
, /* block flush performed */
finish_started
, /* finish started, need only more output at next deflate */
finish_done
/* finish done, accept no more input or output */
} block_state
;
typedef block_state
(*compress_func
) OF
((deflate_state
*s
, int flush
));
/* Compression function. Returns the block state after the call. */
local
void fill_window OF
((deflate_state
*s
));
local block_state deflate_stored OF
((deflate_state
*s
, int flush
));
local block_state deflate_fast OF
((deflate_state
*s
, int flush
));
local block_state deflate_slow OF
((deflate_state
*s
, int flush
));
local
void lm_init OF
((deflate_state
*s
));
local
void putShortMSB OF
((deflate_state
*s
, uInt b
));
local
void flush_pending OF
((z_streamp strm
));
local
int read_buf OF
((z_streamp strm
, Bytef
*buf
, unsigned size
));
#ifdef ASMV
void match_init OF
((void)); /* asm code initialization */
uInt longest_match OF
((deflate_state
*s
, IPos cur_match
));
#else
local uInt longest_match OF
((deflate_state
*s
, IPos cur_match
));
#endif
#ifdef DEBUG
local
void check_match OF
((deflate_state
*s
, IPos start
, IPos match
,
int length
));
#endif
/* ===========================================================================
* Local data
*/
#ifdef NIL
#undef NIL
#endif
#define NIL 0
/* Tail of hash chains */
#ifndef TOO_FAR
# define TOO_FAR 4096
#endif
/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
/* Minimum amount of lookahead, except at the end of the input file.
* See deflate.c for comments about the MIN_MATCH+1.
*/
/* Values for max_lazy_match, good_match and max_chain_length, depending on
* the desired pack level (0..9). The values given below have been tuned to
* exclude worst case performance for pathological files. Better values may be
* found for specific files.
*/
typedef struct config_s
{
ush good_length
; /* reduce lazy search above this match length */
ush max_lazy
; /* do not perform lazy search above this match length */
ush nice_length
; /* quit search above this match length */
ush max_chain
;
compress_func func
;
} config
;
local
const config configuration_table
[10] = {
/* good lazy nice chain */
/* 0 */ {0, 0, 0, 0, deflate_stored
}, /* store only */
/* 1 */ {4, 4, 8, 4, deflate_fast
}, /* maximum speed, no lazy matches */
/* 2 */ {4, 5, 16, 8, deflate_fast
},
/* 3 */ {4, 6, 32, 32, deflate_fast
},
/* 4 */ {4, 4, 16, 16, deflate_slow
}, /* lazy matches */
/* 5 */ {8, 16, 32, 32, deflate_slow
},
/* 6 */ {8, 16, 128, 128, deflate_slow
},
/* 7 */ {8, 32, 128, 256, deflate_slow
},
/* 8 */ {32, 128, 258, 1024, deflate_slow
},
/* 9 */ {32, 258, 258, 4096, deflate_slow
}}; /* maximum compression */
/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
* For deflate_fast() (levels <= 3) good is ignored and lazy has a different
* meaning.
*/
#define EQUAL 0
/* result of memcmp for equal strings */
struct static_tree_desc_s
{int dummy
;}; /* for buggy compilers */
/* ===========================================================================
* Update a hash value with the given input byte
* IN assertion: all calls to to UPDATE_HASH are made with consecutive
* input characters, so that a running hash key can be computed from the
* previous key instead of complete recalculation each time.
*/
#define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
/* ===========================================================================
* Insert string str in the dictionary and set match_head to the previous head
* of the hash chain (the most recent string with same hash key). Return
* the previous length of the hash chain.
* If this file is compiled with -DFASTEST, the compression level is forced
* to 1, and no hash chains are maintained.
* IN assertion: all calls to to INSERT_STRING are made with consecutive
* input characters and the first MIN_MATCH bytes of str are valid
* (except for the last MIN_MATCH-1 bytes of the input file).
*/
#ifdef FASTEST
#define INSERT_STRING(s, str, match_head) \
(UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
match_head = s->head[s->ins_h], \
s->head[s->ins_h] = (Pos)(str))
#else
#define INSERT_STRING(s, str, match_head) \
(UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \
s->head[s->ins_h] = (Pos)(str))
#endif
/* ===========================================================================
* Initialize the hash table (avoiding 64K overflow for 16 bit systems).
* prev[] will be initialized on the fly.
*/
#define CLEAR_HASH(s) \
s->head[s->hash_size-1] = NIL; \
zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
/* ========================================================================= */
int ZEXPORT deflateInit_
(strm
, level
, version
, stream_size
)
z_streamp strm
;
int level
;
const char *version
;
int stream_size
;
{
return deflateInit2_
(strm
, level
, Z_DEFLATED
, MAX_WBITS
, DEF_MEM_LEVEL
,
Z_DEFAULT_STRATEGY
, version
, stream_size
);
/* To do: ignore strm->next_in if we use it as window */
}
/* ========================================================================= */
int ZEXPORT deflateInit2_
(strm
, level
, method
, windowBits
, memLevel
, strategy
,
version
, stream_size
)
z_streamp strm
;
int level
;
int method
;
int windowBits
;
int memLevel
;
int strategy
;
const char *version
;
int stream_size
;
{
deflate_state
*s
;
int noheader
= 0;
static const char* my_version
= ZLIB_VERSION
;
ushf
*overlay
;
/* We overlay pending_buf and d_buf+l_buf. This works since the average
* output size for (length,distance) codes is <= 24 bits.
