Subversion Repositories shark

Rev

Blame | Last modification | View Log | RSS feed

/*
 *      Definitions for the 'struct sk_buff' memory handlers.
 *
 *      Authors:
 *              Alan Cox, <gw4pts@gw4pts.ampr.org>
 *              Florian La Roche, <rzsfl@rz.uni-sb.de>
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */


#ifndef _LINUX_SKBUFF_H
#define _LINUX_SKBUFF_H

#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/compiler.h>
#include <linux/time.h>
#include <linux/cache.h>

#include <asm/atomic.h>
#include <asm/types.h>
#include <linux/spinlock.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/poll.h>
#include <linux/net.h>

#define HAVE_ALLOC_SKB          /* For the drivers to know */
#define HAVE_ALIGNABLE_SKB      /* Ditto 8)                */
#define SLAB_SKB                /* Slabified skbuffs       */

#define CHECKSUM_NONE 0
#define CHECKSUM_HW 1
#define CHECKSUM_UNNECESSARY 2

#define SKB_DATA_ALIGN(X)       (((X) + (SMP_CACHE_BYTES - 1)) & \
                                 ~(SMP_CACHE_BYTES - 1))

#define SKB_MAX_ORDER(X, ORDER) (((PAGE_SIZE << (ORDER)) - (X) - \
                                  sizeof(struct skb_shared_info)) & \
                                  ~(SMP_CACHE_BYTES - 1))

#define SKB_MAX_HEAD(X)         (SKB_MAX_ORDER((X), 0))
#define SKB_MAX_ALLOC           (SKB_MAX_ORDER(0, 2))

/* A. Checksumming of received packets by device.
 *
 *      NONE: device failed to checksum this packet.
 *              skb->csum is undefined.
 *
 *      UNNECESSARY: device parsed packet and wouldbe verified checksum.
 *              skb->csum is undefined.
 *            It is bad option, but, unfortunately, many of vendors do this.
 *            Apparently with secret goal to sell you new device, when you
 *            will add new protocol to your host. F.e. IPv6. 8)
 *
 *      HW: the most generic way. Device supplied checksum of _all_
 *          the packet as seen by netif_rx in skb->csum.
 *          NOTE: Even if device supports only some protocols, but
 *          is able to produce some skb->csum, it MUST use HW,
 *          not UNNECESSARY.
 *
 * B. Checksumming on output.
 *
 *      NONE: skb is checksummed by protocol or csum is not required.
 *
 *      HW: device is required to csum packet as seen by hard_start_xmit
 *      from skb->h.raw to the end and to record the checksum
 *      at skb->h.raw+skb->csum.
 *
 *      Device must show its capabilities in dev->features, set
 *      at device setup time.
 *      NETIF_F_HW_CSUM - it is clever device, it is able to checksum
 *                        everything.
 *      NETIF_F_NO_CSUM - loopback or reliable single hop media.
 *      NETIF_F_IP_CSUM - device is dumb. It is able to csum only
 *                        TCP/UDP over IPv4. Sigh. Vendors like this
 *                        way by an unknown reason. Though, see comment above
 *                        about CHECKSUM_UNNECESSARY. 8)
 *
 *      Any questions? No questions, good.              --ANK
 */


#ifdef __i386__
#define NET_CALLER(arg) (*(((void **)&arg) - 1))
#else
#define NET_CALLER(arg) __builtin_return_address(0)
#endif

#ifdef CONFIG_NETFILTER
struct nf_conntrack {
        atomic_t use;
        void (*destroy)(struct nf_conntrack *);
};

struct nf_ct_info {
        struct nf_conntrack *master;
};

#ifdef CONFIG_BRIDGE_NETFILTER
struct nf_bridge_info {
        atomic_t use;
        struct net_device *physindev;
        struct net_device *physoutdev;
#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
        struct net_device *netoutdev;
#endif
        unsigned int mask;
        unsigned long hh[32 / sizeof(unsigned long)];
};
#endif

#endif

struct sk_buff_head {
        /* These two members must be first. */
        struct sk_buff  *next;
        struct sk_buff  *prev;

        __u32           qlen;
        spinlock_t      lock;
};

struct sk_buff;

/* To allow 64K frame to be packed as single skb without frag_list */
#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)

typedef struct skb_frag_struct skb_frag_t;

struct skb_frag_struct {
        struct page *page;
        __u16 page_offset;
        __u16 size;
};

