/* getpic.c, picture decoding */
/* Copyright (C) 1996, MPEG Software Simulation Group. All Rights Reserved. */
/*
* Disclaimer of Warranty
*
* These software programs are available to the user without any license fee or
* royalty on an "as is" basis. The MPEG Software Simulation Group disclaims
* any and all warranties, whether express, implied, or statuary, including any
* implied warranties or merchantability or of fitness for a particular
* purpose. In no event shall the copyright-holder be liable for any
* incidental, punitive, or consequential damages of any kind whatsoever
* arising from the use of these programs.
*
* This disclaimer of warranty extends to the user of these programs and user's
* customers, employees, agents, transferees, successors, and assigns.
*
* The MPEG Software Simulation Group does not represent or warrant that the
* programs furnished hereunder are free of infringement of any third-party
* patents.
*
* Commercial implementations of MPEG-1 and MPEG-2 video, including shareware,
* are subject to royalty fees to patent holders. Many of these patents are
* general enough such that they are unavoidable regardless of implementation
* design.
*
*/
#include "config.h"
#include "global.h"
#include <stdlib.h>
#include "drivers/glib.h"
/* private prototypes*/
static void picture_data
(int framenum
);
static void macroblock_modes
(int *pmacroblock_type
, int *pstwtype
,
int *pstwclass
, int *pmotion_type
, int *pmotion_vector_count
, int *pmv_format
, int *pdmv
,
int *pmvscale
, int *pdct_type
);
static void Clear_Block
(int comp
);
static void Sum_Block
(int comp
);
static void Saturate
(short *bp
);
static void Add_Block
(int comp
, int bx
, int by
,
int dct_type
, int addflag
);
static void Update_Picture_Buffers
(void);
static void frame_reorder
(int bitstream_framenum
,
int sequence_framenum
);
static void Decode_SNR_Macroblock
(int *SNRMBA
, int *SNRMBAinc
,
int MBA
, int MBAmax
, int *dct_type
);
static void motion_compensation
(int MBA
, int macroblock_type
,
int motion_type
, int PMV
[2][2][2], int motion_vertical_field_select
[2][2],
int dmvector
[2], int stwtype
, int dct_type
);
static void skipped_macroblock
(int dc_dct_pred
[3],
int PMV
[2][2][2], int *motion_type
, int motion_vertical_field_select
[2][2],
int *stwtype
, int *macroblock_type
);
static int slice
(int framenum
, int MBAmax
);
static int start_of_slice
(int MBAmax
, int *MBA
,
int *MBAinc
, int dc_dct_pred
[3], int PMV
[2][2][2]);
static int decode_macroblock
(int *macroblock_type
,
int *stwtype
, int *stwclass
, int *motion_type
, int *dct_type
,
int PMV
[2][2][2], int dc_dct_pred
[3],
int motion_vertical_field_select
[2][2], int dmvector
[2]);
/* decode one frame or field picture */
void Decode_Picture
(bitstream_framenum
, sequence_framenum
)
int bitstream_framenum
, sequence_framenum
;
{
if (picture_structure
==FRAME_PICTURE
&& Second_Field
)
{
/* recover from illegal number of field pictures */
cprintf
("odd number of field pictures\n");
Second_Field
= 0;
}
/* IMPLEMENTATION: update picture buffer pointers */
Update_Picture_Buffers
();
#ifdef VERIFY
Check_Headers
(bitstream_framenum
, sequence_framenum
);
#endif /* VERIFY */
/* ISO/IEC 13818-4 section 2.4.5.4 "frame buffer intercept method" */
/* (section number based on November 1995 (Dallas) draft of the
conformance document) */
if(Ersatz_Flag
)
Substitute_Frame_Buffer
(bitstream_framenum
, sequence_framenum
);
/* form spatial scalable picture */
/* form spatial scalable picture */
/* ISO/IEC 13818-2 section 7.7: Spatial scalability */
if (base.
pict_scal && !Second_Field
)
{
Spatial_Prediction
();
}
/* decode picture data ISO/IEC 13818-2 section 6.2.3.7 */
picture_data
(bitstream_framenum
);
/* write or display current or previously decoded reference frame */
/* ISO/IEC 13818-2 section 6.1.1.11: Frame reordering */
frame_reorder
(bitstream_framenum
, sequence_framenum
);
if (picture_structure
!=FRAME_PICTURE
)
Second_Field
= !Second_Field
;
}
/* decode all macroblocks of the current picture */
/* stages described in ISO/IEC 13818-2 section 7 */
static void picture_data
(framenum
)
int framenum
;
{
int MBAmax
;
int ret
;
/* number of macroblocks per picture */
MBAmax
= mb_width
*mb_height
;
if (picture_structure
!=FRAME_PICTURE
)
MBAmax
>>=1; /* field picture has half as mnay macroblocks as frame */
for(;;)
{
if((ret
=slice
(framenum
, MBAmax
))<0)
return;
}
}
/* decode all macroblocks of the current picture */
/* ISO/IEC 13818-2 section 6.3.16 */
static int slice
(framenum
, MBAmax
)
int framenum
, MBAmax
;
{
int MBA
;
int MBAinc
, macroblock_type
, motion_type
, dct_type
;
int dc_dct_pred
[3];
int PMV
[2][2][2], motion_vertical_field_select
[2][2];
int dmvector
[2];
int stwtype
, stwclass
;
int SNRMBA
, SNRMBAinc
;
int ret
;
MBA
= 0; /* macroblock address */
MBAinc
= 0;
if((ret
=start_of_slice
(MBAmax
, &MBA
, &MBAinc
, dc_dct_pred
, PMV
))!=1)
return(ret
);
if (Two_Streams
&& enhan.