*/
if (version
== Z_NULL
|| version
[0] != my_version
[0] ||
stream_size
!= sizeof(z_stream
)) {
return Z_VERSION_ERROR
;
}
if (strm
== Z_NULL
) return Z_STREAM_ERROR
;
strm
->msg
= Z_NULL
;
if (strm
->zalloc
== Z_NULL
) {
strm
->zalloc
= zcalloc
;
strm
->opaque
= (voidpf
)0;
}
if (strm
->zfree
== Z_NULL
) strm
->zfree
= zcfree
;
if (level
== Z_DEFAULT_COMPRESSION
) level
= 6;
#ifdef FASTEST
level
= 1;
#endif
if (windowBits
< 0) { /* undocumented feature: suppress zlib header */
noheader
= 1;
windowBits
= -windowBits
;
}
if (memLevel
< 1 || memLevel
> MAX_MEM_LEVEL
|| method
!= Z_DEFLATED
||
windowBits
< 9 || windowBits
> 15 || level
< 0 || level
> 9 ||
strategy
< 0 || strategy
> Z_HUFFMAN_ONLY
) {
return Z_STREAM_ERROR
;
}
s
= (deflate_state
*) ZALLOC
(strm
, 1, sizeof(deflate_state
));
if (s
== Z_NULL
) return Z_MEM_ERROR
;
strm
->state
= (struct internal_state FAR
*)s
;
s
->strm
= strm
;
s
->noheader
= noheader
;
s
->w_bits
= windowBits
;
s
->w_size
= 1 << s
->w_bits
;
s
->w_mask
= s
->w_size
- 1;
s
->hash_bits
= memLevel
+ 7;
s
->hash_size
= 1 << s
->hash_bits
;
s
->hash_mask
= s
->hash_size
- 1;
s
->hash_shift
= ((s
->hash_bits
+MIN_MATCH
-1)/MIN_MATCH
);
s
->window
= (Bytef
*) ZALLOC
(strm
, s
->w_size
, 2*sizeof(Byte
));
s
->prev
= (Posf
*) ZALLOC
(strm
, s
->w_size
, sizeof(Pos
));
s
->head
= (Posf
*) ZALLOC
(strm
, s
->hash_size
, sizeof(Pos
));
s
->lit_bufsize
= 1 << (memLevel
+ 6); /* 16K elements by default */
overlay
= (ushf
*) ZALLOC
(strm
, s
->lit_bufsize
, sizeof(ush
)+2);
s
->pending_buf
= (uchf
*) overlay
;
s
->pending_buf_size
= (ulg
)s
->lit_bufsize
* (sizeof(ush
)+2L);
if (s
->window
== Z_NULL
|| s
->prev
== Z_NULL
|| s
->head
== Z_NULL
||
s
->pending_buf
== Z_NULL
) {
strm
->msg
= (char*)ERR_MSG
(Z_MEM_ERROR
);
deflateEnd
(strm
);
return Z_MEM_ERROR
;
}
s
->d_buf
= overlay
+ s
->lit_bufsize
/sizeof(ush
);
s
->l_buf
= s
->pending_buf
+ (1+sizeof(ush
))*s
->lit_bufsize
;
s
->level
= level
;
s
->strategy
= strategy
;
s
->method
= (Byte
)method
;
return deflateReset
(strm
);
}
/* ========================================================================= */
int ZEXPORT deflateSetDictionary
(strm
, dictionary
, dictLength
)
z_streamp strm
;
const Bytef
*dictionary
;
uInt dictLength
;
{
deflate_state
*s
;
uInt length
= dictLength
;
uInt n
;
IPos hash_head
= 0;
if (strm
== Z_NULL
|| strm
->state
== Z_NULL
|| dictionary
== Z_NULL
||
strm
->state
->status
!= INIT_STATE
) return Z_STREAM_ERROR
;
s
= strm
->state
;
strm
->adler
= adler32
(strm
->adler
, dictionary
, dictLength
);
if (length
< MIN_MATCH
) return Z_OK
;
if (length
> MAX_DIST
(s
)) {
length
= MAX_DIST
(s
);
#ifndef USE_DICT_HEAD
dictionary
+= dictLength
- length
; /* use the tail of the dictionary */
#endif
}
zmemcpy
(s
->window
, dictionary
, length
);
s
->strstart
= length
;
s
->block_start
= (long)length
;
/* Insert all strings in the hash table (except for the last two bytes).
* s->lookahead stays null, so s->ins_h will be recomputed at the next
* call of fill_window.
*/
s
->ins_h
= s
->window
[0];
UPDATE_HASH
(s
, s
->ins_h
, s
->window
[1]);
for (n
= 0; n
<= length
- MIN_MATCH
; n
++) {
INSERT_STRING
(s
, n
, hash_head
);
}
if (hash_head
) hash_head
= 0; /* to make compiler happy */
return Z_OK
;
}
/* ========================================================================= */
int ZEXPORT deflateReset
(strm
)
z_streamp strm
;
{
deflate_state
*s
;
if (strm
== Z_NULL
|| strm
->state
== Z_NULL
||
strm
->zalloc
== Z_NULL
|| strm
->zfree
== Z_NULL
) return Z_STREAM_ERROR
;
strm
->total_in
= strm
->total_out
= 0;
strm
->msg
= Z_NULL
; /* use zfree if we ever allocate msg dynamically */
strm
->data_type
= Z_UNKNOWN
;
s
= (deflate_state
*)strm
->state
;
s
->pending
= 0;
s
->pending_out
= s
->pending_buf
;
if (s
->noheader
< 0) {
s
->noheader
= 0; /* was set to -1 by deflate(..., Z_FINISH); */
}
s
->status
= s
->noheader
? BUSY_STATE
: INIT_STATE
;
strm
->adler
= 1;
s
->last_flush
= Z_NO_FLUSH
;
_tr_init
(s
);
lm_init
(s
);
return Z_OK
;
}
/* ========================================================================= */
int ZEXPORT deflateParams
(strm
, level
, strategy
)
z_streamp strm
;
int level
;
int strategy
;
{
deflate_state
*s
;
compress_func func
;
int err
= Z_OK
;
if (strm
== Z_NULL
|| strm
->state
== Z_NULL
) return Z_STREAM_ERROR
;
s
= strm
->state
;
if (level
== Z_DEFAULT_COMPRESSION
) {
level
= 6;
}
if (level
< 0 || level
> 9 || strategy
< 0 || strategy
> Z_HUFFMAN_ONLY
) {
return Z_STREAM_ERROR
;
}
func
= configuration_table
[s
->level
].
func;
if (func
!= configuration_table
[level
].
func && strm
->total_in
!= 0) {
/* Flush the last buffer: */
err
= deflate
(strm
, Z_PARTIAL_FLUSH
);
}
if (s
->level
!= level
) {
s
->level
= level
;
s
->max_lazy_match
= configuration_table
[level
].
max_lazy;
s
->good_match
= configuration_table
[level
].
good_length;
s
->nice_match
= configuration_table
[level
].
nice_length;
s
->max_chain_length
= configuration_table
[level
].
max_chain;
}
s
->strategy
= strategy
;
return err
;
}
/* =========================================================================
* Put a short in the pending buffer. The 16-bit value is put in MSB order.