/* This data is invariant across clones and lives at
 * the end of the header data, ie. at skb->end.
 */

struct skb_shared_info {
        atomic_t        dataref;
        unsigned int    nr_frags;
        unsigned short  tso_size;
        unsigned short  tso_segs;
        struct sk_buff  *frag_list;
        skb_frag_t      frags[MAX_SKB_FRAGS];
};

/**
 *      struct sk_buff - socket buffer
 *      @next: Next buffer in list
 *      @prev: Previous buffer in list
 *      @list: List we are on
 *      @sk: Socket we are owned by
 *      @stamp: Time we arrived
 *      @dev: Device we arrived on/are leaving by
 *      @real_dev: The real device we are using
 *      @h: Transport layer header
 *      @nh: Network layer header
 *      @mac: Link layer header
 *      @dst: FIXME: Describe this field
 *      @cb: Control buffer. Free for use by every layer. Put private vars here
 *      @len: Length of actual data
 *      @data_len: Data length
 *      @csum: Checksum
 *      @__unused: Dead field, may be reused
 *      @cloned: Head may be cloned (check refcnt to be sure)
 *      @pkt_type: Packet class
 *      @ip_summed: Driver fed us an IP checksum
 *      @priority: Packet queueing priority
 *      @users: User count - see {datagram,tcp}.c
 *      @protocol: Packet protocol from driver
 *      @security: Security level of packet
 *      @truesize: Buffer size
 *      @head: Head of buffer
 *      @data: Data head pointer
 *      @tail: Tail pointer
 *      @end: End pointer
 *      @destructor: Destruct function
 *      @nfmark: Can be used for communication between hooks
 *      @nfcache: Cache info
 *      @nfct: Associated connection, if any
 *      @nf_debug: Netfilter debugging
 *      @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
 *      @private: Data which is private to the HIPPI implementation
 *      @tc_index: Traffic control index
 */


struct sk_buff {
        /* These two members must be first. */
        struct sk_buff          *next;
        struct sk_buff          *prev;

        struct sk_buff_head     *list;
        struct sock             *sk;
        struct timeval          stamp;
        struct net_device       *dev;
        struct net_device       *real_dev;

        union {
                struct tcphdr   *th;
                struct udphdr   *uh;
                struct icmphdr  *icmph;
                struct igmphdr  *igmph;
                struct iphdr    *ipiph;
                unsigned char   *raw;
        } h;

        union {
                struct iphdr    *iph;
                struct ipv6hdr  *ipv6h;
                struct arphdr   *arph;
                unsigned char   *raw;
        } nh;

        union {
                struct ethhdr   *ethernet;
                unsigned char   *raw;
        } mac;

        struct  dst_entry       *dst;
        struct  sec_path        *sp;

        /*
         * This is the control buffer. It is free to use for every
         * layer. Please put your private variables there. If you
         * want to keep them across layers you have to do a skb_clone()
         * first. This is owned by whoever has the skb queued ATM.
         */

        char                    cb[48];

        unsigned int            len,
                                data_len,
                                csum;
        unsigned char           local_df,
                                cloned,
                                pkt_type,
                                ip_summed;
        __u32                   priority;
        unsigned short          protocol,
                                security;

        void                    (*destructor)(struct sk_buff *skb);
#ifdef CONFIG_NETFILTER
        unsigned long           nfmark;
        __u32                   nfcache;
        struct nf_ct_info       *nfct;
#ifdef CONFIG_NETFILTER_DEBUG
        unsigned int            nf_debug;
#endif
#ifdef CONFIG_BRIDGE_NETFILTER
        struct nf_bridge_info   *nf_bridge;
#endif
#endif /* CONFIG_NETFILTER */
#if defined(CONFIG_HIPPI)
        union {
                __u32           ifield;
        } private;
#endif
#ifdef CONFIG_NET_SCHED
       __u32                    tc_index;               /* traffic control index */
#endif

        /* These elements must be at the end, see alloc_skb() for details.  */
        unsigned int            truesize;
        atomic_t                users;
        unsigned char           *head,
                                *data,
                                *tail,
                                *end;
};

#define SK_WMEM_MAX     65535
#define SK_RMEM_MAX     65535

#ifdef __KERNEL__
/*
 *      Handling routines are only of interest to the kernel
 */