scalable_mode==SC_SNR
)
{
SNRMBA
=0;
SNRMBAinc
=0;
}
Fault_Flag
=0;
for (;;)
{
/* this is how we properly exit out of picture */
if (MBA
>=MBAmax
)
return(-1); /* all macroblocks decoded */
#ifdef TRACE
if (Trace_Flag
)
cprintf
("frame %d, MB %d\n",framenum
,MBA
);
#endif /* TRACE */
#ifdef DISPLAY
if (!progressive_frame
&& picture_structure
==FRAME_PICTURE
&& MBA
==(MBAmax
>>1) && framenum
!=0 && Output_Type
==T_X11
&& !Display_Progressive_Flag
)
{
Display_Second_Field
();
}
#endif
ld
= &base
;
if (MBAinc
==0)
{
if (base.
scalable_mode==SC_DP
&& base.
priority_breakpoint==1)
ld
= &enhan
;
if (!Show_Bits
(23) || Fault_Flag
) /* next_start_code or fault */
{
resync
: /* if Fault_Flag: resynchronize to next next_start_code */
Fault_Flag
= 0;
return(0); /* trigger: go to next slice */
}
else /* neither next_start_code nor Fault_Flag */
{
if (base.
scalable_mode==SC_DP
&& base.
priority_breakpoint==1)
ld
= &enhan
;
/* decode macroblock address increment */
MBAinc
= Get_macroblock_address_increment
();
if (Fault_Flag
) goto resync
;
}
}
if (MBA
>=MBAmax
)
{
/* MBAinc points beyond picture dimensions */
if (!Quiet_Flag
)
cprintf
("Too many macroblocks in picture\n");
return(-1);
}
if (MBAinc
==1) /* not skipped */
{
ret
= decode_macroblock
(¯oblock_type
, &stwtype
, &stwclass
,
&motion_type
, &dct_type
, PMV
, dc_dct_pred
,
motion_vertical_field_select
, dmvector
);
if(ret
==-1)
return(-1);
if(ret
==0)
goto resync
;
}
else /* MBAinc!=1: skipped macroblock */
{
/* ISO/IEC 13818-2 section 7.6.6 */
skipped_macroblock
(dc_dct_pred
, PMV
, &motion_type
,
motion_vertical_field_select
, &stwtype
, ¯oblock_type
);
}
/* SCALABILITY: SNR */
/* ISO/IEC 13818-2 section 7.8 */
/* NOTE: we currently ignore faults encountered in this routine */
if (Two_Streams
&& enhan.
scalable_mode==SC_SNR
)
Decode_SNR_Macroblock
(&SNRMBA
, &SNRMBAinc
, MBA
, MBAmax
, &dct_type
);
/* ISO/IEC 13818-2 section 7.6 */
motion_compensation
(MBA
, macroblock_type
, motion_type
, PMV
,
motion_vertical_field_select
, dmvector
, stwtype
, dct_type
);
/* advance to next macroblock */
MBA
++;
MBAinc
--;
/* SCALABILITY: SNR */
if (Two_Streams
&& enhan.
scalable_mode==SC_SNR
)
{
SNRMBA
++;
SNRMBAinc
--;
}
if (MBA
>=MBAmax
)
return(-1); /* all macroblocks decoded */
}
}
/* ISO/IEC 13818-2 section 6.3.17.1: Macroblock modes */
static void macroblock_modes
(pmacroblock_type
,pstwtype
,pstwclass
,
pmotion_type
,pmotion_vector_count
,pmv_format
,pdmv
,pmvscale
,pdct_type
)
int *pmacroblock_type
, *pstwtype
, *pstwclass
;
int *pmotion_type
, *pmotion_vector_count
, *pmv_format
, *pdmv
, *pmvscale
;
int *pdct_type
;
{
int macroblock_type
;
int stwtype
, stwcode
, stwclass
;
int motion_type
= 0;
int motion_vector_count
, mv_format
, dmv
, mvscale
;
int dct_type
;
static unsigned char stwc_table
[3][4]
= { {6,3,7,4}, {2,1,5,4}, {2,5,7,4} };
static unsigned char stwclass_table
[9]
= {0, 1, 2, 1, 1, 2, 3, 3, 4};
/* get macroblock_type */
macroblock_type
= Get_macroblock_type
();
if (Fault_Flag
) return;
/* get spatial_temporal_weight_code */
if (macroblock_type
& MB_WEIGHT
)
{
if (spatial_temporal_weight_code_table_index
==0)
stwtype
= 4;
else
{
stwcode
= Get_Bits
(2);
#ifdef TRACE
if (Trace_Flag
)
{
cprintf
("spatial_temporal_weight_code (");
Print_Bits
(stwcode
,2,2);
cprintf
("): %d\n",stwcode
);
}
#endif /* TRACE */
stwtype
= stwc_table
[spatial_temporal_weight_code_table_index
-1][stwcode
];
}
}
else
stwtype
= (macroblock_type
& MB_CLASS4
) ? 8 : 0;
/* SCALABILITY: derive spatial_temporal_weight_class (Table 7-18) */
stwclass
= stwclass_table
[stwtype
];
/* get frame/field motion type */
if (macroblock_type
& (MACROBLOCK_MOTION_FORWARD
|MACROBLOCK_MOTION_BACKWARD
))
{
if (picture_structure
==FRAME_PICTURE
) /* frame_motion_type */
{
motion_type
= frame_pred_frame_dct