* IN assertion: the stream state is correct and there is enough room in
* pending_buf.
*/
local
void putShortMSB
(s
, b
)
deflate_state
*s
;
uInt b
;
{
put_byte
(s
, (Byte
)(b
>> 8));
put_byte
(s
, (Byte
)(b
& 0xff));
}
/* =========================================================================
* Flush as much pending output as possible. All deflate() output goes
* through this function so some applications may wish to modify it
* to avoid allocating a large strm->next_out buffer and copying into it.
* (See also read_buf()).
*/
local
void flush_pending
(strm
)
z_streamp strm
;
{
unsigned len
= strm
->state
->pending
;
if (len
> strm
->avail_out
) len
= strm
->avail_out
;
if (len
== 0) return;
zmemcpy
(strm
->next_out
, strm
->state
->pending_out
, len
);
strm
->next_out
+= len
;
strm
->state
->pending_out
+= len
;
strm
->total_out
+= len
;
strm
->avail_out
-= len
;
strm
->state
->pending
-= len
;
if (strm
->state
->pending
== 0) {
strm
->state
->pending_out
= strm
->state
->pending_buf
;
}
}
/* ========================================================================= */
int ZEXPORT deflate
(strm
, flush
)
z_streamp strm
;
int flush
;
{
int old_flush
; /* value of flush param for previous deflate call */
deflate_state
*s
;
if (strm
== Z_NULL
|| strm
->state
== Z_NULL
||
flush
> Z_FINISH
|| flush
< 0) {
return Z_STREAM_ERROR
;
}
s
= strm
->state
;
if (strm
->next_out
== Z_NULL
||
(strm
->next_in
== Z_NULL
&& strm
->avail_in
!= 0) ||
(s
->status
== FINISH_STATE
&& flush
!= Z_FINISH
)) {
ERR_RETURN
(strm
, Z_STREAM_ERROR
);
}
if (strm
->avail_out
== 0) ERR_RETURN
(strm
, Z_BUF_ERROR
);
s
->strm
= strm
; /* just in case */
old_flush
= s
->last_flush
;
s
->last_flush
= flush
;
/* Write the zlib header */
if (s
->status
== INIT_STATE
) {
uInt header
= (Z_DEFLATED
+ ((s
->w_bits
-8)<<4)) << 8;
uInt level_flags
= (s
->level
-1) >> 1;
if (level_flags
> 3) level_flags
= 3;
header
|= (level_flags
<< 6);
if (s
->strstart
!= 0) header
|= PRESET_DICT
;
header
+= 31 - (header
% 31);
s
->status
= BUSY_STATE
;
putShortMSB
(s
, header
);
/* Save the adler32 of the preset dictionary: */
if (s
->strstart
!= 0) {
putShortMSB
(s
, (uInt
)(strm
->adler
>> 16));
putShortMSB
(s
, (uInt
)(strm
->adler
& 0xffff));
}
strm
->adler
= 1L;
}
/* Flush as much pending output as possible */
if (s
->pending
!= 0) {
flush_pending
(strm
);
if (strm
->avail_out
== 0) {
/* Since avail_out is 0, deflate will be called again with
* more output space, but possibly with both pending and
* avail_in equal to zero. There won't be anything to do,
* but this is not an error situation so make sure we
* return OK instead of BUF_ERROR at next call of deflate:
*/
s
->last_flush
= -1;
return Z_OK
;
}
/* Make sure there is something to do and avoid duplicate consecutive
* flushes. For repeated and useless calls with Z_FINISH, we keep
* returning Z_STREAM_END instead of Z_BUFF_ERROR.
*/
} else if (strm
->avail_in
== 0 && flush
<= old_flush
&&
flush
!= Z_FINISH
) {
ERR_RETURN
(strm
, Z_BUF_ERROR
);
}
/* User must not provide more input after the first FINISH: */
if (s
->status
== FINISH_STATE
&& strm
->avail_in
!= 0) {
ERR_RETURN
(strm
, Z_BUF_ERROR
);
}
/* Start a new block or continue the current one.
*/
if (strm
->avail_in
!= 0 || s
->lookahead
!= 0 ||
(flush
!= Z_NO_FLUSH
&& s
->status
!= FINISH_STATE
)) {
block_state bstate
;
bstate
= (*(configuration_table
[s
->level
].
func))(s
, flush
);
if (bstate
== finish_started
|| bstate
== finish_done
) {
s
->status
= FINISH_STATE
;
}
if (bstate
== need_more
|| bstate
== finish_started
) {
if (strm
->avail_out
== 0) {
s
->last_flush
= -1; /* avoid BUF_ERROR next call, see above */
}
return Z_OK
;
/* If flush != Z_NO_FLUSH && avail_out == 0, the next call
* of deflate should use the same flush parameter to make sure
* that the flush is complete. So we don't have to output an
* empty block here, this will be done at next call. This also
* ensures that for a very small output buffer, we emit at most
* one empty block.
*/
}
if (bstate
== block_done
) {
if (flush
== Z_PARTIAL_FLUSH
) {
_tr_align
(s
);
} else { /* FULL_FLUSH or SYNC_FLUSH */
_tr_stored_block
(s
, (char*)0, 0L, 0);
/* For a full flush, this empty block will be recognized
* as a special marker by inflate_sync().
