Detailed Design Document 

Scuola Superiore Sant’Anna


DESIGN SPECIFICATION

For

RTOS, Scuola Superiore Sant’Anna

Beam and Ball

(Version 0.1D)
Table of contents
51
INTRODUCTION


51.1
Scope of the Project


51.2
Platform


62
Project design


62.1
Requirements of a real time simulation framework


72.2
Proposed Design


72.2.1
Defining the task set:


82.2.2
Identifying the shared resources


92.3
Ball and Beam Dynamics




1 INTRODUCTION

.

1.1  Scope of the Project 

The project aims:

· To develop a simple mathematical model for balancing Ball on Beam.

· Use the framework as a vechicle for demonstrating the scheduling of different tasks in a real time  operating system.

1.2 Platform

The following table defines the environment under which the system will be developed.

	Component
	Specification

	O.S. (Development)
	1.SHARK  2.Linux

	Development Environment
	C++, Emacs.


2 Project design

2.1 Requirements of a real time simulation framework 

The ball and beam balancing problem refers to systems in which the central assumption is that the system's state changes continuously with time. In simulation of such systems, it is very important to identify the tasks with appropriate parameters so that the system becomes stable. Design of the problem entails analyzing the following requirements:

· Identification of tasks: A complete set of tasks that comprise of the simulation must be identified and defined. The division of tasks must be such that they capture all the activities in the system. Activities may periodic , sporadic or aperiodic. Also, a lose coupling between tasks must be kept in mind while the initial identification procedure.

· Identifying the task types: The tasks identified above must have an appropriate type. Accordingly they must be declared as Hard, Soft or NRT. Hard tasks are critical and should meet deadline else system will fail. Soft task concept removes such burden from the tasks. And some deadline misses are allowed.

· Identifying the task parameters: Each task has random execution times. So their worst case execution time is taken into consideration. We need to specify periods and other task specific parameters must be appropriate to make the task set schedulable.  

· Communication between tasks: Tasks must be able to transfer appropriate data between themselves. Because a task will be scheduled at its appropriate instant, it should not block on a particular condition, awaiting the data to be received from another task.  

· Manage Data Analysis: In the simulation of a real time activity, it is important to gather the output data and the behavior of the system continuously with time. However it is also important the task gathering such information must not be too heavy to overload the system.

2.2 Proposed Design

2.2.1 Defining the task set:

The following task set is proposed which fulfils the system requirements:-

Task Set T:{T1,T2,T3,T4}

The task set comprises of 4 tasks, their description given below:

T1

Name: MoveBall

Model Type: Soft

Time Period: 40000(milliseconds)

Worst Case execution Time:1000(milliseconds)

Purpose: The task is responsible for calculating the new parameters of the ball and refreshing the ball position on the screen..

T2

Name : MoveBeam

Model Type : Soft

Time Period : 40000(milliseconds)

Worst Case execution Time :1000(milliseconds)

Purpose : The task is responsible for calculating the new parameters of the beam and refreshing the beam on the screen..

T3

Name : Calculate

Model Type: Soft

Time Period : 40000(milliseconds)

Worst Case execution Time :1000(milliseconds)

Purpose : The task takes into consideration the present position of the ball and calculates the new position of the beam i.e the angle through which the beam rotates .

T4

Name : drawbargraphs

Model Type: Soft


Time Period : 80000(milliseconds)
Worst Case execution Time :1000(milliseconds)

Purpose : The task gathers the state information of the ball in the system and displays a graphical output on the screen.

T5

Name : Startballs

Model Type: Soft

Time Period: 3770400(milliseconds)

Worst Case Execution Time:1000(milliseconds)

Purpose: The task changes the BALL status from SLEEP to FALLSTART.

