	RTOS - Shark Project - Fishing Game
	Version 1.0

FISHING GAME
 Authors:

Bhavesh Rathod

Krishna Raja Subbaraj

Ranjeeth Pasupathi

Abstract

Fishing is a real time game application which runs on shark. It provides a simple GUI and handles keyboard events using which the user can interact with the game. The existing application is a single player game and it can be extended for multiple players by using the existing framework.
Registered Modules
As per the application requirements, the following three scheduling modules have been registered.

· EDF : For handling Hard_Tasks – Timer
· CBS : For handling Soft_Tasks – Fish, Crocodile, etc
· RR : For handling Non real time tasks – Bubbles, Keyboard events.
TASK_SET

The task set of the fishing game comprises four basic tasks.

	Task
	Task_Name
	Task_Model
	Description

	Fish
	Fish_T
	Soft_Task_Model
	Emulates a fish

	Crocodile
	Croc_T
	Soft_Task_Model
	Emulates a Crocodile

	Fishing Rod
	Rod_T
	Soft_Task_Model
	Emulates a Fishing Rod

	Timer
	Setinterval_T
	Hard_Taskl_Model
	Limits the duration of the game (Time Out)

	Bubble
	Bubble_T
	Non_Real_Time
	Water bubbles

Fish

The game consists of a few number of fishes which share the same task body. Apart from other structures, each fish is made up the following structure

struct p_props {

struct p_cordinates pos;

int size;

int velocity;

int hooked ;

struct p_color color;

int direction;

};

The structure describes all the required attributes of the fish and one of the important attributes is the boolean attribute hooked which specifies whether the fish has been hooked to the rod or it is moving freely.

The behavior of the fish is decided by the following methods

· TASK fish_t(void *arg) – The task itself

· void draw_f(struct p_cordinates* fp, struct p_color* color, int size, int direction) – Uses the Graphics library to draw the fish
· void draw_fish(struct p_props* fp) – Generic Method to draw.
Behavior of the fish

Upon creation the fish moves horizontally along the pond. While its moving it might get hooked to the rod, then onwards the fish is dragged vertically upwards until it reaches the top of the tank (if successful the fish count & the score is increased by one) Meanwhile, during its upward motion it can be caught by an attacking crocodile (In this case the fish count is not incremented) After either of the previous conditions becomes true the position of the fish is reset by either the crocodile task or the rod task and is available for further fishing.
State Diagram

Life cycle of Fish

Crocodile

The number of crocodiles depends on the level of the game. It shares the same structure of the fish. Apart from moving in the pond, the main functionality of the crocodile is to catch the hooked fish if it comes to its vicinity. The crocodile accomplishes this task by using the following method

Inline int is_hooked(rod)

Inline void set_fish_pos(struct p_cordinates* f_pos, int x, int y)

inline int calc_area(struct p_cordinates* d1, int size, int direction)

where f_pos is a pointer to the corresponding fish which is in its vicinity (of course the fish should be hooked and moving upwards). The position of the fish is reset to its default random value from which the fish continues to move as before. From this point the fish is available for further fishing.

Fishing Rod

The structure of the Fishing rod is described by the following structure

struct p_hook {

struct p_cordinates h_pos;

struct p_cordinates r1_pos;

struct p_cordinates r2_pos;

struct p_props* f_pos;

struct p_color color;

struct score score;

int empty;

};

where h_pos, r1_pos and r2_pos are used with the horizontal and vertical movements of the rod with respect to the user events (User uses the arrow keys to move the rod).

F_pos is a pointer to a fish which is in the immediate vicinity of the rod. The rod task uses the pointer to handle the fish.

The associated methods of the rod task are as follows

struct p_cordinates* get_hook_pos(int rod)

int is_hooked(rod)

int calc_dist(struct p_cordinates* d1, int size, int direction)

void set_fish_pos(struct p_cordinates* f_pos, int x, int y)

If the fish is hooked and successfully reaches the top, the rod task increments the points and resets the fish for further fishing. While the fish is being dragged up, if any crocodile catches it then it is the responsibility of the crocodile to reset the fish (Note that the count is not incremented).

Timer

This is the only hard task in the system. It is a countdown timer which is activated every second. It displays the time remaining in the game and when the time reaches zero the game ends.

Bubble

It is a simple non_real_time task which generates water bubbles which move from the bottom of the pond upwards. Once it reaches the surface, it resets itself and starts from another random position from the bed.

Inter-Task Communication

Communications between the tasks are accomplished using a shared resource which in this case is a pointer to the hooked fish.

struct p_props {

struct p_cordinates pos;

int size;

int velocity;

int hooked ;

struct p_color color;

int direction;

}*share;

The fish task just reads the position from its position-attributes (struct p_cordinates pos) and moves in the pond.

Whenever a fish comes into the vicinity of the fishing rod, the fish sets it’s hooked attribute(Boolean) and passes a reference to itself to the rod task. Then onwards the rod task is responsible for controlling the movements of the fish (uses the reference to set the position).

While the fish is being dragged upwards, if the fish comes into the vicinity of the crocodile, its reference is passed to the crocodile task. Now the crocodile task unsets the hooked attribute of the fish and resets the position again into the pond.

Since the pointer to the hooked fish is accessed by both the crocodile and the rod, it is a shared resource and has to be guarded with mutex. This is accomplished using a semaphore mutex as follows

void set_fish_pos(struct p_cordinates* f_pos, int x, int y) {

sem_wait(&fmutex);

f_pos->x = x;

f_pos->y = y;

sem_post(&fmutex);

}

	Task
	Period(sec)
	WCET(sec)

	Fish
	80000
	5000

	Crocodile
	60000
	3000

	Fishing_Rod
	40000
	2000

	Timer
	1000000
	7000

Notes:

1. The graphics library was used for display of the game elements.

2. The game is in its first level. Using the existing structures we can increase the number of levels for this game.

3. Also the game has provision for making available 2 fishing rods (for 2 player games).as of now, we have a single player game existing in a structure for 2 player game .

Start

Hooked

Move

Caught

Success

PAGE
1
	April 07, 2004
	

