Subversion Repositories shark

Rev

Blame | Last modification | View Log | RSS feed

/*
 * Project: S.Ha.R.K.
 *
 * Coordinators:
 *   Giorgio Buttazzo    <giorgio@sssup.it>
 *   Paolo Gai           <pj@gandalf.sssup.it>
 *
 * Authors     :
 *   Paolo Gai           <pj@gandalf.sssup.it>
 *   Massimiliano Giorgi <massy@gandalf.sssup.it>
 *   Luca Abeni          <luca@gandalf.sssup.it>
 *   (see the web pages for full authors list)
 *
 * ReTiS Lab (Scuola Superiore S.Anna - Pisa - Italy)
 *
 * http://www.sssup.it
 * http://retis.sssup.it
 * http://shark.sssup.it
 */


/**
 ------------
 CVS :        $Id: rrvalue.c,v 1.1 2004-07-05 14:17:13 pj Exp $

 File:        $File$
 Revision:    $Revision: 1.1 $
 Last update: $Date: 2004-07-05 14:17:13 $
 ------------

 This file contains the scheduling module RRVALUE (Round Robin)

 Read rrvalue.h for further details.

**/


/*
 * Copyright (C) 2001 Paolo Gai
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRSOFTANTY; without even the implied waRRSOFTanty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */



#include "rrvalue.h"
#include <ll/stdio.h>
#include <ll/string.h>
#include <kernel/model.h>
#include <kernel/descr.h>
#include <kernel/var.h>
#include <kernel/func.h>

/*+ Status used in the level +*/
#define RRVALUE_READY   MODULE_STATUS_BASE
#define RRVALUE_DELAY   MODULE_STATUS_BASE+1
#define RRVALUE_IDLE    MODULE_STATUS_BASE+2

/*+ the level redefinition for the Round Robin level +*/
typedef struct {
  level_des l;     /*+ the standard level descriptor          +*/

  int nact[MAX_PROC]; /*+ number of pending activations       +*/

  QQUEUE ready;    /*+ the ready queue                        +*/

  int slice;       /*+ the level's time slice                 +*/

  TIME period[MAX_PROC]; /*+  activation period (reldlines for value tasks)+*/

  struct timespec reactivation_time[MAX_PROC];
        /*+ the time at witch  the reactivation timer is post,
            absdlines for value tasks +*/

  int reactivation_timer[MAX_PROC];
                                   /*+ the recativation timer +*/

  BYTE periodic[MAX_PROC];


  struct multiboot_info *multiboot; /*+ used if the level have to insert
                                        the main task +*/


  BYTE models;      /*+ Task Model that the Module can Handle +*/

  int totalvalue;
  int value[MAX_PROC];
  int penalty[MAX_PROC];

  int max_tasks;    /*+ Max number of tasks that the level can afford +*/
} RRVALUE_level_des;


static char *RRVALUE_status_to_a(WORD status)
{
  if (status < MODULE_STATUS_BASE)
    return status_to_a(status);

  switch (status) {
    case RRVALUE_READY: return "RRVALUE_Ready";
    case RRVALUE_DELAY: return "RRVALUE_Delay";
    case RRVALUE_IDLE : return "RRVALUE_Idle";
    default      : return "RRVALUE_Unknown";
  }
}


/* this is the periodic reactivation of the task... it is posted only
   if the task is a periodic task */

static void RRVALUE_timer_reactivate(void *par)
{
  PID p = (PID) par;
  RRVALUE_level_des *lev;
//  kern_printf("react");

  lev = (RRVALUE_level_des *)level_table[proc_table[p].task_level];

  if (proc_table[p].status == RRVALUE_IDLE) {
    /* the task has finished the current activation and must be
       reactivated */

    TIMESPEC_ASSIGN(&proc_table[p].request_time,
                    &lev->reactivation_time[p]);
    ll_gettime(TIME_EXACT, &proc_table[p].request_time);
    proc_table[p].status = RRVALUE_READY;
    qq_insertlast(p,&lev->ready);

    event_need_reschedule();
  }
  else if (lev->nact[p] >= 0)
    /* the task has not completed the current activation, so we save
       the activation incrementing nact... */

    lev->nact[p]++;

  /* repost the event at the next period end... */
  ADDUSEC2TIMESPEC(lev->period[p], &lev->reactivation_time[p]);
  lev->reactivation_timer[p] = kern_event_post(&lev->reactivation_time[p],
                                               RRVALUE_timer_reactivate,
                                               (void *)p);
  /* tracer stuff */
//  trc_logevent(TRC_INTACTIVATION,&p);
}