? MC_FRAME
: Get_Bits
(2);
#ifdef TRACE
if (!frame_pred_frame_dct
&& Trace_Flag
)
{
cprintf
("frame_motion_type (");
Print_Bits
(motion_type
,2,2);
cprintf
("): %s\n",motion_type
==MC_FIELD
?"Field":
motion_type
==MC_FRAME
?"Frame":
motion_type
==MC_DMV
?"Dual_Prime":"Invalid");
}
#endif /* TRACE */
}
else /* field_motion_type */
{
motion_type
= Get_Bits
(2);
#ifdef TRACE
if (Trace_Flag
)
{
cprintf
("field_motion_type (");
Print_Bits
(motion_type
,2,2);
cprintf
("): %s\n",motion_type
==MC_FIELD
?"Field":
motion_type
==MC_16X8
?"16x8 MC":
motion_type
==MC_DMV
?"Dual_Prime":"Invalid");
}
#endif /* TRACE */
}
}
else if ((macroblock_type
& MACROBLOCK_INTRA
) && concealment_motion_vectors
)
{
/* concealment motion vectors */
motion_type
= (picture_structure
==FRAME_PICTURE
) ? MC_FRAME
: MC_FIELD
;
}
#if 0
else
{
printf("maroblock_modes(): unknown macroblock type\n");
motion_type
= -1;
}
#endif
/* derive motion_vector_count, mv_format and dmv, (table 6-17, 6-18) */
if (picture_structure
==FRAME_PICTURE
)
{
motion_vector_count
= (motion_type
==MC_FIELD
&& stwclass
<2) ? 2 : 1;
mv_format
= (motion_type
==MC_FRAME
) ? MV_FRAME
: MV_FIELD
;
}
else
{
motion_vector_count
= (motion_type
==MC_16X8
) ? 2 : 1;
mv_format
= MV_FIELD
;
}
dmv
= (motion_type
==MC_DMV
); /* dual prime */
/* field mv predictions in frame pictures have to be scaled
* ISO/IEC 13818-2 section 7.6.3.1 Decoding the motion vectors
* IMPLEMENTATION: mvscale is derived for later use in motion_vectors()
* it displaces the stage:
*
* if((mv_format=="field")&&(t==1)&&(picture_structure=="Frame picture"))
* prediction = PMV[r][s][t] DIV 2;
*/
mvscale
= ((mv_format
==MV_FIELD
) && (picture_structure
==FRAME_PICTURE
));
/* get dct_type (frame DCT / field DCT) */
dct_type
= (picture_structure
==FRAME_PICTURE
)
&& (!frame_pred_frame_dct
)
&& (macroblock_type
& (MACROBLOCK_PATTERN
|MACROBLOCK_INTRA
))
? Get_Bits
(1)
: 0;
#ifdef TRACE
if (Trace_Flag
&& (picture_structure
==FRAME_PICTURE
)
&& (!frame_pred_frame_dct
)
&& (macroblock_type
& (MACROBLOCK_PATTERN
|MACROBLOCK_INTRA
)))
cprintf
("dct_type (%d): %s\n",dct_type
,dct_type
?"Field":"Frame");
#endif /* TRACE */
/* return values */
*pmacroblock_type
= macroblock_type
;
*pstwtype
= stwtype
;
*pstwclass
= stwclass
;
*pmotion_type
= motion_type
;
*pmotion_vector_count
= motion_vector_count
;
*pmv_format
= mv_format
;
*pdmv
= dmv
;
*pmvscale
= mvscale
;
*pdct_type
= dct_type
;
}
/* move/add 8x8-Block from block[comp] to backward_reference_frame */
/* copy reconstructed 8x8 block from block[comp] to current_frame[]
* ISO/IEC 13818-2 section 7.6.8: Adding prediction and coefficient data
* This stage also embodies some of the operations implied by:
* - ISO/IEC 13818-2 section 7.6.7: Combining predictions
* - ISO/IEC 13818-2 section 6.1.3: Macroblock
*/
static void Add_Block
(comp
,bx
,by
,dct_type
,addflag
)
int comp
,bx
,by
,dct_type
,addflag
;
{
int cc
,i
, j
, iincr
;
unsigned char *rfp
;
short *bp
;
/* derive color component index */
/* equivalent to ISO/IEC 13818-2 Table 7-1 */
cc
= (comp
<4) ? 0 : (comp
&1)+1; /* color component index */
if (cc
==0)
{
/* luminance */
if (picture_structure
==FRAME_PICTURE
)
if (dct_type
)
{
/* field DCT coding */
rfp
= current_frame
[0]
+ Coded_Picture_Width
*(by
+((comp
&2)>>1)) + bx
+ ((comp
&1)<<3);
iincr
= (Coded_Picture_Width
<<1) - 8;
}
else
{
/* frame DCT coding */
rfp
= current_frame
[0]
+ Coded_Picture_Width
*(by
+((comp
&2)<<2)) + bx
+ ((comp
&1)<<3);
iincr
= Coded_Picture_Width
- 8;
}
else
{
/* field picture */
rfp
= current_frame
[0]
+ (Coded_Picture_Width
<<1)*(by
+((comp
&2)<<2)) + bx
+ ((comp
&1)<<3);
iincr
= (Coded_Picture_Width
<<1) - 8;
}
}
else
{
/* chrominance */
/* scale coordinates */
if (chroma_format
!=CHROMA444
)
bx
>>= 1;
if (chroma_format
==CHROMA420