#include <linux/slab.h>

#include <asm/system.h>

extern void            __kfree_skb(struct sk_buff *skb);
extern struct sk_buff *alloc_skb(unsigned int size, int priority);
extern void            kfree_skbmem(struct sk_buff *skb);
extern struct sk_buff *skb_clone(struct sk_buff *skb, int priority);
extern struct sk_buff *skb_copy(const struct sk_buff *skb, int priority);
extern struct sk_buff *pskb_copy(struct sk_buff *skb, int gfp_mask);
extern int             pskb_expand_head(struct sk_buff *skb,
                                        int nhead, int ntail, int gfp_mask);
extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
                                            unsigned int headroom);
extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
                                       int newheadroom, int newtailroom,
                                       int priority);
extern struct sk_buff *         skb_pad(struct sk_buff *skb, int pad);
#define dev_kfree_skb(a)        kfree_skb(a)
extern void           skb_over_panic(struct sk_buff *skb, int len,
                                     void *here);
extern void           skb_under_panic(struct sk_buff *skb, int len,
                                      void *here);

/* Internal */
#define skb_shinfo(SKB)         ((struct skb_shared_info *)((SKB)->end))

/**
 *      skb_queue_empty - check if a queue is empty
 *      @list: queue head
 *
 *      Returns true if the queue is empty, false otherwise.
 */

static inline int skb_queue_empty(const struct sk_buff_head *list)
{
        return list->next == (struct sk_buff *)list;
}

/**
 *      skb_get - reference buffer
 *      @skb: buffer to reference
 *
 *      Makes another reference to a socket buffer and returns a pointer
 *      to the buffer.
 */

static inline struct sk_buff *skb_get(struct sk_buff *skb)
{
        atomic_inc(&skb->users);
        return skb;
}

/*
 * If users == 1, we are the only owner and are can avoid redundant
 * atomic change.
 */


/**
 *      kfree_skb - free an sk_buff
 *      @skb: buffer to free
 *
 *      Drop a reference to the buffer and free it if the usage count has
 *      hit zero.
 */

static inline void kfree_skb(struct sk_buff *skb)
{
        if (atomic_read(&skb->users) == 1 || atomic_dec_and_test(&skb->users))
                __kfree_skb(skb);
}

/* Use this if you didn't touch the skb state [for fast switching] */
static inline void kfree_skb_fast(struct sk_buff *skb)
{
        if (atomic_read(&skb->users) == 1 || atomic_dec_and_test(&skb->users))
                kfree_skbmem(skb);
}

/**
 *      skb_cloned - is the buffer a clone
 *      @skb: buffer to check
 *
 *      Returns true if the buffer was generated with skb_clone() and is
 *      one of multiple shared copies of the buffer. Cloned buffers are
 *      shared data so must not be written to under normal circumstances.
 */

static inline int skb_cloned(const struct sk_buff *skb)
{
        return skb->cloned && atomic_read(&skb_shinfo(skb)->dataref) != 1;
}

/**
 *      skb_shared - is the buffer shared
 *      @skb: buffer to check
 *
 *      Returns true if more than one person has a reference to this
 *      buffer.
 */

static inline int skb_shared(const struct sk_buff *skb)
{
        return atomic_read(&skb->users) != 1;
}

/**
 *      skb_share_check - check if buffer is shared and if so clone it
 *      @skb: buffer to check
 *      @pri: priority for memory allocation
 *
 *      If the buffer is shared the buffer is cloned and the old copy
 *      drops a reference. A new clone with a single reference is returned.
 *      If the buffer is not shared the original buffer is returned. When
 *      being called from interrupt status or with spinlocks held pri must
 *      be GFP_ATOMIC.
 *
 *      NULL is returned on a memory allocation failure.
 */

static inline struct sk_buff *skb_share_check(struct sk_buff *skb, int pri)
{
        might_sleep_if(pri & __GFP_WAIT);
        if (skb_shared(skb)) {
                struct sk_buff *nskb = skb_clone(skb, pri);
                kfree_skb(skb);
                skb = nskb;
        }
        return skb;
}

/*
 *      Copy shared buffers into a new sk_buff. We effectively do COW on
 *      packets to handle cases where we have a local reader and forward
 *      and a couple of other messy ones. The normal one is tcpdumping
 *      a packet thats being forwarded.
 */


/**
 *      skb_unshare - make a copy of a shared buffer
 *      @skb: buffer to check
 *      @pri: priority for memory allocation
 *
 *      If the socket buffer is a clone then this function creates a new
 *      copy of the data, drops a reference count on the old copy and returns
 *      the new copy with the reference count at 1. If the buffer is not a clone
 *      the original buffer is returned. When called with a spinlock held or
 *      from interrupt state @pri must be %GFP_ATOMIC
 *
 *      %NULL is returned on a memory allocation failure.
 */

static inline struct sk_buff *skb_unshare(struct sk_buff *skb, int pri)
{
        might_sleep_if(pri & __GFP_WAIT);
        if (skb_cloned(skb)) {
                struct sk_buff *nskb = skb_copy(skb, pri);
                kfree_skb(skb); /* Free our shared copy */
                skb = nskb;
        }
        return skb;
}