/*+ this function is called when a task finish his delay +*/
static void RRVALUE_timer_delay(void *par)
{
  PID p = (PID) par;
  RRVALUE_level_des *lev;

  lev = (RRVALUE_level_des *)level_table[proc_table[p].task_level];

  proc_table[p].status = RRVALUE_READY;
  qq_insertlast(p,&lev->ready);

  proc_table[p].delay_timer = NIL;  /* Paranoia */

//  kern_printf(" DELAY TIMER %d ", p);

  event_need_reschedule();
}


static int RRVALUE_level_accept_task_model(LEVEL l, TASK_MODEL *m)
{
  RRVALUE_level_des *lev = (RRVALUE_level_des *)(level_table[l]);

  if ((m->pclass == NRT_PCLASS || m->pclass == (NRT_PCLASS | l)) && lev->models & RRVALUE_ONLY_NRT)
    return 0;
  else if ((m->pclass == SOFT_PCLASS || m->pclass == (SOFT_PCLASS | l)) && lev->models & RRVALUE_ONLY_SOFT)
    return 0;
  else if ((m->pclass == HARD_PCLASS || m->pclass == (HARD_PCLASS | l)) && lev->models & RRVALUE_ONLY_HARD)
    return 0;
  else if ((m->pclass == VALUE_PCLASS || m->pclass == (VALUE_PCLASS | l)) && lev->models & RRVALUE_ONLY_VALUE)
    return 0;
  else
    return -1;
}

static int RRVALUE_level_accept_guest_model(LEVEL l, TASK_MODEL *m)
{
    return -1;
}

static void RRVALUE_level_status(LEVEL l)
{
  RRVALUE_level_des *lev = (RRVALUE_level_des *)(level_table[l]);
  PID p = qq_queryfirst(&lev->ready);

  kern_printf("Slice: %d \n", lev->slice);

  while (p != NIL) {
    kern_printf("Pid: %d\t Name: %20s Status: %s\n",p,proc_table[p].name,
              RRVALUE_status_to_a(proc_table[p].status));
    p = proc_table[p].next;
  }

  for (p=0; p<MAX_PROC; p++)
    if (proc_table[p].task_level == l && proc_table[p].status != RRVALUE_READY
        && proc_table[p].status != FREE )
      kern_printf("Pid: %d\t Name: %20s Status: %s\n",p,proc_table[p].name,
                RRVALUE_status_to_a(proc_table[p].status));

}


/* This is not efficient but very fair :-)
   The need of all this stuff is because if a task execute a long time
   due to (shadow!) priority inheritance, then the task shall go to the
   tail of the queue many times... */

static PID RRVALUE_level_scheduler(LEVEL l)
{
  RRVALUE_level_des *lev = (RRVALUE_level_des *)(level_table[l]);

  PID p;

  for (;;) {
    p = qq_queryfirst(&lev->ready);
    if (p == -1)
      return p;
//{kern_printf("(s%d)",p);      return p;}

//    kern_printf("(p=%d l=%d avail=%d wcet =%d)\n",p,l,proc_table[p].avail_time, proc_table[p].wcet);
    if (proc_table[p].avail_time <= 0) {
      proc_table[p].avail_time += proc_table[p].wcet;
      qq_extract(p,&lev->ready);
      qq_insertlast(p,&lev->ready);
    }
    else
//{kern_printf("(s%d)",p);      return p;}
      return p;
  }
}

static int RRVALUE_level_guarantee(LEVEL l, bandwidth_t *freebandwidth)
{
  /* the RRVALUE level always guarantee... the function is defined because
     there can be an aperiodic server at a level with less priority than
     the RRVALUE that need guarantee (e.g., a TBS server) */


  RRVALUE_level_des *lev = (RRVALUE_level_des *)(level_table[l]);

//  kern_printf("R%d ",lev->max_tasks>0);
  return lev->max_tasks > 0;
}


static int RRVALUE_task_create(LEVEL l, PID p, TASK_MODEL *m)
{
  RRVALUE_level_des *lev = (RRVALUE_level_des *)(level_table[l]);

//  kern_printf("create %d mod %d\n",p,m->pclass);
  /* the task state is set at SLEEP by the general task_create
     the only thing to set remains the capacity stuffs that are set
     to the values passed in the model... */