)
by
>>= 1;
if (picture_structure
==FRAME_PICTURE
)
{
if (dct_type
&& (chroma_format
!=CHROMA420
))
{
/* field DCT coding */
rfp
= current_frame
[cc
]
+ Chroma_Width
*(by
+((comp
&2)>>1)) + bx
+ (comp
&8);
iincr
= (Chroma_Width
<<1) - 8;
}
else
{
/* frame DCT coding */
rfp
= current_frame
[cc
]
+ Chroma_Width
*(by
+((comp
&2)<<2)) + bx
+ (comp
&8);
iincr
= Chroma_Width
- 8;
}
}
else
{
/* field picture */
rfp
= current_frame
[cc
]
+ (Chroma_Width
<<1)*(by
+((comp
&2)<<2)) + bx
+ (comp
&8);
iincr
= (Chroma_Width
<<1) - 8;
}
}
bp
= ld
->block
[comp
];
if (addflag
)
{
for (i
=0; i
<8; i
++)
{
for (j
=0; j
<8; j
++)
{
*rfp
= Clip
[*bp
++ + *rfp
];
rfp
++;
}
rfp
+= iincr
;
}
}
else
{
for (i
=0; i
<8; i
++)
{
for (j
=0; j
<8; j
++)
*rfp
++ = Clip
[*bp
++ + 128];
rfp
+= iincr
;
}
}
}
/* ISO/IEC 13818-2 section 7.8 */
static void Decode_SNR_Macroblock
(SNRMBA
, SNRMBAinc
, MBA
, MBAmax
, dct_type
)
int *SNRMBA
, *SNRMBAinc
;
int MBA
, MBAmax
;
int *dct_type
;
{
int SNRmacroblock_type
, SNRcoded_block_pattern
, SNRdct_type
, dummy
;
int slice_vert_pos_ext
, quantizer_scale_code
, comp
, code
;
ld
= &enhan
;
if (*SNRMBAinc
==0)
{
if (!Show_Bits
(23)) /* next_start_code */
{
next_start_code
();
code
= Show_Bits
(32);
if (code
<SLICE_START_CODE_MIN
|| code
>SLICE_START_CODE_MAX
)
{
/* only slice headers are allowed in picture_data */
if (!Quiet_Flag
)
cprintf
("SNR: Premature end of picture\n");
return;
}
Flush_Buffer32
();
/* decode slice header (may change quantizer_scale) */
slice_vert_pos_ext
= slice_header
();
/* decode macroblock address increment */
*SNRMBAinc
= Get_macroblock_address_increment
();
/* set current location */
*SNRMBA
=
((slice_vert_pos_ext
<<7) + (code
&255) - 1)*mb_width
+ *SNRMBAinc
- 1;
*SNRMBAinc
= 1; /* first macroblock in slice: not skipped */
}
else /* not next_start_code */
{
if (*SNRMBA
>=MBAmax
)
{
if (!Quiet_Flag
)
cprintf
("Too many macroblocks in picture\n");
return;
}
/* decode macroblock address increment */
*SNRMBAinc
= Get_macroblock_address_increment
();
}
}
if (*SNRMBA
!=MBA
)
{
/* streams out of sync */
if (!Quiet_Flag
)
cprintf
("Cant't synchronize streams\n");
return;
}
if (*SNRMBAinc
==1) /* not skipped */
{
macroblock_modes
(&SNRmacroblock_type
, &dummy
, &dummy
,
&dummy
, &dummy
, &dummy
, &dummy
, &dummy
,
&SNRdct_type
);
if (SNRmacroblock_type
& MACROBLOCK_PATTERN
)
*dct_type
= SNRdct_type
;
if (SNRmacroblock_type
& MACROBLOCK_QUANT
)
{
quantizer_scale_code
= Get_Bits
(5);
ld
->quantizer_scale
=
ld
->q_scale_type
? Non_Linear_quantizer_scale
[quantizer_scale_code
] : quantizer_scale_code
<<1;
}
/* macroblock_pattern */
if (SNRmacroblock_type
& MACROBLOCK_PATTERN
)
{
SNRcoded_block_pattern
= Get_coded_block_pattern
();
if (chroma_format
==CHROMA422
)
SNRcoded_block_pattern
= (SNRcoded_block_pattern
<<2) | Get_Bits
(2); /* coded_block_pattern_1 */
else if (chroma_format
==CHROMA444
)
SNRcoded_block_pattern
= (SNRcoded_block_pattern
<<6) | Get_Bits
(6); /* coded_block_pattern_2 */
}
else
SNRcoded_block_pattern
= 0;
/* decode blocks */
for (comp
=0; comp
<block_count
; comp
++)
{
Clear_Block
(comp
);
if (SNRcoded_block_pattern
& (1<<(block_count
-1-comp
)))
Decode_MPEG2_Non_Intra_Block
(comp
);
}
}
else /* SNRMBAinc!=1: skipped macroblock */
{
for (comp
=0; comp
<block_count
; comp
++)
Clear_Block
(comp
);
}
ld
= &base
;
}
/* IMPLEMENTATION: set scratch pad macroblock to zero */
static void Clear_Block
(comp
)
int comp
;
{
short *Block_Ptr
;
int i
;
Block_Ptr
= ld
->block
[comp
];
for (i
=0; i
<64; i
++)
*Block_Ptr
++ = 0;
}
/* SCALABILITY: add SNR enhancement layer block data to base layer */
/* ISO/IEC 13818-2 section 7.8.3.4: Addition of coefficients from the two layes */
static void Sum_Block
(comp
)
int comp
;
{
short *Block_Ptr1
, *Block_Ptr2
;
int i
;
Block_Ptr1
= base.