/**
 *      skb_peek
 *      @list_: list to peek at
 *
 *      Peek an &sk_buff. Unlike most other operations you _MUST_
 *      be careful with this one. A peek leaves the buffer on the
 *      list and someone else may run off with it. You must hold
 *      the appropriate locks or have a private queue to do this.
 *
 *      Returns %NULL for an empty list or a pointer to the head element.
 *      The reference count is not incremented and the reference is therefore
 *      volatile. Use with caution.
 */

static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
{
        struct sk_buff *list = ((struct sk_buff *)list_)->next;
        if (list == (struct sk_buff *)list_)
                list = NULL;
        return list;
}

/**
 *      skb_peek_tail
 *      @list_: list to peek at
 *
 *      Peek an &sk_buff. Unlike most other operations you _MUST_
 *      be careful with this one. A peek leaves the buffer on the
 *      list and someone else may run off with it. You must hold
 *      the appropriate locks or have a private queue to do this.
 *
 *      Returns %NULL for an empty list or a pointer to the tail element.
 *      The reference count is not incremented and the reference is therefore
 *      volatile. Use with caution.
 */

static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
{
        struct sk_buff *list = ((struct sk_buff *)list_)->prev;
        if (list == (struct sk_buff *)list_)
                list = NULL;
        return list;
}

/**
 *      skb_queue_len   - get queue length
 *      @list_: list to measure
 *
 *      Return the length of an &sk_buff queue.
 */

static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
{
        return list_->qlen;
}

static inline void skb_queue_head_init(struct sk_buff_head *list)
{
        spin_lock_init(&list->lock);
        list->prev = list->next = (struct sk_buff *)list;
        list->qlen = 0;
}

/*
 *      Insert an sk_buff at the start of a list.
 *
 *      The "__skb_xxxx()" functions are the non-atomic ones that
 *      can only be called with interrupts disabled.
 */


/**
 *      __skb_queue_head - queue a buffer at the list head
 *      @list: list to use
 *      @newsk: buffer to queue
 *
 *      Queue a buffer at the start of a list. This function takes no locks
 *      and you must therefore hold required locks before calling it.
 *
 *      A buffer cannot be placed on two lists at the same time.
 */

static inline void __skb_queue_head(struct sk_buff_head *list,
                                    struct sk_buff *newsk)
{
        struct sk_buff *prev, *next;

        newsk->list = list;
        list->qlen++;
        prev = (struct sk_buff *)list;
        next = prev->next;
        newsk->next = next;
        newsk->prev = prev;
        next->prev  = prev->next = newsk;
}


/**
 *      skb_queue_head - queue a buffer at the list head
 *      @list: list to use
 *      @newsk: buffer to queue
 *
 *      Queue a buffer at the start of the list. This function takes the
 *      list lock and can be used safely with other locking &sk_buff functions
 *      safely.
 *
 *      A buffer cannot be placed on two lists at the same time.
 */

static inline void skb_queue_head(struct sk_buff_head *list,
                                  struct sk_buff *newsk)
{
        unsigned long flags;

        spin_lock_irqsave(&list->lock, flags);
        __skb_queue_head(list, newsk);
        spin_unlock_irqrestore(&list->lock, flags);
}

/**
 *      __skb_queue_tail - queue a buffer at the list tail
 *      @list: list to use
 *      @newsk: buffer to queue
 *
 *      Queue a buffer at the end of a list. This function takes no locks
 *      and you must therefore hold required locks before calling it.
 *
 *      A buffer cannot be placed on two lists at the same time.
 */

static inline void __skb_queue_tail(struct sk_buff_head *list,
                                   struct sk_buff *newsk)
{
        struct sk_buff *prev, *next;

        newsk->list = list;
        list->qlen++;
        next = (struct sk_buff *)list;
        prev = next->prev;
        newsk->next = next;
        newsk->prev = prev;
        next->prev  = prev->next = newsk;
}