  /* I used the wcet field because using wcet can account if a task
     consume more than the timeslice... */


  if (lev->models & RRVALUE_ONLY_NRT &&
      (m->pclass == NRT_PCLASS || m->pclass == (NRT_PCLASS | l))) {
    NRT_TASK_MODEL *nrt = (NRT_TASK_MODEL *)m;

//    kern_printf("nrt");
    if (nrt->slice) {
      proc_table[p].avail_time = nrt->slice;
      proc_table[p].wcet       = nrt->slice;
    }
    else {
      proc_table[p].avail_time = lev->slice;
      proc_table[p].wcet       = lev->slice;
    }
    proc_table[p].control   |= CONTROL_CAP;
 
    if (nrt->arrivals == SAVE_ARRIVALS)
      lev->nact[p] = 0;
    else
      lev->nact[p] = -1;

    lev->periodic[p] = 0;
    lev->period[p] = 0;

    lev->value[p] = 0;
    lev->penalty[p] = 0;
  }
  else if (lev->models & RRVALUE_ONLY_SOFT &&
           (m->pclass == SOFT_PCLASS || m->pclass == (SOFT_PCLASS | l))) {
    SOFT_TASK_MODEL *soft = (SOFT_TASK_MODEL *)m;
//    kern_printf("soft");
    proc_table[p].avail_time = lev->slice;
    proc_table[p].wcet       = lev->slice;
    proc_table[p].control   |= CONTROL_CAP;
 
    if (soft->arrivals == SAVE_ARRIVALS)
      lev->nact[p] = 0;
    else
      lev->nact[p] = -1;

    if (soft->periodicity == PERIODIC) {
      lev->periodic[p] = 1;
      lev->period[p] = soft->period;
    }
    else {
      lev->periodic[p] = 0;
      lev->period[p] = 0;
    }

    lev->value[p] = 0;
    lev->penalty[p] = 0;
  }
  else if (lev->models & RRVALUE_ONLY_HARD &&
           (m->pclass == HARD_PCLASS || m->pclass == (HARD_PCLASS | l))) {
    HARD_TASK_MODEL *hard = (HARD_TASK_MODEL *)m;
//    kern_printf("hard");
    proc_table[p].avail_time = lev->slice;
    proc_table[p].wcet       = lev->slice;
    proc_table[p].control   |= CONTROL_CAP;
 
    lev->nact[p] = 0;

    if (hard->periodicity == PERIODIC) {
      lev->periodic[p] = 1;
      lev->period[p] = hard->mit;
    }
    else {
      lev->periodic[p] = 0;
      lev->period[p] = 0;
    }

    lev->value[p] = 0;
    lev->penalty[p] = 0;
  }

  if (lev->models & RRVALUE_ONLY_VALUE &&
      (m->pclass == VALUE_PCLASS || m->pclass == (VALUE_PCLASS | l))) {
    VALUE_TASK_MODEL *v = (VALUE_TASK_MODEL *)m;
    proc_table[p].avail_time = lev->slice;
    proc_table[p].wcet       = lev->slice;
    proc_table[p].control   |= CONTROL_CAP;
    lev->nact[p] = -1;
    lev->periodic[p] = 0;

    lev->value[p] = v->value;
    lev->penalty[p] = v->penalty;
    lev->period[p] = v->dline;
  }

  lev->max_tasks--;

  return 0; /* OK */
}

static void RRVALUE_task_detach(LEVEL l, PID p)
{
  RRVALUE_level_des *lev = (RRVALUE_level_des *)(level_table[l]);

  //lev->totalvalue += lev->penalty[p];

  lev->max_tasks++;
}

static int RRVALUE_task_eligible(LEVEL l, PID p)
{
  return 0; /* if the task p is chosen, it is always eligible */
}

#ifdef __TEST1__
extern int testactive;
extern struct timespec s_stime[];
extern TIME s_curr[];
extern TIME s_PID[];
extern int useds;
#endif

static void RRVALUE_task_dispatch(LEVEL l, PID p, int nostop)
{
  RRVALUE_level_des *lev = (RRVALUE_level_des *)(level_table[l]);
  struct timespec t;

  /* the task state is set EXE by the scheduler()
     we extract the task from the ready queue
     NB: we can't assume that p is the first task in the queue!!! */

  qq_extract(p, &lev->ready);