block[comp
];
Block_Ptr2
= enhan.
block[comp
];
for (i
=0; i
<64; i
++)
*Block_Ptr1
++ += *Block_Ptr2
++;
}
/* limit coefficients to -2048..2047 */
/* ISO/IEC 13818-2 section 7.4.3 and 7.4.4: Saturation and Mismatch control */
static void Saturate
(Block_Ptr
)
short *Block_Ptr
;
{
int i
, sum
, val
;
sum
= 0;
/* ISO/IEC 13818-2 section 7.4.3: Saturation */
for (i
=0; i
<64; i
++)
{
val
= Block_Ptr
[i
];
if (val
>2047)
val
= 2047;
else if (val
<-2048)
val
= -2048;
Block_Ptr
[i
] = val
;
sum
+= val
;
}
/* ISO/IEC 13818-2 section 7.4.4: Mismatch control */
if ((sum
&1)==0)
Block_Ptr
[63]^= 1;
}
/* reuse old picture buffers as soon as they are no longer needed
based on life-time axioms of MPEG */
static void Update_Picture_Buffers
()
{
int cc
; /* color component index */
unsigned char *tmp
; /* temporary swap pointer */
for (cc
=0; cc
<3; cc
++)
{
/* B pictures do not need to be save for future reference */
if (picture_coding_type
==B_TYPE
)
{
current_frame
[cc
] = auxframe
[cc
];
}
else
{
/* only update at the beginning of the coded frame */
if (!Second_Field
)
{
tmp
= forward_reference_frame
[cc
];
/* the previously decoded reference frame is stored
coincident with the location where the backward
reference frame is stored (backwards prediction is not
needed in P pictures) */
forward_reference_frame
[cc
] = backward_reference_frame
[cc
];
/* update pointer for potential future B pictures */
backward_reference_frame
[cc
] = tmp
;
}
/* can erase over old backward reference frame since it is not used
in a P picture, and since any subsequent B pictures will use the
previously decoded I or P frame as the backward_reference_frame */
current_frame
[cc
] = backward_reference_frame
[cc
];
}
/* IMPLEMENTATION:
one-time folding of a line offset into the pointer which stores the
memory address of the current frame saves offsets and conditional
branches throughout the remainder of the picture processing loop */
if (picture_structure
==BOTTOM_FIELD
)
current_frame
[cc
]+= (cc
==0) ? Coded_Picture_Width
: Chroma_Width
;
}
}
/* store last frame */
void Output_Last_Frame_of_Sequence
(Framenum
)
int Framenum
;
{
if (Second_Field
)
cprintf
("last frame incomplete, not stored\n");
else
Write_Frame
(backward_reference_frame
,Framenum
-1);
}
static void frame_reorder
(Bitstream_Framenum
, Sequence_Framenum
)
int Bitstream_Framenum
, Sequence_Framenum
;
{
/* tracking variables to insure proper output in spatial scalability */
static int Oldref_progressive_frame
, Newref_progressive_frame
;
if (Sequence_Framenum
!=0)
{
if (picture_structure
==FRAME_PICTURE
|| Second_Field
)
{
if (picture_coding_type
==B_TYPE
)
Write_Frame
(auxframe
,Bitstream_Framenum
-1);
else
{
Newref_progressive_frame
= progressive_frame
;
progressive_frame
= Oldref_progressive_frame
;
Write_Frame
(forward_reference_frame
,Bitstream_Framenum
-1);
Oldref_progressive_frame
= progressive_frame
= Newref_progressive_frame
;
}
}
#ifdef DISPLAY
else if (Output_Type
==T_X11
)
{
if(!Display_Progressive_Flag
)
Display_Second_Field
();
}
#endif
}
else
Oldref_progressive_frame
= progressive_frame
;
}
/* ISO/IEC 13818-2 section 7.6 */
static void motion_compensation
(MBA
, macroblock_type
, motion_type
, PMV
,
motion_vertical_field_select
, dmvector
, stwtype
, dct_type
)
int MBA
;
int macroblock_type
;
int motion_type
;
int PMV
[2][2][2];
int motion_vertical_field_select
[2][2];
int dmvector
[2];
int stwtype
;
int dct_type
;
{
int bx
, by
;
int comp
;
/* derive current macroblock position within picture */
/* ISO/IEC 13818-2 section 6.3.1.6 and 6.3.1.7 */
bx
= 16*(MBA
%mb_width
);
by
= 16*(MBA
/mb_width
);
/* motion compensation */
if (!(macroblock_type
& MACROBLOCK_INTRA
))
form_predictions
(bx
,by
,macroblock_type
,motion_type
,PMV
,
motion_vertical_field_select
,dmvector
,stwtype
);
/* SCALABILITY: Data Partitioning */
if (base.