/**
 *      skb_queue_tail - queue a buffer at the list tail
 *      @list: list to use
 *      @newsk: buffer to queue
 *
 *      Queue a buffer at the tail of the list. This function takes the
 *      list lock and can be used safely with other locking &sk_buff functions
 *      safely.
 *
 *      A buffer cannot be placed on two lists at the same time.
 */

static inline void skb_queue_tail(struct sk_buff_head *list,
                                  struct sk_buff *newsk)
{
        unsigned long flags;

        spin_lock_irqsave(&list->lock, flags);
        __skb_queue_tail(list, newsk);
        spin_unlock_irqrestore(&list->lock, flags);
}

/**
 *      __skb_dequeue - remove from the head of the queue
 *      @list: list to dequeue from
 *
 *      Remove the head of the list. This function does not take any locks
 *      so must be used with appropriate locks held only. The head item is
 *      returned or %NULL if the list is empty.
 */

static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
{
        struct sk_buff *next, *prev, *result;

        prev = (struct sk_buff *) list;
        next = prev->next;
        result = NULL;
        if (next != prev) {
                result       = next;
                next         = next->next;
                list->qlen--;
                next->prev   = prev;
                prev->next   = next;
                result->next = result->prev = NULL;
                result->list = NULL;
        }
        return result;
}

/**
 *      skb_dequeue - remove from the head of the queue
 *      @list: list to dequeue from
 *
 *      Remove the head of the list. The list lock is taken so the function
 *      may be used safely with other locking list functions. The head item is
 *      returned or %NULL if the list is empty.
 */


static inline struct sk_buff *skb_dequeue(struct sk_buff_head *list)
{
        unsigned long flags;
        struct sk_buff *result;

        spin_lock_irqsave(&list->lock, flags);
        result = __skb_dequeue(list);
        spin_unlock_irqrestore(&list->lock, flags);
        return result;
}

/*
 *      Insert a packet on a list.
 */


static inline void __skb_insert(struct sk_buff *newsk,
                                struct sk_buff *prev, struct sk_buff *next,
                                struct sk_buff_head *list)
{
        newsk->next = next;
        newsk->prev = prev;
        next->prev  = prev->next = newsk;
        newsk->list = list;
        list->qlen++;
}

/**
 *      skb_insert      -       insert a buffer
 *      @old: buffer to insert before
 *      @newsk: buffer to insert
 *
 *      Place a packet before a given packet in a list. The list locks are taken
 *      and this function is atomic with respect to other list locked calls
 *      A buffer cannot be placed on two lists at the same time.
 */


static inline void skb_insert(struct sk_buff *old, struct sk_buff *newsk)
{
        unsigned long flags;

        spin_lock_irqsave(&old->list->lock, flags);
        __skb_insert(newsk, old->prev, old, old->list);
        spin_unlock_irqrestore(&old->list->lock, flags);
}

/*
 *      Place a packet after a given packet in a list.
 */


static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk)
{
        __skb_insert(newsk, old, old->next, old->list);
}

/**
 *      skb_append      -       append a buffer
 *      @old: buffer to insert after
 *      @newsk: buffer to insert
 *
 *      Place a packet after a given packet in a list. The list locks are taken
 *      and this function is atomic with respect to other list locked calls.
 *      A buffer cannot be placed on two lists at the same time.
 */



static inline void skb_append(struct sk_buff *old, struct sk_buff *newsk)
{
        unsigned long flags;

        spin_lock_irqsave(&old->list->lock, flags);
        __skb_append(old, newsk);
        spin_unlock_irqrestore(&old->list->lock, flags);
}

/*
 * remove sk_buff from list. _Must_ be called atomically, and with
 * the list known..
 */

static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
{
        struct sk_buff *next, *prev;

        list->qlen--;
        next       = skb->next;
        prev       = skb->prev;
        skb->next  = skb->prev = NULL;
        skb->list  = NULL;
        next->prev = prev;
        prev->next = next;
}

/**
 *      skb_unlink      -       remove a buffer from a list
 *      @skb: buffer to remove
 *
 *      Place a packet after a given packet in a list. The list locks are taken
 *      and this function is atomic with respect to other list locked calls
 *
 *      Works even without knowing the list it is sitting on, which can be
 *      handy at times. It also means that THE LIST MUST EXIST when you
 *      unlink. Thus a list must have its contents unlinked before it is
 *      destroyed.
 */

static inline void skb_unlink(struct sk_buff *skb)
{
        struct sk_buff_head *list = skb->list;

        if (list) {
                unsigned long flags;

                spin_lock_irqsave(&list->lock, flags);
                if (skb->list == list)
                        __skb_unlink(skb, skb->list);
                spin_unlock_irqrestore(&list->lock, flags);
        }
}