  // kill the task if it already has missed the deadline
  t = proc_table[p].request_time;
  ADDUSEC2TIMESPEC(lev->period[p],&t);
  if (TIMESPEC_A_LT_B(&t,&schedule_time))
    proc_table[p].control |= KILL_REQUEST;
}

static void RRVALUE_task_epilogue(LEVEL l, PID p)
{
  RRVALUE_level_des *lev = (RRVALUE_level_des *)(level_table[l]);

  /* check if the slice is finished and insert the task in the coRRVALUEect
     qqueue position */

  if (proc_table[p].avail_time <= 0) {
    proc_table[p].avail_time += proc_table[p].wcet;
    qq_insertlast(p,&lev->ready);
    proc_table[p].control |= KILL_REQUEST;
  }
  else
    /* curr is >0, so the running task have to run for another cuRRVALUE usec */
    qq_insertfirst(p,&lev->ready);

  proc_table[p].status = RRVALUE_READY;
}

static void RRVALUE_task_activate(LEVEL l, PID p)
{
  RRVALUE_level_des *lev = (RRVALUE_level_des *)(level_table[l]);

  /* Test if we are trying to activate a non sleeping task    */
  /* save activation (only if needed... */
  if (proc_table[p].status != SLEEP && proc_table[p].status != RRVALUE_IDLE) {
    if (lev->nact[p] != -1)
      lev->nact[p]++;
    return;
  }

  ll_gettime(TIME_EXACT, &proc_table[p].request_time);

  /* Insert task in the coRRVALUEect position */
  proc_table[p].status = RRVALUE_READY;
  qq_insertlast(p,&lev->ready);


  /* Set the reactivation timer */
  TIMESPEC_ASSIGN(&lev->reactivation_time[p], &proc_table[p].request_time);
  ADDUSEC2TIMESPEC(lev->period[p], &lev->reactivation_time[p]);
  if (lev->periodic[p])
  {
    // timespec stuffs moved up for value tasks!
    lev->reactivation_timer[p] = kern_event_post(&lev->reactivation_time[p],
                                                 RRVALUE_timer_reactivate,
                                                 (void *)p);
  }
}

static void RRVALUE_task_insert(LEVEL l, PID p)
{
  RRVALUE_level_des *lev = (RRVALUE_level_des *)(level_table[l]);

  /* Similar to RRVALUE_task_activate, but we don't check in what state
     the task is and we don't set the request_time */


  /* Insert task in the coRRVALUEect position */
  proc_table[p].status = RRVALUE_READY;
  qq_insertlast(p,&lev->ready);
}

static void RRVALUE_task_extract(LEVEL l, PID p)
{
  /* Extract the running task from the level
     . we have already extract it from the ready queue at the dispatch time.
     . the capacity event have to be removed by the generic kernel
     . the wcet don't need modification...
     . the state of the task is set by the calling function

     So, we do nothing!!!
  */

}

static void RRVALUE_task_endcycle(LEVEL l, PID p)
{
  RRVALUE_level_des *lev = (RRVALUE_level_des *)(level_table[l]);

  if (lev->nact[p] > 0) {
    /* continue!!!! */
    ll_gettime(TIME_EXACT, &proc_table[p].request_time);
    lev->nact[p]--;
//    qq_insertlast(p,&lev->ready);
    qq_insertfirst(p,&lev->ready);
    proc_table[p].status = RRVALUE_READY;
  }
  else
    proc_table[p].status = RRVALUE_IDLE;
}

static void RRVALUE_task_end(LEVEL l, PID p)
{
  RRVALUE_level_des *lev = (RRVALUE_level_des *)(level_table[l]);
  struct timespec t;

  lev->nact[p] = -1;

  /* we delete the reactivation timer */
  if (lev->periodic[p]) {
    event_delete(lev->reactivation_timer[p]);
    lev->reactivation_timer[p] = -1;
  }

  /* then, we insert the task in the free queue */
  proc_table[p].status = FREE;
  q_insert(p,&freedesc);

  // account for the value only if it<finishes in time
  if (lev->penalty[p] || lev->value[p]) {
    ll_gettime(TIME_EXACT,&t);
    if (TIMESPEC_A_LT_B(&t, &lev->reactivation_time[p]))
      lev->totalvalue += lev->penalty[p] + lev->value[p];
  }

  lev->max_tasks++;
}

static void RRVALUE_task_sleep(LEVEL l, PID p)
{
  RRVALUE_level_des *lev = (RRVALUE_level_des *)(level_table[l]);

  if (lev->nact[p] >= 0) lev->nact[p] = 0;