*/
if (flush
== Z_FULL_FLUSH
) {
CLEAR_HASH
(s
); /* forget history */
}
}
flush_pending
(strm
);
if (strm
->avail_out
== 0) {
s
->last_flush
= -1; /* avoid BUF_ERROR at next call, see above */
return Z_OK
;
}
}
}
Assert
(strm
->avail_out
> 0, "bug2");
if (flush
!= Z_FINISH
) return Z_OK
;
if (s
->noheader
) return Z_STREAM_END
;
/* Write the zlib trailer (adler32) */
putShortMSB
(s
, (uInt
)(strm
->adler
>> 16));
putShortMSB
(s
, (uInt
)(strm
->adler
& 0xffff));
flush_pending
(strm
);
/* If avail_out is zero, the application will call deflate again
* to flush the rest.
*/
s
->noheader
= -1; /* write the trailer only once! */
return s
->pending
!= 0 ? Z_OK
: Z_STREAM_END
;
}
/* ========================================================================= */
int ZEXPORT deflateEnd
(strm
)
z_streamp strm
;
{
int status
;
if (strm
== Z_NULL
|| strm
->state
== Z_NULL
) return Z_STREAM_ERROR
;
status
= strm
->state
->status
;
if (status
!= INIT_STATE
&& status
!= BUSY_STATE
&&
status
!= FINISH_STATE
) {
return Z_STREAM_ERROR
;
}
/* Deallocate in reverse order of allocations: */
TRY_FREE
(strm
, strm
->state
->pending_buf
);
TRY_FREE
(strm
, strm
->state
->head
);
TRY_FREE
(strm
, strm
->state
->prev
);
TRY_FREE
(strm
, strm
->state
->window
);
ZFREE
(strm
, strm
->state
);
strm
->state
= Z_NULL
;
return status
== BUSY_STATE
? Z_DATA_ERROR
: Z_OK
;
}
/* =========================================================================
* Copy the source state to the destination state.
* To simplify the source, this is not supported for 16-bit MSDOS (which
* doesn't have enough memory anyway to duplicate compression states).
*/
int ZEXPORT deflateCopy
(dest
, source
)
z_streamp dest
;
z_streamp source
;
{
#ifdef MAXSEG_64K
return Z_STREAM_ERROR
;
#else
deflate_state
*ds
;
deflate_state
*ss
;
ushf
*overlay
;
if (source
== Z_NULL
|| dest
== Z_NULL
|| source
->state
== Z_NULL
) {
return Z_STREAM_ERROR
;
}
ss
= source
->state
;
*dest
= *source
;
ds
= (deflate_state
*) ZALLOC
(dest
, 1, sizeof(deflate_state
));
if (ds
== Z_NULL
) return Z_MEM_ERROR
;
dest
->state
= (struct internal_state FAR
*) ds
;
*ds
= *ss
;
ds
->strm
= dest
;
ds
->window
= (Bytef
*) ZALLOC
(dest
, ds
->w_size
, 2*sizeof(Byte
));
ds
->prev
= (Posf
*) ZALLOC
(dest
, ds
->w_size
, sizeof(Pos
));
ds
->head
= (Posf
*) ZALLOC
(dest
, ds
->hash_size
, sizeof(Pos
));
overlay
= (ushf
*) ZALLOC
(dest
, ds
->lit_bufsize
, sizeof(ush
)+2);
ds
->pending_buf
= (uchf
*) overlay
;
if (ds
->window
== Z_NULL
|| ds
->prev
== Z_NULL
|| ds
->head
== Z_NULL
||
ds
->pending_buf
== Z_NULL
) {
deflateEnd
(dest
);
return Z_MEM_ERROR
;
}
/* following zmemcpy do not work for 16-bit MSDOS */
zmemcpy
(ds
->window
, ss
->window
, ds
->w_size
* 2 * sizeof(Byte
));
zmemcpy
(ds
->prev
, ss
->prev
, ds
->w_size
* sizeof(Pos
));
zmemcpy
(ds
->head
, ss
->head
, ds
->hash_size
* sizeof(Pos
));
zmemcpy
(ds
->pending_buf
, ss
->pending_buf
, (uInt
)ds
->pending_buf_size
);
ds
->pending_out
= ds
->pending_buf
+ (ss
->pending_out
- ss
->pending_buf
);
ds
->d_buf
= overlay
+ ds
->lit_bufsize
/sizeof(ush
);
ds
->l_buf
= ds
->pending_buf
+ (1+sizeof(ush
))*ds
->lit_bufsize
;
ds
->l_desc.
dyn_tree = ds
->dyn_ltree
;
ds
->d_desc.
dyn_tree = ds
->dyn_dtree
;
ds
->bl_desc.
dyn_tree = ds
->bl_tree
;
return Z_OK
;
#endif
}
/* ===========================================================================
* Read a new buffer from the current input stream, update the adler32
* and total number of bytes read. All deflate() input goes through
* this function so some applications may wish to modify it to avoid
* allocating a large strm->next_in buffer and copying from it.
* (See also flush_pending()).
*/
local
int read_buf
(strm
, buf
, size
)
z_streamp strm
;
Bytef
*buf
;
unsigned size
;
{
unsigned len
= strm
->avail_in
;
if (len
> size
) len
= size
;
if (len
== 0) return 0;
strm
->avail_in
-= len
;
if (!strm
->state
->noheader
) {
strm
->adler
= adler32
(strm
->adler
, strm
->next_in
, len
);
}
zmemcpy
(buf
, strm
->next_in
, len
);
strm
->next_in
+= len
;
strm
->total_in
+= len
;
return (int)len
;
}
/* ===========================================================================
* Initialize the "longest match" routines for a new zlib stream
*/
local
void lm_init
(s
)
deflate_state
*s
;
{
s
->window_size
= (ulg
)2L*s
->w_size
;
CLEAR_HASH
(s
);
/* Set the default configuration parameters:
*/
s
->max_lazy_match
= configuration_table
[s
->level
].
max_lazy;
s
->good_match
= configuration_table
[s
->level
].
good_length;
s
->nice_match
= configuration_table
[s
->level
].
nice_length;
s
->max_chain_length
= configuration_table
[s
->level
].
max_chain;
s
->strstart
= 0;
s
->block_start
= 0L;
s
->lookahead
= 0;
s
->match_length
= s
->prev_length
= MIN_MATCH
-1;
s
->match_available
= 0;
s
->ins_h
= 0;
#ifdef ASMV
match_init
(); /* initialize the asm code */
#endif
}
/* ===========================================================================
* Set match_start to the longest match starting at the given string and
* return its length. Matches shorter or equal to prev_length are discarded,
* in which case the result is equal to prev_length and match_start is
* garbage.