scalable_mode==SC_DP
)
ld
= &base
;
/* copy or add block data into picture */
for (comp
=0; comp
<block_count
; comp
++)
{
/* SCALABILITY: SNR */
/* ISO/IEC 13818-2 section 7.8.3.4: Addition of coefficients from
the two a layers */
if (Two_Streams
&& enhan.
scalable_mode==SC_SNR
)
Sum_Block
(comp
); /* add SNR enhancement layer data to base layer */
/* MPEG-2 saturation and mismatch control */
/* base layer could be MPEG-1 stream, enhancement MPEG-2 SNR */
/* ISO/IEC 13818-2 section 7.4.3 and 7.4.4: Saturation and Mismatch control */
if ((Two_Streams
&& enhan.
scalable_mode==SC_SNR
) || ld
->MPEG2_Flag
)
Saturate
(ld
->block
[comp
]);
/* ISO/IEC 13818-2 section Annex A: inverse DCT */
if (Reference_IDCT_Flag
)
Reference_IDCT
(ld
->block
[comp
]);
else
Fast_IDCT
(ld
->block
[comp
]);
/* ISO/IEC 13818-2 section 7.6.8: Adding prediction and coefficient data */
Add_Block
(comp
,bx
,by
,dct_type
,(macroblock_type
& MACROBLOCK_INTRA
)==0);
}
}
/* ISO/IEC 13818-2 section 7.6.6 */
static void skipped_macroblock
(dc_dct_pred
, PMV
, motion_type
,
motion_vertical_field_select
, stwtype
, macroblock_type
)
int dc_dct_pred
[3];
int PMV
[2][2][2];
int *motion_type
;
int motion_vertical_field_select
[2][2];
int *stwtype
;
int *macroblock_type
;
{
int comp
;
/* SCALABILITY: Data Paritioning */
if (base.
scalable_mode==SC_DP
)
ld
= &base
;
for (comp
=0; comp
<block_count
; comp
++)
Clear_Block
(comp
);
/* reset intra_dc predictors */
/* ISO/IEC 13818-2 section 7.2.1: DC coefficients in intra blocks */
dc_dct_pred
[0]=dc_dct_pred
[1]=dc_dct_pred
[2]=0;
/* reset motion vector predictors */
/* ISO/IEC 13818-2 section 7.6.3.4: Resetting motion vector predictors */
if (picture_coding_type
==P_TYPE
)
PMV
[0][0][0]=PMV
[0][0][1]=PMV
[1][0][0]=PMV
[1][0][1]=0;
/* derive motion_type */
if (picture_structure
==FRAME_PICTURE
)
*motion_type
= MC_FRAME
;
else
{
*motion_type
= MC_FIELD
;
/* predict from field of same parity */
/* ISO/IEC 13818-2 section 7.6.6.1 and 7.6.6.3: P field picture and B field
picture */
motion_vertical_field_select
[0][0]=motion_vertical_field_select
[0][1] =
(picture_structure
==BOTTOM_FIELD
);
}
/* skipped I are spatial-only predicted, */
/* skipped P and B are temporal-only predicted */
/* ISO/IEC 13818-2 section 7.7.6: Skipped macroblocks */
*stwtype
= (picture_coding_type
==I_TYPE
) ? 8 : 0;
/* IMPLEMENTATION: clear MACROBLOCK_INTRA */
*macroblock_type
&= ~MACROBLOCK_INTRA
;
}
/* return==-1 means go to next picture */
/* the expression "start of slice" is used throughout the normative
body of the MPEG specification */
static int start_of_slice
(MBAmax
, MBA
, MBAinc
,
dc_dct_pred
, PMV
)
int MBAmax
;
int *MBA
;
int *MBAinc
;
int dc_dct_pred
[3];
int PMV
[2][2][2];
{
unsigned int code
;
int slice_vert_pos_ext
;
ld
= &base
;
Fault_Flag
= 0;
next_start_code
();
code
= Show_Bits
(32);
if (code
<SLICE_START_CODE_MIN
|| code
>SLICE_START_CODE_MAX
)
{
/* only slice headers are allowed in picture_data */
if (!Quiet_Flag
)
cprintf
("start_of_slice(): Premature end of picture\n");
return(-1); /* trigger: go to next picture */
}
Flush_Buffer32
();
/* decode slice header (may change quantizer_scale) */
slice_vert_pos_ext
= slice_header
();
/* SCALABILITY: Data Partitioning */
if (base.
scalable_mode==SC_DP
)
{
ld
= &enhan
;
next_start_code
();
code
= Show_Bits
(32);
if (code
<SLICE_START_CODE_MIN
|| code
>SLICE_START_CODE_MAX
)
{
/* only slice headers are allowed in picture_data */
if (!Quiet_Flag
)
cprintf
("DP: Premature end of picture\n");
return(-1); /* trigger: go to next picture */
}
Flush_Buffer32
();
/* decode slice header (may change quantizer_scale) */
slice_vert_pos_ext
= slice_header
();
if (base.