  /* we delete the reactivation timer */
  if (lev->periodic[p]) {
    event_delete(lev->reactivation_timer[p]);
    lev->reactivation_timer[p] = -1;
  }

  proc_table[p].status = SLEEP;
}

static void RRVALUE_task_delay(LEVEL l, PID p, TIME usdelay)
{
//  RRVALUE_level_des *lev = (RRVALUE_level_des *)(level_table[l]);
  struct timespec wakeuptime;

  /* equal to RRVALUE_task_endcycle */
  proc_table[p].status = RRVALUE_DELAY;

  /* we need to delete this event if we kill the task while it is sleeping */
  ll_gettime(TIME_EXACT,&wakeuptime);
  ADDUSEC2TIMESPEC(usdelay,&wakeuptime);
  proc_table[p].delay_timer = kern_event_post(&wakeuptime,
                                              RRVALUE_timer_delay,
                                              (void *)p);
}


static int RRVALUE_guest_create(LEVEL l, PID p, TASK_MODEL *m)
{ kern_raise(XUNVALID_GUEST,exec_shadow); return 0; }

static void RRVALUE_guest_detach(LEVEL l, PID p)
{ kern_raise(XUNVALID_GUEST,exec_shadow); }

static void RRVALUE_guest_dispatch(LEVEL l, PID p, int nostop)
{ kern_raise(XUNVALID_GUEST,exec_shadow); }

static void RRVALUE_guest_epilogue(LEVEL l, PID p)
{ kern_raise(XUNVALID_GUEST,exec_shadow); }

static void RRVALUE_guest_activate(LEVEL l, PID p)
{ kern_raise(XUNVALID_GUEST,exec_shadow); }

static void RRVALUE_guest_insert(LEVEL l, PID p)
{ kern_raise(XUNVALID_GUEST,exec_shadow); }

static void RRVALUE_guest_extract(LEVEL l, PID p)
{ kern_raise(XUNVALID_GUEST,exec_shadow); }

static void RRVALUE_guest_endcycle(LEVEL l, PID p)
{ kern_raise(XUNVALID_GUEST,exec_shadow); }

static void RRVALUE_guest_end(LEVEL l, PID p)
{ kern_raise(XUNVALID_GUEST,exec_shadow); }

static void RRVALUE_guest_sleep(LEVEL l, PID p)
{ kern_raise(XUNVALID_GUEST,exec_shadow); }

static void RRVALUE_guest_delay(LEVEL l, PID p,DWORD tickdelay)
{ kern_raise(XUNVALID_GUEST,exec_shadow); }




/* Registration functions */

/*+ This init function install the "main" task +*/
static void RRVALUE_call_main(void *l)
{
  LEVEL lev;
  PID p;
  NRT_TASK_MODEL m;
  void *mb;

  lev = (LEVEL)l;

  nrt_task_default_model(m);
  nrt_task_def_level(m,lev); /* with this we are sure that the task aRRVALUEives
                                to the coRRVALUEect level */


  mb = ((RRVALUE_level_des *)level_table[lev])->multiboot;
  nrt_task_def_arg(m,mb);
  nrt_task_def_usemath(m);
  nrt_task_def_nokill(m);
  nrt_task_def_ctrl_jet(m);

  p = task_create("Main", __init__, (TASK_MODEL *)&m, NULL);

  if (p == NIL)
    printk("\nPanic!!! can't create main task...\n");

  RRVALUE_task_activate(lev,p);
}


/*+ Registration function:
    TIME slice                the slice for the Round Robin queue
    int createmain            1 if the level creates the main task 0 otherwise
    struct multiboot_info *mb used if createmain specified   +*/

void RRVALUE_register_level(TIME slice,
                       int createmain,
                       struct multiboot_info *mb,
                       BYTE models, int m)
{
  LEVEL l;            /* the level that we register */
  RRVALUE_level_des *lev;  /* for readableness only */
  PID i;

  printk("RRVALUE_register_level\n");

  /* request an entry in the level_table */
  l = level_alloc_descriptor();

  /* alloc the space needed for the RRVALUE_level_des */
  lev = (RRVALUE_level_des *)kern_alloc(sizeof(RRVALUE_level_des));

  printk("    lev=%d\n",(int)lev);

  /* update the level_table with the new entry */
  level_table[l] = (level_des *)lev;

