Subversion Repositoriesshark

Rev
/* @(#)e_hypot.c 5.1 93/09/24 */
/*
* ====================================================
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/

#ifndef lint
static char rcsid[] = "\$\Id: e_hypot.c,v 1.2 1995/05/30 05:48:16 rgrimes Exp \$";
#endif

/* __ieee754_hypot(x,y)
*
* Method :
*      If (assume round-to-nearest) z=x*x+y*y
*      has error less than sqrt(2)/2 ulp, than
*      sqrt(z) has error less than 1 ulp (exercise).
*
*      So, compute sqrt(x*x+y*y) with some care as
*      follows to get the error below 1 ulp:
*
*      Assume x>y>0;
*      (if possible, set rounding to round-to-nearest)
*      1. if x > 2y  use
*              x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
*      where x1 = x with lower 32 bits cleared, x2 = x-x1; else
*      2. if x <= 2y use
*              t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
*      where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
*      y1= y with lower 32 bits chopped, y2 = y-y1.
*
*      NOTE: scaling may be necessary if some argument is too
*            large or too tiny
*
* Special cases:
*      hypot(x,y) is INF if x or y is +INF or -INF; else
*      hypot(x,y) is NAN if x or y is NAN.
*
* Accuracy:
*      hypot(x,y) returns sqrt(x^2+y^2) with error less
*      than 1 ulps (units in the last place)
*/

#include "math.h"
#include "math_private.h"

#ifdef __STDC__
double __ieee754_hypot(double x, double y)
#else
double __ieee754_hypot(x,y)
double x, y;
#endif
{
double a=x,b=y,t1,t2,y1,y2,w;
int32_t j,k,ha,hb;

GET_HIGH_WORD(ha,x);
ha &= 0x7fffffff;
GET_HIGH_WORD(hb,y);
hb &= 0x7fffffff;
if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
SET_HIGH_WORD(a,ha);    /* a <- |a| */
SET_HIGH_WORD(b,hb);    /* b <- |b| */
if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */
k=0;
if(ha > 0x5f300000) {   /* a>2**500 */
if(ha >= 0x7ff00000) {       /* Inf or NaN */
u_int32_t low;
w = a+b;                 /* for sNaN */
GET_LOW_WORD(low,a);
if(((ha&0xfffff)|low)==0) w = a;
GET_LOW_WORD(low,b);
if(((hb^0x7ff00000)|low)==0) w = b;
return w;
}
/* scale a and b by 2**-600 */
ha -= 0x25800000; hb -= 0x25800000;  k += 600;
SET_HIGH_WORD(a,ha);
SET_HIGH_WORD(b,hb);
}
if(hb < 0x20b00000) {   /* b < 2**-500 */
if(hb <= 0x000fffff) {      /* subnormal b or 0 */
u_int32_t low;
GET_LOW_WORD(low,b);
if((hb|low)==0) return a;
t1=0;
SET_HIGH_WORD(t1,0x7fd00000);   /* t1=2^1022 */
b *= t1;
a *= t1;
k -= 1022;
} else {            /* scale a and b by 2^600 */
ha += 0x25800000;       /* a *= 2^600 */
hb += 0x25800000;       /* b *= 2^600 */
k -= 600;
SET_HIGH_WORD(a,ha);
SET_HIGH_WORD(b,hb);
}
}
/* medium size a and b */
w = a-b;
if (w>b) {
t1 = 0;
SET_HIGH_WORD(t1,ha);
t2 = a-t1;
w  = sqrt(t1*t1-(b*(-b)-t2*(a+t1)));
} else {
a  = a+a;
y1 = 0;
SET_HIGH_WORD(y1,hb);
y2 = b - y1;
t1 = 0;
SET_HIGH_WORD(t1,ha+0x00100000);
t2 = a - t1;
w  = sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b)));
}
if(k!=0) {
u_int32_t high;
t1 = 1.0;
GET_HIGH_WORD(high,t1);
SET_HIGH_WORD(t1,high+(k<<20));
return t1*w;
} else return w;
}