priority_breakpoint!=1)
ld
= &base
;
}
/* decode macroblock address increment */
*MBAinc
= Get_macroblock_address_increment
();
if (Fault_Flag
)
{
cprintf
("start_of_slice(): MBAinc unsuccessful\n");
return(0); /* trigger: go to next slice */
}
/* set current location */
/* NOTE: the arithmetic used to derive macroblock_address below is
* equivalent to ISO/IEC 13818-2 section 6.3.17: Macroblock
*/
*MBA
= ((slice_vert_pos_ext
<<7) + (code
&255) - 1)*mb_width
+ *MBAinc
- 1;
*MBAinc
= 1; /* first macroblock in slice: not skipped */
/* reset all DC coefficient and motion vector predictors */
/* reset all DC coefficient and motion vector predictors */
/* ISO/IEC 13818-2 section 7.2.1: DC coefficients in intra blocks */
dc_dct_pred
[0]=dc_dct_pred
[1]=dc_dct_pred
[2]=0;
/* ISO/IEC 13818-2 section 7.6.3.4: Resetting motion vector predictors */
PMV
[0][0][0]=PMV
[0][0][1]=PMV
[1][0][0]=PMV
[1][0][1]=0;
PMV
[0][1][0]=PMV
[0][1][1]=PMV
[1][1][0]=PMV
[1][1][1]=0;
/* successfull: trigger decode macroblocks in slice */
return(1);
}
/* ISO/IEC 13818-2 sections 7.2 through 7.5 */
static int decode_macroblock
(macroblock_type
, stwtype
, stwclass
,
motion_type
, dct_type
, PMV
, dc_dct_pred
,
motion_vertical_field_select
, dmvector
)
int *macroblock_type
;
int *stwtype
;
int *stwclass
;
int *motion_type
;
int *dct_type
;
int PMV
[2][2][2];
int dc_dct_pred
[3];
int motion_vertical_field_select
[2][2];
int dmvector
[2];
{
/* locals */
int quantizer_scale_code
;
int comp
;
int motion_vector_count
;
int mv_format
;
int dmv
;
int mvscale
;
int coded_block_pattern
;
/* SCALABILITY: Data Patitioning */
if (base.
scalable_mode==SC_DP
)
{
if (base.
priority_breakpoint<=2)
ld
= &enhan
;
else
ld
= &base
;
}
/* ISO/IEC 13818-2 section 6.3.17.1: Macroblock modes */
macroblock_modes
(macroblock_type
, stwtype
, stwclass
,
motion_type
, &motion_vector_count
, &mv_format
, &dmv
, &mvscale
,
dct_type
);
if (Fault_Flag
) return(0); /* trigger: go to next slice */
if (*macroblock_type
& MACROBLOCK_QUANT
)
{
quantizer_scale_code
= Get_Bits
(5);
#ifdef TRACE
if (Trace_Flag
)
{
cprintf
("quantiser_scale_code (");
Print_Bits
(quantizer_scale_code
,5,5);
cprintf
("): %d\n",quantizer_scale_code
);
}
#endif /* TRACE */
/* ISO/IEC 13818-2 section 7.4.2.2: Quantizer scale factor */
if (ld
->MPEG2_Flag
)
ld
->quantizer_scale
=
ld
->q_scale_type
? Non_Linear_quantizer_scale
[quantizer_scale_code
]
: (quantizer_scale_code
<< 1);
else
ld
->quantizer_scale
= quantizer_scale_code
;
/* SCALABILITY: Data Partitioning */
if (base.
scalable_mode==SC_DP
)
/* make sure base.quantizer_scale is valid */
base.
quantizer_scale = ld
->quantizer_scale
;
}
/* motion vectors */
/* ISO/IEC 13818-2 section 6.3.17.2: Motion vectors */
/* decode forward motion vectors */
if ((*macroblock_type
& MACROBLOCK_MOTION_FORWARD
)
|| ((*macroblock_type
& MACROBLOCK_INTRA
)
&& concealment_motion_vectors
))
{
if (ld
->MPEG2_Flag
)
motion_vectors
(PMV
,dmvector
,motion_vertical_field_select
,
0,motion_vector_count
,mv_format
,f_code
[0][0]-1,f_code
[0][1]-1,
dmv
,mvscale
);
else
motion_vector
(PMV
[0][0],dmvector
,
forward_f_code
-1,forward_f_code
-1,0,0,full_pel_forward_vector
);
}
if (Fault_Flag
) return(0); /* trigger: go to next slice */
/* decode backward motion vectors */
if (*macroblock_type
& MACROBLOCK_MOTION_BACKWARD
)
{
if (ld
->MPEG2_Flag
)
motion_vectors
(PMV
,dmvector
,motion_vertical_field_select
,
1,motion_vector_count
,mv_format
,f_code
[1][0]-1,f_code
[1][1]-1,0,
mvscale
);
else
motion_vector
(PMV
[0][1],dmvector
,
backward_f_code
-1,backward_f_code
-1,0,0,full_pel_backward_vector
);
}
if (Fault_Flag
) return(0); /* trigger: go to next slice */
if ((*macroblock_type
& MACROBLOCK_INTRA
) && concealment_motion_vectors
)
Flush_Buffer
(1); /* remove marker_bit */
if (base.
scalable_mode==SC_DP
&& base.
priority_breakpoint==3)
ld
= &enhan
;
/* macroblock_pattern */
/* ISO/IEC 13818-2 section 6.3.17.4: Coded block pattern */
if (*macroblock_type
& MACROBLOCK_PATTERN
)
{
coded_block_pattern
= Get_coded_block_pattern
();
if (chroma_format
==CHROMA422
)
{
/* coded_block_pattern_1 */
coded_block_pattern
= (coded_block_pattern
<<2) | Get_Bits
(2);
#ifdef TRACE
if (Trace_Flag
)
{
cprintf
("coded_block_pattern_1: ");
Print_Bits
(coded_block_pattern
,2,2);
cprintf
(" (%d)\n",coded_block_pattern
&3);
}
#endif /* TRACE */
}
else if (chroma_format
==CHROMA444
)
{
/* coded_block_pattern_2 */
coded_block_pattern
= (coded_block_pattern
<<6) | Get_Bits
(6);
#ifdef TRACE
if (Trace_Flag
)
{
cprintf
("coded_block_pattern_2: ");
Print_Bits
(coded_block_pattern
,6,6);
cprintf
(" (%d)\n",coded_block_pattern
&63);
}
#endif /* TRACE */
}
}
else
coded_block_pattern
= (*macroblock_type
& MACROBLOCK_INTRA
) ?