/* XXX: more streamlined implementation */

/**
 *      __skb_dequeue_tail - remove from the tail of the queue
 *      @list: list to dequeue from
 *
 *      Remove the tail of the list. This function does not take any locks
 *      so must be used with appropriate locks held only. The tail item is
 *      returned or %NULL if the list is empty.
 */

static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
{
        struct sk_buff *skb = skb_peek_tail(list);
        if (skb)
                __skb_unlink(skb, list);
        return skb;
}

/**
 *      skb_dequeue - remove from the head of the queue
 *      @list: list to dequeue from
 *
 *      Remove the head of the list. The list lock is taken so the function
 *      may be used safely with other locking list functions. The tail item is
 *      returned or %NULL if the list is empty.
 */

static inline struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
{
        unsigned long flags;
        struct sk_buff *result;

        spin_lock_irqsave(&list->lock, flags);
        result = __skb_dequeue_tail(list);
        spin_unlock_irqrestore(&list->lock, flags);
        return result;
}

static inline int skb_is_nonlinear(const struct sk_buff *skb)
{
        return skb->data_len;
}

static inline unsigned int skb_headlen(const struct sk_buff *skb)
{
        return skb->len - skb->data_len;
}

static inline int skb_pagelen(const struct sk_buff *skb)
{
        int i, len = 0;

        for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
                len += skb_shinfo(skb)->frags[i].size;
        return len + skb_headlen(skb);
}

static inline void skb_fill_page_desc(struct sk_buff *skb, int i, struct page *page, int off, int size)
{
        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
        frag->page = page;
        frag->page_offset = off;
        frag->size = size;
        skb_shinfo(skb)->nr_frags = i+1;
}

#define SKB_PAGE_ASSERT(skb)    BUG_ON(skb_shinfo(skb)->nr_frags)
#define SKB_FRAG_ASSERT(skb)    BUG_ON(skb_shinfo(skb)->frag_list)
#define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))

/*
 *      Add data to an sk_buff
 */

static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
{
        unsigned char *tmp = skb->tail;
        SKB_LINEAR_ASSERT(skb);
        skb->tail += len;
        skb->len  += len;
        return tmp;
}

/**
 *      skb_put - add data to a buffer
 *      @skb: buffer to use
 *      @len: amount of data to add
 *
 *      This function extends the used data area of the buffer. If this would
 *      exceed the total buffer size the kernel will panic. A pointer to the
 *      first byte of the extra data is returned.
 */

static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
{
        unsigned char *tmp = skb->tail;
        SKB_LINEAR_ASSERT(skb);
        skb->tail += len;
        skb->len  += len;
        if (unlikely(skb->tail>skb->end))
                skb_over_panic(skb, len, current_text_addr());
        return tmp;
}

static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
{
        skb->data -= len;
        skb->len  += len;
        return skb->data;
}

/**
 *      skb_push - add data to the start of a buffer
 *      @skb: buffer to use
 *      @len: amount of data to add
 *
 *      This function extends the used data area of the buffer at the buffer
 *      start. If this would exceed the total buffer headroom the kernel will
 *      panic. A pointer to the first byte of the extra data is returned.
 */

static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
{
        skb->data -= len;
        skb->len  += len;
        if (unlikely(skb->data<skb->head))
                skb_under_panic(skb, len, current_text_addr());
        return skb->data;
}

static inline char *__skb_pull(struct sk_buff *skb, unsigned int len)
{
        skb->len -= len;
        BUG_ON(skb->len < skb->data_len);
        return skb->data += len;
}

/**
 *      skb_pull - remove data from the start of a buffer
 *      @skb: buffer to use
 *      @len: amount of data to remove
 *
 *      This function removes data from the start of a buffer, returning
 *      the memory to the headroom. A pointer to the next data in the buffer
 *      is returned. Once the data has been pulled future pushes will overwrite
 *      the old data.
 */

static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
{
        return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
}

extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);

static inline char *__pskb_pull(struct sk_buff *skb, unsigned int len)
{
        if (len > skb_headlen(skb) &&
            !__pskb_pull_tail(skb, len-skb_headlen(skb)))
                return NULL;
        skb->len -= len;
        return skb->data += len;
}

static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
{
        return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
}

static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
{
        if (likely(len <= skb_headlen(skb)))
                return 1;
        if (unlikely(len > skb->len))
                return 0;
        return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
}