* IN assertions: cur_match is the head of the hash chain for the current
* string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
* OUT assertion: the match length is not greater than s->lookahead.
*/
#ifndef ASMV
/* For 80x86 and 680x0, an optimized version will be provided in match.asm or
* match.S. The code will be functionally equivalent.
*/
#ifndef FASTEST
local uInt longest_match
(s
, cur_match
)
deflate_state
*s
;
IPos cur_match
; /* current match */
{
unsigned chain_length
= s
->max_chain_length
;/* max hash chain length */
register Bytef
*scan
= s
->window
+ s
->strstart
; /* current string */
register Bytef
*match
; /* matched string */
register int len
; /* length of current match */
int best_len
= s
->prev_length
; /* best match length so far */
int nice_match
= s
->nice_match
; /* stop if match long enough */
IPos limit
= s
->strstart
> (IPos
)MAX_DIST
(s
) ?
s
->strstart
- (IPos
)MAX_DIST
(s
) : NIL
;
/* Stop when cur_match becomes <= limit. To simplify the code,
* we prevent matches with the string of window index 0.
*/
Posf
*prev
= s
->prev
;
uInt wmask
= s
->w_mask
;
#ifdef UNALIGNED_OK
/* Compare two bytes at a time. Note: this is not always beneficial.
* Try with and without -DUNALIGNED_OK to check.
*/
register Bytef
*strend
= s
->window
+ s
->strstart
+ MAX_MATCH
- 1;
register ush scan_start
= *(ushf
*)scan
;
register ush scan_end
= *(ushf
*)(scan
+best_len
-1);
#else
register Bytef
*strend
= s
->window
+ s
->strstart
+ MAX_MATCH
;
register Byte scan_end1
= scan
[best_len
-1];
register Byte scan_end
= scan
[best_len
];
#endif
/* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
* It is easy to get rid of this optimization if necessary.
*/
Assert
(s
->hash_bits
>= 8 && MAX_MATCH
== 258, "Code too clever");
/* Do not waste too much time if we already have a good match: */
if (s
->prev_length
>= s
->good_match
) {
chain_length
>>= 2;
}
/* Do not look for matches beyond the end of the input. This is necessary
* to make deflate deterministic.
*/
if ((uInt
)nice_match
> s
->lookahead
) nice_match
= s
->lookahead
;
Assert
((ulg
)s
->strstart
<= s
->window_size
-MIN_LOOKAHEAD
, "need lookahead");
do {
Assert
(cur_match
< s
->strstart
, "no future");
match
= s
->window
+ cur_match
;
/* Skip to next match if the match length cannot increase
* or if the match length is less than 2:
*/
#if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
/* This code assumes sizeof(unsigned short) == 2. Do not use
* UNALIGNED_OK if your compiler uses a different size.
*/
if (*(ushf
*)(match
+best_len
-1) != scan_end
||
*(ushf
*)match
!= scan_start
) continue;
/* It is not necessary to compare scan[2] and match[2] since they are
* always equal when the other bytes match, given that the hash keys
* are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
* strstart+3, +5, ... up to strstart+257. We check for insufficient
* lookahead only every 4th comparison; the 128th check will be made
* at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
* necessary to put more guard bytes at the end of the window, or
* to check more often for insufficient lookahead.
*/
Assert
(scan
[2] == match
[2], "scan[2]?");
scan
++, match
++;
do {
} while (*(ushf
*)(scan
+=2) == *(ushf
*)(match
+=2) &&
*(ushf
*)(scan
+=2) == *(ushf
*)(match
+=2) &&
*(ushf
*)(scan
+=2) == *(ushf
*)(match
+=2) &&
*(ushf
*)(scan
+=2) == *(ushf
*)(match
+=2) &&
scan
< strend
);
/* The funny "do {}" generates better code on most compilers */
/* Here, scan <= window+strstart+257 */
Assert
(scan
<= s
->window
+(unsigned)(s
->window_size
-1), "wild scan");
if (*scan
== *match
) scan
++;
len
= (MAX_MATCH
- 1) - (int)(strend
-scan
);
scan
= strend
- (MAX_MATCH
-1);
#else /* UNALIGNED_OK */
if (match
[best_len
] != scan_end
||
match
[best_len
-1] != scan_end1
||
*match
!= *scan
||
*++match
!= scan
[1]) continue;
/* The check at best_len-1 can be removed because it will be made
* again later. (This heuristic is not always a win.)
* It is not necessary to compare scan[2] and match[2] since they
* are always equal when the other bytes match, given that
* the hash keys are equal and that HASH_BITS >= 8.
*/
scan
+= 2, match
++;
Assert
(*scan
== *match
, "match[2]?");
/* We check for insufficient lookahead only every 8th comparison;
* the 256th check will be made at strstart+258.