  /* fill the standard descriptor */
  strncpy(lev->l.level_name,  RRVALUE_LEVELNAME, MAX_LEVELNAME);
  lev->l.level_code               = RRVALUE_LEVEL_CODE;
  lev->l.level_version            = RRVALUE_LEVEL_VERSION;

  lev->l.level_accept_task_model  = RRVALUE_level_accept_task_model;
  lev->l.level_accept_guest_model = RRVALUE_level_accept_guest_model;
  lev->l.level_status             = RRVALUE_level_status;
  lev->l.level_scheduler          = RRVALUE_level_scheduler;
  lev->l.level_guarantee          = RRVALUE_level_guarantee;

  lev->l.task_create              = RRVALUE_task_create;
  lev->l.task_detach              = RRVALUE_task_detach;
  lev->l.task_eligible            = RRVALUE_task_eligible;
  lev->l.task_dispatch            = RRVALUE_task_dispatch;
  lev->l.task_epilogue            = RRVALUE_task_epilogue;
  lev->l.task_activate            = RRVALUE_task_activate;
  lev->l.task_insert              = RRVALUE_task_insert;
  lev->l.task_extract             = RRVALUE_task_extract;
  lev->l.task_endcycle            = RRVALUE_task_endcycle;
  lev->l.task_end                 = RRVALUE_task_end;
  lev->l.task_sleep               = RRVALUE_task_sleep;
  lev->l.task_delay               = RRVALUE_task_delay;

  lev->l.guest_create             = RRVALUE_guest_create;
  lev->l.guest_detach             = RRVALUE_guest_detach;
  lev->l.guest_dispatch           = RRVALUE_guest_dispatch;
  lev->l.guest_epilogue           = RRVALUE_guest_epilogue;
  lev->l.guest_activate           = RRVALUE_guest_activate;
  lev->l.guest_insert             = RRVALUE_guest_insert;
  lev->l.guest_extract            = RRVALUE_guest_extract;
  lev->l.guest_endcycle           = RRVALUE_guest_endcycle;
  lev->l.guest_end                = RRVALUE_guest_end;
  lev->l.guest_sleep              = RRVALUE_guest_sleep;
  lev->l.guest_delay              = RRVALUE_guest_delay;

  /* fill the RRVALUE descriptor part */
  for (i = 0; i < MAX_PROC; i++) {
    lev->nact[i] = -1;
    NULL_TIMESPEC(&lev->reactivation_time[i]);
    lev->reactivation_timer[i] = -1;
    lev->periodic[i] = 0;
    lev->period[i] = 0;
    lev->value[i] = 0;
    lev->penalty[i] = 0;
  }

  qq_init(&lev->ready);

  if (slice < RRVALUE_MINIMUM_SLICE) slice = RRVALUE_MINIMUM_SLICE;
  if (slice > RRVALUE_MAXIMUM_SLICE) slice = RRVALUE_MAXIMUM_SLICE;
  lev->slice      = slice;

  lev->multiboot  = mb;

  lev->models     = models;

  lev->totalvalue = 0;

  lev->max_tasks  = m;

  if (createmain)
    sys_atrunlevel(RRVALUE_call_main,(void *) l, RUNLEVEL_INIT);
}


/*+ returns the current total value +*/
int RRVALUE_getvalue(LEVEL l)
{
  RRVALUE_level_des *lev = (RRVALUE_level_des *)(level_table[l]);
  if (lev->l.level_code    == RRVALUE_LEVEL_CODE &&
      lev->l.level_version == RRVALUE_LEVEL_VERSION)
    return lev->totalvalue;
  else
    return 0;
}

/*
 * These functions are needed only to link with the crunch application
 * They should not be used in other applications.
 */


#include <modules/edf.h>

void crunch_register_models(struct multiboot_info *mb)
{
  EDF_register_level(EDF_ENABLE_ALL);
  RRVALUE_register_level(10000, RRVALUE_MAIN_NO, mb,
    RRVALUE_ONLY_HARD|RRVALUE_ONLY_SOFT|RRVALUE_ONLY_VALUE,5);
}

int crunch_taskaccepted(PID p)
{
  LEVEL l = proc_table[p].task_level;
  RRVALUE_level_des *lev = (RRVALUE_level_des *)(level_table[l]);

  if (lev->max_tasks > 0) {
    lev->totalvalue -= lev->penalty[p];
    return 1;
  }
  else {
    return 0;
  }
}

int crunch_getvalue()
{
  return RRVALUE_getvalue(2);
}