/**
 *      skb_headroom - bytes at buffer head
 *      @skb: buffer to check
 *
 *      Return the number of bytes of free space at the head of an &sk_buff.
 */

static inline int skb_headroom(const struct sk_buff *skb)
{
        return skb->data - skb->head;
}

/**
 *      skb_tailroom - bytes at buffer end
 *      @skb: buffer to check
 *
 *      Return the number of bytes of free space at the tail of an sk_buff
 */

static inline int skb_tailroom(const struct sk_buff *skb)
{
        return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
}

/**
 *      skb_reserve - adjust headroom
 *      @skb: buffer to alter
 *      @len: bytes to move
 *
 *      Increase the headroom of an empty &sk_buff by reducing the tail
 *      room. This is only allowed for an empty buffer.
 */

static inline void skb_reserve(struct sk_buff *skb, unsigned int len)
{
        skb->data += len;
        skb->tail += len;
}

extern int ___pskb_trim(struct sk_buff *skb, unsigned int len, int realloc);

static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
{
        if (!skb->data_len) {
                skb->len  = len;
                skb->tail = skb->data + len;
        } else
                ___pskb_trim(skb, len, 0);
}

/**
 *      skb_trim - remove end from a buffer
 *      @skb: buffer to alter
 *      @len: new length
 *
 *      Cut the length of a buffer down by removing data from the tail. If
 *      the buffer is already under the length specified it is not modified.
 */

static inline void skb_trim(struct sk_buff *skb, unsigned int len)
{
        if (skb->len > len)
                __skb_trim(skb, len);
}


static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
{
        if (!skb->data_len) {
                skb->len  = len;
                skb->tail = skb->data+len;
                return 0;
        }
        return ___pskb_trim(skb, len, 1);
}

static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
{
        return (len < skb->len) ? __pskb_trim(skb, len) : 0;
}

/**
 *      skb_orphan - orphan a buffer
 *      @skb: buffer to orphan
 *
 *      If a buffer currently has an owner then we call the owner's
 *      destructor function and make the @skb unowned. The buffer continues
 *      to exist but is no longer charged to its former owner.
 */

static inline void skb_orphan(struct sk_buff *skb)
{
        if (skb->destructor)
                skb->destructor(skb);
        skb->destructor = NULL;
        skb->sk         = NULL;
}

/**
 *      skb_queue_purge - empty a list
 *      @list: list to empty
 *
 *      Delete all buffers on an &sk_buff list. Each buffer is removed from
 *      the list and one reference dropped. This function takes the list
 *      lock and is atomic with respect to other list locking functions.
 */

static inline void skb_queue_purge(struct sk_buff_head *list)
{
        struct sk_buff *skb;
        while ((skb = skb_dequeue(list)) != NULL)
                kfree_skb(skb);
}

/**
 *      __skb_queue_purge - empty a list
 *      @list: list to empty
 *
 *      Delete all buffers on an &sk_buff list. Each buffer is removed from
 *      the list and one reference dropped. This function does not take the
 *      list lock and the caller must hold the relevant locks to use it.
 */

static inline void __skb_queue_purge(struct sk_buff_head *list)
{
        struct sk_buff *skb;
        while ((skb = __skb_dequeue(list)) != NULL)
                kfree_skb(skb);
}

/**
 *      __dev_alloc_skb - allocate an skbuff for sending
 *      @length: length to allocate
 *      @gfp_mask: get_free_pages mask, passed to alloc_skb
 *
 *      Allocate a new &sk_buff and assign it a usage count of one. The
 *      buffer has unspecified headroom built in. Users should allocate
 *      the headroom they think they need without accounting for the
 *      built in space. The built in space is used for optimisations.
 *
 *      %NULL is returned in there is no free memory.
 */

static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
                                              int gfp_mask)
{
        struct sk_buff *skb = alloc_skb(length + 16, gfp_mask);
        if (likely(skb))
                skb_reserve(skb, 16);
        return skb;
}

/**
 *      dev_alloc_skb - allocate an skbuff for sending
 *      @length: length to allocate
 *
 *      Allocate a new &sk_buff and assign it a usage count of one. The
 *      buffer has unspecified headroom built in. Users should allocate
 *      the headroom they think they need without accounting for the
 *      built in space. The built in space is used for optimisations.
 *
 *      %NULL is returned in there is no free memory. Although this function
 *      allocates memory it can be called from an interrupt.
 */

static inline struct sk_buff *dev_alloc_skb(unsigned int length)
{
        return __dev_alloc_skb(length, GFP_ATOMIC);
}