*/
do {
} while (*++scan
== *++match
&& *++scan
== *++match
&&
*++scan
== *++match
&& *++scan
== *++match
&&
*++scan
== *++match
&& *++scan
== *++match
&&
*++scan
== *++match
&& *++scan
== *++match
&&
scan
< strend
);
Assert
(scan
<= s
->window
+(unsigned)(s
->window_size
-1), "wild scan");
len
= MAX_MATCH
- (int)(strend
- scan
);
scan
= strend
- MAX_MATCH
;
#endif /* UNALIGNED_OK */
if (len
> best_len
) {
s
->match_start
= cur_match
;
best_len
= len
;
if (len
>= nice_match
) break;
#ifdef UNALIGNED_OK
scan_end
= *(ushf
*)(scan
+best_len
-1);
#else
scan_end1
= scan
[best_len
-1];
scan_end
= scan
[best_len
];
#endif
}
} while ((cur_match
= prev
[cur_match
& wmask
]) > limit
&& --chain_length
!= 0);
if ((uInt
)best_len
<= s
->lookahead
) return (uInt
)best_len
;
return s
->lookahead
;
}
#else /* FASTEST */
/* ---------------------------------------------------------------------------
* Optimized version for level == 1 only
*/
local uInt longest_match
(s
, cur_match
)
deflate_state
*s
;
IPos cur_match
; /* current match */
{
register Bytef
*scan
= s
->window
+ s
->strstart
; /* current string */
register Bytef
*match
; /* matched string */
register int len
; /* length of current match */
register Bytef
*strend
= s
->window
+ s
->strstart
+ MAX_MATCH
;
/* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
* It is easy to get rid of this optimization if necessary.
*/
Assert
(s
->hash_bits
>= 8 && MAX_MATCH
== 258, "Code too clever");
Assert
((ulg
)s
->strstart
<= s
->window_size
-MIN_LOOKAHEAD
, "need lookahead");
Assert
(cur_match
< s
->strstart
, "no future");
match
= s
->window
+ cur_match
;
/* Return failure if the match length is less than 2:
*/
if (match
[0] != scan
[0] || match
[1] != scan
[1]) return MIN_MATCH
-1;
/* The check at best_len-1 can be removed because it will be made
* again later. (This heuristic is not always a win.)
* It is not necessary to compare scan[2] and match[2] since they
* are always equal when the other bytes match, given that
* the hash keys are equal and that HASH_BITS >= 8.
*/
scan
+= 2, match
+= 2;
Assert
(*scan
== *match
, "match[2]?");
/* We check for insufficient lookahead only every 8th comparison;
* the 256th check will be made at strstart+258.
*/
do {
} while (*++scan
== *++match
&& *++scan
== *++match
&&
*++scan
== *++match
&& *++scan
== *++match
&&
*++scan
== *++match
&& *++scan
== *++match
&&
*++scan
== *++match
&& *++scan
== *++match
&&
scan
< strend
);
Assert
(scan
<= s
->window
+(unsigned)(s
->window_size
-1), "wild scan");
len
= MAX_MATCH
- (int)(strend
- scan
);
if (len
< MIN_MATCH
) return MIN_MATCH
- 1;
s
->match_start
= cur_match
;
return len
<= s
->lookahead
? len
: s
->lookahead
;
}
#endif /* FASTEST */
#endif /* ASMV */
#ifdef DEBUG
/* ===========================================================================
* Check that the match at match_start is indeed a match.
*/
local
void check_match
(s
, start
, match
, length
)
deflate_state
*s
;
IPos start
, match
;
int length
;
{
/* check that the match is indeed a match */
if (zmemcmp
(s
->window
+ match
,
s
->window
+ start
, length
) != EQUAL
) {
cprintf
(" start %u, match %u, length %d\n",
start
, match
, length
);
do {
cprintf
("%c%c", s
->window
[match
++], s
->window
[start
++]);
} while (--length
!= 0);
z_error
("invalid match");
}
if (z_verbose
> 1) {
cprintf
("\\[%d,%d]", start
-match
, length
);
do { putc(s
->window
[start
++], stderr
); } while (--length
!= 0);
}
}
#else
# define check_match(s, start, match, length)
#endif
/* ===========================================================================
* Fill the window when the lookahead becomes insufficient.
* Updates strstart and lookahead.
*
* IN assertion: lookahead < MIN_LOOKAHEAD
* OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
* At least one byte has been read, or avail_in == 0; reads are
* performed for at least two bytes (required for the zip translate_eol
* option -- not supported here).
*/
local
void fill_window
(s
)
deflate_state
*s
;
{
register unsigned n
, m
;
register Posf
*p
;
unsigned more
; /* Amount of free space at the end of the window. */
uInt wsize
= s
->w_size
;
do {
more
= (unsigned)(s
->window_size
-(ulg
)s
->lookahead
-(ulg
)s
->strstart
);
/* Deal with !@#$% 64K limit: */
if (more
== 0 && s
->strstart
== 0 && s
->lookahead
== 0) {
more
= wsize
;
} else if (more
== (unsigned)(-1)) {
/* Very unlikely, but possible on 16 bit machine if strstart == 0
* and lookahead == 1 (input done one byte at time)
*/
more
--;
/* If the window is almost full and there is insufficient lookahead,
* move the upper half to the lower one to make room in the upper half.
*/
} else if (s
->strstart
>= wsize
+MAX_DIST
(s
)) {
zmemcpy
(s
->window
, s
->window
+wsize
, (unsigned)wsize
);
s
->match_start
-= wsize
;
s
->strstart
-= wsize
; /* we now have strstart >= MAX_DIST */
s
->block_start
-= (long) wsize
;
/* Slide the hash table (could be avoided with 32 bit values
at the expense of memory usage). We slide even when level == 0
to keep the hash table consistent if we switch back to level > 0
later. (Using level 0 permanently is not an optimal usage of
zlib, so we don't care about this pathological case.)
*/
n
= s
->hash_size
;
p
= &s
->head
[n
];
do {
m
= *--p
;
*p
= (Pos
)(m
>= wsize
? m
-wsize
: NIL
);
} while (--n
);
n
= wsize
;
#ifndef FASTEST
p
= &s
->prev
[n
];
do {
m
= *--p
;
*p
= (Pos
)(m
>= wsize
? m
-wsize
: NIL
);
/* If n is not on any hash chain, prev[n] is garbage but
* its value will never be used.
*/
} while (--n
);
#endif
more
+= wsize
;
}
if (s
->strm
->avail_in
== 0) return;
/* If there was no sliding:
* strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
* more == window_size - lookahead - strstart
* => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
* => more >= window_size - 2*WSIZE + 2
* In the BIG_MEM or MMAP case (not yet supported),
* window_size == input_size + MIN_LOOKAHEAD &&
* strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
* Otherwise, window_size == 2*WSIZE so more >= 2.