2.2.2 Identifying the shared resources

The two basic entities in the system namely the ball and beam are identified by a set of parameters which are declared two separate structures. The characteristics are:

Ball attributes:

int x ; 
 
//x position of the ball (Not shared)

int y ;

//y position of the ball (Not shared)

int r ;

//radius
 of the ball(Not shared)

float w;
//angular velocity of the ball(Not shared)

int id;

//the unique ball id(Not shared)

float v;

//velocity of the ball(Shared)

float s;

//The displacement of the ball from the center of the beam(Shared)

int status;
//The current status of the ball(falling or moving) (Shared)

int beamId;
//The id of the beam on which the ball is currently on.(Shared)

Beam attributes: 

int l ;

//The length of the beam(Not shared)

int x ;

//The x position of the beam center(Not shared)

int y ;

// The y position of the beam center(Not shared)

int id;

//The unique beam id(Not shared)

float theta ;
//The current angle of the beam with the horizontal(Shared)

float dtheta;
//The angular displacement of the beam(Shared)

The shared resources in the above set of attributes are kept into a separate structure that the tasks acquire from a special data buffer named CAB(Cyclical Asynchronous Buffer.)The tasks read the shared attributes from the CABs, modify them if necessary and write the updated values back into the CAB.

MailBox for Startball:

When ball goes out of scope it sends message to the startball( writes id of the ball to mailbox ). At each instance of the startball it checks for any entry in the mailbox. If there is entry then Startball changes state of the ball.

2.3 Ball and Beam Dynamics


· Movement of  Ball on the Beam ( ideal)

velocity of free moving ball

 v = ut + 1/2 a (t * t) 

on the beam ..

v = ut + 1/2 g.sin(Ø) ( Friction is not considered )


..  g = gravity 


..  Ø = inclination of the beam on horizental plan.
Assumption : t = 1  ( Considering Time period is 1 time unit )

v = u + 1/2 * g * sin(Ø) 

dv =  K * sin(Ø)



.. K = 1/2 . g
relative velocity of the v affects the  s ( distance of ball from the center of beam )

s = s + vt ... but t = 1 

s = s + v 

 ( Period of ball Task and period of beam taks are same )
This equation is emulated on screen in following way ..

v = - g * sin(Ø) * KMOVEVELOCITY;

s =  s + KDISPLACMENT * v ; 
        x =  x0 +  s * cos(Ø);
        y =  y0  -  s * sin(Ø);

(x0,y0) : Center of the beam.
· Movement of the Beam 

Beams moves with constant angular Velocity (Õ)

Ø = Ø + Õ . t 

Ø = Ø + Õ    ( t = 1 )
· Calculation of angular velocity (Õ) of the beam
Aim :

Equlibrim is stated as ... 

Õ = 0 

Ø = 0 

v  = 0

s  = 0
Õ is calculated for the regular interval  Tc > t




Tc = Timeperiod of Calulation Task

Õ is depend on s , v ( at minimum )

Õ = K1 * s + K2  * v 

Õ .. increases with proposition to the s and velocity of the ball.

Õ .. Direction of the ball determines direction of Õ

when  s = 0 ; v = 0  

Õ = 0 

if (Ø <> 0 ) then  ( v <> 0 , s <> 0 )

so

when  s = 0 ; v = 0 ; Õ = 0 

Ø = 0

All quantities are zero means Beam is in equlibrium condition.

Value of the K1 and K2 are assumed.
What we have implemented:

Beam Equations:

Calculation of the beam's angular displacement:

This is done taking into consideration the current position of the beam and the position and velocity of the ball.

Based on the above parameters 4 different cases arise and as a result an appropriate amount of angular displacement is either added or subtracted from the current angle of the beam.

The ball parameters are compared with the threshold values and the current quadrant of the beam angle is also known.

Accordingly the beam angle is calculated as:

theta = theta +/- TYPE_OF_INCREASE

where,

TYPE_OF_INCREASE takes one of the following values:

SMALL_INCREASE: 0.005

MEDIUM_INCREASE: 0.02

LARGE_INCREASE: 0.04

Ball Equations:
Constants used:
Name:CONSTANT_K :

Type: int
Value:2

Purpose:A correction factor in the calculation of the ball's velocity

Name:CONSTANT_M :

Type: int
Value:2

Purpose:A correction factor in the calculation of the ball's displacement. 

Calculation of the balls diaplacement and velocity when the ball in on the beam:

v = v - CONSTANT_K * sin(dtheta)

s = s + CONSTANT_M * v 

x = beam.x + s * cos(theta)

y = beam.y - s * sin(theta) - r * cos(theta)

Calculation of the ball's parameters while it is falling:
vx = v * cos(theta) 

vy = ( -1 * v * sin(theta))

Note: The sign change is used to indicate that the ball is falling down thereby increasing the y component of the ball's velocity.  



s





v





Ø





System Not equlibrium condition











System in equlibrium 
















Page 5 of 10 