/**
 *      skb_cow - copy header of skb when it is required
 *      @skb: buffer to cow
 *      @headroom: needed headroom
 *
 *      If the skb passed lacks sufficient headroom or its data part
 *      is shared, data is reallocated. If reallocation fails, an error
 *      is returned and original skb is not changed.
 *
 *      The result is skb with writable area skb->head...skb->tail
 *      and at least @headroom of space at head.
 */

static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
{
        int delta = (headroom > 16 ? headroom : 16) - skb_headroom(skb);

        if (delta < 0)
                delta = 0;

        if (delta || skb_cloned(skb))
                return pskb_expand_head(skb, (delta + 15) & ~15, 0, GFP_ATOMIC);
        return 0;
}

/**
 *      skb_padto       - pad an skbuff up to a minimal size
 *      @skb: buffer to pad
 *      @len: minimal length
 *
 *      Pads up a buffer to ensure the trailing bytes exist and are
 *      blanked. If the buffer already contains sufficient data it
 *      is untouched. Returns the buffer, which may be a replacement
 *      for the original, or NULL for out of memory - in which case
 *      the original buffer is still freed.
 */

 
static inline struct sk_buff *skb_padto(struct sk_buff *skb, unsigned int len)
{
        unsigned int size = skb->len;
        if (likely(size >= len))
                return skb;
        return skb_pad(skb, len-size);
}

/**
 *      skb_linearize - convert paged skb to linear one
 *      @skb: buffer to linarize
 *      @gfp: allocation mode
 *
 *      If there is no free memory -ENOMEM is returned, otherwise zero
 *      is returned and the old skb data released.
 */

extern int __skb_linearize(struct sk_buff *skb, int gfp);
static inline int __deprecated skb_linearize(struct sk_buff *skb, int gfp)
{
        return __skb_linearize(skb, gfp);
}

static inline void *kmap_skb_frag(const skb_frag_t *frag)
{
#ifdef CONFIG_HIGHMEM
        BUG_ON(in_irq());

        local_bh_disable();
#endif
        return kmap_atomic(frag->page, KM_SKB_DATA_SOFTIRQ);
}

static inline void kunmap_skb_frag(void *vaddr)
{
        kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
#ifdef CONFIG_HIGHMEM
        local_bh_enable();
#endif
}

#define skb_queue_walk(queue, skb) \
                for (skb = (queue)->next, prefetch(skb->next);  \
                     (skb != (struct sk_buff *)(queue));        \
                     skb = skb->next, prefetch(skb->next))



extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
                                         int noblock, int *err);
extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
                                     struct poll_table_struct *wait);
extern int             skb_copy_datagram(const struct sk_buff *from,
                                         int offset, char *to, int size);
extern int             skb_copy_datagram_iovec(const struct sk_buff *from,
                                               int offset, struct iovec *to,
                                               int size);
extern int             skb_copy_and_csum_datagram(const struct sk_buff *skb,
                                                  int offset, u8 *to, int len,
                                                  unsigned int *csump);
extern int             skb_copy_and_csum_datagram_iovec(const
                                                        struct sk_buff *skb,
                                                        int hlen,
                                                        struct iovec *iov);
extern void            skb_free_datagram(struct sock *sk, struct sk_buff *skb);
extern unsigned int    skb_checksum(const struct sk_buff *skb, int offset,
                                    int len, unsigned int csum);
extern int             skb_copy_bits(const struct sk_buff *skb, int offset,
                                     void *to, int len);
extern unsigned int    skb_copy_and_csum_bits(const struct sk_buff *skb,
                                              int offset, u8 *to, int len,
                                              unsigned int csum);
extern void            skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);

extern void skb_init(void);
extern void skb_add_mtu(int mtu);

#ifdef CONFIG_NETFILTER
static inline void nf_conntrack_put(struct nf_ct_info *nfct)
{
        if (nfct && atomic_dec_and_test(&nfct->master->use))
                nfct->master->destroy(nfct->master);
}
static inline void nf_conntrack_get(struct nf_ct_info *nfct)
{
        if (nfct)
                atomic_inc(&nfct->master->use);
}

#ifdef CONFIG_BRIDGE_NETFILTER
static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
{
        if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
                kfree(nf_bridge);
}
static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
{
        if (nf_bridge)
                atomic_inc(&nf_bridge->use);
}
#endif

#endif

#endif  /* __KERNEL__ */
#endif  /* _LINUX_SKBUFF_H */