* If there was sliding, more >= WSIZE. So in all cases, more >= 2.
*/
Assert
(more
>= 2, "more < 2");
n
= read_buf
(s
->strm
, s
->window
+ s
->strstart
+ s
->lookahead
, more
);
s
->lookahead
+= n
;
/* Initialize the hash value now that we have some input: */
if (s
->lookahead
>= MIN_MATCH
) {
s
->ins_h
= s
->window
[s
->strstart
];
UPDATE_HASH
(s
, s
->ins_h
, s
->window
[s
->strstart
+1]);
#if MIN_MATCH != 3
Call UPDATE_HASH
() MIN_MATCH
-3 more times
#endif
}
/* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
* but this is not important since only literal bytes will be emitted.
*/
} while (s
->lookahead
< MIN_LOOKAHEAD
&& s
->strm
->avail_in
!= 0);
}
/* ===========================================================================
* Flush the current block, with given end-of-file flag.
* IN assertion: strstart is set to the end of the current match.
*/
#define FLUSH_BLOCK_ONLY(s, eof) { \
_tr_flush_block(s, (s->block_start >= 0L ? \
(charf *)&s->window[(unsigned)s->block_start] : \
(charf *)Z_NULL), \
(ulg)((long)s->strstart - s->block_start), \
(eof)); \
s->block_start = s->strstart; \
flush_pending(s->strm); \
Tracev((stderr,"[FLUSH]")); \
}
/* Same but force premature exit if necessary. */
#define FLUSH_BLOCK(s, eof) { \
FLUSH_BLOCK_ONLY(s, eof); \
if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \
}
/* ===========================================================================
* Copy without compression as much as possible from the input stream, return
* the current block state.
* This function does not insert new strings in the dictionary since
* uncompressible data is probably not useful. This function is used
* only for the level=0 compression option.
* NOTE: this function should be optimized to avoid extra copying from
* window to pending_buf.
*/
local block_state deflate_stored
(s
, flush
)
deflate_state
*s
;
int flush
;
{
/* Stored blocks are limited to 0xffff bytes, pending_buf is limited
* to pending_buf_size, and each stored block has a 5 byte header:
*/
ulg max_block_size
= 0xffff;
ulg max_start
;
if (max_block_size
> s
->pending_buf_size
- 5) {
max_block_size
= s
->pending_buf_size
- 5;
}
/* Copy as much as possible from input to output: */
for (;;) {
/* Fill the window as much as possible: */
if (s
->lookahead
<= 1) {
Assert
(s
->strstart
< s
->w_size
+MAX_DIST
(s
) ||
s
->block_start
>= (long)s
->w_size
, "slide too late");
fill_window
(s
);
if (s
->lookahead
== 0 && flush
== Z_NO_FLUSH
) return need_more
;
if (s
->lookahead
== 0) break; /* flush the current block */
}
Assert
(s
->block_start
>= 0L, "block gone");
s
->strstart
+= s
->lookahead
;
s
->lookahead
= 0;
/* Emit a stored block if pending_buf will be full: */
max_start
= s
->block_start
+ max_block_size
;
if (s
->strstart
== 0 || (ulg
)s
->strstart
>= max_start
) {
/* strstart == 0 is possible when wraparound on 16-bit machine */
s
->lookahead
= (uInt
)(s
->strstart
- max_start
);
s
->strstart
= (uInt
)max_start
;
FLUSH_BLOCK
(s
, 0);
}
/* Flush if we may have to slide, otherwise block_start may become
* negative and the data will be gone:
*/
if (s
->strstart
- (uInt
)s
->block_start
>= MAX_DIST
(s
)) {
FLUSH_BLOCK
(s
, 0);
}
}
FLUSH_BLOCK
(s
, flush
== Z_FINISH
);
return flush
== Z_FINISH
? finish_done
: block_done
;
}
/* ===========================================================================
* Compress as much as possible from the input stream, return the current
* block state.
* This function does not perform lazy evaluation of matches and inserts
* new strings in the dictionary only for unmatched strings or for short
* matches. It is used only for the fast compression options.
*/
local block_state deflate_fast
(s
, flush
)
deflate_state
*s
;
int flush
;
{
IPos hash_head
= NIL
; /* head of the hash chain */
int bflush
; /* set if current block must be flushed */
for (;;) {
/* Make sure that we always have enough lookahead, except
* at the end of the input file. We need MAX_MATCH bytes
* for the next match, plus MIN_MATCH bytes to insert the
* string following the next match.
*/
if (s
->lookahead
< MIN_LOOKAHEAD
) {
fill_window
(s
);
if (s
->lookahead
< MIN_LOOKAHEAD
&& flush
== Z_NO_FLUSH
) {
return need_more
;
}
if (s
->lookahead
== 0) break; /* flush the current block */
}
/* Insert the string window[strstart .. strstart+2] in the
* dictionary, and set hash_head to the head of the hash chain:
*/
if (s
->lookahead
>= MIN_MATCH
) {
INSERT_STRING
(s
, s
->strstart
, hash_head
);
}
/* Find the longest match, discarding those <= prev_length.
* At this point we have always match_length < MIN_MATCH
*/
if (hash_head
!= NIL
&& s
->strstart
- hash_head
<= MAX_DIST
(s
)) {
/* To simplify the code, we prevent matches with the string
* of window index 0 (in particular we have to avoid a match
* of the string with itself at the start of the input file).
*/
if (s
->strategy
!= Z_HUFFMAN_ONLY
) {
s
->match_length
= longest_match
(s
, hash_head
);
}
/* longest_match() sets match_start */
}
if (s
->match_length
>= MIN_MATCH
) {
check_match
(s
, s
->strstart
, s
->match_start
, s
->match_length
);
_tr_tally_dist
(s
, s
->strstart
- s
->match_start
,
s
->match_length
- MIN_MATCH
, bflush
);
s
->lookahead
-= s
->match_length
;
/* Insert new strings in the hash table only if the match length
* is not too large. This saves time but degrades compression.