(1<<block_count
)-1 : 0;
if (Fault_Flag
) return(0); /* trigger: go to next slice */
/* decode blocks */
for (comp
=0; comp
<block_count
; comp
++)
{
/* SCALABILITY: Data Partitioning */
if (base.
scalable_mode==SC_DP
)
ld
= &base
;
Clear_Block
(comp
);
if (coded_block_pattern
& (1<<(block_count
-1-comp
)))
{
if (*macroblock_type
& MACROBLOCK_INTRA
)
{
if (ld
->MPEG2_Flag
)
Decode_MPEG2_Intra_Block
(comp
,dc_dct_pred
);
else
Decode_MPEG1_Intra_Block
(comp
,dc_dct_pred
);
}
else
{
if (ld
->MPEG2_Flag
)
Decode_MPEG2_Non_Intra_Block
(comp
);
else
Decode_MPEG1_Non_Intra_Block
(comp
);
}
if (Fault_Flag
) return(0); /* trigger: go to next slice */
}
}
if(picture_coding_type
==D_TYPE
)
{
/* remove end_of_macroblock (always 1, prevents startcode emulation) */
/* ISO/IEC 11172-2 section 2.4.2.7 and 2.4.3.6 */
marker_bit
("D picture end_of_macroblock bit");
}
/* reset intra_dc predictors */
/* ISO/IEC 13818-2 section 7.2.1: DC coefficients in intra blocks */
if (!(*macroblock_type
& MACROBLOCK_INTRA
))
dc_dct_pred
[0]=dc_dct_pred
[1]=dc_dct_pred
[2]=0;
/* reset motion vector predictors */
if ((*macroblock_type
& MACROBLOCK_INTRA
) && !concealment_motion_vectors
)
{
/* intra mb without concealment motion vectors */
/* ISO/IEC 13818-2 section 7.6.3.4: Resetting motion vector predictors */
PMV
[0][0][0]=PMV
[0][0][1]=PMV
[1][0][0]=PMV
[1][0][1]=0;
PMV
[0][1][0]=PMV
[0][1][1]=PMV
[1][1][0]=PMV
[1][1][1]=0;
}
/* special "No_MC" macroblock_type case */
/* ISO/IEC 13818-2 section 7.6.3.5: Prediction in P pictures */
if ((picture_coding_type
==P_TYPE
)
&& !(*macroblock_type
& (MACROBLOCK_MOTION_FORWARD
|MACROBLOCK_INTRA
)))
{
/* non-intra mb without forward mv in a P picture */
/* ISO/IEC 13818-2 section 7.6.3.4: Resetting motion vector predictors */
PMV
[0][0][0]=PMV
[0][0][1]=PMV
[1][0][0]=PMV
[1][0][1]=0;
/* derive motion_type */
/* ISO/IEC 13818-2 section 6.3.17.1: Macroblock modes, frame_motion_type */
if (picture_structure
==FRAME_PICTURE
)
*motion_type
= MC_FRAME
;
else
{
*motion_type
= MC_FIELD
;
/* predict from field of same parity */
motion_vertical_field_select
[0][0] = (picture_structure
==BOTTOM_FIELD
);
}
}
if (*stwclass
==4)
{
/* purely spatially predicted macroblock */
/* ISO/IEC 13818-2 section 7.7.5.1: Resetting motion vector predictions */
PMV
[0][0][0]=PMV
[0][0][1]=PMV
[1][0][0]=PMV
[1][0][1]=0;
PMV
[0][1][0]=PMV
[0][1][1]=PMV
[1][1][0]=PMV
[1][1][1]=0;
}
/* successfully decoded macroblock */
return(1);
} /* decode_macroblock */
/*********************************************************************
*
* Take a decoded picture allocate a buffer and copy the decoder picture to this new buffer and send it to a port that goes to displayTask.
*
* Author: Robert Bäckgren
***********************************************************************/
void Write_Frame
(unsigned char *src
[], int frame
)
{
struct decodeDisplayMessage msg
;
int i
;
int size
;
char tmp
[100];
for(i
= 0; i
< 3; i
++)
{
if(i
== 0)
size
= Coded_Picture_Width
*Coded_Picture_Height
;
else
size
= Chroma_Width
*Chroma_Height
;
if(!(msg.
src[i
] = (unsigned char *) malloc(size
)))
{
sprintf(tmp
, "malloc failed");
grx_text
(tmp
,0,0,rgb16
(255,255,255),0);
}
else
{
memcpy(msg.
src[i
], src
[i
], size
);
}
}
msg.
frame = frame
;
if(!port_send
(decoderTaskPort
->displayTaskPort
, (void*)(&msg
), BLOCK
))
{
sprintf(tmp
, "port_send failed");
grx_text
(tmp
,0,0,rgb16
(255,255,255),0);
}
}