*/
#ifndef FASTEST
if (s
->match_length
<= s
->max_insert_length
&&
s
->lookahead
>= MIN_MATCH
) {
s
->match_length
--; /* string at strstart already in hash table */
do {
s
->strstart
++;
INSERT_STRING
(s
, s
->strstart
, hash_head
);
/* strstart never exceeds WSIZE-MAX_MATCH, so there are
* always MIN_MATCH bytes ahead.
*/
} while (--s
->match_length
!= 0);
s
->strstart
++;
} else
#endif
{
s
->strstart
+= s
->match_length
;
s
->match_length
= 0;
s
->ins_h
= s
->window
[s
->strstart
];
UPDATE_HASH
(s
, s
->ins_h
, s
->window
[s
->strstart
+1]);
#if MIN_MATCH != 3
Call UPDATE_HASH
() MIN_MATCH
-3 more times
#endif
/* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
* matter since it will be recomputed at next deflate call.
*/
}
} else {
/* No match, output a literal byte */
Tracevv
((stderr
,"%c", s
->window
[s
->strstart
]));
_tr_tally_lit
(s
, s
->window
[s
->strstart
], bflush
);
s
->lookahead
--;
s
->strstart
++;
}
if (bflush
) FLUSH_BLOCK
(s
, 0);
}
FLUSH_BLOCK
(s
, flush
== Z_FINISH
);
return flush
== Z_FINISH
? finish_done
: block_done
;
}
/* ===========================================================================
* Same as above, but achieves better compression. We use a lazy
* evaluation for matches: a match is finally adopted only if there is
* no better match at the next window position.
*/
local block_state deflate_slow
(s
, flush
)
deflate_state
*s
;
int flush
;
{
IPos hash_head
= NIL
; /* head of hash chain */
int bflush
; /* set if current block must be flushed */
/* Process the input block. */
for (;;) {
/* Make sure that we always have enough lookahead, except
* at the end of the input file. We need MAX_MATCH bytes
* for the next match, plus MIN_MATCH bytes to insert the
* string following the next match.
*/
if (s
->lookahead
< MIN_LOOKAHEAD
) {
fill_window
(s
);
if (s
->lookahead
< MIN_LOOKAHEAD
&& flush
== Z_NO_FLUSH
) {
return need_more
;
}
if (s
->lookahead
== 0) break; /* flush the current block */
}
/* Insert the string window[strstart .. strstart+2] in the
* dictionary, and set hash_head to the head of the hash chain:
*/
if (s
->lookahead
>= MIN_MATCH
) {
INSERT_STRING
(s
, s
->strstart
, hash_head
);
}
/* Find the longest match, discarding those <= prev_length.
*/
s
->prev_length
= s
->match_length
, s
->prev_match
= s
->match_start
;
s
->match_length
= MIN_MATCH
-1;
if (hash_head
!= NIL
&& s
->prev_length
< s
->max_lazy_match
&&
s
->strstart
- hash_head
<= MAX_DIST
(s
)) {
/* To simplify the code, we prevent matches with the string
* of window index 0 (in particular we have to avoid a match
* of the string with itself at the start of the input file).
*/
if (s
->strategy
!= Z_HUFFMAN_ONLY
) {
s
->match_length
= longest_match
(s
, hash_head
);
}
/* longest_match() sets match_start */
if (s
->match_length
<= 5 && (s
->strategy
== Z_FILTERED
||
(s
->match_length
== MIN_MATCH
&&
s
->strstart
- s
->match_start
> TOO_FAR
))) {
/* If prev_match is also MIN_MATCH, match_start is garbage
* but we will ignore the current match anyway.
*/
s
->match_length
= MIN_MATCH
-1;
}
}
/* If there was a match at the previous step and the current
* match is not better, output the previous match:
*/
if (s
->prev_length
>= MIN_MATCH
&& s
->match_length
<= s
->prev_length
) {
uInt max_insert
= s
->strstart
+ s
->lookahead
- MIN_MATCH
;
/* Do not insert strings in hash table beyond this. */
check_match
(s
, s
->strstart
-1, s
->prev_match
, s
->prev_length
);
_tr_tally_dist
(s
, s
->strstart
-1 - s
->prev_match
,
s
->prev_length
- MIN_MATCH
, bflush
);
/* Insert in hash table all strings up to the end of the match.
* strstart-1 and strstart are already inserted. If there is not
* enough lookahead, the last two strings are not inserted in
* the hash table.
*/
s
->lookahead
-= s
->prev_length
-1;
s
->prev_length
-= 2;
do {
if (++s
->strstart
<= max_insert
) {
INSERT_STRING
(s
, s
->strstart
, hash_head
);
}
} while (--s
->prev_length
!= 0);
s
->match_available
= 0;
s
->match_length
= MIN_MATCH
-1;
s
->strstart
++;
if (bflush
) FLUSH_BLOCK
(s
, 0);
} else if (s
->match_available
) {
/* If there was no match at the previous position, output a
* single literal. If there was a match but the current match
* is longer, truncate the previous match to a single literal.
*/
Tracevv
((stderr
,"%c", s
->window
[s
->strstart
-1]));
_tr_tally_lit
(s
, s
->window
[s
->strstart
-1], bflush
);
if (bflush
) {
FLUSH_BLOCK_ONLY
(s
, 0);
}
s
->strstart
++;
s
->lookahead
--;
if (s
->strm
->avail_out
== 0) return need_more
;
} else {
/* There is no previous match to compare with, wait for
* the next step to decide.
*/
s
->match_available
= 1;
s
->strstart
++;
s
->lookahead
--;
}
}
Assert
(flush
!= Z_NO_FLUSH
, "no flush?");
if (s
->match_available
) {
Tracevv
((stderr
,"%c", s
->window
[s
->strstart
-1]));
_tr_tally_lit
(s
, s
->window
[s
->strstart
-1], bflush
);
s
->match_available
= 0;
}
FLUSH_BLOCK
(s
, flush
== Z_FINISH
);
return flush
== Z_FINISH
? finish_done
: block_done
;
}